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Highlights 

•    Isolation of Arthrobacter diuron-degrading strains from soils and sediments. 

•    Achromobacter 3,4-DCA degrading strain isolation from sediments. 

•    Arthrobacter strain transformed diuron to 3,4-DCA with PuhA enzyme. 

•    Achromobacter isolate transformed 3,4-DCA with DcaQ enzyme. 

•    Mixed culture of Arthrobacter and Achromobacter mineralized 14C-diuron to 14CO2. 

 

Abstract 

Diuron was found to be mineralized in buffer strip soil (BS) and in the sediments (SED) of the 
Morcille river in the Beaujolais vineyard repeatedly treated with this herbicide. Enrichment cultures 
from BS and SED samples led to the isolation of three bacterial strains transforming diuron to 3,4-
dichloroaniline (3,4-DCA) its aniline derivative. 16S rRNA sequencing revealed that they belonged to 
the genus Arthrobacter (99% of similarity to Arthrobacter globiformis strain K01-01) and were 
designated as Arthrobacter sp. BS1, BS2 and SED1. Diuron-degrading potential characterized by 
sequencing of the puhA gene, characterizing the diuron-degradaing potential, revealed 99% similarity 
to A. globiformis strain D47 puhA gene isolated a decade ago in the UK. These isolates were also able 
to use chlorotoluron for their growth. Although able to degrade linuron and monolinuron to related 
aniline derivatives they were not growing on them. Enrichment cultures led to the isolation of a strain 
from the sediments entirely degrading 3,4-DCA. 16S rRNA sequence analysis showed that it was 
affiliated to the genus Achromobacter (99% of similarity to Achromobacter sp. CH1) and was 
designated as Achromobacter sp. SP1. The dcaQ gene encoding enzyme responsible for the 
transformation of 3,4-DCA to chlorocatechol was found in SP1 with 99% similarity to that of 
Comamonas testosteroni WDL7. This isolate also used for its growth a range of anilines (3-chloro-4-
methyl-aniline, 4-isopropylaniline, 4-chloroaniline, 3-chloroaniline, 4-bromoaniline). The mixed 
culture composed of BS2 and SP1 strains entirely mineralizes 14C-diuron to 14CO2. Diuron-
mineralization observed in the enrichment culture could result from the metabolic cooperation 
between these two populations. 
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1. Introduction 

The diuron (DIU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea) is widely used on a range of crops to 
control the development of weeds. It is also used in urban areas, as an algicide in antifouling paints 
and as herbicides on non-crop areas. Having half live ranging between 100 and 134 d (Moncada, 
2005), DIU is relatively persistent in soil. Although considered to be moderately mobile, it 
contaminates surface- and ground-water resources world widely (Schuler and Rand, 2008 and Stork et 
al., 2008). Environmentally realistic concentrations of DIU can affect aquatic microalgal (Pesce et al., 
2011) and bacterial communities (Tadonleke et al., 2009). Combined presence of DIU and its main 
metabolites N-(3,4-dichlorophenyl)-N-methylurea and 3,4-dichloraniline (3,4-DCA) has been reported 
in surface freshwaters (Claver et al., 2006 and Morin et al., 2009), this last one being highly toxic to 
the bacteria Vibrio fischeri and the Ciliate Tetrahymena pyriformis ( Bonnet et al., 2007) but also to 
macro-organisms, with no observed effect concentrations of only a few µg L−1 ( Giacomazzi and 
Cochet, 2004). DIU has been classified as a primary dangerous substance (Directive 2000/60/CE) and 
accordingly it has been banned in Europe but remains used in numerous regions of the world. 

The major route for natural attenuation of DIU in the environment is microbial degradation (Sharma 
and Suri, 2011). Several studies showed its rapid degradation in different soils repeatedly treated with 
DIU in reason of the emergence of bacterial populations using it as a nutrient and an energy source 
(Dellamatrice and Monteiro, 2004 and Pesce et al., 2009). Various microorganisms such as 
Arthrobacter globiformis D47 ( Cullington and Walker, 1999) able to transform DIU have been 
isolated from various contaminated environments ( Sorensen and Aamand, 2003). Except for 
Variovorax sp. SRS16 which entirely mineralizes DIU ( Sorensen et al., 2008), most of the isolates 
transform DIU to 3,4-DCA which accumulates in soil. Strains isolated from DIU-contaminated soils, 
Pseudomonas fluorescens 26-K and Acinetobacter baylyi strain GFJ2 ( Travkin et al., 2003 and 
Hongsawat and Vangnai, 2011) have been shown to degrade 3,4-DCA. The importance of mixed 
bacterial cultures for the complete mineralization of DIU was underlined and catabolic cooperation 
between microbial populations to fulfill DIU mineralization was hypothesized ( Sorensen et al., 2008 
and Ellegaard-Jensen et al., 2014). Only two genes coding for the first enzyme involved in the 
transformation of dimethyl-substituted phenylureas into their aniline derivatives have been reported; 
the phenylurea hydrolase A gene (puhA) was the first one identified in A. globiformis strain D47 ( 
Turnbull et al., 2001) and the phenylurea hydrolase B gene (puhB) was characterized in 
Mycobacterium brisbanense JK1 isolated from an Australian soil ( Khurana et al., 2009). These two 
genes encode amidohydrolases sharing 82% identity at the amino acid level but diverged from other 
related sequences forming a amidohydrolase superfamily sub-group ( Khurana et al., 2009). Recently, 
dcaQTA1A2BR genes encoding a multi-component chloroaniline dioxygenase responsible for 3,4-
DCA degradation were identified in Variovorax sp. SR16 ( Bers et al., 2011). 

Studies carried out at a small-scale watershed level (Morcille river, Beaujolais, France) constituted of 
a vineyard treated with DIU, a grass buffer strip adjacent to it and the sediments of this river have 
clearly shown that in situ DIU exposure provokes an increase in the tolerance of phototrophic biofilm 
communities towards DIU ( Pesce et al., 2010a) and the DIU degrading potential of both terrestrial 
and aquatic microbial communities ( Pesce et al., 2009). DIU-degrading genetic potential quantified 
by quantitative PCR targeting puhA and puhB genes was detected in both terrestrial and aquatic 
compartments showing DIU-degrading abilities ( Pesce et al., 2013). At the watershed level, soil 
erosion was suggested as a possible mechanism responsible of the transfer of the DIU genetic potential 
from the soil to the sediments ( Pesce et al., 2010b). 

 



Even though bacterial populations, genes and catabolic enzymes involved in DIU transformation have 
been identified, not much is known about the functioning of the DIU-degrading microbial community. 
In order to fill this gap of knowledge, we carried out experiments aiming at isolating and 
characterizing members of DIU-degrading microbial communities enriched from soil and sediment 
samples collected from the Morcille watershed. Isolated members able to degrade DIU or its aniline 
derivative 3,4-DCA were taxonomically characterized by sequencing 16S rRNA gene. Degrading 
genetic potential was monitored by studying puhA and puhB or dcAQ genes involved in DIU or 3,4-
DCA transformation, respectively. The ability of these bacterial strains to degrade various phenylureas 
and anilines was studied. The efficiency of mixed culture made of DIU- and 3,4-DCA degraders for 
DIU mineralization was estimated. 

2. Material and Methods 

2.1. Soil and sediments 

Soil was collected from upper horizon (0–20 cm) of a grass buffer strip (BS) located (longitude 
4°60′E, latitude 46°15′N) at the interface between a vineyard and the Morcille river, a small first-order 
stream (7 km long) subjected to a strong agricultural pressure (Beaujolais, France). A composite BS 
soil sample was prepared according to ISO 10381-6 guidelines. Sediment samples (SED) were 
collected in the downstream section of the Morcille river (Saint Ennemond station). Soil and 
sediments were sieved to 5 mm and stored at 4 °C until their use. 

2.2. Enrichment procedure 

Enrichment cultures were done starting from either BS or SED samples. About 10 g of soil or 
sediment equivalent dry weight was suspended in 90 mL of mineral salt (MS) medium (Devers et al., 
2005) added with sodium citrate (1 g L−1) and DIU (MS-DIU, 25 mg L−1) as sole nitrogen source, 
incubated at 20 °C under agitation (150 rpm). Aliquots were taken regularly and DIU remaining in the 
medium was quantified using HPLC. When about 50% of the initial amount was dissipated, 10 mL of 
this suspension was transferred to 90 mL of fresh MS-DIU medium and incubated under the same 
conditions. After 3 enrichment cycles, 100 µL serial tenfold dilutions (from 10−3 to 10−6) were plated 
onto solid MS-DIU medium or MS-3,4-DCA medium (1 g L−1). Single colonies isolated from the 
plates were stricken on new plates to purify isolates. Pure colonies were selected for DIU or 3,4-DCA 
degradation in corresponding liquid media incubated at 28 °C under agitation (150 rpm). After a few 
days, the bacterial cells were harvested (3,220 g, 10 min) and the supernatant was analyzed by HPLC 
to determine the amount of the remaining DIU or 3,4-DCA. 

2.3. DNA extraction 

DNA was extracted from 75 mL of bacterial suspension using the QIAGEN Blood and Cell culture 
DNA Midi Kit (QIAGEN, France). 

2.4. PCR analysis 

PCR were conducted in 25 µL by using 25 ng of extracted DNA, 0.2 µM of dNTPs, 1 µM of specific 
primers (puhA/puhB, dcaQ and 16S rRNA primers according to Pesce et al. (2013), Bers et al. (2011) 
and Gürtler and Stanisich (1996)), and 1.25 U of Taq DNA polymerase (Q-biogene, France). DNA 
amplifications were carried out in a PTC 200 gradient cycler (MJ Research, Waltham, MA, USA) as 
follows: 5 min at 95 °C, 35 cycles of 1 min at 94 °C, 1 min at annealing temperature and 2 min at 72 
°C, plus an additional 10-min cycle at 72 °C. PCR products were separated by electrophoresis and 
visualized under UV. 

2.5. Repetitive extragenic palendromic (REP)-PCR 

REP PCR was carried out in a 25-µL mixture using 50 ng of bacterial DNA as template and separated 
by electrophoresis according to Devers et al. (2005). 



 

2.6. Southern blot analysis 

NruI or SmaI digested DNA was separated by electrophoresis, in the presence of digoxigenin-labelled 
DNA molecular weight marker II (Roche Applied Science, France) and vaccum-transferred to a 
Biodyne Plus membrane (Gelman Sciences, Merck Eurolab, France). The puhA and dcaQ probes 
labelled with digoxigenin produced by PCR were hybridized as previously described ( Devers et al., 
2005). 

2.7. DNA sequencing 

16S rRNA PCR products were cloned into the pGemT-EasyII vector (Promega, Madison, WI, USA). 
Recombinant clones were identified by a SP6/T7 PCR and plasmids extracted using QIAprep spin 
miniprep kit and sequenced by Beckman Coulter Genomics (Takeley, USA). The puhA gene, its 
upstream (For_CCGTAGAGCTCGAAGAGGAA; Rev_GCATCGGTGTTCATGAGGAT) and 
downstream (For_ GAGGTCATGTTCGAGGAAGC; Rev_TCGGAGGTGTAGCGGTAGAG) 
sequences, and the partial sequence of dcaQ gene were directly sequenced from PCR products (GATC 
Biotech, France). Sequences were assembled using SeqMan software (DNASTAR) Sequence 
comparison was done using BlastN (http://www.ncbi.nlm.nih.gov/BLAST). Multiple alignments were 
done using ClustalX ( Thompson et al., 1997). Phylogenetic tree was processed from the alignment 
with the neighbor joining method using NJ Plot. 

The 16S rRNA sequences of BS1, BS2, and SED1 DIU-degrading strains and of SP1 3,4-DCA 
degrading strain were deposited into the GenBank database (KJ162357, KJ127007, KJ162358, 
KJ127008, respectively). puhA, puhB and dcaQ sequences, were deposited in the GenBank database 
(KJ127011, KJ127010, KJ127009, respectively). 

2.8. Mineralization of diuron 

BS2 and SP1 strains were grown in MS-DIU or MS-3,4-DCA media at 28 °C, and then centrifuged at 
6000 rpm for 5 min. The pellets were washed twice in Knapp buffer (Devers et al., 2005) and 
resuspended to an OD (600 nm) of 0.2 in Knapp buffer containing 30 mg L−1 of DIU and 170 Bq 
mL−1 of 14C ring-labelled DIU. Mixed bacterial culture suspensions were incubated at 28 °C in a 
sterile jar under agitation (150 rpm). 14CO2 was trapped in 5 mL of 0.2 M NaOH and radioactivity 
was periodically measured by liquid scintillation counting (Packard). This experiment was performed 
in triplicate. 

The DIU-mineralization parameters were determined using the Gompertz model (Gompertz, 1825) 
with the SigmaPlot 4.0 software: y = a exp(−exp(−k(t−ti))), where y is the percentage of DIU 
mineralization (%), a the maximum percentage of DIU mineralization (%); k the maximum rate of 
DIU mineralization (d−1); t the time (d), and ti the abscissa of the inflection point (d) (p < 0.005, n= 3, 
Student t test). 

2.9. Diuron and 3,4-DCA degradation 

DIU or 3,4-DCA degradation ability was evaluated. To produce microbial biomass, cell aliquots were 
inoculated in MS-DIU or MS-3,4-DCA medium and incubated at 28 °C at 150 rpm. The cells were 
centrifuged at 6000 rpm for 5 min, and the pellets were washed twice in Knapp buffer. The cells were 
then suspended at an OD600 of 0.2 in Knapp buffer containing either DIU or 3,4-DCA (30 mg L−1), 
and incubated as previously described. At different times of incubation, supernatant was collected and 
analyzed by HPLC (LC Star system, Varian) equipped with a Microsorb-MV C18 column (length 25 
cm, internal diameter 4.6 mm, Varian). The solvent system used was methanol added with 0.1% of 
H3PO4 (75/25; v/v) delivered at a flow rate of 1 mL min−1. DIU and 3,4-DCA were detected at 254 
nm at different retention times. These experiments were performed in triplicate and a control was 
included. Kinetics parameters were determined using the Gompertz model as described in Section 2.8. 



 

2.10. Characterization of degrading- or growing-capabilities of the isolated strains 

DIU- or 3,4-DCA degrading bacterial strains were grown in corresponding MS medium. Degrading 
capabilities were assessed by resting cell experiments: bacterial cultures were washed twice in Knapp 
buffer and then suspended at 0.2 OD600nm in Knapp buffer containing 50 mg L−1 of the phenylureas 
(isoproturon, linuron, monolinuron, chlorotoluron) or anilines (4- isopropyl-aniline, 3,4-DCA, 3-
chloroaniline, 4-chloroaniline, 4-bromoaniline and 3-chloro-4-methylaniline). They were incubated at 
28 °C under agitation. Aliquots were regularly taken, centrifuged (3,220 g, 10 min) and the 
supernatants were analyzed by HPLC. Three replicates were performed for each compound. 

Growing capabilities were assessed by inoculating hardly any of bacterial culture (0.002 OD600nm) in 
corresponding MS-medium added with sodium citrate (1 g L−1) and each of the phenylureas or in 
MS-medium with each of the anilines. 

 

3. Results 

3.1. Isolation of diuron-degrading strains 

In a previous study, Pesce et al. (2009) showed that repeated applications of DIU had led to the 
adaptation of the microflora to the mineralization of DIU in the vineyard soil, in the adjacent BS and 
in the sediments (SED) of the receiving river. To isolate the microorganisms responsible for this 
mineralization, enrichments were performed on BS and SED samples leading to the isolation of 
consortia able to degrade DIU without accumulation of metabolites. From these consortia, trials were 
conducted to isolate pure bacterial strains involved in the process of DIU degradation. 

As a result, we isolated three bacteria able to grow on MS-medium containing DIU as sole nitrogen 
source namely BS1, BS2, and SED1 originating from BS- and SED- samples, respectively. HPLC 
analyses showed that DIU was entirely dissipated during the growth of these isolates and that 
concomitantly a metabolite presenting the same retention time that 3,4-DCA was accumulated (data 
not shown). 

To taxonomically characterize these three DIU-degrading isolates, their 16S rRNA sequences were 
analysed revealing that they were taxonomically close to A. globiformis strain K01-01 (99.3% of 
similarity) ( Figs. 1 and SM1 of Supplementary Material). Isolates BS1, BS2 and SED1 were named 
Arthrobacter sp. BS1, Arthrobacter sp. BS2 and Arthrobacter sp. SED1, respectively. They were 
classified as Bacteria, phylum Actinobacteria, order Actinomycetales, family Micrococcaceae and 
genus Arthrobacter. These three strains presented identical REP-PCR patterns ( Fig. 2) suggesting that 
they are either identical or closely related deriving from the same ancestor. 

Strain BS2 was further used to characterize DIU-degrading ability in Knapp buffer containing 30 mg 
L−1 of DIU (128 µM). HPLC monitoring showed that DIU was entirely degraded within 24 h, the 
maximum degradation rate being of 24.8 ± 1.9 µM h−1 (Fig. 3, panel A). Concomitantly, the 
accumulation of a metabolite showing identical retention time to that of 3,4-DCA was observed. Its 
accumulation was equimolar to the dissipation of DIU, its maximum apparition rate being of 24.5 ± 
3.5 µM h−1. The ability of strain BS2 to degrade and to grow on different phenylureas was checked 
(Table 1) showing that it was able to use DIU and chlorotoluron for its growth. Interestingly, even if 
resting cells showed that BS2 was able to degrade linuron and monolinuron to their corresponding 
aniline derivatives, it cannot grow on them. Finally, BS2 was unable to degrade isoproturon and to use 
it for its growth (Table 1). 



 

 

 



 

 

puhA and puhB DIU-degrading gene sequences, were searched by PCR on DNA extracted from the 
enrichment culture or pure degrading-strains. puhB amplicon of 665 bp was obtained with DNA from 
enrichment cultures. Interestingly, PCR analyses carried out with the pure degrading strains produced 
puhA amplicon and not puhB (data not shown). Sequencing of the PCR products revealed that the 
puhB amplicon amplified from the enrichment culture shared more than 95% of similarity with the 
puhB gene from M. brisbanense strain JK1 (593/624 bp). In addition, sequencing of puhA amplicons 
amplified from DIU-degrading strains were 99% of similarity with that of A. globiformis strain D47 
(653/655 pb). Southern blot analysis of DIU-degrading isolates hybridized with puhA probe gave a 
single signal on a 3.1 kb NruI fragment and 8.2 kb SmaI fragment ( Fig. 4). 

 

 



PCR reactions were performed to determine whether the upstream- and downstream-sequences 
surrounding puhA gene in BS2 strain were similar to those of A. globiformis strain D47 (EU851877). 
Amplifications performed using primers either located 464 bp upstream or 524 bp downstream puhA 
coupled with primers anchored in puhA sequence yielded in two PCR products of expected sizes (data 
not shown). Sequencing of these PCR products led to the complete sequence of puhA as well as its 
upstream (444 bp) and downstream (473 pb) sequence on BS2 (GenBank accession number 
KJ127011). It revealed that puhA sequence shared 99.8% similarity with puhA form A. globiformis 
strain D47 (1369/1371 bp). At the protein level, two amino acids were substituted as compared to the 
known PuhA (146L-146M and 335L-335I), these substitutions being positive. We found that both the 
sequences located upstream and downstream to puhA were 100% similar to those found in A. 
globiformis strain D47 ( Fig. 5). 

 

3.2. Isolation of 3,4-DCA degraders 

We attempted to isolate the strains responsible for the degradation of 3,4-DCA in the enrichment 
culture. One isolate able to degrade 3,4-DCA was isolated from the SED enrichment culture using MS 
medium containing 3,4-DCA as sole nitrogen and carbon sources. Unfortunately, isolation of 3,4-DCA 
degraders from BS enrichment culture was unsuccessful. 16S rRNA sequence indicated that this was 
highly similar to Achromobacter sp. Ch1 (99.4% on 1453 bp) ( Fig. 1). Consequently, the isolate was 
named Achromobacter sp. SP1 and classified as Bacteria, class Betaproteobacteria, order 
Burkholderiales, family Alcaligenaceae and genus Achromobacter. 

The ability of SP1 to degrade 3,4-DCA was evaluated by monitoring its dissipation by HPLC (Fig. 3, 
panel B). SP1 was able to completely dissipate 185 µM of 3,4-DCA in 21 h, and no metabolites were 
detected. The study of catabolic ability of SP1 was assessed against a range of anilines showed that it 
was able to grow and degrade 3-chloro-4-methyl-aniline, 4-isopropylaniline, 4-chloroaniline, 3-
chloroaniline and 4-bromoaniline (Table 1). PCR targeting the gene dcaQ encoding a part of a multi-
component enzyme responsible for 3,4-DCA degradation was performed on SP1. It revealed the 
presence of this gene sharing 99% similarity with the one from Comamonas testosteroni (227/229 bp); 
at the amino acid level, it shares 93–97% identity with other known DcaQ sequences. 

3.3. Diuron mineralizing ability of the Arthrobacter sp. BS2 and Achromobacter sp. SP1 
consortium 

The ability of an artificial consortium made of BS2 and SP1 to entirely degrade DIU was assessed 
revealing that it was able to entirely dissipate DIU within 35 h. Transient accumulation of 3,4-DCA 
was observed (Fig. 3, panel C). This accumulation was equimolar to the degradation of DIU indicating 
that in the early stage, SP1 was not active. However, after 20 d incubation, no more 3,4-DCA was 
detected in the culture medium indicating that SP1 had degraded it all. DIU mineralization observed in 
the artificial consortium showed that more than 50% of 14C-DIU evolved to CO2 within 5 d of 
incubation (Fig. 3, panel D). 



 

4. Discussion 

DIU mineralization has already been reported from different compartments at the watershed level of 
the Morcille river (Pesce et al., 2009). Our study aimed at studying microbial populations involved in 
DIU degradation. To do so samples were collected in the buffer strip (BS) and sediments (SED) of the 
watershed. As expected BS and SED samples periodically exposed to DIU, were able to mineralize up 
to 20% of the 14C-ring-labeled DIU. Analyse of the DIU-genetic potential indicated the presence of 
puhB gene sequence in enrichments cultures confirming Pesce et al. (2013) reporting its presence in a 
vineyard plot adjacent to BS. Surprisingly, puhA sequence which was neither detected in the 
enrichment culture nor in BS and SED samples was found in DIU-degrading isolates. To explain this 
discrepancy between molecular and Pasteurian approaches, one could hypothesize on one hand, that 
puhA sequences were below PCR detection limit in the enrichment cultures or on the other hand, that 
microbial populations harbouring puhB were not culturable in our conditions. Anyhow, this is the first 
report of the co-occurrence of puhA and puhB genes in the same environment. It confirmed the 
existence of DIU-degrading genetic potential and of DIU-mineralizing ability among BS and SED 
microflora which might be attributed to the adaptation of indigenous microbiota to metabolize DIU. 

Enrichment cultures were conducted from composite BS or SED samples with DIU used as a sole 
nitrogen source. Although both BS and SED enrichment cultures were able to mineralize DIU, no 
bacterial populations able to fully mineralize this herbicide was isolated. Isolation trials led to the 
isolation of three DIU-degrading pure isolates, two originating from BS (i.e. BS1 and BS2) and one 
from SED samples (SED1). This further confirms that both BS and SED samples harbour similar 
microbial populations able to transform DIU as observed earlier (Pesce et al., 2009 and Pesce et al., 
2010b). None of these isolates mineralize DIU, but equimolarly transformed DIU to 3,4-DCA. These 
isolates did not only have similar phenotypes and REP profiles. In addition, their 16S rRNA sequences 
were up to 99.3% similar to A. globiformis strain K01-01. Interestingly, 16S rRNA sequences showed 
97% with that of A. oxydans (X83408) the closest relative of A. globiformis strain D47 and 99% of 
similarity with A. globiformis (X80736) ( Turnbull et al., 2001). Although Arthrobacter sp. BS1, BS2 
and SED1 are grouped with A. globiformis strain D47 within the A. globiformis group, our isolates 
diverged slightly from the last which is inferred to A. oxydans type. The isolation of BS1, BS2 and 
SED 1 isolates from Beaujolais vineyard (France) highly similar to A. globiformis D47 isolated one 
decade ago from Deep Slade soil (UK) poses a challenging question regarding their evolutionary 
origin ( Cullington and Walker, 1999). It suggests that DIU-degradation ability is specific to 
Arthrobacter taxa. One may nevertheless keep in mind that this specificity can also reflect a good 
culturability of Arthrobacter species compared to possible other DIU-degrading populations. However, 
similar observations have been done for other phenylureas such as isoproturon which was found to be 
mineralized by different populations related to Sphingomonads such as Sphingomonas sp. SRS2, 
Sphingobium YBL10 and Sphingomonas sp. SH isolated from Danish, Chinese and French 
agricultural soils, respectively ( Sorensen et al., 2001, Sun et al., 2009 and Hussain et al., 2011). 
However, the opposite figure is found for s-triazine degraders which are spread in various Gram-
negative and Gram-positive bacteria populations ( Udikovic-Kolic et al., 2012). In order to study in 
more details, DIU-degrading genetic potential, we searched among our isolates for the presence of 
phenylurea hydrolase genes. Although puhB gene was detected in the enrichment cultures, only puhA 
was found in our isolates, indicating that we only partially characterized the populations involved in 
the biodegradation of DIU. Interestingly, Southern blot analysis revealed the existence of 8.2 kb SmaI 
fragment harbouring puhA gene in our isolates corresponding to a fragment similar in size of 
pHRIM622 the catabolic plasmid of A. globiformis strain D47 ( Khurana et al., 2009). In addition, 
sequencing showed that the puhA sequence of BS2 was 99.8% to that of A. globiformis strain D47 
and that upstream and downstream sequences of BS2 were 100% similar to that of A. globiformis 
strain D47. This indicates that the DIU-degrading genetic potential of our three isolates is similar to 
that of A. globiformis strain D47 although they have been isolated from distinct geographic regions at 
different periods of time. Interestingly, one could noticed that BS1/BS2 and SED1strains isolated from 
BS and SED samples respectively, were belonging to the same genus, having identical REP profiles  



and DIU-degrading genetic potential thereby suggesting that similar DIU-degraders can be found in 
different environmental niches. This is in accordance with previous report highlighting the importance 
of run-off in the connection of terrestrial and aquatic compartments ( Pesce et al., 2010b). 

We showed that like A. globiformis strain D47 ( Cullington and Walker, 1999), BS2 was able to 
transform a range of phenylureas including DIU, chlorotoluron, linuron and monolinuron to 
corresponding derivative anilines but not isoproturon. This might be explained by the catalytic 
efficiency of PuhA which is higher for DIU or chlorotoluron (kcat/Km value of 0.5 and 0.2 µM−1 
min−1, respectively) than for isoproturon (kcat/Km value of 0.0074 µM−1 min−1) ( Khurana et al., 
2009). Interestingly, one could observe that BS2 only grew on N-Dimethyl ureas (DIU and 
chlorotoluron) and not on N-Methoxy-N-methyl ureas (linuron and monolinuron) although it was able 
to degrade all of them. One could hypothesize either that DIU degradation pathway is induced by N-
Dimethyl ureas but not by N-Methoxy-N-methyl ureas or that N-methyl-N-methoxy-carbamic acid 
resulting from monolinuron and linuron transformation cannot be used for its growth. 

Having isolates transforming DIU to 3,4-DCA we have been intensively searching for 3,4-DCA 
degraders. This led to the isolation of Achromobacter sp. SP1 able to use 3,4-DCA as sole carbon and 
nitrogen sources solely from the SED enrichment culture. Environmental survey of the quality of this 
river regularly shows the presence of traces of 3,4-DCA ( Pesce et al., 2010a) suggesting that 
microbial community of the sediments have a chronic history of exposure to this pollutant thereby 
explaining their adaptation to its degradation. One could hypothesize a low exposure of soil microbial 
community to 3,4-DCA in reason of its adsorption to soil thereby explaining why no 3,4-DCA 
degraders can be isolated from soil. SP1 was not only able to degrade 3,4-DCA but also a wide range 
of related anilines such as 3-chloro-4-methyl-aniline, 4-isopropylaniline, 4-chloroaniline, 3-
chloroaniline or 4-bromoaniline. This wide range catabolic ability has also been observed for 
Variovorax sp. WDL1 a linuron mineralizing strain which degrades 3,4-DCA, 3- and 4-chloroaniline 
and aniline ( Dejonghe et al., 2003). It is opposite to the specificity of Sphingomonas sp. SH an 
isoproturon mineralizing isolate only able to degrade 4- isopropylaniline (4-IA) ( Hussain et al., 2011). 
Interestingly we showed that SP1 had dcaQ gene which was 99% similar to that of C. testosteroni 
WDL7. This gene belonging to the dcaQTA1A2BR gene cluster encodes an enzyme responsible for 
the transformation of 3,4-DCA to chlorocatechol in Variovorax sp. Strain SRS16 ( Bers et al., 2011). 
This suggests that SP1 catalyses the degradation of anilines to chlorocatechol which might then be 
metabolized through the ortho-cleavage pathway ( Bers et al., 2011). 

Our study suggests that the DIU-mineralization observed in the BS and SED enrichment cultures may 
result from the cooperation between two microbial populations one harbouring the puhA gene 
catalysing the upper pathway transforming DIU to 3,4-DCA and another one harbouring the dcaQ 
gene catalysing the lower pathway leading to the degradation of 3,4-DCA. This is an example of 
patchwork assembly of catabolic gene modules in different microbial populations (Arthrobacter sp. 
BS1, BS2 or SED1 [puhA]; Achromobacter sp. SP1 [dcaQ]) in order to use phenylurea herbicide as a 
source of carbon and energy. On different chemicals such as s-triazines, similar examples of 
cooperative metabolism were shown between populations catalyzing the upper pathway transforming 
atrazine to cyanuric acid and populations metabolising the lower pathway opening the s-triazine ring 
to completely degrade cyanuric acid ( Smith et al., 2005, Martin-Laurent et al., 2006, Udikovic-Kolic 
et al., 2010 and Udikovic-Kolic et al., 2012). The artificial consortium made of BS2 and SP1 led to the 
mineralization of DIU offering interesting perspectives to develop mixed inoculants for the 
bioaugmentation of buffer strip to improve their mitigation ability. 
 

5. Conclusions 

The isolation of different isolates able to degrade DIU confirmed that both terrestrial and aquatic 
microbial communities adapted in a similar manner to accelerated biodegradation of DIU. 
Interestingly, these isolates are closely related to A. globiformis strain D47 another DIU degrader 
isolated one decade ago. In addition, the DIU-degrading genetic potential was shown to be extremely 
conserved suggesting its widespread dispersion. Achromobacter sp. SP1 was shown to degrade 3,4-



DCA formed during DIU degradation as well as a range of anilines. Altogether this study suggests that 
DIU mineralization is occurring through a cooperative metabolism between microbial populations 
catalysing the transformation of DIU to 3,4-DCA and others degrading this intermediary metabolite. 
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Supplementary data  

 

Phylogenetic tree was established with 16S rRNA sequences used in the paper of Turnbull et al. 2001 describing 
the isolation and the characterization of Arthrobacter sp. D47 from Deep Slade soil (UK).Only branches having a 
bootstrap values up to 900 of 1000 iterations are highlighted by a black dot. The strains used for phylogenetic 
analysis and the GenBank accession numbers of the 16S rRNA genes are: Arthrobacter agilis (X80748), 
Renibacterium salmoninarum (X51601), Arthrobacter globiformis (X80736), Arthrobacter ramousus (X80742), 
Arthrobacter pascens (X80740),  Arthrobacter oxydans (X83408) and Arthrobacter polychromogenes (X80741). 
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