Semantic-based multilingual document clustering via tensor modeling - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Semantic-based multilingual document clustering via tensor modeling

Résumé

A major challenge in document clustering research arises from the growing amount of text data written in different languages. Previous approaches depend on language-specific solutions (e.g., bilingual dictionaries, sequential machine translation) to evaluate document similarities, and the required transformations may alter the original document semantics. To cope with this issue we propose a new document clustering approach for multilingual corpora that (i) exploits a large-scale multilingual knowledge base, (ii) takes advantage of the multi-topic nature of the text documents, and (iii) employs a tensor-based model to deal with high dimensionality and sparseness. Results have shown the significance of our approach and its better performance w.r.t. classic document clustering approaches, in both a balanced and an unbalanced corpus evaluation.
Fichier principal
Vignette du fichier
mt2014-pub00042217.pdf (805.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01130094 , version 1 (11-03-2015)

Identifiants

Citer

S. Romeo, A. Tagarelli, Dino Ienco. Semantic-based multilingual document clustering via tensor modeling. EMNLP, Conference on Empirical Methods in Natural Language Processing, Oct 2014, Doha, France. 10 p. ⟨hal-01130094⟩
207 Consultations
146 Téléchargements

Partager

More