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Abstract. Precision viticulture has been developing very rapidly in the last two decades. Operational systems
commonly use GIS, spatial interpolation, modelling, real time geolocalization, remote sensing and more recently,
drone technology. Whereas precision viticulture is all about high space and time resolution of either measurements,
analysis, diagnostics or decision support, few operational systems are built in an integrative way, combining many
techniques and data sources. Within the European VINTAGE project, hourly time step climate data measurements,
topography-based spatial interpolation, mechanistic soil, plant and disease models, remote sensing information and
a decision support system are integrated within a GIS server to provide an operational tool for sustainable vineyard
management for the grapegrower. The current study presents the overall system framework and first examples of
model validation.

1 Introduction

Precision agriculture (PA) is  a  term now commonly
used to address “that kind of agriculture that increases the
number of (correct) decisions per unit area of land per unit
time with associated net  benefits”  [1].  It  therefore does
not imply particular  technology,  but suggests that  using
methods increasing space/time resolution might be useful
to enhance precision in farming techniques. Most of PA
related literature focuses technology: high resolution and
real  time  positioning  systems  (e.g.  GPS),  geographical
information  systems,  variable  rate  technologies  (VRT),
and remote sensing techniques.

PA application to viticulture,  hereafter referred to as
PV  (for  Precision  Viticulture)  has  been  increasingly

developed  since  1999  [2].  PA  and  PV  research  and
commercial development has been consisting in a series
of  individual  specific  technologies  such  as  yield
measurement  devices  on harvester  [3],  light/radiometers
for  remote  vegetation  sensing  (e.g.  NDVI  measuring
devices  [4]) or grape ripening estimates  [5] coupled for
positioning methods or techniques. Despite the recent rise
of  integrated  systems  such  as  multiple  sensors
combinations [6] or wide spatial coverage sensors [7][8],
whole farm focus is lacking [1].

PA/PV are  based  upon  innovative  techniques.  Their
management  and  interpretation  requires  specific  skills
(e.g. programming, GIS management, image analysis, …)
that  are  sometimes  far  beyond  the  knowledge  of  the
grower. An integrated acquisition and processing system
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is therefore required to insure a relative autonomous use
of  PA systems.  Modelling is  necessary to  translate  raw
data in either biological or agricultural information. This
information  might  be  then  either  directly  used  by  the
grower  or  interpreted  by  an  expert  before  providing
recommendations to the grower. Another possibility is to
automatically process the final information via a series of
decision  rules.  It  avoids  turning  to  an  expert  and  it
provides direct support to the final user. It is essential that
the  decision  support,  either  automated  or  expert-based,
use reliable source information to be elaborated. 

In  this paper,  we present the current framework and
features of VINTAGE, a decision support system (DSS)
for integrating the management of the whole vineyard on
a wine growing territory. The system, which development
is currently being finalized, combines weather data, GIS
information  and  modelling,  plant,  soil,  grape  disease
models, decision rules and web services.

We  evaluate  the  performance  of  VINTAGE  via  its
plant  model  outputs  on  a  pilot  vineyard  in  Burgundy,
France.

2 Material & Methods

2.1 The VINTAGE system
VINTAGE  is  an  integrated  system  using  precision
viticulture  to  propose  decision  support  to  the  grape
grower.  It  is  being  elaborated  within  the  VINTAGE
project,  an  European  Community (FP7)  granted  project
involving a consortium of four European associations of
grape  growers  (in  Spain,  Portugal,  Italy  and  France)
grouping several thousands of wine producers, two SMEs
and six Research Transfer and Development Performers
from Austria,  France  and  Italy among  Universities  and
Research Centers with specific expertise covering all the
technical  features  required  for  the  development  of  this
system.

The  consortium  aims  at  developing  an  innovative
management  platform  (including  both  software  and
hardware components) able to provide novel PV services
to  their  associated  members  and  to  new  clients.  This
platform  makes  available  an  easy  to  use  web  based
software  by  means  of  which  the  end  users  (SMEs  or
Consortia of wine producers) have access to information
needed  to  optimize  their  daily  operations,  including
reports, statistics and in general way, all DSS outcomes. 

2.1.1 Global framework

In  the  VINTAGE system (Figure 1),  data derived from
observation and analysis performed directly on the field,
data  automatically  gathered  by  Wireless  Monitoring
Stations  (WMS,  weather  and  soil  status  monitoring)
located on the field and data coming from satellites are
received and collected in a  common storage (database).
These  data  are  then  processed  by  models  and  remote
sensing (RS) sub-systems in charge of augmenting them
by  adding  some  additional  derived  indexes.  These
obtained augmented data are then used by the DSS engine
to produce useful hints and suggestions. 

Figure  1:  The  VINTAGE  global  framework.  WMS  =
Wireless  Weather  Monitoring  Stations,  DSS  =  Decision
support system, HMI= Human Machine Interfaces.

A global picture of what’s going on is offered to both final
users and domain experts via a customized web GIS-like
interface (VINTAGE front-end). By means of this front-
end  domain experts  and final  users  are  able  to  interact
with the system in order to provide feedback and properly
configure it.

Five  macro  feature/component  blocks  may  be
identified:

 WMS – Wireless Monitoring Stations (automatic
source of data collected on the field)

 RS –  Remote  Sensing  including  Satellite  Data
and  Image  Processing  (automatic  or  semi-
automatic source of geospatial data)

 MOD  –  Soil,  plant  and  phytosanitary  models
(input:  field  and  geospatial  data,  output:  soil,
plant and phytosanitary indices)

 DSS – Decision Support System engine (input:
models-augmented  data,  output:  hints  &
suggestions)

 HMI –  Human-Machine  Interfaces  (i.e.  a  web
site and a smartphone application)

Each component has been implemented as a software
service  in  the  framework  of  a  Service  Oriented
Architecture (SOA – a software architecture focused on



providing functionality through loosely-coupled software
services). Each service contributes to reach the main goals
of the system by operating in a set of defined sequences
provided  by  a  module  tailored  to  coordinate  them  all
(“orchestrator”).

Data  coming  from  Remote  Sensing,  Wireless
Monitoring Stations and direct observation by humans are
acquired and collected by the system and categorized in:
(i) parameter; (ii) field data; (iii) satellite data.
Parameters (i) are provided by humans and represent data
such  as  user  information  (e.g.  personal  data,  vineyard
identification,  etc.)  and  initialization  data  (e.g.  plant
density,  grapevine  cultivar,  etc.).  Field  data  (ii)  are
operative  data  (e.g.  diseases  symptoms,  pruning,
irrigation,  etc.)  provided  by humans  or  as  measures  of
physical  quantities  (e.g.  temperature,  humidity,  etc)
automatically  acquired  by  WMS  placed  in  the  field.
Satellite Data (iii)  are EOS (Earth Observation System)
data gathered from broadcast or satellite data providers.
Collected  data  is  then  elaborated  to  be  spatialized
(interpolated  in  space)  and  augmented  resulting  in:
spatialized parameters (user information and initialization
data available on the full grid of each Area Of Interest,
AOI); spatialized field data (operative and measured data
available  on the  full  grid  of  each AOI);  model  indexes
(specific geo-referenced indexes that simulate the current
evolution of  agronomical  and weather  related processes
such  as  plant  growth,  soil  physics  and  infection
occurences);  remote  sensing  indexes  (earth-surface
variables  and  derived  indexes  useful  in  precision
viticulture such as ones characterizing canopy structure,
leaf optical properties, soil moisture, etc).

Data Mining techniques are used in an automatic form
in order  to  provide context  categorization and semantic
tagging of data. Then starting from mined data overlapped
with  feedback  coming from domain  experts,  a  runtime
environment  will  generate  geo-referenced  hints  and
suggestions.

An  Integration  Platform  acts  as  a  sort  of  glue
providing common base services and functionalities such
as  shared  data  persistence  management  system,  GIS-
oriented  commodities,  a  shared  file-system,  events
management system.

Such a platform and each module are implemented in
the  form  of  a  set  of  Virtual  Machines  (VM)  in  a
virtualized networking environment in order to maximize
modularization, scalability and flexibility of the solution.
In this way the VINTAGE system may be easily deployed
in  many different  shapes  and  sizes  tailored  to  manage
from a single vineyard to – potentially – the whole planet.

2.1.2 The Wireless Monitoring Stations (WMS)

Several agro-weather stations, conceived and installed in
order to support the DSS, supplying detailed data to be
used  for model  calculations/interpolations/validation
(main and local  stations)  and reference for  the selected
area (main station). Custom electronics, able to control the
whole  system,  is  developed  and  built  with  special
features, such as Solar panel plus battery recharge circuit
on-board, smart remote reset by means of a simple phone
call, remote firmware reprogramming, records backup and
re-sending,  in  case  of  signal  loss,  acquisition  and
transmission  intervals  fully  selectable,  daily  time  auto
resynchronisation, easy expansions with further sensors,
IP65 and IP68 isolation.

Figure  2:  the Wireless  Monitoring Stations (WMS).  a: the
main station in Saint-Romain (Burgundy, France) ; b: a local
station in Serralunga d’Alba (Piemonte, Italy).

2.1.3 Interpolation procedure

Observed local weather WMS data are interpolated on an
hourly basis over the domain. A Digital Elevation Model
(DEM)  is  included  as  a  proxy  variable  for  the
interpolation of air temperature and dew temperature. The
DEM grid is also used as the base structure where data are
interpolated and modeling computation is performed.

Meteorological  variables  are  spatialized  with
procedures  that  combine  classical  smooth  spatial
interpolation algorithms (inverse distance weighting) and
routines  specifically  devised  for  each  variable  [11].
Physical  knowledge  of  specific  spatial  variability  is
incorporated,  by choosing the right  covariables  that  are



used to “detrend” original data, in order to eliminate the
variability due to a geographic variable (e.g.  elevation).
The  detrended  data  are  interpolated  by  using  classical
smooth  spatial  interpolation  routines,  which  take  into
account only their spatial statistical properties. Trends are
then  reintroduced  at  the  end  of  this  procedure  on  the
interpolation  grid.  With  detrending-retrending approach,
the spatialization procedure allows to better explain both
the  local  and  the  regional  scales  where  atmospheric
processes occur. This approach is applied for the variables
which are mostly dependent on elevation: temperature and
humidity.

For  air  temperature,  an  orographical  analysis  of
thermal  lapse rate  is  performed,  using linear  regression
analysis and considering thermal inversions. Station data
are detrended based on their elevation, using the modelled
lapse rates. Detrended maps are produced over the domain
and  final  temperature  maps  are  obtained  reconstructing
the lapse rate over the domain grid using DEM.
For precipitation, a two-step procedure is applied  [12]: a
first interpolation, using only binary values (0 and 1) is
performed to detect rainy areas, and a second one, using
only positive observed values,  to spatialize precipitation
over these areas.

Relative humidity is  interpolated by converting it  to
dew point temperature and using the same procedure as
air  temperature  (detrending  with  elevation),  then
converting it back to relative humidity.

The components of the solar radiation budget at the
surface  (global,  direct,  diffuse  and  reflected)  are
computed  on  the  DEM  using  the  predure  described  in
[13]. Real-sky hourly irradiance for a horizontal surface is
estimated  using  global  transmissivity,  computed  as  the
ratio between clear-sky irradiance and interpolated global
irradiance maps produced from the WMS data. A specific
scheme adapted from  [15] is used to separate beam and
diffuse  transmissivities  and  compute  irradiances  for
inclined surfaces.

2.1.4 Soil, Grapevine and diseases models

The  soil-water  model  is  based  on  Criteria 3D  (see  a
complete description in  [13]) that solves the water flow
equations  in  the  soil,  coupling  a  three-dimensional
solution for infiltration and redistribution to an algorithm
for  surface  runoff.  This  is  obtained  by  means  of  an
integrated finite difference scheme. The surface and sub-
surface movement of water is fully coupled, using water
head as state variable.  Surface flow is described by the
two-dimensional parabolic approximation of the St Venant

equation, using Manning’s equation of motion. Subsurface
flow  is  described  by  the  three-dimensional  Richards’
equation  for  the  unsaturated  zone  and  by  three-
dimensional Darcy’s law for the saturated zone. The soil
hydraulic properties are computed using the modified Van
Genuchten-  Mualem  model  proposed  by  [16].  Surface
runoff on the lateral boundary of the domain and vertical
free  drainage  in  the  last  soil  layer  are  the  boundary
conditions of the system. Precipitation, irrigation and root
water uptake are sink-source at each node of the system. 

The  grapevine  development  and  grape  ripening  is
described through the coupling of different models which
face the following features: 
- Phenology;
- Leaf appearance and development;
- Photosynthesis.
- Berry ripening; 

The phenological model is based on [17]. By means of
two  different  thermal  sums  (ChillState  and  ForcState),
calculated  through  chilling  units  and  heat  units
respectively,  the model describes the main phenological
stages:  endodormancy,  ecodormancy,  bud  burst,
flowering,  fruit  set  and  veraison.   The  thresholds  over
which a given phenological phase is reached were taken
from  [17] for  Chardonnay and  calibrated  for  the  other
varieties included in the project. 

Unlike  the  original  model,  veraison  phase  was
estimated  through  heat  units  as  proposed  by  [18],
consisting of the cumulated degree days calculated from
March,  1st (for  the  northern  hemisphere)  onwards  with
base temperature set to 0.

In order to establish to best harvest time we developed
a  simple  model   which  computes  sugar  concentration
evolution starting at veraison. The sugar concentration (S)
depends on  ForcState, so that

ForcState (t )−ForcState (ver ); S (t )<Smax

¿
¿

S (t )=11.5+0.41¿

where  S(t)  the sugar concentration of berries in °Bx on
day t;  ForcState(t)  is  the  thermal  sum on date  (t).  ver
indicates the day of the year when veraison occurs (i.e. t =
veraison date) S(t) has an upper bound given by:

Smax=0.015∑ rad+5.21

where  ∑rad is the cumulated incident radiation from
fruit set to veraison expressed in MJ.m-2.
Leaf appearance and development rate follow the model
proposed by Bindi  et al. [19]. From budburst, the shoot



leaf  number  (SLN)  is  determined  by  a  first  order
differential  equation  involving  only  the  daily  mean
temperature as environmental variable plus few empirical
parameters.  SLN is used to compute shoot leaf area and
finally LAI.

The impact of water stress on leaf development was
included  by  affecting  the  daily  incremental  rate  by  a
factor dependent on the fraction of transpirable soil water
(FTSW, see Eq. (2) in [20]). The above described models
run at  daily time step. 

Plant  growth  is  computed  by  simulating  the
photosynthetic  process  at  hourly  time  step  along  the
whole growing season.  We implemented the  scheme of
the  HYDRALL  model  [21],  where  plant  canopy  is
simplified by means of the two-big leaf approach. Carbon
assimilation is determined through the Farquhar equation
[22] within an iterative procedure which computes at once
stomatal  conductance  too  [23].  Water  stress  acts  in  the
process by reducing stomatal conductance as in [24]. We
obtain then  total  biomass and  water  transpiration.  Fruit
biomass is determined by the total biomass following the
approach in  [19]. The necessary biochemical parameters
for photosynthesis have been  mostly taken from [25] and
[26].  Beside  the  grapevine  simulation  we  coupled  a
simplified  growth  model  for  grass  based  on  light-use
efficiency  [27].  Scope  of  the  latter  is  only  to  assess
correctly the vineyard actual evapotranspiration.

Disease  models  are  direct  implementation  of
Plasmopara viticola (downy mildew agent) and Erysiphe
necator (powdery  mildew  agent)  mechanistic  models
described in [28] and [29].

2.1.5 Decision and Support System

By  using  the  knowledge  of  fully-experienced  experts,
coded  in  form  of  a  set  of  rules,  an  ontology-based
artificial intelligence subsystem (DSS Engine) is in charge
of integrating indices and estimations computed starting
from satellite data, models and data coming from Wireless
Monitoring Stations (WMS) in order to help users to take
decisions. Hints and suggestions based on a large set of
data,  evidences,  observations  and  best  practice  are
provided to domain experts (e.g.  agronomists) and final
users (e.g. grape growers, winemakers, etc.). Three kind
of  key-information  are  generated:  (i)  what  is
suggested/recommended to do; (ii) list of facts that justify
the suggestion (data,  observations etc.);  (iii)  knowledge
rules involved.

2.1.6 Human-Machine Interface

Results are displayed through an online portal, using web-
GIS interfaces to visualize output as maps. The HMI are
currently under development,  and prototypes (Figure 3)
are being tested by grape growers in the pilot areas, and
by VINTAGE consortium members.

Figure 3: a screenshot of the VINTAGE beta interface.

2.2 Pilot vineyard in Burgundy The  VINTAGE system is  implemented  and  tested  in  4
pilot areas in Piedmont (Italy), Burgundy (France), Rioja
(Spain) and northern Portugal. The current study focuses



on the work and validation performed in the Burgundy
(France) pilot.

2.2.1 The study area

The French pilot area is located in Saint-Romain village
vineyards  (Burgundy,  Figure  4).  Saint-Romain  is  a
protected appellation of origin appellation (AOP / AOC)
of 97.5 ha of vineyards. Saint-Romain vineyards lies on
three hillsides. Both of them consists in southeastern and
southwestern  oriented slopes of  a  north to  south valley
(Figure  4,  top).  This  valley joins  a  larger  east  to  west
valley across which vineyards are planted on an east to
north-east oriented hillslope (Figure 4, bottom). Vineyard
soils have silty and clayey textures, with varying gravel
contents.  They are shallow calcaric-cambisols (from 0.3
to  1.5  meters  depth)  overlying  late  Jurassic  limestones
(top and lower part of the slope) and marls (mid to upper-
slope).

Figure  4: The Saint-Romain pilot vineyard.  Source for the
background map: IGN SCAN25© 

2.2.2 Pilot WMS

Six  Wireless  Monitoring  Stations  (WMS)  have  been
installed within the Saint-Romain area (Figure 4). A main
station  recorded  temperature,  humidity,  rainfall,  air
pressure, global radiation, wind speed and direction. Five
so-called “Local Meteo-Agro” stations measured air and
canopy  temperature,  rainfall,  leaf  wetness  and  soil
volumetric content at 30 cm depth.

The stations have been positioned in order to sample
as  much  as  possible  the  ranges  in  slope,  aspect,  soil
features and above all, elevation.

2.2.3 Field measurements

During the 2014 growing season, data was collected in 6
experimental  plots  located  in  commercial  vineyards  of
Saint-Romain appellation area (Figure 4, ). Each plot was
planted  with  Vitis  vinifera cultivar  Chardonnay.  The
training system was  vertical  shoot  position  (VSP)  with
simple guyot pruning, with one spur and an 8 buds cane.
Plant spacing was 1 m between plants within the row and
1.1 m between the rows (9090 vines/ha).. The trunk height
ranged  from  0.35  to  0.45  m  and  the  shoots  were
mechanically trimmed several  times  starting from early
June at about 1.0 m to 1.2 m high. Soil was managed by
tillage.  Farming  techniques  differed  from  a  plot  to
another,  as  they  belonged  to  and  were  cultivated  by
different farmers.

For each plot, measurements were performed amongst
49 healthy vines. Starting from mid-May, phenology, leaf
development,  water  status  and fruit  characteristics  were
monitored ().



Table 3: Saint-Romain (Burgundy, France) experimental plots

Location Plot 
ID

Elevation
(m).

Slope

 (°)

Aspect 

(°)

Terrain 
features

Soil

Perrière PR 336 m 18.0 24 Midslope Calcaric cambisol (Colluvic) on Nantoux 
limestone (mid to upper oxfordian) 

Poillange 
haut

POH 357 m 10.7 122 Upper slope Calcaric cambisol (Colluvic) on Saint-Romain 
marls (upper oxfordian) 

Poillange bas POB 329 m 5 30 Plateau Calcaric cambisol on Nantoux limestone (mid 
to upper oxfordian) 

En Chevrot CH 419 m 6.1 158 Upper slope Calcaric cambisol on Nantoux limestone (mid 
to upper oxfordian) 

Sous Roche SR 361 m 11.1 246 Midslope Calcaric cambisol on Saint-Romain marls 
(upper oxfordian) 

Sous le 
Chateau

SC 342 m 10.7 100 Midslope Calcaric cambisol (Colluvic) on Nantoux 
limestone (mid to upper oxfordian) 

Table 4: Grapevine field measurements

Measurement Method Acronym Unit
shoot leaf number Starting from May 15 to the end of August (8 sampling dates), 20 fruit

shoots per plot (the most developed and the shortest one per vine, 10 vines
per site) were measured in length, from the last opened leaf to the base,
primary and lateral leaves were counted separately.

SLN

Leaf area index On 20 shoots per plot, the number of primary leaves (NL1) and the mean
primary leaf area (M1) were used to estimate the mean primary leaf area
per shoot according to Eq.(1) of Lopes and Pinto [30].
For secondary leaves the measurements started at the fourth sampling date.
All  lateral  leaves were  grouped into one dataset  with  the same type  of
variables as reported for primary leaves.

LAI

Phenology Mid-flowering  (50% of  the  inflorescence  at  the  BBCH stage  65)  date,
observed twice a week on 10 plants per plot

FLO Day  of  the
year

Grapevine  water
status

Midday stem leaf water potential measured as described in [31] SWP MPa

Berry
composition

Sugar content assessed by IRTF analysis (uncertainty = 0.4°brix approx..),
on the basis of 160 berries collected randomly on the 49 plants

SUG °brix
(g/100g  of
FW)

Berry weight The average value of a berry weight estimated on 8 samples of 20 berries
collected randomly on the 49 plants

BW grams

Number  of
clusters per plant

Average number of cluster per plant measured on 8 plants at harvest CN

Number  of
berries per cluster

Cluster weight (8 plant at harvest)– bunch stem weight (measured on 520
grapes at harvest) divided by the average berry weight at harvest

BN

Fruit biomass Average  berry  weight  multiplied  by  the  number  of  berries  at  harvest
multiplied by the number of clusters per plant multiplied by the number of
plants per hectare divided by 10000 m²

FB kg/m²

2.4  VINTAGE  parameters  and  models
assessment

The VINTAGE system was set  up for  each plot  of  the
whole  vineyard  accounting  to  the  cultivar.  Training
systems were  considered  similar  in  the  whole  area  (no

custom  settings  were  done  by  the  growers).  Indeed,
Appelation of  Origin specification are rather  strict,  and
most of the vineyards have similar canopy geometry and
plant density. However, pruning load might change from a
grape grower to another. 



As no soil map and analyses were available, the soils
were considered  as  calcaric  cambisol  with homogenous
features within the whole area.

Phenology,  shoot  leaf  number,  LAI,  grapevine  daily
transpiration, grape sugar content and fruit biomass were
extracted from the VINTAGE system at the experimental
locations and compared to plot measurements.

3 Plant model evaluation

3.1 Growing parameters

In Saint-Romain, blooming occurred from June 7th to 10th

(Figure 5). As field observations were performed twice a
week, no clear difference between the 6 validation plots
could be observed, except for the plot “EC”, located in the
most  elevated  area,  where  flowering  occurred  the  most
lately,  on June 10th.  VINTAGE flowering date estimates
were  slightly  biased  (average  difference  of  2.57  days),
which reduced the performance of the model (Root Mean
Squared Error, i.e. RMSE = 2.72). 

Figure 5: Flowering date estimates by VINTAGE. Error bars
represent the 2 days estimated field measurement errors (as
observations  were  performed  twice  a  week).  Each  plot,
flowering observations were made on 8 randomly selected
plants. The solid line corresponds to the model perfect match
(i.e. f(x)=x)

Leaf number estimates were far less accurate, especially
after mid-June (Figure 6). Shoots were trimming during
early to mid-June according to the farmers (plots). This
operation was not filled within the VINTAGE system.

Figure  6 : Shoot leaf number estimates by VINTAGE. The
solid  line  corresponds  to  the  model  perfect  match  (i.e.
f(x)=x).  The  horizontal  error  bars  are  the  standard
deviations of the measurements (N = 20 for each point).

On  May  21st,  prior  to  shoot  trimming,  leaf  number
estimate is rather consistent with observations (RMSE =
2.16 leaves, Bias = 2 leaves). The plot “EC”, located at
the highest  elevation exhibits  a  slower development,  as
shown by the  lower number  of  leaves both measured /
estimated.

3.2 Fruit development

Fruit development was assessed by comparing VINTAGE
fruit biomass output to both field measured berry weight
and crop yield (i.e. fruit biomass).
Berry weight space and time variations followed globally
the VINTAGE fruit biomass estimates (Figure 7).



Figure  7:  VINTAGE  fruit  biomass  estimate  vs  measured
berry  weight.  The  horizontal  error bars  are  the  standard
deviations of the measurements (8 weight measurements of
20 berries batches).

The  steep  south-exposed  site  “SC”  had  the  lowest
measured berry size, for 2 dates out of 3, and the lowest
estimated fruit  biomass.  This might  probably be due to
higher  water  deficit  experienced  on  this  plot,  as  slope
might enhance rainfall runoff and south aspect increases
water loss by evapotranspiration enhancement by higher
irradiation. In contrast, the highest measured berry weight
and estimated crop was found in “POB”, a rather flat plot.
Model estimates of the fruit biomass was not compared to
the  observed  yield  on  each  plot,  because  during  the
current  experience,  the VINTAGE system had not been
configured  accounting  for  pruning  loading  differences
amongst  the plots or  crop thinning interventions,  which
might dramatically. 

VINTAGE underestimated sugar content in grapes (biases
of -0.45°, -2.45° and -3.27° for August, 21st , August 28th

and September 4th). However, it captured rather accurately
the  spatial  variability  in  sugar,  for  the  last  two
measurements  (Figure  8,  R²  =  0.62  and  0.77  for  late
August and Early September measurement). This suggests
that  VINTAGE  might  be  a  useful  tool  to  estimate  the
harvest  order  of  plots  within  the  vineyard.  On  the
contrary,  more  efforts  in  improving  accuracy  (i.e.  bias
reduction)  is  needed  to  make  VINTAGE  useful  for
targeting  maturity  control  or  harvest  for  the  whole
vineyard. 

Success  in  capturing  the  spatial  variability  of  sugar
content is unexpected as plots used to evaluate the model
outputs belonged to different farmers. It could have been

expected  that  changes  in  farming  techniques  (not
accounted for by VINTAGE) would have affected greatly
grape  ripening.  For  example,  leaf/fruit  ratio  control,  a
crucial  parameter  for  grape  maturation  [32],  changes
probably  from a  plot  to  another  (though  not  measured
during 2014). 

In  this  specific  case,  therefore,  the  climate  local
variability as  well  as  terrain characteristics,  might  have
been  the  largest  guiding  variable  for  sugar  content
determination.

Figure  8. Sugar content estimates by VINTAGE. The solid
line corresponds to model perfect match (i.e. f(x)=x).

4 Conlusion

Like many industries, agriculture has undergone profound
changes since the industrial revolution starting from the
late 19th century. Current issues in agriculture are mostly
on  optimizing  yields,  while  developing  environment
friendly  practices  [7].  The  specificity  of  vitiviniculture
lies in the requirements with respect to the final product
quality.  The  latter  is  largely  dependent  on  both  abiotic
environment  (i.e.  soil,  terrain  and  climate)  and  cultural
practices. Most operational services provided by precision
viticulture concern only one of those aspects: enhancing
yield or quality or reducing the environmental footprint of
farming techniques. The VINTAGE system, however, has
the ambitious goal to simultaneously meet these demands
while  providing  greater  comfort  to  grape  grower.  To
successfully  achieve  this  challenging  aim,  it  combines
climate  and  soil  ground-based  measurements  (WMS),
remote sensing, plant, soil and disease modelling, GIS and
decision rules. The current evaluation of the plant model,
yet  preliminary,  suggests  that  spatial  accuracy  and
precision  cannot  be  reached  without  an  accurate
description  of  farming techniques  applied  to  each  plot.



However, the spatial diversity of the climate and terrain
features accounted for in the current experiment seem to
contribute  strongly  to  grapevine  phenological  timing,
berry development and berry sugar content. 
Further evaluations are in progress,  including field data
collected  in  other  pilots,  as  well  as  improved  plant
modelling  and  comparison  between  the  DSS
recommendations and the farmer practices.
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