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a b s t r a c t

In this paper we address the problem of finding the optimal performance region of a wire-

less ad hoc network when multiple performance metrics are considered. Our contribution

is to propose a novel cross-layer framework for deriving the Pareto optimal performance

bounds for the network. These Pareto bounds provide key information for understanding

the network behavior and the performance trade-offs when multiple criteria are relevant.

Our approach is to take a holistic view of the network that captures the cross-interactions

among interference management techniques implemented at various layers of the protocol

stack (e.g. routing and resource allocation) and determines the objective functions for the

multiple criteria to be optimized. The resulting complex multiobjective optimization prob-

lem is then solved by multiobjective search techniques. The Pareto optimal sets for an

example sensor network are presented and analyzed when delay, reliability and energy

objectives are considered.

1. Introduction

Wireless ad hoc and sensor networks often operate in

difficult environments and require several performance

criteria to be satisfied related to the timely, reliable, and

secure exchange of data. To enable communication across

the network, key design elements include routing and re-

source allocation protocols. Various constraints related to

transmission delay [1], energy consumption [2] or fairness

[3,4] are added to the protocol’s main design goal of reli-

able information transfer. Thus, the assessment of such

protocol performance relies on various criteria measures

which may be evaluated analytically or through network

simulations.

It is possible to understand the capabilities and limits of

a routing protocol or a resource allocation strategy if a

bound on the network performance is known. An end user

requires certain simultaneous levels of performance for

multiple criteria to guarantee quality of service, yet the

considered performance metrics often conflict. The solu-

tion maximizing for instance capacity may not be the one

that minimizes delay. Therefore all of these performance

metrics have to be considered concurrently in the optimi-

zation process. In the case of multiple criteria, however,

there is usually no single optimum and several solutions

offering different optimal trade-offs exist. More specifi-

cally, if you decide to optimize delay and capacity, you will
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find solutions (i.e. routing and resource allocation strate-

gies) in the Pareto optimal set that favor either capacity,

delay, or some trade-off combination. The main contribu-

tion of this paper is to propose a unified cross-layer frame-

work capable of capturing the trade-offs existing between

multiple performance metrics.

The solution we propose for obtaining bounds on

multiple benchmark objectives relies on the definition of

a multiobjective optimization problem; the subsequent

evaluation provides a set of Pareto optimal solutions. The

Pareto set is composed of non-dominated solutions, i.e.

solutions of the search space that are never dominated

by any other with respect to the evaluation criteria consid-

ered. A solution herein characterizes one possible route

configuration with its resource allocation defined in terms

of transmission rate. For example, a possible solution to

facilitate the transfer of information from source to

destination could be the selection of an intermediate node

to relay the data with a fixed transmission rate. This mul-

tiobjective optimization problem is hard to solve since it is

the combination of a resource allocation problem and a

routing problem. Compared to analytical approaches, it

has the drawback of being computationally more expen-

sive but has two main advantages. First, it can be used to

derive bounds for multiple performance metrics at a time.

Second, it not only provides the performance bounds, but

also extracts the solutions that are Pareto optimal which

cannot be determined using a classic analytical approach.

In order to mitigate the limitations of the layered net-

work architecture, cross-layer interactions have to be con-

sidered in the framework definition. In [5], the authors

address a cross-layer optimization problem of joint design

of routing, Medium Access Control (MAC), and physical

layer protocols with cooperative communication to achieve

minimum power cost under a specified per-hop packet er-

ror rate (PER) objective in wireless sensor networks. The

authors in [6] highlight the need to find ‘‘a simple interface

to the physical layer that allows the upper layers to achieve

optimal or near optimal cross-layer performance based on

the underlying channel conditions’’. For the cross-layer

model we describe in the following sections, we define a

link probability–the probability a packet arrives over a gi-

ven link. This parameter serves as an interface between net-

work layer routing/link layer management decisions and

expected physical layer performance by leveraging the

broadcast nature of wireless transmissions. The variables

of our multi-objective optimization problem determine

how often and when a node should re-broadcast a received

packet. The approach we take in this work provides for the

characterization of fundamental upper bounds, the tradeoff

space ofmultiple criteria, and the routing and resource allo-

cation decisions to achieve these tradeoffs. This approach

mirrors the key research areas proposed in the framework

of [6]. The authors describe the need for joint research in

the areas of fundamental performance upper bounds, layer-

less dynamic network performance, and application and

network optimization. It is through the interaction of these

research areas that ad hoc network design and performance

can be related and formalized.

Understanding the trade-offs involved with various

routing solutions will enable adaptive resource manage-

ment across layers and nodes, leading to a more accurate

‘‘local to global performance mapping’’ for practical rout-

ing protocol design. The identification of Pareto optimal

solutions provides not only achievable performance

bounds, but also specific solution sets for the routing and

resource allocation algorithms to operate at those bounds.

In this paper, we propose a novel framework capable of

providing a bound for joint optimization of multiple per-

formance metrics. Our proposed framework comprises

both a probabilistic cross-layer network model and a mul-

tiobjective optimization problem formulation. Our pro-

posed cross-layer network model captures more

accurately the interactions between routing decisions and

resource allocation, assuming a basic random medium ac-

cess control protocol. With its intrinsic probabilistic defini-

tion, it is capable of defining various routing techniques

such as multi-hop single path routes, broadcast protocols

or multi-path protocols. The multiobjective optimization

problem is solved using the Parallel Multiobjective Tabu

Search (PMOTS) algorithm to retrieve the set of Pareto

optimal solutions. This global cross-layer multiobjective

framework is applied herein to tackle the problem of ro-

bust routing and resource allocation for wireless sensor

networks. The following three criteria are relevant in this

context: (i) reliability defined as the probability of having

a successful packet transmission, (ii) delay, defined as the

average end-to-end delay in the network, and (iii) the for-

warding energy, defined as the energy spent by the net-

work for relaying.

The goal of our work is different from other approaches

aimed to distributively compute Pareto optimal routing

algorithms with respect to multiple performance criteria

as proposed in [7,8]. Our aim is not to develop a new rout-

ing algorithm, but to provide a general framework capable

of capturing the performance trade-offs of a given network

by computing the set of Pareto optimal routing strategies.

This characterization provides an efficient tool to:

� compare the performance of existing routing algo-

rithms to the bound provided by the set of Pareto opti-

mal strategies, and

� foster the development of more efficient and flexible

routing strategies based on end-user requirements for

network performance.

Our main contributions in this work are twofold:

1. Propose a general cross-layer framework network

model capable of capturing the impact and interaction

of a wide range of interference and resource manage-

ment techniques for various channel conditions.

2. Formulate a multiobjective routing optimization prob-

lem by defining appropriate evaluation functions for

criteria such as reliability of information transfer, end-

to-end delay, and energy consumption.

The multiobjective routing optimization problem de-

scribed in the following can be solved using existing mul-

tiobjective search techniques [9]. Our paper focuses mostly

on the derivation of the proposed cross-layer framework,

and gives only a brief description of the optimization



heuristic considered for solving the problem. A first

description of our model can be found in [10]. The formu-

lation given in the present paper provides a more detailed

description of our complete framework and extends the re-

sults of [10] in several ways, providing an in-depth analysis

of the framework and the multiobjective bounds derived

with it. This articles aims at understanding the nature of

the bounds calculated by analyzing comprehensively the

Pareto optimal solutions sets composing it. It extends as

well the work of [10] by assessing the analytical results

with simulations, studying the impact of the network

geometry on the bounds and using the bounds to compare

the performance of well-known routing strategies such as

AODV and DSR.

The paper is organized as follows. Related work is pre-

sented in Section 2. In Section 3 we present our cross-layer

framework based on a probabilistic network model. Sec-

tion 4 formulates routing and resource allocation in an

ad hoc network as a multiobjective optimization problem

and Section 5 discusses an example for sensor networks.

Results and analysis for two problem instances are then gi-

ven in Section 6 to illustrate our modeling framework. Ob-

tained bounds are assessed using simulations and

compared to solutions provided by standard ad hoc routing

protocols. Section 7 concludes the paper.

2. Related work

Over the last decades, research efforts have studied

wireless ad hoc network performance from at least three

perspectives:

1. deriving analytical upper bounds and scaling laws on

performance,

2. constructing and solving single objective functions for

network optimization, and

3. formulating and solving multiobjective optimization

problems to capture performance tradeoffs.

The first point emphasizes on defining closed form

expressions of a network performance metric, usually as

a function of the size of the network. Such bounds are

essential to the understanding of the fundamental limits

of wireless networking. The two other points take a closer

look at the problem by formulating an optimization prob-

lem (mono- or multiobjective) capable of extracting a very

tight bound on the considered performance metrics. Even

though analytical scaling laws are usually very fast to com-

pute, they provide looser upper bounds than optimization-

based formulations do. Indeed, these more computation-

ally expensive approaches provide a really tight (almost

exact) upper bound and have the second advantage of

deriving at the same time optimal network configurations.

Centralized and distributed optimization solutions have

been considered, the latter ones being mostly studied for

their straightforward practicality. However, distributed

solutions may not completely converge to optimality.

Thus, a truthful performance bound is obtained through

centralized optimization which is the approach considered

in this paper. The first part of this related work section

highlights main works on analytical models while the sec-

ond one presents studies related to centralized optimiza-

tion-based approaches.

2.1. Analytical performance bounds

Characterizing the performance of a wireless network

considering only capacity as a performance metric [11–

13] has triggered a comprehensive study, starting with

the seminal work of Gupta and Kumar [14]. Grossglauser

and Tse [15] extended the analysis in [14] by considering

the impact of mobility on capacity. The authors in [16,17]

model information dissemination for the unicast, multi-

cast, and broadcast problems with a focus on capacity.

Analysis of the trade-off between capacity and delay

has been investigated by El Gamal et al. in [18]. Comaniciu

and Poor [19] accounted for delay as a constraint in their

capacity analysis. The compromise between capacity and

energy consumption for line networks has been analyti-

cally derived by Bae and Stark in [20]. A cross-layer frame-

work for optimal delay-margin, network lifetime and

utility tradeoff has been proposed by Tahir and Farrell in

[21]. A tight hyperbolic bound on energy and delay for

wireless networks has been provided by Brand and Moli-

sch in [22]. In [23,24], the trade-off between delay and en-

ergy for wireless sensor networks are investigated. In [25],

capacity, delay and energy are considered concurrently but

analytical bounds are only derived for a reduced line net-

work configuration of nodes in a series formation.

2.2. Optimization-based derivations

In Toumpis and Goldsmith [26] associate network de-

sign decisions with areas of the performance graphs. The

authors’ goal is to compare the performance achieved

through the implementation of various power, scheduling,

queuing, and routing choiceswith theoretical upper bounds

on capacity. The protocols proposed in their work are eval-

uated in terms of delay vs. throughput and energy per pack-

et vs. throughput. Similarly, the work in [27] studies the

impact of power control, rate changes, multi-hop commu-

nication, and spatial reuse on the problem of maximizing

the minimum throughput. The work later described in

[28] then considers the tradeoff between throughput and

network lifetime.

Several other works have proposed to derive optimal

communication strategies with respect to a specific optimi-

zation objective based on the networking application. Pre-

vious approaches can generally be classified according to

the interaction of considered layers [29]. There are protocol

designs based on interactions between Medium Access

Control (MAC) and physical layers [30], between network

and physical layers [31], etc. In this work, we introduce a

cross-layer approach for the design of amultiobjective opti-

mization framework based on the interactions between the

network and physical layer. The impact of routing decisions

on the interference distribution of the network is fully char-

acterized and hence solutions where interference is mini-

mized can be derived accordingly.

Other approaches to network optimization include con-

straining the feasible set to account for multiple criteria,



and/or combining multiple criteria into a single objective

function as in [32]. A drawback of the latter approach is

the difficulty in tuning the weights of the performance

objectives in the composite function. The performance

gains and losses are also not obvious when optimizing a

composite function or constraining the solution space.

For example, the optimization of one objective may result

in decreased performance of another objective, but this

tradeoff may not be clear. There is an inherent intercon-

nection of performance criteria given the wireless medium.

Performance should thus be evaluated and presented in

terms of tradeoffs.

It is difficult to derive analytical models that provide

bounds for more than two objectives at a time. As a conse-

quence, providing a framework to obtain analytical bounds

for multiple optimization objectives becomes relevant in

the context of a practical two dimensional network. The

modeling framework that we present facilitates the perfor-

mance evaluation of multiple criteria. For the problem we

address,we consider jointly optimizing reliable information

transfer, end-to-enddelay, andoverall energy consumption.

A similar approach in the context of routing design for

wireless sensor networks has been proposed in [23]. In this

paper, the network is fully connected and the authors look

for the set of Pareto optimal routing unicast and multicast

paths that minimize energy and delay. Hence, reliability is

assumed to be guaranteed since all links are considered

perfect and interference-free. This assumption is not made

in our case and transmission between any two nodes is

modeled using a fading channel. In this paper, the proba-

bility of a successful transmission on a channel is derived

according to the statistical distribution of interference.

Our work therefore introduces a cross-layer approach that

accurately accounts for the interference generated by the

routing and resource allocation decisions.

Another multiobjective approach for wireless sensor

network (WSN) optimization [33] looks to optimize cover-

age and network lifetime. The authors solve for the non-

dominated solutions and select the set of active nodes to

cover an area specific to a considered application. While

the purpose of their study is WSN planning, WSNs is used

in our work only to demonstrate our framework. The

authors do not consider the impact of transmissions on

the layers including interference and scheduling. They per-

form shortest path routing after the Pareto set is identified

for the coverage and lifetime objectives.

The approach of solving for the Pareto set to identify

solutions for an application’s operating point is shared by

the works in [33–35]. Great value exists in solving for the

set of performance tradeoffs and identifying the associated

network solutions as detailed earlier. Our aim is to provide

a multiobjective modeling framework that intersects the

research areas identified in [6] for connecting theoretical

limits with practical performance. As such, we provide a

probabilistic network model relying on a cross-layer ap-

proach which intrinsically captures wireless broadcast

communications and interference effects. The proposed

multiobjective optimization problem captures different

routing and resource allocation paradigms while relying

on a reduced search complexity compared to other

approaches.

3. A cross-layer framework for network modeling

3.1. Probabilistic network model

A wireless network composed of N nodes is assumed.

Our proposed model considers a probabilistic network

which is characterized by two probability measures: link

and node probability. These two parameters completely

characterize the network and capture cross-layer

interactions.

The node probability (vi) captures the availability of

node i for routing purposes, i.e. the probability that node

i re-broadcasts a received packet. The node probability

has two components (vi = xi � ni), one that is determined

by the node’s routing choices and called the forwarding

probability xi, and one component ni, called the external im-

pact factor, that represents the impact of the environment

and protocol implementations at adjacent layers (e.g. con-

gestion models, node failures, security risks, energy levels,

etc.). For instance, if nodes fail with a probability pf, it may

be reflected in ni which would be equal to (1 ÿ pi). Simi-

larly, it may be a way to account for decisions made by

other layers, such as the medium access (e.g. congestion

control mechanisms) or the application layer depending

on the context of the application (e.g. security risk man-

agement). It is through ni that cross-layer interactions

including MAC and application layers can be accounted

for in our framework. For simplicity we have decided to

introduce a unique factor ni to represent the impact of all

decisions of a node which are not related to routing. Deriv-

ing an explicit definition for ni based on different assump-

tions is out of the scope of this paper but will be addressed

in future works, as more elaborated networking case stud-

ies are analyzed. In our cross-layer framework, we aim to

optimize the forwarding probability.

The global link probability (pij) captures the link avail-

ability, i.e., the probability of a successful transmission

over a link (i, j). Characterization of the link probability is

impacted by enhancements and impairments at various

layers of the protocol stack such as fading at the physical

layer or congestion at the MAC layer. Both node and link

probabilities are illustrated in Fig. 1.

Node and link probability measures are strongly related

due to the broadcast nature of the wireless channel. Hence,

once the node probabilities vi are set, the activity of every

node of the network is fixed and the interference distribu-

tion can be completely determined given the activity of the

nodes on the wireless channel. As a consequence, the link

probabilities can be computed as a function of the signal

to interference plus noise ratio (SINR). Once the link and

the node probabilities are available, various performance

metrics such as delay, reliability, or energy consumption

can be calculated for various transmission schemes

Fig. 1. Node and global link probabilities on a link (i, j).



(unicast, multicast, broadcast, anycast, etc.). It is important

to stress that the proposed cross-layer framework accounts

for the interference-limited and broadcast nature of the

wireless channel. Indeed, any transmission originating

from a node can be received by any other node of the net-

work with probability pij, modeling both the interference-

limited and broadcast features of the wireless channel.

In the following, we consider the set of node probabili-

ties as the variables of the network optimization problem.

Finding the best possible routing choices with respect to

one particular criterion reduces to the problem of selecting

the set of node probabilities that optimizes one particular

objective of the network. Within a multiobjective perspec-

tive, solving the network optimization problem requires

finding the set of Pareto optimal solutions that concur-

rently optimizes several performance metrics of the

network.

To illustrate our framework, we consider here a net-

work where the nodes are independently and randomly

distributed according to a random point process of density

q over a disk D. The communication between any two

nodes is performed in a half-duplex mode over a single

to multi-hop path. The bandwidth of the channel is divided

into R resources (time slots or frequencies). For clarity pur-

poses, we present this model in the context of time-

multiplexing.

This paper concentrates on a single flow, but our frame-

work can be extended to multiple flows since the proposed

interference model accurately accounts for all the nodes

transmitting in the network. Hence, one source transmits

a constant traffic in one of the R time slots. We also assume

that a relay cannot differentiate packets. As a consequence,

all packets are treated as unique by a relay and several cop-

ies of a packet can be received at the destination. However,

a node relays the packets in the order they are received in

one of its available resources. If several packets are re-

ceived in the same frame, it can only transmit the propor-

tion of packets its forwarding probability vi allows. The

packets that the node cannot forward are dropped.

3.2. Link probabilities

A realistic link (i, j) in time slot r is characterized by its

link probability pij(r), which is a function of the statistical

distribution of the SINR at the location of the destination

node j. Such a computation captures the cross-layer impact

of the network routing decision on the physical layer per-

formance since the activity of all the nodes of the network

are accounted for statistically in the model. The following

are some preliminary definitions and notations that are

needed to define the link probability:

Pathloss attenuation factor and transmission power. aij re-

flects the attenuation due to propagation effects between

nodes i and j. In our simulations, the simple isotropic prop-

agation model is considered. We consider that all the

nodes use the same transmission power denoted as PT.

Interference. Since we consider time-multiplexed chan-

nels, interference only occurs between transmissions using

the same channel at the same time. Hence, the power of

interference Iij(r) on a link (i, j) using resource r and com-

puted at node j is defined by:

IijðrÞ ¼
X

K

k¼1

PTakj for k – i ð1Þ

where K is the number of interfering signals in resource r.

SINR. The SINR between any two nodes i and j in re-

source r is given by:

cijðrÞ ¼
Pij

N0 þ IijðrÞ
ð2Þ

where Pij is the power received in j, Iij(r) is the interference

power on the link and N0 the noise power density. We have

Pij = Piaij for a fixed nominal transmission power Pi and a

pathloss attenuation factor aij.

Packet error rate (PER). For any value of SINR c, the pack-

et error rate PER can be computed according to:

PERðcÞ ¼ 1ÿ ½1ÿ BERðcÞ�Nb ð3Þ

where Nb is the number of bits of a data packet and BER(c)
is the bit error rate for the specified SINR per bit c which

depends on the physical layer technology and the statistics

of the channel. Results are given for an AWGN channel and

a BPSK modulation without coding where

BERðcÞ ¼ Qð
ffiffiffiffiffiffi

2c
p

Þ ¼ 0:5 � erfcð ffiffiffi

c
p Þ.

Frame. The MAC layer consists of frames repeating

indefinitely. Each frame is divided into R resources. These

R channels can be allocated as time slots or frequencies.

Transmission rate. The activity of a network node in a

channel r 2 [1, . . . ,R] is given by its transmission rate si(-
r) 2 [0,1] in that particular channel. This rate is defined

as the percentage of time a node i transmits using resource

r. Fig. 2 shows the set of communication frames each split

into R resources. In the case of time slots, node i in the fig-

ure sends a packet in time slot r1 every three frames for a

transmission rate si(1) = 0.33. Node j transmits every two

frames in r = 1 for a transmission rate of sj(1) = 0.5.

Interfering sets. A node i is said to be active in the net-

work if si(r) > 0. We define Mr as the set of active trans-

missions in resource r. An interfering set I r
ij for link (i, j)

in resource r belongs to the set of all possible interfering

sets Lr
ij. Lr

ij is the power set PðMr ÿ figÞ, i.e. the set of all

Fig. 2. Frame and transmission rates for the case of R = 2 and two nodes i and j share slot 1 with si(1) = 0.33 and sj(1) = 0.5, respectively.



subsets of Mr ÿ fig. Because of the half-duplex constraint,

the receiver j is kept in the set Mu ÿ fig. Thus, the channel

probability computation accounts for the interfering sets

where j is active. If j is active, the SINR is very low and

transmission on link (i, j) in resource r is impossible. The

set LijðrÞ includes the case where no other node is trans-

mitting (K = 0) as well.

Link probability. pij(r) depends on the distribution of the

SINR, and consequently on the distribution of the corre-

sponding packet error rates. Eq. (4) details the derivation

of pij(r) as the average of the PER experienced for all possible

interfering sets l 2 LijðrÞ on resource r referred to as PERl:

pijðrÞ ¼
X

l2LijðrÞ
½1ÿ PERl�:Pl ð4Þ

where PERl ¼ PERðclÞ; l 2 LijðrÞ. Here cl is the SINR experi-

enced on the link (i, j) in resource r if the nodes of the inter-

fering set l are active.

Pl is the probability for the interfering set l to be active

and create interference on the link (i, j) on resource r. More

specifically, it is the probability that the nodes of the inter-

fering set l are transmitting concurrently and the others

are not as specified in the following:

Pl ¼
Y

K

k¼1

skðrÞ �
Y

MÿKÿ1

m¼1

ð1ÿ smðrÞÞ ð5Þ

In (5),
QK

k¼1skðrÞ gives the probability that the K active

nodes of the interfering set l are transmitting and
QMÿKÿ1

m¼1 ð1ÿ smðrÞÞ the probability that the M ÿ K ÿ 1 other

active nodes are not.

Global Link probability. For a link (i, j), the global link

probability pij is the probability that a packet arrives with

success at node j. It is given by:

pij ¼
X

R

r¼1;siðrÞ–0

pijðrÞ
siðrÞ

P

rsiðrÞ
ð6Þ

where pij(r) is the link probability between i and j for re-

source r (cf. Eq. (4)), and siðrÞ=
P

rsiðrÞ is the probability

for the packet to be sent using r.

3.3. Node probabilities and transmission rate

Aswe introducedearly, the variables of ourmodel are the

probabilitiesvi is decomposed into xiand ni. In the following,

we assume ni = 1 to simplify our model for this first investi-

gation. Ourmodel is still inherently cross-layer since it cap-

tures the impact of the forwarding and resource allocation

decisions at the network and MAC layers on the physical

layer by accurately computing the interference distribution

in the network. Finally, knowing the optimal routing strate-

gies and corresponding performance trade-offs, a network

designer can make informed decisions based on operation

and quality of service requirements at the application layer.

There is no explicit notion of routing paths in our model

and a packet sent by a source may use one or more paths in

parallel to reach the destination, depending on the for-

warding decisions of the nodes. For xi = 1 each received

packet by node i is forwarded. For xi < 1 node i drops the

packets with probability 1 ÿ xi. Values of xi 2]1,R] are not

allowed yet as they imply that node i transmits several

copies of the same packet.

As stated earlier, the transmission rate si(r) in resource r

is a function of the node probability xi but also depends on

the amount of traffic coming into node i, which is a func-

tion of the activity of the other nodes of the network. As

a consequence, computing the values of si(r) knowing the

xi values is intractable since determining si(r) requires

the knowledge of the link probabilities which are them-

selves a function of the si(r) values. However, the reverse

approach where the variables xi are expressed as a function

of the si(r) can be easily derived as stated below. Hence,

such a reverse approach leads to the use of the transmis-

sion rates as the variables of our multiobjective optimiza-

tion problem instead of the forwarding probabilities. This

reverse approach represents an important contribution of

our cross-layer model since it captures an exact picture

of the interference distribution at the physical layer and

determines the corresponding node forwarding probability

xi at the routing level. Fundamental to this derivation is for

the flow of interest to be mapped using a directed acyclic

graph (DAG) for the considered network topology.

DAGassumption.Assuming awireless networkofNnodes

using R resources, a flow between a source S and D and a set

of transmission rates si(r),"r 2 [1 . . . R], i 2 [1 . . . N], a direc-

ted acyclic graph G ¼ ðV ; EÞ where all paths originate at S

and end at D is assumed. The set of vertices V is reduced to

the set of active nodes M with nonnull transmission rates

on all resources. Oriented edges link any two active nodes

with nonnull link probability pij and belong to a multi-hop

path joining S toDwithout loop. Construction of an instance

of this graph is out of the scope of this paper and will be

investigated in later studies.

For any node i 2 V, we denote by V in
i the set of incoming

oriented edges coming from its previous hop neighbors.

Similarly, Vout
i denotes the set of outgoing edges to any

next hop neighbor node. The set of previous hop neighbors

N in
i and next hop neighbors N out

i of i is defined as well:

N in
i ¼ fk 2 V : ðk; iÞ 2 Eg and N out

i ¼ fj 2 V : ði; jÞ 2 Eg.
Relationship between xiand the si(r). Given the values of

sjðrÞ;8j 2 N in
i , we can define the quantity of information

coming from all the previous hop neighbors of node i by:

qi ¼
X

k2N in
i

X

R

r¼1

pkiðrÞ � skðrÞ ð7Þ

where pki(r).sk(r) is the probability that a packet arrives in

node i from previous hop node k in resource r.

The quantity of information going out of i is given by

the sum of the si(r) over all the time slots. Hence, we can

determine the forwarding probability of i to be:

xi ¼
P

rsiðrÞ
P

k2N in
i

PR
r¼1pkiðrÞ:skðrÞ

ð8Þ

Main variables and parameters are summarized in Table 1

for the reader’s convenience.

4. A multiobjective optimization problem

The performance of most wireless networks can be as-

sessed with regards to various criteria such as throughput



or capacity, end-to-end transmission delay, overall energy

consumption or transmission reliability. The purpose of

the multiobjective framework presented in this work is

to determine, given a network and a communication pat-

tern, what kind of trade-offs arise between chosen perfor-

mance metrics when varying the routing strategies. It

relies on the cross-layer probabilistic network model pre-

sented in Section 3.

4.1. Variables of the multiobjective (MO) framework

The routing strategies are the variables of our multiob-

jective optimization problem and a solution is defined by:

Definition 1. A solution S of the MO framework is defined

by the set of transmission rates si(r) 2 [0,1] used by each

node i on each resource r:

S ¼ fsiðrÞgi2½1;...;N�;r2½1...R� ð9Þ

The set of forwarding probabilities xi, i2[1. . .N] is derived

according to Eq. (8) and represents the routing strategy

of the network. Each variable si(r) takes its values in a dis-

crete set C of size T = jCj. As a consequence, the solution

space is derived as:

jSj ¼
X

ðNÿ2Þ

m¼0

N ÿ 2

m

� �

TR:m ð10Þ

In order to reduce the size of this very big search space, we

only consider solutions where at least one cumulative time

slot per node is available in the frame, i.e.

s:t: 8i 2 ½1;N�; PR
r¼1siðrÞ 6 Rÿ 1. The solutions that do

notmeet this constraint are usually very bad solutions since

at least one of the nodes of the solution is transmitting in all

its time slots preventing a failure free packet reception.

Using this definition of a routing strategy, a solution

may reflect various routing strategies: it can be single-hop

or multi-hop, single path or multi-path, probabilistic or

deterministic.

4.2. MO-Tabu: a multiobjective optimization heuristic

The aim of our MO framework is to obtain the set of

Pareto optimal routing strategies of the MO problem. A

Pareto optimal set is composed of all the non-dominated

solutions of the MO problem with respect to the perfor-

mance metrics considered. The definition of dominance is:

Definition 2. A solution A dominates a solution B for a

n ÿ objective MO problem if A is at least as good as B for all

the objectives and A is strictly better than B for at least one

objective. Mathematically, we have for a minimization

problem:

8i 2 ½1;n� : fiðAÞ 6 fiðBÞ;9j 2 ½1; n� : fjðAÞ < fjðBÞ ð11Þ
The considered optimization problem is solved using a

multiobjective metaheuristic called PMOTS (Parallel Multi-

Objective Tabu Search) described in [9]. It is based on the

Tabu metaheuristic [36], a local search using a list of Tabu

solutions to reduce the occurrence of loops in the search.

PMOTS is a multiobjective extension of Tabu search where

K Tabu searches are performed in parallel. The goal of this

algorithm is to obtain the best possible approximation of

the Pareto optimal set of solutions FP. A more detailed

description may be found in Appendix A.

5. A first application to sensor networks

We propose in the following to assess the performance

of a wireless sensor network (WSN) by capturing the trade-

offs that arise between end-to-end reliability, overall en-

ergy consumption, and end-to-end delay. These criteria

are most relevant since providing a maximal network

throughput is usually not the main task of a WSN.

5.1. Maximum number of hops

The following criteria are defined for a single source–

destination pair (S,D) and for a fixed maximum number

of hops HM a packet can travel in the network. The quantity

HM is similar to a Time To Live (TTL) tag appended to a

packet transmitted in the network. Consequently, the opti-

mization criteria will account for the performance of all

possible paths between S and D which are composed of

at most HM hops.

Since the model we have defined in Section 3 relies on a

DAG representation of the network topology for the flow of

interest, the maximum length of paths in the network is fi-

nite but can be higher than our fixed limit HM. As such, we

introduce a binary variable vki to represent the usefulness

of the link (k, i) with respect to the maximum number of

hops constraint. Hence, if link (k, i) does not belong to a

path of length HM hops between S and D, we have vki = 0.

On the contrary, we have vki = 1 if k only receives packets

with number of hops h < HM, meaning it belongs to at least

one path of HM hops between S and D.

Setting HM impacts the definition of xi in (8). Eq. (8) is

modified as follows:

xi ¼
P

rsiðrÞ
P

k2N in
i

PR
r¼1pkiðrÞ � skðrÞ � vki

ð12Þ

5.2. Reliability criterion

Reliability is defined as the probability that a packet

emitted at S successfully arrives at D in at most HM hops.

The reliability criterion is given by:

fR ¼ P THM
SD

� �

ð13Þ

For any two nodes i and j of the network, TH
ij represents the

event that a packet transmitted by i successfully arrives at j

in at most H hops. Our aim is to maximize P THM
SD

� �

which is

defined as follows.

Definition 3. P THM

SD

� �

is the probability that the packet

arrives successfully at D in at most HM hops and is given by:

P THM
SD

� �

¼ 1ÿ
Y

HM

h¼1

ð1ÿ PðTSDjH ¼ hÞÞ ð14Þ



where PðTSDjH ¼ hÞ is the probability for a packet to arrive

in h hops at D. For h = 1, PðTSDjH ¼ 1Þ ¼ pSD, the successful

transmission probability on the link (S,D) following Eq. (6).

For h > 1, we have:

PðTSDjH ¼ hÞ ¼ 1ÿ
Y

N out
S

j¼1

1ÿ pSjxjPðT jDjH ¼ hÿ 1Þ
� �

ð15Þ

with N out
S the number of possible next hop relays of S; pSj

the link probability between S and its neighbor j;

PðT jDjH ¼ hÿ 1Þ the probability to reach D in (h ÿ 1) hops

and xj the forwarding probability of j.

To reduce the computational complexity of the reli-

ability probability, a restricted set N out
S of next hop relays

may be considered but the loss in terms of accuracy is hard

to quantify. Therefore, we rather introduce a link threshold

valuePth computed for each path made of h hops. While

recursively calculating PðTSDjH ¼ hÞ, if the probability of a

path gets lower than Pth, the recursion is stopped for that

particular path and its contribution to PðTSDjH ¼ hÞ is set

to zero.

5.3. Delay criterion

The end-to-end delay is the sum of the times spent at

each relay on a multi-hop path [18] because all nodes

transmit at the same 1 Mbps rate and propagation delay

is negligible. We assume that there is a finite bound on

the time a packet spends in the outgoing buffer of any node

of the network. In this case, each relay introduces a nor-

malized delay of one on the end-to-end delay. The criterion

fD is defined by:

fD ¼ R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XHM

h¼1
ðhÿ 1Þ2 � Rh

r

ð16Þ

The quantity (h ÿ 1) is the delay needed by a packet to ar-

rive in h hops using (h ÿ 1) relay nodes. The scaling factor R

represents the delay induced by the R resources. Rh is the

probability that the packet arrived in exactly h hops and

did not arrive in one, two, or (h ÿ 1) hops. For h = 1, we

have Rh = P(TSDjH = 1) and for h > 1:

Rh ¼ PðTSDjH ¼ hÞ �
Y

hÿ1

i¼1

ð1ÿ PðTSDjH ¼ iÞÞ ð17Þ

If no route exists between S and D then fD = +1.

5.4. Energy criterion

The energy criterion fE is given by the total forwarding

energy needed for a packet sent by S to reach D. We do

not account for the energy spent by the initial transmission

in S. The reception (respectively transmission) of a packet

at node j in resource r consumes eRj ðrÞ (resp. eTj ðrÞ). Hence,
the energy criterion is defined as:

fE ¼
X

HM

h¼1

EðTSDjH ¼ hÞ ð18Þ

where EðTSDjH ¼ hÞ is the total energy needed by the h-hop

communications between S and D defined by:

EðTSDjH ¼ hÞ

¼
X

N out
S

j¼1

pSj � eRj þ pSj � xj � eTj þ EðT jDjH ¼ hÿ 1Þ
h i� �

ð19Þ

In Eq. (19), pSj:e
R
j is the energy consumed for a packet

reception by the neighbor j of S; pSj � xj � eTj is the energy

consumed for the packet transmitted by neighbor j and

pSj � xj � EðT jDjH ¼ hÿ 1Þ is the total energy consumed by

the remaining possible paths made of (h ÿ 1) hops be-

tween neighbor j and the destination. For h = 1,

EðTSDjH ¼ 1Þ ¼ 0 since the energy in S is not accounted for.

6. Results for a single source–destination pair

6.1. M-Relay problem

The results presented in this section are obtained for a

small problem instance for three reasons. First, we are able

to determine the whole Pareto optimal set of solutions

using an exhaustive search. Secondly, such a problem can

be easily analyzed and provides a first illustration of our

multiobjective framework. Lastly, it is used in Appendix B

to assess the efficiency of the multiobjective optimization

metaheuristic we developed to tackle bigger problem in-

stances [9].

In the following, the network is composed of N = 333

nodes uniformly distributed with density q = 0.004 over a

disk D of radius RD. The distance between S and D is about

215 m. To reduce border effects, S and D are selected with-

in a radius RC � RD which ensures that the power of a node

at distance RC is below the noise power for the nodes lo-

cated at distance RD. We consider R = 2 time slots and

use a probabilistic discrete variable space. A link reliability

threshold of Pth ¼ 10ÿ10 is set. Propagation and physical

layer parameters are summarized in Fig. 5. Energy con-

sumption for emission and reception of packet of size

5000 bits for the type of sensors considered in [37] is as-

sumed. Main energy is consumed by packet emission here.

The dimension of the search space can be modified by

setting a maximum number of forwarding nodes M in a

solution S. This sub-problem is addressed in the following

as the M-relay problem instance and has a reduced search

space compared to the original one of Eq. (10). To compute

the complexity of this search space, we assume that at

most M relays compose a solution, R = 2 time slots exist

and that the constraint:

8i 2 ½1;N�;
X

R

r¼1

siðrÞ 6 Rÿ 1 ð20Þ

is realized to permit packet reception in at least one slot

out of two. Complexity of the M-relay problem with R = 2

is derived as follows:

jSj ¼
X

M

m¼0

N ÿ 2

m

� � ðT ÿ 1ÞðT þ 2Þ
2

� �m

ð21Þ

It sums the set of solutions composed of 0, 1, . . .,M relays.

For solutions composed of m 6M relays, the constraint of



Eq. (20) imposes that for one relay of a m ÿ relay solution,

there are (T ÿ 1)(T + 2)/2 possible time slot allocations. All

combinations of selecting m relays among N ÿ 2 are ac-

counted for with the factor
N ÿ 2
m

� �

.

The cardinality of the M-relay problem is mainly re-

duced because of the limited summation over m. It is clear

that the proposed approach will not scale to account for

solutions with a very large M. However, since we are look-

ing for compromises with reduced energy, delay and high

capacity, it is beneficial to search for solutions with a small

numberM of relays. As we will show in the rest of this sec-

tion, this assumption is not limiting the characterization of

the Pareto optimal performance limits of small to medium

scale networks.

In order to cope with large scale networks, other ap-

proaches considering continuous network models [38] or

mean field theory [39] are more appropriate. The downside

of these approaches is that the granularity of the problem

definition does not permit the derivation of exact Pareto-

optimal performance and we lose the complete description

of the Pareto-optimal set.

6.2. Pareto optimal set for the 1-relay problem

In this problem instance, we set M = 1 and HM = 2. si(r)
takes values in the set C = {0, 0.05, 0.1, . . ., 0.9, 0.95, 1.0}

of jCj = 21 elements. In that particular case, the search

space has a dimension of 76,131 solutions and the Pareto

optimal set is obtained with an exhaustive search.

For this instance, the direct link (S,D) is very weak. A

reliability of only P THM
SD

� �

¼ 0:0003 is achieved with a de-

lay of fD = 0 and an energy of fE = 0. Only 24,820 solutions

fulfill the constraint xi 6 1 that forbids a node to duplicate

packets. Among these solutions, 3855 solutions are Pareto

optimal, representing about 5% and 15% respectively of the

whole and the constrained solution space. For all the Pare-

to optimal solutions the relay never transmits in the first

time slot concurrently with the source. The performance

of the Pareto optimal set of solutions is represented in

Fig. 3 in the space defined by the three evaluation func-

tions. For clarity purposes, the projections of the Pareto

set on the reliability-delay, reliability-energy, and the de-

lay-energy planes are also displayed in Fig. 4. The plots

show that an improved reliability is obtained at the price

of an increase in delay and energy. The trade-off between

reliability and delay can be easily understood since higher

reliability is achieved when the relay contributes with a

higher forwarding probability xi, inducing an increase in

delay. Similarly, an increase of xi triggers an increased

average energy consumption since the relay is forwarding

packets more often.

The Pareto set is composed of solutions for which relays

belong to a set of 226 nodes, which represents about two

thirds of the number of nodes of the network. The location

in the network of these 226 nodes is presented in Fig. 6. We

also highlighted on this figure the relays that provide a

near perfect transmission. We can conclude that the relays

located in an ellipse near the middle of the (S,D) distance

provide the best reliability at the price of the highest delay

and energy. The other relays present in the Pareto set pro-

vide various trade-offs depending on their values of si(r).
The Pareto optimal solutions composed of the same se-

lected relay are represented in the objective space in Fig. 7.

Three sets of solutions are represented corresponding to

three different relays. The locations of the selected relays

are also highlighted in Fig. 7. All solutions related to the

same relay create a line in the 3-D space defined by the

three optimization criteria. Each point of this line is ob-

tained for the same relay but for a different value of s(2)
(as stated earlier, there is no solution with a relay trans-

mitting on s(1) in the Pareto optimal set). For one particu-

lar relay, there are at most 21 values, corresponding to the

21 values of si(r) defined in this problem instance. There

are relays that provide less than 21 Pareto optimal solu-

tions because some values of si(2) were not valid consider-

ing the xi 6 1 constraint. It can be clearly seen that relay

103 is one of the relays that provide the highest possible

reliability. In this specific example, the location of the relay

conditions the maximum achievable reliability and the

choice of its transmission rate si(2) modifies the energy

versus delay trade-off.

A continuous transmission rate variable si(r) would pro-

vide continuous lines instead of discrete points. However,

tackling the continuous formulation of our problem is

much more challenging and for our study, we will stick

to the simpler discrete formulation which still provides a

fair representation of the Pareto set.
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6.3. Pareto optimal set for the 2-relay problem

In this problem instance, we setM = 2 to allow solutions

of either one or two active relays. We set HM = 3, meaning

that we account for all the paths having h 6 3 hops in the

criteria computation. The granularity of the si(r) variable

is reduced, and it takes its values in the set

C = {0,0.1, . . . ,0.9,1.0} of jCj = 11 elements. The search

space has a cardinality of 230,769,891 solutions. An esti-

mate of the Pareto optimal set is presented in Fig. 8 after

6100 iterations and is composed of 75,577 solutions. On

the reliability-energy projection and on the delay-energy

projection, we have highlighted the solutions composed

of only one relay using a red cross marker.

As shown in the projections of Fig. 8, the same trade-

offs between reliability and delay exist as in the 1-relay

subproblem. The shapes of the other plots also resemble

the 1-relay subproblem. As in the 1-relay case, most of

the solutions in the front are divided into various energy

levels because of the discretization of the si(r) space.

Fig. 9 displays the nodes involved in solutions with two

active relays. The nodes present in the solution set of the 2-

relay problem, but not in the 1-relay problem are high-

lighted with purple squares. They are concentrated at the

edge of the network near the source and destination. Solu-

tions which provide a high reliability (fR > 0.999) using two

active nodes are denoted with a black circle marker. Most

of the solutions providing a quasi perfect reliability are

composed of a single relay. With this particular configura-

tion and network, it makes sense since intuitively the use

of a single relay is the best possible configuration to miti-

gate interference for a 2-time slot system. For the highly

reliable solutions which have two nodes participating,

one relay node is located ‘behind’ the source and the sec-

ond relay is located between the source and destination.

In this case it is the centrally located node that is contrib-

uting the most to the reliability criterion.

For energy constrained wireless networks, it is interest-

ing to see which solutions provide the best possible com-

promise between energy and reliability. It is clear from
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Fig. 8 that such solutions are composed of a single relay lo-

cated in between S and D (cf. Fig. 6). For such 1-relay solu-

tions, optimum reliability-energy trade-off is of (fR = 1,

fE = 2). Looking at the solutions of Fig. 8 composed of two

relays only, the solutions with an energy criterion fE 6 2

have a maximum reliability of a little more than 0.45.

The relays locations of the three solutions with fR > 0.45

and fE 6 2 are represented in Fig. 10. For these three solu-

tions, one of the relays is only active in the first time slot

with s(1) = 0.1 while the other one is only active in the sec-

ond time slot with s(2) = 0.5. All three solutions have a reli-

ability very close to 0.45. Lost packets are due to

interference between source and relays transmitting in

the same time slot one. It is clear from this study that 2-re-

lay solutions are not of any use for this network if a low en-

ergy and high reliability is targeted.

This first simple study shows that the proposed multi-

objective probabilistic network model provides a coherent

and complete view of the trade-offs that arise between

reliability, delay, and energy in our network. For larger net-

works or when more relays are needed, our problem is

solved using the multiobjective optimization algorithm

PMOTS as presented in Section 4.2. Although this paper

does not concentrate on the description and the perfor-

mance analysis of PMOTS, we highlight the convergence

properties of the algorithm for the 1-relay and 2-relay

problems in Appendix B.

6.4. Model assessment through simulations

The previously derived Pareto fronts for the 1-relay and

2-relay problems are assessed through simulations com-

pleted with the WSNet simulator [40]. WSNet is an

event-driven simulator tailored for wireless sensor net-

works. Additional to common event-driven wireless net-

work simulators, it features detailed propagation models

and energy monitoring capabilities of sensor devices. Each

Pareto-optimal solution is simulated using the same

parameters as used for Fig. 5 and considering the same net-

work distribution as described in Section 6.1. The basic for-

warding procedure of RELAY described in Algorithm 1 is

implemented.

Algorithm 1. RELAY algorithm

1: if PACKET is received at node ithen
2: generate a random value xrandom 2 [0,1];

3: if (xrandom 6 xi) and (hop_count (PACKET) <HM) then
4: put PACKET into relay buffer and generate

random value pi 2 [0,1];

5: for k = 1; k 6 R; k + + do

6: if pi 6
siðkÞ

PR

k¼1
siðkÞ

then

7: send PACKET using resource k;

8: else
9: send PACKET using resource R;

10: end if
11: end for
12: else
13: drop PACKET;

14: end if
15: end if

Sources transmit NS = 10,000 packets before perfor-

mance criteria are computed as follow:

Reliability. The end-to-end reliability corresponds to the

average number of packets successfully received at D in at

most HM hops:

~f R ¼
PNS

i¼11½packet i received inD�
NS
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Delay. The end-to-end delay is measured in three steps as

follows. Firstly, the total number of packets n(h) arrived

in h hops at D is counted for h 6 HM. Secondly, the proba-

bility Rh that the packet arrived in exactly h hops is com-

puted using Rh ¼ nðhÞ
NS

. Lastly, the delay criterion obtained

by simulations ~f D is derived based on the following

formulation:

~f D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XHM

h¼1
ðhÿ 1Þ2 � Rh

r

Energy. The energy consumption is measured by counting

the total number of packets received tr and sent ts in the

network for the whole simulation duration. Simulated en-

ergy criterion is then derived according to:

~f E ¼
treR þ tseS

NS

where eR and eS denote energy consumption of packet

reception and emission, respectively Fig. 5.

In order to measure the differences between each crite-

ria predicted by the model and evaluated by WSNet, we

adopt a normalized root-mean-square error (RMSE) metric.

Normalized RMSE can be computed as:

RMSEðf ;~f Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1

½f ðiÞÿ~f ðiÞ�2
f ðiÞ2

r

N

where f and ~f are the criteria derived from the MO model

and from the WSNet simulations, respectively. N is the to-

tal number of solutions compared. Table 2 presents the

RMSE values for the 1 and 2-relay Pareto sets presented

earlier. Relative RMSE is really low, showing that for these

networks the model accurately estimates reliability, delay

and energy criteria.
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6.5. Impact of the geometry of the network

In this section, we investigate the impact of various net-

work parameters on the Pareto optimal front. We consider

the 1-relay problem to obtain several Pareto optimal fronts

for our study with a limited computational time and draw

a first set of conclusions. In the following, we still consider

a network of randomly distributed nodes of density q.
Three parameters can be modified in the network defini-

tion: (i) the location of the relays in the network, (ii) the
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network density, and (iii) the geometry of the source–des-

tination flow.

Impact of the location of the relays. The impact of the

location of the relay nodes on the Pareto optimal set of

solutions is studied. All network instances presented here

are obtained for the same node density of q0 = 0.004 and

the same source destination flow (cf. flow 1 in Fig. 14).

The Pareto optimal set of solutions is obtained using an

exhaustive search for five network instances. The fronts

are presented in Fig. 11. To better see the distribution of

the solutions on the Pareto front, Fig. 12 zooms on the

highly reliable solutions.

From Fig. 11, it can be observed that all fronts overlap

but are different. They all belong to the same surface but

provide a different discretization of it. Depending on its

location, a relay provides a different line of trade-off values

on the Pareto optimal front as shown earlier on Fig. 7. Each

different network instance provides another set of possible

relays but the same trade-offs are observed between reli-

ability, energy and delay for each of them.

Impact of the network density. The impact of the network

density is investigated in the following. The same source

destination flow 1 is considered and two Pareto optimal

fronts are computed with a density of q = 2q0 and

q = 6q0, with q0 = 0.004 the density of the original network

of Fig. 11. It can be seen on the plots of Fig. 13 that with

more nodes present in the network, the Pareto optimal

set gets more dense. Adding relays gives a more precise

description of the Pareto optimal set. The complete set

would be obtained for a continuous definition of the

problem where both the locations of the relays would be

continuous and the values of the transmission rates. Our

current approach does not permit a continuous definition

of the network and its parameters. In this context, the no-

vel works on massively dense networks [41,38] provide an

appropriate framework for pursuing an extended analysis

based on this paper and deriving an asymptotic description

of the Pareto optimal sets.

For the 1-relay problem, the density of the network

does not affect the geometry of the Pareto optimal set.

However, this may not be the case for the M ÿ relay prob-

lems with M > 1. Indeed, increasing the number of poten-

tial relays may provide different multi-hop transmission

strategies with better performance. However, we conjec-

ture that once a limit density is reached, the Pareto optimal

front will reach a steady structure, similar to the limit pro-

vided by a continuous network definition. More extensive

simulations are needed to verify this assumption.

Impact of the flow geometry. The impact of the geometry

of a source destination flow on the Pareto optimal set is

analyzed in the following. Three flows with different

source–destination distances and orientations are defined

Table 1

Variables and parameters of the cross-layer model.

Node probability vi Probability node i rebroadcasts a received packet as a function of xi and ni

Forwarding probability xi Probability node i decides to retransmit a packet

External impact factor ni Factor to account for any effect not originating from routing

Link probability pij(r) Probability of successful transmission over link (i, j) in resource r

Global link probability pij Probability of successful transmission over link (i, j)

Transmission rate si(r) Percentage of time node i transmits using resource r

Fig. 10. 2-Relay problem: Location of nodes composing 2-relay solutions with fR > 0.45 and fE 6 2.

Table 2

RMSE for reliability, delay and energy.

Network RMSE for fR (%) RMSE for fD (%) RMSE for fE (%)

1-Relay 0.31 0.57 0.08

2-Relay 0.06 0.09 0.007



as shown in Fig. 14. The 1-relay problem has been solved

for each one of the flows separately and their correspond-

ing Pareto optimal sets are given in Fig. 15. A 3-D view and

the projection on the reliability-delay plane is plotted.

The orientation of the flows does not impact the trade-

offs between reliability, delay and energy because the dis-

tribution of the relays is uniform. Hence, it is the distance

between the source and the destination that determines

the geometry of the Pareto sets. On the reliability-delay

projection, the point where the curve intersects the reli-

ability axis gives the point where delay is null, which

means that no relay participates in the transmission. The

reliability achieved in this case is a function of the

source–destination distance. The shorter this distance gets,

the higher the reliability of the no-relay solution gets as

well. For the case where source and destination nodes

are close enough to have a perfect direct transmission,

the Pareto optimal sets is reduced to this unique no-relay

solution. Except for this particular case, the sets follow

the same trade-offs between reliability, delay and energy.

On the same projection, the point where reliability

equals 1 is obtained by several solutions. It can be seen

that as the source and the destination get closer, the corre-

sponding transmission delay lowers for a reliability of 1.

Since the direct transmission between S and D has a better

link probability, the relay does not need to transmit pack-

ets as often to guarantee the reception of the data. Hence,

its activity is reduced, and consequently the transmission

delay is reduced as well. This of course similarly impacts

the energy consumption of the network.

For higher order M ÿ relay problems with M > 1, the

same conclusions can be drawn regarding the impact of

the geometry of the flows since the distribution of the

nodes is uniform. To go further, it would be interesting to

see what kind of Pareto optimal sets are obtained for other

types of networks and how flows or other network param-

eters influence the performance of these networks.

6.6. Performance comparison with existing routing protocols

In this section, the performance of Dynamic Source

Routing (DSR) [42] and Ad hoc On-Demand Distance Vec-

tor (AODV) [43] routing protocols are compared to the Par-

eto-optimal performance bounds derived with our
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framework. Our goal is to show how close these two well-

known routing strategies perform to the Pareto optimal

choices derived earlier.

6.6.1. DSR and AODV routing protocols

DSR and AODV are reactive routing protocols, where the

routes are established on-demand by the source node. To
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Fig. 13. Impact of the network density on the 1-relay Pareto optimal set. Density in (a) (resp. (b)) is twice (resp. six times) the density q0 = 0.004. (a) has a

set of 4176 solutions and (b) has a set of 12,200 solutions.
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establish a route, a Route Request (RREQ) packet is broad-

cast to all nodes of the network by the source. Once the

intermediate nodes receive the RREQ packet for the first

time, they will broadcast it again to their neighbors if they

do not know any route to the destination. A Route Reply

packet (RREP) is transmitted to the source node either by

the destination or any relay receiving a RREQ packet and

knowing a route to the destination. In these algorithms,

the destination sends a RREP after it receives the first

RREQ. Thus, they generally select the shortest path in

cumulative hop count metric. With AODV, each node

stores the next-hop neighbor address for each source des-

tination path, while in DSR, a route cache memory stores

the completes routes to destination nodes.

With DSR, the header of the RREQ contains the route it

has travelled up to arriving at the destination. In this case,

the packet header can be used to store cumulative metric

values (e.g. hop count, cumulative geometrical distance,

cumulative packet error rate, . . .). The destination can then

wait for several RREQ packets to arrive from multiple

routes and select the one with the best metric value (min-

imum geometrical distance, PER..) to improve reliability for

instance [44]. Multiple routes per destination may be

maintained [45]. In this section, we target a DSR imple-

mentation where only one route is selected and main-

tained. Important to both algorithms, the neighborhood

of each relay has to be maintained using HELLO messages

to make sure the next hop node is still in range.

In this section, two DSR routing implementations are

simulated to derive the routing path relative to two differ-

ent metrics: the shortest cumulative distance path from S

to D and the path with the minimum cumulative PER. For

each implementation, two nodes are defined as neighbors

in the protocol if the average link PER is smaller or equal

to DP 0.

For AODV, the shortest hop-count path is selected. It re-

sumes to choosing, at each hop, the relay which is the clos-

est to the destination among the set of neighbor nodes

which are reachable with perfectly reliable links (i.e. with

PER = 0).

6.6.2. Simulation setup

To be consistent with the simulation of the previously

defined 1- and 2-relay problems, we consider a frame
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composed of R = 2 time slots. The same network topology

as defined in Section 6.1 is considered. The source is trans-

mitting a packet in the first time slot while the relays share

the second time slot for relaying. Since several relays may

participate in the relaying, we adopt the IEEE 802.11 DCF

MAC protocol to grant access to the relays in the second

slot. The overhead due to routing and MAC is not measured

in our simulation in order to provide a fair comparison

with our framework results. Indeed, the framework does

not account for any protocol overhead in its definition.

In this study, three routing implementations are tested:

DSR with minimum cumulative distance (DSR-dist), DSR

with minimum cumulative PER (DSR-PER) and AODV

which minimizes the hop-count metric. For the two DSR

implementations, neighborhood sets are adjusted based

on the value of D, with D 2 {0,10ÿ3,10ÿ2,10ÿ1}. Smaller

values of D select neighbor nodes with highly reliable

links, inducing neighborhood sets of smaller cardinality.

For the DSR-PER implementation, which looks for the max-

imum reliability route, a possibly very big number of

routes with a zero cumulative PER may exist because of

multi-hop forwarding. Thus, since in our paper we have

investigated 1 and 2-relay problems, we will look for the

route with maximum reliability composed of at most 1

Table 3

Analytical and simulated performance of DSR and AODV routing protocols for different neighborhood selection strategies (D values).

Routing protocol D Routing path Performance evaluation Neighborhood size

Analytical By simulation

DSR-dist solution 1 D > 0 S ? Node 56? D fR = 1 ÿ 10ÿ8 fR = 1 S: 196

fD = 1 fD = 1 Node 56: 333 (D = 0.1)

fE = 1.931 fE = 1.934 S: 177

Node 56: 296 (D = 0.01)

S:164

Node 56: 261 (D = 0.001)

DSR-dist solution 2 0 S ? Node 56? Node 58? D fR = 1 fR = 1 S: 102

fD = 2 fD = 2 Node 56: 133

fE = 3.862 fE = 3.868 Node 58: 133

DSR-PER solution 3 D > 0 S ? Node 56? D fR = 1 ÿ 10ÿ8 fR = 1 S: 196

fD = 1 fD = 1 Node 56: 333 (D = 0.1)

fE = 1.931 fE = 1.934 S: 177

Node 56: 296 (D = 0.01)

S:164

Node 56: 261 (D = 0.001)

DSR-PER solution 4 0 S ? Node 23? Node 4? D fR = 1 fR = 1 S: 102

fD = 2 fD = 2 Node 23: 121

fE = 3.862 fE = 3.868 Node 4: 119

AODV solution 0 S ? Node 56? Node 92? D fR = 1 fR = 1 S: 102

fD = 2 fD = 2 Node 56: 133

fE = 3.862 fE = 3.868 Node 92: 116
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or 2 relays. It is equivalent to introducing a Time To Live

(TTL) field in the RREQ packet that specifies a maximum

number of 2 or 3 hops.

In the simulations, routes are first calculated for the

appropriate routing metric using Dijkstra’s algorithm

either for a reliable neighborhood sets (D = 0) or for

unreliable neighborhood sets (D 2 {10ÿ3,10ÿ2,10ÿ1}).

Then, a flow of 10,000 packets is transmitted on the

selected route. The performance evaluation criteria of

the resulting routing solution is calculated analytically

and by simulation as stated earlier in Sections 4 and

6.4, respectively.

6.6.3. Results

The analytical and simulated results for the three rout-

ing protocols are shown in Table 3. The routing path calcu-

lated for each routing implementation is given, together

with the analytical and simulated values of fR, fD and fE.

The impact of D on the neighborhood is represented as

well in Table 3 by showing for the source and relay nodes

the size of their neighborhood. Fig. 16 represents the loca-

tion of the different routes in the network and Fig. 17 com-

pares the evaluations in fR, fD and fE of each routing solution

to our Pareto-optimal performance bound for the 1-relay

and 2-relay problem.
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For the tested implementations, different routes are

obtained:

� For DSR-dist, two routing solutions are obtained,

referred to as DSR-dist solutions 1 and 2. DSR solution

1 is obtained as unreliable neighbors are permitted

(i.e. D > 0) and is thus composed of a single relay. DSR

solution 2 is constructed as only perfectly reliable relays

are selected as neighbors, reducing the neighborhood

set size. Therefore, the DSR-dist solution 2 is composed

of 2 relays, adding another relay to DSR-dist solution 1

on the source–destination path.

� For DSR-PER, two solutions referred to as DSR-PER

solutions 3 and 4 are obtained. Solution 3 is obtained

when unreliable neighbors are permitted and a TTL of

2 hops is enforced while solution 4 is obtained when

D = 0 and a TTL of 3 hops is chosen. DSR-PER solution

3 is exactly the same solution as DSR-dist solution

because the propagation model we use is a direct

function of the distance. DSR-PER solution 4 is one

of the solutions with a zero cumulative PER and a

TTL of 3 hops.

� For AODV, the shortest hop-count route contains two

relays for this topology. The second relay of the AODV

solution is different from the one of DSR-dist solution

2. This is due to the fact that AODV selects the second

relay that is the closest to the destination, and not the

one that minimizes the cumulative path distance.

Over all tested scenarios, analytical and simulated val-

ues of the optimization criteria are really close, showing

that the analytical calculation provides (for this topol-

ogy) a good performance measure even if CSMA/CA pro-

tocol is introduced in the second time slot. All routing

solutions provide a close to one reliability criterion.

DSR-PER solution 3 (which is equal to DSR-dist solution

1) maximizes the reliability of the 1-relay case. As shown

in Fig. 17, DSR-PER corresponds exactly to the solution of
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the 1-relay problem with maximum reliability. For the

other solutions different delay and energy criteria are ob-

tained. This is due to the fact that conventional multi-

hop routing does not leverage multi-path as we do in

the framework. Routes with 3 hops have a delay crite-

rion of 2 because all packets travel on a 2-hop path,

whether the retransmission of the first relay can reach

the destination or not. With our framework, the packets

transmitted by the 2-relay solutions travel in average on

a 2-hop path (and not a 3-hop one) and therefore have

an average delay of 1. Since most of the time the trans-

mission through one of the relays located in between S

and D (cf. Fig. 9) is successful, the second transmission

is not necessary.

We can conclude that the three routing implementa-

tions leading to DSR-dist solution 2, DSR-PER solution 4

and AODV are dominated by the Pareto-optimal solutions

of our multiobjective performance bound. Routing strate-

gies leading to DSR-dist solution 1 and DSR-PER solution

3, where unreliable neighbor links are leveraged, are Pare-

to-optimal in the sense of maximum reliability, minimum

average delay and minimum average energy consumption.

More generally, we have shown that it is topical to com-

pare the performance of state-of-the-art routing solutions
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to our Pareto-optimal performance bounds. Several simple

routing implementations have been tested, showing that

some of them are Pareto-optimal while others are

dominated by the derived bound.

7. Conclusion

In this paper, we have proposed a novel multiobjective

optimization framework for network routing and resource

allocation in wireless ad hoc networks. Our proposed

framework consists of a general probabilistic network

model capable of capturing the impact and interaction of

a wide range of resource/interference management tech-

niques, various channel conditions, and network scenarios.

Used in conjunction with metaheuristic optimization tech-

niques, this framework provides an efficient tool to capture

the trade-offs between different performance metrics and

to obtain bounds on the achievable performance of routing

for a single source–destination transmission. Results were

obtained for characterizing the delay, reliability, and energy

trade-offs for a two time slot sensor network model. Future

work will extend the model to consider more complex

network scenarios, for example accounting for various

network topologies, including multiple concurrent flows

in the network, and using more refined cross-layer interac-

tion and interference models. Other development will

introduce a continuous network model in order to get

asymptotic Pareto optimal sets for large scale networks. In

the same sense, we will target as well networks of mobile

nodes by leveraging statistical mobility models of the liter-

ature. In this case, links between nodes are a function of

their probability to meet with a sufficient channel capacity.
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Appendix A. PMOTS algorithm

This appendix presents briefly a multiobjective meta-

heuristic called PMOTS (Parallel MultiObjective Tabu Search)

that has been presented in [9]. It is based on the well

known Tabu metaheuristic [36]. PMOTS is a multiobjective

extension of Tabu search where K Tabu searches are per-

formed in parallel. Its macro-algorithm is given in Algo-

rithm 2 and a graphical description is shown in Fig. A.18.

The goal of this algorithm is to obtain the best possible

approximation of the Pareto optimal set of solutions FP.

In a search iteration, i, the K parallel search paths are

represented as a search set or search front Fc(i) of K

solutions. The first set of K solutions is randomly created.

A set of neighbor solutions V(Sk) for each solution Sk of

the search front is computed according to a set of rules.

The neighborhood generation rules specific to our MO

problem enable atomic changes to solution Sk by altering

the selection of relay nodes, the transmission rates si,
and/or the resources r. Further details on these rules can

be found in [9]. The pool of neighbor solutions is added

to the current Pareto optimal front FP, and the new front

Fnew
P is obtained by extracting the set of non-dominated

solutions.

A new search front Fc(i + 1) is selected by choosing

promising non-Tabu solutions that are not always non-

dominated to avoid a premature convergence of the algo-

rithm. Therefore for a path k, each new solution is selected

randomly in the set of neighbor solutions of Sk which is

limited to the solutions having a Pareto rank Rmax. The rank

of a solution x is defined by R(x) = 1 + d(x), where d(x) is the

number of solutions by which x is dominated in the set of

feasible solutions S. The solutions of the Pareto optimal set

have a rank R(x) = 1. In this algorithm, the Pareto ranking is

local to the set of neighbor solutions and does not include

the current estimated Pareto set FP. By not including FP and

selecting fairly good solutions with the Pareto rank con-

straint, diversity is introduced within the search strategy.

Once Fc(i + 1) is chosen, the solutions of Fc(i) are stored in

the corresponding Tabu lists.

There is also a restart strategy that creates a new ran-

dom search front if no solutions have been added to or sup-

pressed from FP for a given number of search iterations.

The algorithm stops after a fixed number of iterations

and provides an estimate of the Pareto front FP.

Algorithm 2. Macro-Algorithm for PMOTS.

1: Init K Tabu lists TLk = ;, k 2 [1, . . . ,K]; FP = ;;
2: Randomly create K solutions and include them in

the search front F cð0Þ;
3: for i 2 [0, . . . , Imax] do

4: F cðiþ 1Þ ¼ ;;
5: for all Sk 2 F cðiÞdo
6: Compute and evaluate the neighborhood set

V(Sk);

7: Select from V(Sk) the solutions with Pareto rank

R(S) = Rmax and add them in PR(Sk);

8: Select randomly a solution of PR(Sk) and add it

into the new search front Fc(i + 1);

9: Concatenate PR(Sk) with the Pareto front FP;

10: Update the Tabu list TLk;

11: end for
12: Remove the solutions having a Pareto rank

R(S) > 1 from FP;

13: end for
14: Return FP;

Appendix B. Validation of PMOTS

The proposed multiobjective probabilistic network

model provides a coherent and complete view of the



trade-offs that arise between reliability, delay, and energy.

For larger networks or when more relays are needed, our

problem is solved using the multiobjective optimization

algorithm PMOTS as presented in Section 4.2. This appen-

dix presents results related to the convergence properties

of PMOTS for the 1-relay and 2-relay problems.

Two performance metrics measure the convergence of

PMOTS towards the Pareto optimal set F�
P obtained through

exhaustive search. The approximated Pareto sets FP ob-

tained by PMOTS are compared to F�
P with respect to the

number of iterations the search has performed using the

following metrics [46]:

� The error ratio that measures the non-convergence of a

search method to F�
P . It is given by:

ER ¼
Pn

i¼1ei
n

ðB:1Þ

where ei = 0 if solution i of FP belongs to F�
P and ei = 1 other-

wise, and n is the number of solutions in the approximated

Pareto front FP.

� The generational distance that measures the distance

between an estimated set of n solutions and the theo-

retical Pareto front F�
P . It is defined by:

GD ¼
Pn

i¼1d
p
i

ÿ �1=p

n
ðB:2Þ

where di is the smallest distance between a solution of FP
and F�

P . Here, we use p = 2 and n the number of solutions

of the approximated Pareto front FP.

The smaller the error ratio and the generational dis-

tance metrics, the smaller in number and amplitude are

the errors between FP and F�
P . These metrics have been cal-

culated for the 1-relay Pareto fronts obtained with PMOTS

every 20 iterations. Average and standard deviation values

are computed over 10 runs of PMOTS using the same test

environment. In Fig. B.19, it can be seen that both ER and

GD quickly decrease with time. Iterations 40 and 80 have

been highlighted in Fig. B.19 because they represent the

times at which PMOTS has evaluated the number of solu-

tions equal to half the search space and the entire search

space, respectively. At iteration 80, only about 4% of the

solutions of FP do not belong to F�
P , and these solutions

are really close to the Pareto optimal front as shown by

the GD measure of 7 � 10ÿ5. At iteration 40, we already

have a good first picture of the Pareto optimal front. In-

deed, the generational distance shows that the erroneous

solutions of FP are very close to F�
P with a value of

GD = 1 � 10ÿ4. Moreover, looking at the percentage of solu-

tions of FP that belong to F�
P , we hare already identified 60%

of the Pareto-optimal solutions.

Similar analysis has been pursued with the 2-relay Par-

eto optimal set. Fig. B.20 shows the performance of four

runs of the PMOTS algorithm for the 2-relay problem using

the same test environment. The error ratio and genera-

tional distance values are calculated after the initial neigh-

borhood generation and at every 1000 iterations of the

algorithm. In two of the cases, the initial solution selected

for neighborhood exploration provides a very poor initial

estimate. By 1000 iterations of PMOTS, however, we obtain

a good estimate of the Pareto front. In all four runs, the er-

ror ratio is below 25% at iteration 1000. The maximum

generational distance for the trials at iteration 1000 is

GD = 9.37ÿ5. Although there are still more non-dominated

solutions to obtain in further iterations, we have confi-

dence in the initial observations of the performance

trade-offs. PMOTS performs well for the 1-relay and 2-re-

lay investigation. As we increase to even larger problem in-

stances, we will continue to improve the algorithm’s

implementation and convergence speed.
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