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Abstract—Intelligent transport systems are a fast developing
area of research with great impact on everyday life. One of the
main ideas in this area is to use all possible information, coming
from vehicles and the infrastructure, in order to make the system
”smarter” and avoid unwanted situations – collisions, accidents,
bottlenecks... Sources of data are sometimes unreliable and may
lead vehicles or the whole system to wrong conclusions and
adaptations. We are presenting the application of a distributed
data fusion algorithm to detect dangerous events on the road. This
application is adapted to detect the possibility of encountering
icy roads based on readings from wireless temperature sensors.
It takes into account data not only directly obtained from sensors
but also from the neighborhood of each element in the system.
This way, we obtain a more robust solution that is flexible to
the unreliabilities of the sources of data. We demonstrate the
possibility to deduce proper results from unreliable data. The
algorithm is tested in emulation, using data from a real testbed,
to show the usefulness and correctness of our approach.

Keywords: Vehicular networks, distributed data fusion, road-
side units, wireless sensors, testbed, emulation, experiments.

I. Introduction

A. Motivation

Enabling vehicles and additional communication infrastruc-
ture with ”smart” algorithms may help solving some of the
major safety problems [6] in vehicular networks. In early works
in this area researchers noted the importance of smart cars and
the challenges to build them [17]. In general, the intelligence
of vehicles heavily depends on a large amount of gathered data
that is processed and then used to give drivers or vehicles useful
information. This data may come from different sources and
by its nature is heterogeneous. To process this large amount of
data some form of data fusion has to be applied. Many different
data fusion techniques are proposed [10], [11], depending on
the specific problem that they solve and the sources of data [9].
Fusion of information can be used in different applications,
from various positioning problems [8] to detecting false nodes
in networks [7]. This approach is specially suitable for future
smart cities equipped with a large number of sensors that may
act as data sources not only for their citizens but for vehicles
as well.

One of the main problems in the fusion of large amount
of data is the inaccuracy and reliability of data. It is relatively
easy to come up with a conclusion how to mix two pieces of
information when the data sources are homogeneous, reliable
and give similar readings. However, in the case of conflicting or
missing data sources it may be problematic to reach a decision.
The theory of belief functions have this property which makes it

suitable in the presence of imprecise, uncertain and incomplete
data [4].

In this paper, we present a distributed data fusion that is
based on the theory of belief functions [5] and its generic
algorithm. We designed an application dedicated to the early
detection of dangerous events on the road. This application
relies on distributed data fusion taking into account conflicting
pieces of information and applies calculations until it reaches
a decision. We show that the application correctly assesses the
risk of dangerous icy roads even when some sensors give wrong
or conflicting information. Hence, this technique surpasses a
simple alert diffusion and is more robust to deficient sensors.

B. Related work

Presence of numerous sources of data are making decision
problems even more complex. The problem of information
fusion is well studied in various research areas (sensor networks,
image processing, etc). Different solutions were proposed to deal
with large amount of data sources in various applications [11].
Another important aspect is impact of driver’s behavior on the
functioning of whole system [3]. In [12] authors demonstrated
the importance of early and appropriate signaling to drivers of
possibly dangerous events on the road.

Interesting solution that brings in the connection of in-car
mobile applications, drivers and hazardous events is presented
in [13]. Authors have developed a system that detects speed
bumps and potholes based on synchronized sensor readings
and extraction from a video feed that is taken simultaneously
with sensor readings. Although an interesting solution, this is
limited to the usage of smartphones and specific capabilities
of certain types of mobile phones. This study is also limited
in terms of data dissemination, i.e. it is not clear how other
users can make use of this data and if some calculations can
be done cooperatively. In [15] authors present a testbed that
enables communication between vehicles and infrastructure.
This testing infrastructure gives interesting results and shows
the significance of this approach. However, due to the different
scope of the article, authors do not cover the possibility of
equipping the infrastructure with sensors that may communicate
with vehicles.

We are presenting a solution that links these two interesting
points. We investigate the possibility of using multiple sources
of the same data type to deal with uncertainties. We show how,
with the help of distributed data-fusion algorithms, we can make
use of this data. Finally, a solution that gives an assessment of
the risk of ice on the road is proposed. We discuss results and
how this approach can be used to give drivers early warnings
on the possibly dangerous events on the road.



We start our presentation defining the basic concepts of Be-
lief functions and the principle of distributed data fusion. Then,
we detail our application of the distributed data fusion algorithm
for dangerous event detection (Section II). In Section III we
explain how this application has been implemented as well
as the whole detection system relying on sensors, road-side
units, vehicles and dedicated software. Section IV presents our
experimental study. Extensive study has been done thanks to a
network emulator that reproduces the whole testbed as well as
with real data obtained from the testbed.

II. Distributed data fusion for dangerous event detection

Data fusion can be described as a mechanism that combines
data retrieved from different sources and further on reduces
uncertainty on the gathered data or generates decisions based
on the obtained data. In general, data fusion is either centralized
(collecting data and applying an algorithm in some kind of
central unit) or distributed (each unit is capable of applying the
algorithm on data gathered locally – from the neighborhood).
In the remainder of this section we present the basic notions
of the Belief functions theory, a generic distributed data fusion
algorithm based on this framework and the application of
distributed data fusion to detect dangerous events on the road.

A. Theory of belief functions

The theory of belief functions or Dempster-Shafer theory
is one of the widely-used frameworks in data fusion [9]. This
theory is specially suitable for modeling uncertainties and the
lack of information [16]. This theory generalizes the probability
theory and the possibility theory. In the Dempster-Shafer theory,
a set Ω = ω1, ..., ωn of mutually exclusive propositions is called
the frame of discernment. The main difference, compared to
the probability theory is the fact that the mass of evidence is
attributed not only to single hypotheses ωi, but to any subset
of Ω, including the empty set.

Following the general framework for the belief representa-
tion [4], we define the state of belief of node v on the global
frame of discernment Ω. A state of belief is assigned using
basic belief assignment that is most commonly represented as a
mass function, mΩ. A mass function mΩ is a mapping from 2Ω

(the set of subsets of Ω) to the interval [0, 1] ∈ R. The sum of
all masses is equal to 1. A mass value is directly proportional
to confidence, the more the node is confident in A ⊂ Ω, the
higher is mΩ(A). The masses can be combined with different
types of operators such as the conjunctive operator which
emphasizes agreement when it combines two mass functions
that are reliable and independent or the Dempster’s operator
that ignores conflict, spreading it to the other sets. These two
operators are associative and commutative. In this work, we are
using the cautious operator [2]. This operator is associative,
commutative and idempotent. Idempotency is an important
property because it allows data coming from sources that are
not independent to be combined.

In the following, direct confidence refers to mass values of
the data obtained solely from the node itself, while distributed
confidence refers to the combination of the mass values from
the node itself with those received from its neighbors. It thus
combines all data sources in the network.

B. Distributed data fusion

We can now summarize the principle of the generic data
fusion algorithm introduced in [5]. This algorithm supposes
that each node computes a mass function called its direct
confidence starting from a local measurement from an external
source of data (sensor). The basic belief assignment is done
using sigmoid-like functions. These functions are used to map
the measurement to a mass function, spreading confidence on
focal elements, subsets of the frame of discernment Ω. The
direct confidence (private mass values) is updated whenever a
new measurement is produced by the local sensor.

Each node computes its distributed confidence periodically
by combining its own direct confidence with the output of
its neighbors. In order to solve the data incest problem, the
cautious operator is used. Data incest appears when a single
piece information from the same source is used in the fusion
process more than once. Discounting is applied to each received
distributed confidence to give the closer source a higher priority
than the farther one. Thus, a distant source of information
will still be taken into account to compute the distributed
confidence of a given node but with less importance because
its output will be discounted at each hop. As a consequence,
the distributed confidence computed on a node is different from
another node because while it takes into account the same
sources of information (direct confidences of each node of
the network), they are discounted differently depending on the
position of the node in the network. The result reflects the
local situation in the vicinity of the node without ignoring
information from other, more distant, nodes. The idempotency
of the cautious operator and the discounting operations ensure
the convergence of the algorithm.

Then the distributed confidence is broadcast in the neigh-
borhood. Each node stores the distributed confidences received
from its neighbors until the next local computation. Hence, the
direct confidence of a node will be taken into account by its
neighbors, then by the neighbors of its neighbors and so on. In
this way each node is contributing to the computation of the
distributed confidence.

To summarize the behavior of this distributed algorithm,
every node periodically computes its direct confidence from
a local measurement using sigmoid-like functions. It also
stores the distributed confidences sent by its neighbors. It
periodically computes its own distributed confidence using its
direct confidence and the last received distributed confidences
from its neighbors. Then it broadcasts its direct confidence in
the neighborhood. Old received messages are deleted after a
delay of several periods of computation. Keeping old messages
allows the output of a neighbor to be taken into account even if
some message losses occur due to problems in communication.
Nodes are not synchronized, they rather use their own timers.

C. Robust application for detection of icy road

In this work we focus on the application of distributed data
fusion to detect icy roads. Our aim is to have information that
can be used to warn the drivers when they approach a slippery
road. This application allows us to illustrate the usefulness of
distributed data fusion for intelligent transportation systems.
Similar applications could be designed for other road hazards.
While it is clear that the road is dangerous for some temperatures
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Fig. 1: Testbed with xbee sensors, road-side units and software support from Airplug platform

and not for others, there exists a range of temperatures where
there is a doubt. In here we define three states for the road,
as a first approach, corresponding roughly to three ranges of
temperatures. These states lead to the definition of the following
frame of discernment: Ω = {freeze, slip, safe}.

We have assigned basic belief assignments from temperature
sensor measurements using sigmoid functions defined for the
subsets of the Ω set. The idea is to give a large mass to the
state corresponding to the measured temperature and less to
others. The closer the measurement gets to a threshold between
two states, the more the mass is spread over several subsets
of Ω. Moreover, we do not completely trust the sensors and
a mass is always given to the subset Ω itself, representing
the doubt (given as α). When affecting the masses for the
direct confidence, there is no values for the subset ∅ because
it represents the conflict. However some values may appear
for ∅ after combination of several sources in the distributed
confidence. The thresholds and referent values that define the
road states are chosen in such a way that they correspond to
real values. These parameters can be changed easily so that we
can create a model that can be tested with higher temperatures
(than those that produce frozen road). Sigmoid functions are
given as:

m{ f reeze} = (1 − α) − 1−α
1−e−λ(Tcur−Tre f +Tthr1) (1)

m{slip} = 1−α
1−e−λ(Tcur−Tre f +Tthr1) −

1−α
1−e−λ(Tcur−Tre f −Tthr1) (2)

m{slip, sa f e} = 1−α
1−e−λ(Tcur−Tre f −Tthr1) −

1−α
1−e−λ(Tcur−Tre f −Tthr2) (3)

m{sa f e} = 1−α
1−e−λ(Tcur−Tre f −Tthr2) (4)

m{Ω} = α (5)

where Tcur is current temperature – value read from the sensor,
Tre f , Tthr1, Tthr2 and λ are the reference values chosen in
such a way that sigmoids correspond to real values and have
appropriate shapes. The value α = 0.2 corresponds to the belief
that none of the values for the temperature is correct (doubt).
We have used parameters for sigmoid functions in such a way
that they reflect actual possibilities for the frozen road condition.
For our purposes, the road is sa f e for temperatures above 7◦C,
road status is between sa f e and slip in the interval {3◦C, 7◦C},
road is most probably in the slip state in the temperature
interval {−1◦C, 3◦C} and most probably in the f reeze state
for temperatures below −1◦C. The sigmoid functions shapes
for these referent values can be seen in the Section IV on
Figure 7(b) where local values are decreasing linearly with

time allowing direct confidence to take the shape of sigmoid
functions.

III. Implementation of the detection system

In the previous section, we introduced our distributed data
fusion application for frozen road detection. In this section,
we present the implementation of the whole detection system
relying on sensors, road-side units, vehicles and related software.
We first present the overall architecture. Then we describe the
hardware components of the system. Next we introduce the
framework used to implement the applications before describing
the software components of the system.

A. System architecture

Our detection system relies on stationary and mobile
temperature measurements combined using our distributed data
fusion application described in the previous section. The fix
measurements are performed by wireless sensors close to the
road that send their measurements to some solar road-side
units (Figure 2). The road side units communicate between
themselves and with equipped vehicles in their transmission
range. Vehicles used in the testbed are equipped with hardware
units allowing them to communicate with road-side units. They
broadcast their own confidence about the road state, calculated
from their own temperature and those received from the RSU.

The RSUs use wifi to communicate between themselves
and with vehicles. Messages that are exchanged in this com-
munication are those of the distributed data fusion application,
namely the distributed confidence that is computed periodically
by each node. Communication with sensors relies on dedicated
packets exchanged with zigbee modules – that both wireless
sensors and RSUs have.

B. Hardware components

For development and testing purposes we have designed
and deployed the hardware of the testbed that consists of cheap
off-the-shelf wireless sensors and dedicated road-side units,
called Airbox (developed in our laboratory).

The testbed is deployed using 3 road-side units and 3 Xbee
sensors communicating with them wirelessly via the 802.15.4
protocol. Data is gathered using the serial ports of the RSUs.
We have developed a support program that is used to connect
computing units (RSUs or regular PCs) with wireless sensors



(a) Xbee sensor (with xbee modem) (b) Airbox – IGEP based development boards, used as RSU (c) RSU enclosed with energy harvesting unit
and Xbee sensor

Fig. 2: Hardware elements of the detection system

and gather data through the Xbee modem connected to the
serial port of the RSU [14].

Wireless sensors1 are equipped with a temperature sensor.
We have deployed a simple topology – using exactly one sensor
for each RSU. The support program allows more complicated
scenarios with multiple sensors per RSU but this strictly depends
on the application for which this testbed is used.

The Airbox units are based on the IGEP platform2 – a TI
OMAP controller with 512 MB of RAM. They are running the
Linux operating system and a software suite developed for these
purposes. The driver part of the support program is responsible
for establishing a connection between the Airbox serial port, the
Xbee module and the Xbee sensor. The application exchanges
binary packets between the RSU and the wireless sensors and
decodes them upon reception. Decoded data is further transfered
to other applications that may use them.

C. Airplug framework

The Airplug software distribution is a program suite based
on the Airplug framework aiming to fully support simulation,
development, testing and deployment of dynamic networks.
This is a simple framework based on a few development rules
that focus on the implementation of portable software for
highly dynamic networks. These rules are: (i) usage of standard
input/output system to ensure independence of programming
language implementation, (ii) use of standard ASCII text
messages to ensure portability (possibility of usage in different
operating systems); (iii) simple message addressing scheme
which includes addressing of applications with the pair values
(app name, host name) and (iv) relying on broadcast and
on managing message visibility with subscriptions to certain
applications.

The Airplug software distribution is developed, mostly
using Tcl/Tk programming language, to support several modes –
independent implementations that are complementing each other.
These modes include: the terminal mode – standard UNIX
compatible command line implementation; the emulation mode
– network emulator that simulates lower layers of protocol stacks
while keeping upper layers the same as in experiments and the
live mode, an efficient implementation suitable for execution
on constrained embedded systems during real experiments.

1http://www.digi.com/products/wireless-modems-peripherals/wireless-
range-extenders-peripherals/xbee-sensors

2https://www.isee.biz/products/igep-processor-boards

The Airplug software distribution is easily extended simply by
writing applications (in any programming language) that follow
those guidelines.

D. Software components

The application that makes the connection between the
wireless sensors and the RSUs is called XBE. This application
provides binary packet exchange between Xbee sensors and the
system on which it is run (a PC or an embedded platform such
as the Airbox). On the lower level, the XBE application enables
communication and packet exchange in the proprietary format
of Digi International using serial port and an Xbee module.
On the upper layer the XBE application sends the temperature
data gathered from the Xbee sensor.

XBE application can be used in different scenarios. While
its basic feature is to gather data from wireless Xbee sensors
and transfer them to the other applications, it can also be used
to gather data in a predefined log file, to read data from log
files that were created in previous experiments and to read
user-generated data files. Basic manipulation of gathered data
is possible. For example, we can offset to the data actually
read to simulate different environmental conditions (useful
for recreating a specific type of environment – e.g. winter
temperatures during summer). Log files can be read at the
same rate that was used during recording or at a higher rate as
specified by application parameters. All these parameters can
be used in both emulation and live modes [14].

For the purposes of testing and development of distributed
data fusion algorithms we have developed the MET application.
This application is a practical implementation of the belief
function framework explained in Section II. This application is
able to generate values, that are needed to study the robustness
properties of the algorithm and to generate testing measurements
according to a given function and periodicity. This last feature
has been used on the Airbox units embedded in vehicles not
equipped with temperature sensors and for emulation. Another
possibility for this application is to take measurements from the
other applications. This functionality is used in our experiments.
XBE sends gathered data and MET applies data fusion on the
received data (Figure 1).

MET can apply any user-defined frame of discernment
(Ω set) and sigmoid functions defined for it. Independently
of the data source, MET uses sigmoid functions, defined
with equations (1) to (5) and calculates direct confidences
according to the received values and the defined frame of



discernment. It then proceeds with the calculation of the
distributed confidence according to the algorithm detailed in
Section II. These calculations are done periodically. The periods
are independently defined for each instance of MET. When a
new set of results is obtained the data is sent to the neighbors.
One instance of the MET application handles input from one
sensor, in case that we have more sensors we can run multiple
instances of MET each handling one sensor input.

The applications described hereafter have been designed
and tested using the terminal mode. Then we have deployed
them on the previously described testbed using the Airplug live
mode. The extensive study presented in the next section has
been done by reproducing the testbed in the emulation mode.
This is a convenient way to see the influence of parameters
and input data.

IV. Experiments and results

A. Experimental setup

The testbed presented in the previous section has been
validated during real tests. As we lack the space, we do not
give details about these tests in this article. Instead, we focus
on the behavior of the whole system with different inputs. For
this purpose we rely on the emulator mode of the Airplug
distribution. Airplug-emu accepts the same programs as those
deployed on the Airboxes and it is able to reproduce with a
high accuracy the real tests [1]. GPS positions are the same as
in the real experiment, both for the RSUs and for the vehicle
(Figure 3). GPS traces for vehicles have been saved during the
real test and replayed during the emulation. There is no real
sensor in the emulation; the XBE applications are also used
in emulation mode: they output data coming from a log file
recorded during the real test. Additionally, all the applications
will also output the generated data, allowing us to study the
behavior of our system

Fig. 3: Map showing positions of road-side units (green squares)
and vehicle’s (blue circle) direction of movement (blue arrow).

We divided our study in two groups of scenarios. The first
one, called static, considers only the three RSU and their local
temperature sensor (there is no vehicle). It allows us to show
the influence of one RSU and its local measurements on its
neighbors. The second group, called dynamic, considers the

three RSUs with their sensors and a vehicle. Figure 3 shows a
screenshot of the Airplug emulator, with openstreetmap tiles
as background. It depicts the testbed close to the laboratory.
The blue arrow shows the direction of the vehicle on the road,
which is represented by a blue circle. The RSUs are represented
by green squares. The vehicle first encounters the RSU-L (for
Library), then the RSU-G (for Garage) and finally the RSU-
P (for car Park). Each element in the emulation has a small
histogram next to it, that represents the confidences computed
in the previous step. The dynamic scenarios show the interest
of our dangerous event detection system when a vehicle is
approaching the icy road that is located close to RSU-P in our
experiments.

In each group of scenarios (static or dynamic), we considered
two cases. The first one is the normal case where all sensors
output correct temperature measurements. The second one is
the disturbed case where the sensor connected to the RSU-G
close to the garage is placed inside the garage. It then measures
higher temperatures that do not reflect the road temperature.
This is an extreme case of misplaced sensor. We would like
to study the behavior of our system in such a situation. In
the following, the first scenario is called outside because all
sensors are placed outside. By opposition, the second is called
inside because a sensor is placed inside of the garage. We will
then study four scenarios, namely static-outside, static-inside,
dynamic-outside and dynamic-inside.

Road temperatures in the outside scenarios are 3◦C, −1◦C
and −3◦C for the RSU L, G and P respectively. The icy road
representing the danger is close to the RSU-P. This setup is
used to emulate sudden drops of temperature that may happen
on the road due to changes in the atmospheric pressure or the
environment. In the internal scenarios, the temperature given
by the sensor of RSU-G is 21◦C. The other sensors output the
same temperature as in the external scenario.

In order to have realistic emulated mobile scenarios, de-
creasing temperatures have been generated in the vehicle. For
this purpose, we used the MET application in the vehicle in
emulation mode so that it generates temperatures according to
a given function. Starting temperature for the vehicle is 7◦C
and it decreases linearly each second with 0.133◦C/s steps.
The function for the temperature that the vehicle ”measures” is
constructed in such a way that the vehicle reports temperatures
similar to those of the RSUs at the time it is passing close to
them.

B. Results for the static scenarios

The static-outside scenario shows the adaptation of dis-
tributed confidences calculated by each RSU. Due to the fixed
temperatures, chosen for the static-outside experiments, the
distributed confidences (shown on Figures 4(a), 4(b) and 4(c))
have a short period of transition after which they settle to stable
values. The values for distributed confidence correspond to their
direct confidences (calculated from sigmoid functions knowing
the temperature that each one of them is receiving) but we can
also see the influence of the neighborhood on these calculations.
Thus, for RSU-L, the distributed confidences for the {slip} and
{slip, sa f e} subsets are different than the direct confidence that
it calculates, and in this case it corresponds more to the values
calculated by RSU-G.



(a) RSU L (b) RSU G (c) RSU P

Fig. 4: Distributed confidences for road-side units during the emulation in static-outside scenario.

(a) RSU L (b) RSU G (c) RSU P

Fig. 5: Distributed confidences for road-side units during the emulation in static-inside scenario.

The static-inside scenario shows how distributed data fusion
adapts when one of the RSUs is receiving data that is very
different compared to neighboring RSUs. In this case we can see,
similarly to the previous case, the influence of the measurements
from RSU-G on those of RSU-L. RSU-G measures the highest
temperatures (21◦C) thus it influences the increase of the
distributed confidence for the {sa f e} value. We can see the
same influence on the RSU-P. This RSU is receiving measured
temperature well beyond the level of its own {sa f e} state and
yet its {sa f e} state has the highest value.

We used the static scenarios to show how different readings
from external sources of data and direct confidence influence
the distributed confidences of the neighbors. We can conclude
that drastic changes in retrieved values on one RSU can bring
in significant changes in the distributed confidences on the
neighboring RSUs.

C. Results for the dynamic scenarios

In the beginning of both dynamic scenarios the vehicle is
out of range from any RSU. The periods of communication
with the different RSUs are given on Figure 6 and they are: TL,
the period in which the vehicle only communicates with RSU-L
from t = 12s to t = 28s; TLG, the period in which the vehicle
communicates with RSUs L and G from t = 28s to t = 41s;
TLGP, the period in which the vehicle communicates with all

three RSUs from t = 41s to t = 51s; TGP communication with
RSUs G and P from t = 51s to t = 70s; and TP communication
only with RSU P from t = 70s to t = 73s.

For the dynamic-outside scenario we can see that the direct
confidences for the vehicle (Figure 7(b)) are passing through
all the values given by the sigmoid functions due to the linear
change of temperature measured by the vehicle. The distributed
confidence (Figure 7(c)) calculated by the vehicle is the most
important result. It shows that the vehicle, as soon as it gets
connected to RSU-L in the period TL (Fig. 6), recalculates its

Fig. 6: Distances of vehicle from different RSUs; shown only
when the vehicle is in the communication range of RSU



(a) Distributed confidences calculated by the RSU G. Influence of the
measurement by the vehicles can be seen from t = 28s to t = 62s

(b) Direct confidences calculated by the vehicle. Temperature is linearly
decreasing from 7◦C with the step of −0.133◦C and direct confidence is
passing through all values given with sigmoid functions.

(c) Distributed confidences for vehicle in dynamic-outside scenario.
Vehicle is getting warning at t = 12s of the possibility of ice on the road
before it actually reaches this point t = 40s

Fig. 7: Results for dynamic-outside scenario

distributed confidences giving the highest value to the {slip}
state under the influence of the confidences calculated by RSU-
L. In this way the vehicle effectively predicts the possibility of
a dangerous event (icy road) even though it is far away from it.
The vehicle is then coming closer to the dangerous spot, the
temperature measured by the vehicle decreases, changing its
direct confidences. Comparing Figure 7(b) and Figure 7(c) we
can deduce that in this period (TLG), the distributed confidence
change is occurring before its direct confidences change. In
this case, the direct confidence just enhances this change,
making it even more obvious. Similarly, we can deduce that
the distributed confidence for the { f reeze} state is starting to
increase much earlier than its direct confidence. This is again
due to the influence of the measurements from the RSUs, and
in this case this is prevalently due to the influence of RSU-

(a) Distributed confidences calculated by the RSU L. Measures are
adapted and they take into account direct confidences from vehicle.

(b) Distributed confidences calculated by the RSU G. Direct confidence
calculations received from vehicle from t = 33s to t = 68s are influencing
the change of distributed confidence calculated by RSU G.

(c) Distributed confidences calculated by the RSU P, two conflicting
measures {freeze} and {safe} have highest values – due to the influence
of RSU G.

Fig. 8: Results for dynamic-inside emulation scenario

L. A loss of connection, after the TP period, brings back the
distributed confidence to the level of the direct confidence
calculated solely by the vehicle. In the Fig. 7(a) we can see in
what way the direct confidence of the vehicle influences the
distributed confidences of RSU-G, visible in the periods when
the vehicle is connected to RSU-G (TLG, TLGP and TGP)

The main goal of the dynamic-inside scenario is to observe
the way that distributed confidences are adapted in case of
extreme differences in sensor readings. From the distributed
confidences of each RSU (Figures 8(a)-8(c)), we can conclude
that a high temperature that read by RSU-G has a large influence
on both RSU-L and RSU-P. These three figures show that
the influence of RSU-G dominates, bringing in the highest
values for the distributed confidence for the {sa f e} value.
However, we can also observe that passage of the vehicle is



bringing in the change which corresponds to the real situation
(decreasing temperatures in successive RSUs). This is visible
in the periods TLGP and TGP, when the vehicle is connected
to RSU-P and at the same time reaches lower temperatures in
its own measurements. We can conclude that it influences the
distributed confidences calculated by the RSUs bringing their
calculations much closer.

Fig. 9: Distributed confidences for the vehicle in the dynamic-
inside scenario. Due to the readings of RSU-G, the vehicle is
getting delayed warning of a possible icy road ahead.

The distributed confidence of the vehicle reveals that the
measurements correspond to the real case i.e. direct confidences
calculated from the vehicle are influenced by the RSUs.
Nevertheless, the vehicle keeps its calculations of the distributed
confidences, thanks to the belief function framework that spreads
confidence to several subsets of the frame of discernment. In
this case, the vehicle is again capable of detecting the dangerous
spot on the road but due to the anomaly caused by the readings
from RSU-G this detection is happening later when the vehicle
gets in the range of all three RSUs and its own direct confidences
start to change values.

V. Conclusion

In this paper, we have presented an application of distributed
data fusion for early detection of dangerous events (icy roads),
based on the belief functions theory. Our application combines
several sensors measurements and propagates a mass vector with
confidences on all the subsets of the frame of discernment that
characterizes the different states of the road (freezing, slippery,
safe). The main advantage of this technique is its robustness to
wrong measurements and to give earlier warnings to drivers.

For development and testing purposes we have designed a
complete testbed consisting of wireless sensors and solar RSUs
communicating with WiFi between them and with vehicles.
Extensive studies have been done by emulation, using data
retrieved from our testbed, in different scenarios – with regular
and erroneous measurements, using vehicles and RSUs. Results
show that our application enables warning for approaching
vehicles earlier than a simple alert broadcast generated when an
average temperature is under a threshold. Moreover, data fusion
can generate alerts for the approaching vehicles even when one
of the sensors gives completely different measurements. Future
work will include extensive road experiments with our testbed as
well as adaptation of our application to other hazards. We also
plan to investigate usage of pignistic probabilities in making
the decision that is transmitted to the driver and to incorporate
it in standardized environmental notification messaging system
(DENM).
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