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We study how confinement affects the viscous spatio-temporal instability of a two-phase
mixing layer. We show that the absolute instability triggered by the inclusion of finite
liquid and gas thicknesses leads to a good prediction of experimental data. In addition,
this new mechanism provides a justification for the relevance of both simplified inviscid
scaling laws and more sophisticated viscous approaches.
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1. Introduction

The configuration in which a slow liquid stream is destabilized by a fast gas stream
is both a classical fluid mechanics problem and a configuration encountered in many
applications related to combustion (Lefebvre 1989). Injecting kerosene and air this way
in turboreactors leads for example to the formation of a very efficient spray, i.e. one
whose droplets are very small. This configuration has therefore been the object of many
studies, but in spite of the attention it has garnered its mechanism is still a matter of
controversy. Is it an inviscid or a viscous instability? This is the question we wish to
address in the present letter.
Raynal (1997) and Raynal et al. (1997) carried out a series of experiments on this

simple two-phase flow configuration: a slow liquid stream (velocity UL, width 10 cm,
height HL = 1 cm) flowing on a solid plate is destabilized by a fast gas stream (velocity
UG, width 10 cm, height HG = 1 cm). Long wavelength waves form, and are rapidly
convected away from injection and subsequently atomized into droplets. These waves
have a “long” wavelength in the sense that it is large compared to other lengths in
the problem: the thicknesses of the gas and liquid streams, and especially the gas and
liquid vorticity thicknesses, δG and δL. Wave frequency was measured, and experimental
results confronted to a simple inviscid stability analysis generalizing that of Rayleigh
(1879). Experimental trends, and a good order of magnitude of the frequency, can be
captured with this approach (Raynal 1997; Raynal et al. 1997). The mechanism driving
the instability is then similar to the classical Kelvin-Helmholtz one, but wavelength
selection occurs through the size of the gas vorticity thickness δG. The scaling obtained
for the most unstable frequency can be recovered from a simple energy budget for the
velocity perturbation u, by writing that the perturbation is fed by the Reynolds stress
in the gas phase:

dρLu
2

dt
= ρGu

2UG/δG ⇒ ω ∼ ρG
ρL

UG

δG
(1.1)
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where ρG and ρL are the gas and liquid densities and UG the base flow gas velocity.
This scaling law is in good agreement with experiments (Raynal 1997; Raynal et al.

1997). The velocity associated to these waves can be predicted by a similarly simple
phenomenological argument: it is the velocity of the frame in which dynamic pressure in
the liquid is balanced by dynamic pressure in the gas (Dimotakis 1986), namely:

Uc =

√
ρLUL +

√
ρGUG√

ρG +
√
ρL

, (1.2)

Measurements indicate that the experimentally measured velocity is quite close to the
velocity given by equation (1.2) (Raynal 1997). In the limit of large gas velocities these
simple scaling laws imply in particular that the wavelength will be given by (Eggers &
Villermaux 2008):

λ ∼
√

ρL/ρGδG (1.3)

A similar configuration has been studied by Marmottant & Villermaux (2004), for a
different geometry: a round liquid jet destabilized by an annular parallel gas stream.
This study evidences the same scaling laws seen on the planar case for the frequency and
wavelength of the axial wavy perturbations.

Though they capture the correct scaling laws, the values predicted by the inviscid
approach underpredict wave frequency. Seeking to improve the prediction of the inviscid
stability analysis, Matas et al. (2011) extended it to velocity profiles mimicking the
velocity deficit observed just downstream the injection, where liquid velocity close to
the interface is observed to be much smaller than in the liquid bulk. This modified
analysis increases predicted frequencies by about 50%, and therefore offers a relatively
good frequency prediction. However, Matas et al. (2011) observe that the inviscid analysis
strongly underpredicts spatial growth rates, and fails to capture the steep increase of
growth rate with gas velocity.

In order to clarify the issue of the nature of the instability and of the potential effect of
viscosity, Boeck & Zaleski (2005) carry out a temporal linear stability analysis including
viscosity. They find that when viscosity is included in the temporal stability analysis, the
most unstable mode for the conditions of the experiments of Marmottant & Villermaux
(2004) is actually a purely viscous mode. This mode is akin to the mode evidenced by Yih
(1967), discussed by Hooper & Boyd (1983, 1987), Charru & Hinch (2000), and whose
mechanism in the limit of short wavelengths has been discussed by Hinch (1984): it is
triggered by the jump in viscosity, and therefore in shear rate, across the interface. The
order of magnitude of the growth rate associated with this viscous mode is consistent
with experiments, but predicted frequencies largely overestimate experimental ones. The
paradox that a simplified inviscid analysis perform better than a viscous one has been
partially solved by Otto et al. (2013) and Fuster et al. (2013): by carrying out a spatio-
temporal analysis including viscosity, they show that an absolute instability may be
predicted for some of the experimental conditions of Matas et al. (2011), and that when
this absolute instability occurs there is a relatively good agreement between experiments
on the planar geometry and predictions. The mechanism is in this case purely viscous.
However, when the instability is predicted to be convective (for most of the experimental
conditions of Matas et al. 2011) frequency remains strongly overpredicted. As for growth
rates, Otto et al. (2013) notice that the theoretical growth rates associated with the
experimentally observed frequency are in agreement with experimental ones: in other
words, if another frequency selection mechanism were able to provide the experimental
frequency, then frequency and growth rate would agree with experiments. Comparison
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Figure 1. Sketch showing the typical base flow profile, including finite liquid and gas stream
thicknesses.

with the experimental data of Marmottant & Villermaux (2004) shows a relatively good
agreement, even when the instability is convective.
There are therefore two questions we want to address in this paper:
- Most of the experimental data of Matas et al. (2011) remain overpredicted by the

spatio-temporal viscous approach of Otto et al. (2013), and this points to a still missing
ingredient in the viscous spatio-temporal theory.
- The initial inviscid approach of Raynal (1997) and Marmottant & Villermaux (2004)

seemed to capture very well experimental scaling laws, however it is predicted by Otto
et al. (2013) via an energy budget that the most unstable mode for the conditions of
these experiments is dominated by the viscous mechanism studied by Yih (1967) and
others. Why is therefore the simple inviscid approach so successful?
In the experiment, the liquid and gas streams are confined within lengths smaller than

the observed longitudinal wavelength. The fact that confinement can trigger absolute
instability in shear flows has been evidenced in recent years by Juniper (2008), Rees
& Juniper (2010) and Healey (2007, 2009). The absolute instability observed by Otto
et al. (2013) and Fuster et al. (2013) is of a different type, occurring between the shear
instability branch and a branch located below, and is controlled by surface tension. We
investigate in the following how including in the spatio-temporal analysis a confinement
similar to the experimental one affects predictions.

2. Method

We consider Navier Stokes equations for a base flow U = (U(y), 0, 0) and a small per-
turbation u(x, y, t) (coordinate system shown on figure 1). After linearization of this 2D
problem, we look for normal mode solutions of the form ũ(k, y, ω)ei(kx−ωt) and obtain
the classical Orr-Sommerfeld equation for the cross stream velocity component of the
perturbation in Fourier space ṽ(k, y, ω) in each fluid (Otto et al. 2013). Boundary condi-
tions are a solid wall at y = −HL, and another solid wall at a distance y = LG on the gas
side. For the present study we take LG ten times larger than other scales in the problem,
typically LG = 30max(HG, HL), to ensure no confinement occurs due to this wall. The
method we use for solving this problem is different from the method used by Otto et al.

(2013) or Fuster et al. (2013): instead of using a spectral method, we solve for the velocity
perturbation ṽ(k, y, ω) in real space, with a Runge-Kutta method. In each phase integra-
tion is carried out from the solid wall, where both velocity components must be zero, to
the interface, where continuity of tangential and normal velocity, as well as continuity
of tangential and normal stresses is enforced. Surface tension and gravity normal to the
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interface, which may affect prediction for large wavelength, are included in the normal
stress equation. In order to ensure that both solutions satisfying ṽ = 0 and ∂ṽ/∂y = 0 at
the solid walls remain independent during integration, we orthonormalize the associated
four-dimensional vectors at each time step within the Runge-Kutta algorithm with the
procedure described in Asmolov (1999) and Matas et al. (2009). The dispersion relation
is then solved with a shooting method (2D Newton-Raphson method). Contrary to the
spectral method, the present shooting method does not provide us with the whole set of
eigenmodes: however it is well adapted to the present aim which is to focus on a given
set of parameters close to experimental conditions.
We chose the same family of base flow profiles used by Otto et al. (2013), namely a

sum of error functions accounting for the wake due to the splitter plate between the
liquid and gas streams. Additional error function cut-off terms are added to account for
the finite HG and HL we wish to include in the present study:






U(y) =
[

UG erf
(

y
δG

)

+ Ui

[

1− erf
(

y
δdδL

)]] (

1 + erf
(

HG−y
δG

))

/2 for 0 < y < LG

U(y) = −
[

UL erf
(

y
δL

)

+ Ui

[

1 + erf
(

y
δdδL

)]]

erf
(

y+HL

δL

)

for −HL < y < 0

where Ui is the interface velocity Ui = (UGµG/δG + ULµL/δL)/(µG + µL)δdδL, with µG

and µL the dynamical viscosities of gas and liquid, and δL the liquid boundary layer.
Dimensionless parameter δd allows control of the amplitude of the velocity deficit: for
δd = 1 there is no velocity deficit (as in figure 1), while for δd ≪ 1 interface velocity goes
down to zero (Otto et al. 2013).
In order to facilitate comparison with experiments, we set the gas vorticity thickness

to the value measured in experiments. The experimental δG is well approximated by (see
Raynal 1997; Matas et al. 2011): δG = 6HG/

√

UGHGρG/µG. The liquid boundary layer
is set to a constant value of δL = 500 µm, close to the value measured in the experiment
for the relevant range of liquid velocities (PIV measurement). Note finally that the above
expression is a fit of the mean velocity profile: though experimental air and water flows
are turbulent for the Reynolds numbers of interest, fluctuations are not included in the
present analysis.

3. Results and discussion

We now confront the predictions obtained with this method to the air-water experimen-
tal data of Matas et al. (2011). We first consider their series of data obtained at a fixed
UG = 27 m/s: the prediction of the viscous spatio-temporal analysis without confinement
for this series overestimates the experimental data by a factor two for most liquid veloc-
ities (figure 31d of Otto et al 2013). Figure 2 shows what happens for UL = 0.26 m/s
when a confinement similar to the experimental one is taken into account and when ωi,
the imaginary part of ω, is reduced: a confinement branch appears along the ki axis,
and pinching between this branch and the shear instability branch occurs for positive
ω0i. While the shear instability branch involved in the pinching observed by Otto et al
(2013) at large UL is what they call the weaker mode (as in figure 25b of their paper),
the branch involved in the pinching mechanism of figure 2 is the stronger mode, which
extends to lower wavenumbers. The confinement branch involved in the pinching is of
the type described in Healey (2007): it arises because of the oscillatory nature of the
confined perturbation when k is close to the imaginary axis. The frequency predicted
without taking into account confinement would be the frequency corresponding to the
minimum of the negative growth rate (there is no pinch point on the weaker mode for
the conditions of figure 2), namely 66 Hz, while the pinching caused by confinement
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Figure 2. Pinching at positive ω0i occurs between confinement and shear controlled branches
when confinement is taken into account ; UG = 27 m/s, UL = 0.26 m/s, δd = 1, HG = 1 cm and
HL = 1 cm. Symbols correspond to ωr in the range [80-680] s−1.

occurs for a much lower frequency of 28 Hz. The latter frequency is much closer to the
experimental frequency fexp = 28.8 Hz.
For the case of an absolute instability, nonlinearity is expected to affect the properties

of the eigenmode at the pinch point, and comparison between growth rate at the pinch
point and experimental spatial growth rate is therefore not attempted. It is however
interesting to note the value of the wavenumber at the pinch point: figure 2 shows that
the pinching induces a major reduction in the predicted wavenumber, from kr ≈ 720 m−1

down to kr ≈ 140 m−1. The corresponding phase velocity ωr/kr (we note ωr the real
part of ω) is then of about 1.28 m/s, very close to the value given by equation (1.2),
Uc = 1.2 m/s. Wave velocity was not measured in the experiment of Matas et al. (2011),
but previous experiments by Raynal (1997) and Ben Rayana (2007) had both found wave
velocity in close agreement with Uc. In addition, expression (1.2) for velocity Uc is derived
by Dimotakis (1986) through a balance of dynamic pressure, and a similar expression is
found by Matas et al. (2011) in the frame of the inviscid linear theory via an asymptotic
expansion in the limit of low density ratio. This expression therefore corresponds to a
perturbation driven by an inviscid mechanism: The fact that predicted phase velocity
is close to equation (1.2) is a first indication that the dominant mechanism for these
ω and k is inviscid. Note that the velocity associated with the most unstable modes in
Otto et al. (2013) or Fuster et al. (2013), which are viscous modes, is closer to Ui and
significantly lower than this estimate.
Figure 3 next shows how the predicted frequency compares to the experimental one

(symbol �) for the experimental data at UG = 27 m/s for each of the six liquid velocities
investigated. Symbol ∗ shows the prediction of Otto et al. (2013) for δd = 0.1, a prediction
which works well for the two higher velocities, but clearly fails for the four lower velocities.
For δd = 1 the predictions of Otto et al (2013) for all UL far exceed experimental data
(see figure 31d of their paper), and are not shown here. Symbol ◦ shows the frequency
obtained at pinching when confinement is taken into account, for δd = 1 (no velocity
deficit): this frequency is in relatively good agreement with experimental data. Note that
for the four lower liquid velocities the mode predicted by Otto et al (2013) when δd = 1
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Figure 3. Comparison at UG = 27 m/s between experimental data of Matas et al. (2011) (�)
and available spatio-temporal predictions ; ∗: prediction by Otto et al. (2013), for δd = 0.1 ; ◦ :
prediction taking into account confinement without any velocity deficit (δd = 1) ; � : prediction
with confinement and a velocity deficit (δd = 0.5).

is associated with a convective mode, and the present absolute instability caused by
confinement is therefore expected to dominate. For δd = 1 and the two largest liquid
velocities in this series however, the pinching occurs at negative ω0i, and the confinement
mechanism is consequently not relevant.
If a velocity deficit is included in the base flow profile, the absolute instability is

enhanced (i.e. it occurs at even larger ω0i), and the frequency slightly increases too, these
data are shown by symbol � on figure 3, for δd = 0.5. If a stronger deficit is included
(δd < 0.4) the shear instability branch is displaced and the pinch point due to confinement
disappears. Figure 4 shows the same comparison for the series of experimental data of
Matas et al. (2011) at UG = 22 m/s, and the same agreement is found when confinement is
included. Figure 5 shows the variation of the absolute growth rate ω0i at the pinch point:
it decreases when UL is increased, and eventually becomes negative for UL > 0.6 m/s.
The inclusion of a moderate velocity deficit (δd = 0.5, symbol �) leads to a slight increase
of ω0i.
The fact that agreement between prediction and experiments occurs for δd = 1 at

lower UL while it occurs for smaller δd at larger UL is consistent with the idea that the
velocity deficit will be resorbed over a longer distance when liquid velocity is larger. At
any rate only a global approach, in the sense introduced by Huerre & Monkewitz (1990),
may clarify how mode selection occurs in the presence of strong spatial variations, when
unstable modes predicted close to the splitter plate (where δd << 1) differ from those
farther downstream (where δd = 1).
In order to clarify the nature of the dominant mechanism for the new pinch point

caused by confinement, we carry out an energy budget similar to the one introduced by
Boomkamp & Miesen (1996) for temporal modes. The energy budget can be written

dEkin

dt
= REYL +REYG + TAN +NOR+DISL +DISG (3.1)

Here Ekin is the total kinetic energy of the eigenmode (gas+liquid), REYL (resp. REYG)
the transfer of energy from the base flow to the perturbation via Reynolds stresses in the
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Figure 4. Comparison at UG = 22 m/s between experimental data of Matas et al. (2011) (�)
and available spatio-temporal predictions ; *: prediction by Otto et al. (2013), for δd = 0.1 ; ◦ :
prediction taking into account confinement without any velocity deficit (δd = 1).
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Figure 5. Variation of the absolute growth rate ω0i at the pinch point caused with the confine-
ment branch, as a function of liquid velocity, for fixed UG = 27 m/s, HG = 1 cm and HL = 1 cm
; • : δd = 1 ; � : δd = 0.5. The growth rate decreases when liquid velocity is increased, and
increases when a velocity deficit is included.

liquid (resp. gas) stream, TAN is the work of tangential stresses, NOR the contribution
of normal stresses (surface tension and gravity in the present case) and DISL (resp.
DISG) the dissipation in the liquid phase (resp. gas phase). The analytical expressions
for each of these terms are very similar to the expressions given in Otto et al. (2013), and
are not reminded here. The only differences here are that the wavenumber is complex,
and that the kinetic energy variation term must be generalized to include a contribution
from the spatial growth:

dEkin

dt
= ωi

∫ 0

−HL
ρL

(

u2 + v2
)

dy − ki
∫ 0

−HL
ρL

(

u2 + v2
)

U(y)dy

+ ωi

∫ LG

0 ρG
(

u2 + v2
)

dy − ki
∫ LG

0 ρG
(

u2 + v2
)

U(y)dy (3.2)
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UL [m/s] δd REYL REYG TAN DISL DISG

0.26 1 3 80 23 -0.1 -7.8
0.31 1 3.2 84.3 20 -0.1 -8.8
0.37 1 3 82 21 -0.1 -8.2
0.5 1 2.7 82 21 -0.1 -7.9
0.74 0.1 3.3 51 330 -7.7 -280
1 0.1 1.6 -24 740 -17 -600

Table 1. Energy budget for the data (◦) and (*) of figure 3. Values are in percentage of the
total (positive) kinetic energy rate.

We compute the energy budget for the six datapoints of figure 3 showing the best agree-
ment with experimental results, more precisely the four data points obtained with con-
finement for lower UL and δd = 1 (no velocity deficit), and the two points obtained by
Otto et al. (2013) for UL = 0.74 m/s and UL = 1 m/s (with a velocity deficit, δd = 0.1).
The energy contributions are normalized by the total positive kinetic energy rate. We
omit the contribution of NOR which is negligible for most of the present points. Table 1
shows that for the four conditions for which confinement triggers the absolute instability
the mechanism is inviscid, and that the perturbation draws its energy from the gas side.
This is consistent with phase velocity being close to Uc (equation 1.2). For the two dat-
apoints at larger velocity the mechanism is confirmed to be viscous, driven by the work
of interfacial tangential stresses (Otto et al. 2013). Dissipation occurs almost exclusively
in the gas phase.
The idea behind the generalized budget of equation 3.1 is to identify among the right-

hand contributions which are dominant and which are negligible when at the pinch point.
It might be tempting to carry out the energy budget in a more classical form, in order to
avoid the generalization to spatiotemporal modes: however for a purely purely temporal
mode, the results would depend very much on how the {spatiotemporal → temporal}
transposition is made: for a purely temporal mode at the same ωr as the pinch point
for example, and conditions of the first line of table 1, the wavenumber would become
kr ≈ 380 m−1 instead of kr ≈ 170 m−1 for the spatiotemporal mode. For these conditions
the energy budget says the temporal mode is 85% viscous (the same budget would be
found for the spatiotemporal mode at this larger kr). If a {spatiotemporal → spatial}
comparison is carried out for the wavenumber of the pinch point, then the energy budget
says the mode is 60% viscous and 40% viscous. Hence a transposition would be extremely
sensitive to which ω and k values are retained.
At any rate the inviscid nature of the instability for the pinch point due to confinement

is confirmed by figure 6, which shows the impact of a reduction of viscosity on spatial
branches for the case UG = 27 m/s and UL = 0.26 m/s (conditions of figure 2): when
viscosity is reduced the shear branch is impacted, but the confinement branch is un-
changed, and the pinch point remains at the same location. Frequency at the pinch point
slightly decreases when viscosity is reduced, from f = 28 Hz for νG = 1.5 × 10−5 m/s
and νL = 10−6 m/s down to f = 20 Hz for νG = 1.5× 10−7 m/s and νL = 10−8 m/s.
This result is satisfying, because it explains the paradox exposed in the introduction,

namely why the simplified analysis proposed by Raynal (1997) was successful, and why
the inclusion of viscosity in the analysis had degraded the quality of the prediction. The
inclusion of viscosity gives rise to a much stronger shear mode based on the viscous
mechanism (Boeck & Zaleski 2005; Otto et al. 2013), but resonance due to confinement
triggers an absolute instability for the lower wavenumber part of the shear branch, which



Inviscid vs viscous instability mechanism of an air-water mixing layer 9

0 200 400 600 800 1000

−500

−400

−300

−200

−100

k
r
 [m−1]

k i [m
−

1 ]

Figure 6. Impact of a variation in viscosity on spatial branches for UG = 27 m/s, UL = 0.26 m/s
and δd = 1; ∗: νG = 1.5× 10−5 m/s, νL = 10−6 m/s and ωi = 85 s−1; �: νG = 1.5× 10−6 m/s,
νL = 10−7 m/s and ωi = 65 s−1; •: νG = 1.5 × 10−7 m/s, νL = 10−8 m/s and ωi = 50 s−1;
+: νG = 1.5× 10−7 m/s, νL = 10−6 m/s and ωi = 45 s−1. The shear branch is displaced when
viscosity is reduced, but the location of the pinch point associated with confinement remains
unchanged.
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Figure 7. Change in the confinement branches when HG and HL are reduced, for fixed
UG = 27 m/s, UL = 0.26 m/s, δd = 1, ωi = 120 s−1 and ωr in the range [60-430] s−1: • :
HG = HL = 2 cm ; × : HG = HL = 1 cm ; ◦ : HG = HL = 0.5 cm.

is dominated by the inviscid mechanism. This occurs for all the lower liquid velocity
points of Matas et al. (2011), as in figure 3. For the larger liquid velocity conditions
we find that the shear branch is displaced away from the confinement branch, and the
mechanism is then the one predicted by Otto et al. (2013), an absolute instability between
the shear branch controlled by viscosity and a lower branch controlled by surface tension.

The velocity profile considered in figure 1 includes both a finite HG and a finite HL.
In order to clarify the influence of these thicknesses, we keep them equal and vary them,
while keeping δG and δL constant and equal to their values for HG = HL = H = 1 cm.
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Figure 8. Pinching for UG = 27 m/s, UL = 0.26 m/s, δd = 1, ωi = 60 s−1, ωr in the range
[60-280] s−1 and: ◦: HG = 3 cm and HL = 1 cm ; ∗ :HG = 1 cm and HL = 3 cm. Both
thicknesses play a symmetric role.

Figure 7 shows that the location of the confinement branch along the ki axis behaves as
1/H , and that the extension of the branches increases strongly with 1/H : these branches
therefore set the order of magnitude of k at the pinch point. If these thicknesses are
distinct, we observe that their role is symmetric. Figure 8 shows two sets of branches
obtained for (HG = 3 cm ; HL = 1 cm) and for (HG = 1 cm ; HL = 3 cm): though
experimentally a thick liquid and a thin gas stream may look quite different from a
thin liquid stream and a thick gas stream, we find that the branches obtained in both
situations are very close. They extend to the same real(k) as the branch obtained for
HG = HL = 1 cm, the smaller length, the only difference being that the absolute growth
rate ω0i is significantly smaller for HG 6= HL than for HG = HL. The fact that a
symmetric confinement can enhance the absolute instability of a shear layer has already
been pointed out in Healey (2009).
As shown in figure 3, the present mechanism dominates for the largest UG/UL cases

but is absent for the largest liquid velocities investigated. Figure 9 sheds light on this
behaviour: when UL is increased the maximum growth rate of the shear branch decreases.
If the maximum growth rate of this branch, which is controlled by the viscous mechanism
(Otto et al. 2013), is shifted above the location of the confinement branch, then both
branches cannot collide anymore when ωi is reduced.
All the above results have been obtained with δG set to its value in experiments, and

with a fixed δL. We show on figure 10 the impact of δG for fixed UG on both the real
and imaginary parts of ω. Increasing δG causes a strong reduction in the frequency and
absolute growth rate, both for δL = δG (filled symbols) and fixed δL = 500 µm (empty
symbols). The impact of δG on the wavenumber at the pinch point is weaker: k remains
mostly constant when δG is increased, except for a slight decrease, and the location of
the pinch point remains essentially controlled by the confinement branch.
The scalings of equations (1.1), (1.2) and (1.3), in agreement with experiments, can be

derived from the partially successful inviscid analysis. They had up to now no justification
in the context of viscous analyses. The fact that the energy of the perturbation is fed by
the gas Reynolds stress indicates that the argument behind the simplified derivation of
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Figure 9. Influence of liquid velocity UL, for fixed UG = 27 m/s, HG = HL = 1 cm, δd = 1
and ωi = 120 s−1: • UL = 0.26 m/s ; ◦ : UL = 0.5 m/s ; * UL = 1 m/s. The ranges of ωr are
respectively: [120-370], [170-500] and [260-820] s−1. When liquid velocity is increased, the shear
branch is shifted away from the confinement branch.
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Figure 10. Influence of vorticity thickness δG on ωr (symbol ◦) and ω0i (symbol �), for fixed
UG = 27 m/s, UG = 0.26 m/s, δd = 1 and HG = HL = 1 cm. Empty symbols correspond to
δL = 500 µm and filled symbols to δL = δG.

equation (1.1) is still valid. This is a significant result, since with ω ∼ UG/δG we recover

the f ∼ U
3/2
G scaling observed in most experimental studies, where δG scales as U

−1/2
G .

The instability predicted here is absolute, and in the experiment nonlinearity is therefore
expected to take over: the same arguments used by Dimotakis (1986) to derive equation
(1.2) are expected to hold. Provided this is valid for the waves generated by the present
mechanism, the scaling law (1.3) for the wavelength can then be derived from the scalings
for velocity and frequency.
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