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QUANTITATIVE EQUIDISTRIBUTION PROPERTIES

OF TORAL EIGENFUNCTIONS

HAMID HEZARI AND GABRIEL RIVIÈRE

Abstract. In this note, we prove quantitative equidistribution properties for orthonor-
mal bases of eigenfunctions of the Laplacian on the rational d-torus. We show that
the rate of equidistribution of such eigenfunctions is of polynomial decay. We also prove
that equidistribution of eigenfunctions holds for symbols supported in balls with a radius
shrinking at a polynomial rate.

1. Introduction

In [Sh74, Ze87, CdV85], Shnirelman, Zelditch, and Colin de Verdière proved that, on a
compact connected Riemannian manifold (M,g) without boundary, whose geodesic flow is
ergodic for the Liouville measure, the eigenfunctions of the Laplacian are quantum ergodic.
Quantum ergodicity means that, for any orthonormal basis of eigenfunctions, there exists
a full density subsequence along which the associated microlocal lift on the unit cotangent
bundle S∗M tend weakly to the Liouville measure on S∗M . The main example of ergodic
geodesic flow is given by the geodesic flow on negatively curved manifolds. Thus, in this
geometric context, eigenfunctions of the Laplacian are quantum ergodic. On a general
compact Riemannian manifold (M,g), the geodesic flow is not ergodic for the Liouville
measure, and the above result can be extended by using the ergodic decomposition of the
Liouville measure – see for instance [Ri13].

A natural example is the case of the rational torus Td = R
d/Zd endowed with its canonical

metric. In this setting, the geodesic flow is not ergodic, but if one considers symbols
dependent on x and independent of ξ, then an ergodic property holds for such symbols
– see proposition 2.1 below. Using this observation, one can show that eigenfunctions
become equidistributed1 on the configuration space Td [MaRu12, Ri13]. In this paper, we
will give quantitative versions of this equidistribution property of toral eigenfunctions. In
fact, these quantitative equidistribution properties are originated and motivated by some
conjectures concerning the eigenfunctions of negatively curved manifolds. The two related
topics we shall be concerned with are:

• The rate of equidistribution (Theorem 1.2).
• Small scale equidistribution (Corollary 1.5).

Date: March 11, 2015.
1Note that they do not equidistribute on S∗

T
d.
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Also, in the last section, as an easy corollary of Zygmund’s theorem and the equidistribu-
tion results of [MaRu12, Ri13], we show that the quantum ergodicity holds on the 2-torus
for L2 symbols.

Remark 1.1. It is worth mentioning that on the rational torus all the quantum limits of
eigenfunctions of the Laplacian are absolutely continuous with respect to the Lebesgue
measure [Ja97, AM14]. In fact in dimension two, by Zygmund’s theorem, there is a
uniform bound for the L4 norm of all L2 normalized eigenfunctions, and hence all quantum
limits in this case have density functions in L2. This was refined by Jakobson in [Ja97]
where he proved that the density function is a trigonometric polynomial.

Before we state our results, we fix some notations.

Throughout the paper we denote by T
d := R

d/Zd the rational torus with the standard
metric, and we denote by dx the normalized volume measure induced by the standard
metric.

Let α > 0 be some fixed positive number. For every 0 < ~ ≤ 1, we consider an orthonormal

basis (ψj
~
)j=1,...,N(~) of the subspace

H~ := 1[1−α~,1+α~](−~
2∆)L2(Td),

made of eigenfunctions of −~
2∆. According to the Weyl’s law – see e.g. [DuGu75], one

has N(~) ∼ αAd~
1−d for some constant Ad depending only on d. For each 1 ≤ j ≤ N(~),

we denote Ej(~) ∈ [1− α~, 1 + α~] to be the eigenvalue corresponding to ψ~
j :

−~
2∆ψj

~
= Ej(~)ψ

j
~
.

1.1. Rate of equidistribution. Our first result states that

Theorem 1.2. Let Td = R
d/Zd be the rational torus with d ≥ 2 and let a be an element

in C∞(Td) (independent of ~). Then, there exists some constant Ca > 0 such that, for

any orthonormal basis (ψj
~
)j=1,...N(~) of 1[1−α~,1+α~](−~

2∆)L2(Td) made of eigenfunctions

of −~
2∆,

1

N(~)

N(~)
∑

j=1

∣

∣

∣

∣

∫

Td

a|ψj
~
|2dx−

∫

Td

adx

∣

∣

∣

∣

2

≤ Ca~
2
3 .

The fact that this quantity converges to 0 was already observed in [MaRu12, Ri13]. The
novelty here is that we are able to prove that this convergence holds at a polynomial rate.
Although this is a natural question, but to our knowledge it has not been addressed in the
literature. This result is a direct consequence of Theorem 1.4 below which is slightly more
general. In [MaRu12], Marklof and Rudnick proved that equidistribution on configuration
space also holds for eigenfunctions of a rational polygon, hence it would be natural to
understand if one can obtain a polynomial rate of convergence in this setting. In the case
of the torus, it would also be natural to understand what the optimal rate of convergence
should be depending on the dimension.
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Remark 1.3. Let us rewrite this statement using the standard convention (the non-semiclassical
notation). We define the eigenfunctions ψj to be the nonzero solutions to

−∆ψj = λjψj , λj ≥ 0.

where the eigenvalues λj are sorted as

0 = λ1 < λ2 ≤ λ3 · · · → ∞.

Suppose (ψj)j∈N is an ONB of L2(Td) made of eigenfunctions. Then, in this notation, the
above result can be written as follows

V (a, λ) :=
1

N1(λ)

∑

j:λ−
√
λ≤λj≤λ+

√
λ

∣

∣

∣

∣

∫

Td

a|ψj |2dx−
∫

Td

adx

∣

∣

∣

∣

2

= O(λ−
1
3 ),

where (see [DuGu75, DiSj99])

N1(λ) := ♯
{

j : λ−
√
λ ≤ λj ≤ λ+

√
λ
}

∼ Cdλ
d−1
2 ,

with Cd > 0 depending only on d. For chaotic systems, it is conjectured in the physics

literature [FePe86], that V (a, λ) is of order λ
1−d
2 . In the case of negatively curved mani-

folds, the best known upper bound is O(| log λ|−1) [Ze94, Sch06]. We emphasize that our
general strategy is the same as the ones in these two references: the main inputs are that
we are able to use the semiclassical approximation for much longer times and that we have
a better control on the error terms due to the exact formulas one has on T

d. Finally, in
the case of Hecke eigenfunctions on the modular surface, we note that the upper bound

O(λ−
1
2
+ǫ) was proved in [LuSa95] for spectral intervals of the form [λ, 2λ].

1.2. Small-scale equidistribution. Our next result concerns equidistribution properties
of toral eigenfunctions in balls of shrinking radius. This question is motivated by our
recent work [HeRi14], where we showed that on negatively curved manifolds quantum
ergodicity holds for symbols carried on balls whose radius shrink at a logarithmic rate (see
also [Yo13, Han14, LMR15]), and where we found some applications to Lp estimates and
the size of nodal sets. In the case of Td, one can also prove a quantitative equidistribution
result where symbols are allowed to depend on ~. This is the content of the following
theorem which is our main result:

Theorem 1.4. Let Td = R
d/Zd be the rational torus with d ≥ 2. Let s > d+4

2 , ν0 ≥ 0,

and ν1 ≥ 0. Suppose a = (a~)0<~≤1 ∈ C∞(Td) is a symbol such that for every β in N
d,

there exists Cβ > 0 satisfying

(1) ∀0 < ~ ≤ 1, ∀x ∈ T
d, |∂βxa~| ≤ Cβ~

−ν1|β|.

Then, there exists ~0 > 0 such that, for any 0 < ~ ≤ ~0, and for any orthonormal basis

(ψj
~
)j=1,...N(~) of 1[1−α~,1+α~](−~

2∆)L2(Td) made of eigenfunctions of −~
2∆, one has

1

N(~)

N(~)
∑

j=1

∣

∣

∣

∣

∫

Td

a~|ψj
~
|2dx−

∫

Td

a~dx

∣

∣

∣

∣

2

≤ C‖a~‖2L2(Td)~
ν0+C‖a~‖2Hs(Td)~

2−2ν0+Ca~
2−2(ν0+ν1),
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where C is independent of a, ν0 and ν1, and where Ca depends only on ν0, ν1 and on a
finite number2 of the constants Cβ appearing in (1).

As was already mentioned, this result implies Theorem 1.2 by picking a independent of
~, ν1 = 0 and ν0 = 1

2 . This theorem also allows us to show that on the rational torus,
the eigenfunctions equidistribute on balls whose radius shrink at a polynomial rate. More
precisely, by choosing a~ to be certain cutoff functions supported in geodesic balls of radius
~
ν1 , and, using an extraction argument (see for instance section 3.2 of [HeRi14] and the

proof of corollary 1.7 in [Han14]), we get

Corollary 1.5. Let 0 < ν1 <
2

7d+4 . Then there exists 0 < ~0 ≤ 1/2 such that given any

orthonormal basis (ψj
~
)j=1,...N(~) of 1[1−α~,1+α~](−~

2∆)L2(Td) made of eigenfunctions of

−~
2∆, one can find a full density subsequence Λν1(~) of {1, . . . , N(~)} such that

(2) ∀0 < ~ ≤ ~0, ∀x ∈ T
d, ∀j ∈ Λν1(~) : a1 ≤

∫

B(x,~ν1 ) |ψ
j
~
(x)|2dx

Vol(B(x, ~ν1))
≤ a2,

where the constants a1, a2 > 0 are independent of ~, x, and j a,d B(x, ~ν1) denotes the
geodesic ball of radius ~

ν1 centered at x.

The fact that (Λν1(~))0<~≤~0 is of full density exactly means that

lim
~→0

|Λν1(~)|
N(~)

= 1.

In other words, this statement says that there exists a large proportion of eigenfunctions
where the average value of the square of eigenfunctions in shrinking balls of radius ~

ν1 ,
are uniformly bounded by two constants. We note that the corollary provides a subse-
quence of density 1 subsets that works uniformly for every point on the torus. If we had
considered only one fixed point x0 in T

d, we would have obtained a critical exponent of
size 1

2(d+1) instead of the exponent 2
7d+4 appearing here. The exponent 2

7d+4 appearing

in this statement is probably not optimal and it is plausible that this exponent can be
improved by using for instance methods like the ones used by Bourgain in [Bo13]. Here,
our proof relies only on tools from ergodic theory and semiclassical analysis.

Remark 1.6. Using this corollary and the strategy of [HeRi14], we can in fact improve
Sogge’s Lp estimates for toral eigenfunctions [So88]. However the Lp bounds we obtain
using this method are not better than the upper bounds proved in [Zy74, Bo93, Bo13,
BoDe14].

1.3. Quantum ergodicity for L2 observables. Motivated by the recent question raised
by Zelditch on L∞ quantum ergodicity [Ze13], we mention the following nice consequence
of the quantum ergodicity property on the 2-torus:

Corollary 1.7. Let T
2 = R

2/Z2 be the rational 2-torus. Then, for any orthonormal

basis (ψj
~
)j=1,...N(~) of 1[1−α~,1+α~](−~

2∆)L2(T2) made of eigenfunctions of −~
2∆, there

2The β involved in the constant depends on the choice of ν0 and ν1.
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exists a full density subsequence Λ(~) of {1, 2, . . . , N(~)} such that, for all a(x) ∈ L2(T2)
(independent of ~),

(3) lim
~→0,j∈Λ(~)

∫

T2

a(x)|ψj
~
(x)|2dx =

∫

T2

a(x)dx.

The important point in this statement is that convergence holds for any observables in
L2(T2), and not only C0 ones (as it is usually the case in quantum ergodicity statements).
In particular, it holds for the characteristic function of any measurable subset of T2. In
fact, Zelditch conjectured in [Ze13] that (3) holds for any a in L∞(M) provided (M,g) is a
negatively curved manifold. As will be explained in section 4, this corollary follows directly
from a classical result of Zygmund [Zy74] combined to the above quantum ergodicity
property. We emphasize that we do not need all the strength of the above theorems and
that this result could be in fact deduced directly from the results in [MaRu12, Ri13].

We will now give the proof of Theorem 1.4 from which all the other results follow. As in the
case of negatively curved manifolds, we will first prove a result on the rate of convergence
of Birkhoff averages. Then, we will implement this result in the classical proof of quantum
ergodicity, and we will have to optimize the size of the different remainders to get our
results.

Remark 1.8. After communicating this note to Zeev Rudnick, he informed us that part
of the above results can in fact be improved using methods of more arithmetic nature.
The proof presented here only makes use of standard tools of Fourier analysis, and it is
modeled on arguments similar to the ones used to prove rate of quantum ergodicity on
negatively curved manifolds [Ze94, Sch06].

2. Convergence of Birkhoff averages

We start with the following proposition which gives us the rate of equidistribution for
observables depending only on the x variable:

Proposition 2.1. Let Td = R
d/Zd with d ≥ 2. There exists Cd > 0 such that, for every

a in C∞(Td), one has

∫

S∗Td

∣

∣

∣

∣

1

T

∫ T

0
a(x+ tξ)dt−

∫

Td

a(x)dx

∣

∣

∣

∣

2

dxdξ ≤
Cd‖a‖2L2(Td)

T
.

Proof. Let a be a smooth function on T
d. We write its Fourier decomposition a :=

∑

k∈Zd akek, where ek(x) := e2iπk.x. We set

V (a, T ) :=

∫

Td

∫

Sd−1

∣

∣

∣

∣

1

T

∫ T

0
a(x+ tξ)dt−

∫

Td

a(x)dx

∣

∣

∣

∣

2

dξdx.
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First, we perform integration in the x variable and we find that

V (a, T ) =
1

T 2

∑

k∈Zd−{0}
|ak|2

∫

Sd−1

∣

∣

∣

∣

∫ T

0
e2iπk.tξdt

∣

∣

∣

∣

2

dξ.

Now we would like to estimate the integral in each term of the above sum. Using the
spherical symmetry first, and then calculating the dt integral, we get

∫

Sd−1

∣

∣

∣

∣

∫ T

0
e2iπk.tξdt

∣

∣

∣

∣

2

dξ =

∫

Sd−1

∣

∣

∣

∣

∫ T

0
e2iπ‖k‖tξ1dt

∣

∣

∣

∣

2

dξ

=

∫

Sd−1

sin2 (πT‖k‖ξ1)
π2||k||2ξ21

dξ

By using the spherical coordinates and putting ξ1 = cosϕ , 0 ≤ ϕ ≤ π, we obtain

∫

Sd−1

sin2 (πT‖k‖ξ1)
π2||k||2ξ21

dξ = C

∫ π

0

sin2 (πT‖k‖ cos ϕ)
π2||k||2 cos2 ϕ (sinϕ)d−2 dϕ,

where the constant C is the value of the integral with respect to the remaining spherical
variables. The change of variable s = cosϕ, turns this last integral into

2

∫ 1

0

sin2 (πT‖k‖s)
π2||k||2s2 (

√

1− s2)d−3 ds.

We then split this integral into integrals over [0, δ] and its complement [δ, 1], where 0 <
δ < 1. Clearly

∫ 1

δ

sin2 (πT‖k‖s)
π2||k||2s2 (

√

1− s2)d−3 ds ≤ 1

π2||k||2δ2 .

To estimate the integral on [0, δ], we use the substitution u = πT ||k||s. Hence, since d ≥ 2
we get

∫ δ

0

sin2 (πT‖k‖s)
π2||k||2s2 (

√

1− s2)d−3 ds ≤ T

π||k||
√
1− δ2

∫ πT ||k||δ

0

sin2 u

u2
du

≤ T

π||k||
√
1− δ2

∫ ∞

0

sin2 u

u2
du

=
T

2||k||
√
1− δ2

.

Therefore, by choosing δ = 1√
||k||T

and T ≥ 2, we get

V (a, T ) ≤ C ′

T

∑

k 6=0

|ak|2
‖k‖ ≤

C ′‖a‖2
L2(Td)

T
.

for some uniform constant C ′ > 0. �
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3. Proof of Theorem 1.4

We fix a in C∞(Td) that potentially depends on ~, even if we omit the index ~ in order to
alleviate the notations. We also suppose that a belongs to a nice class of symbols. More
precisely, there exists ν1 ≥ 0 such that, for every α in N

d, one can find Cα > 0 such that

(4) ∀x ∈ T
d, |∂αx a| ≤ Cα~

−ν1|α|.

Without loss of generality, we will also suppose that a is real valued. We set a := a −
∫

Td adx. Our goal is to give an upper bound on the following quantity:

V~,2(a) =
1

N(~)

N(~)
∑

j=1

∣

∣

∣

∣

∫

Td

a(x)|ψj
~
(x)|2dx−

∫

Td

adx

∣

∣

∣

∣

2

.

3.1. Applying Egorov’s theorem. We rewrite the previous expression as follows

V~,2(a) =
1

N(~)

N(~)
∑

j=1

∣

∣

∣

〈

ψj
~
, aψj

~

〉

L2

∣

∣

∣

2
.

One of the main differences with the negatively curved case treated in [Ze94, Sch06, Han14,
HeRi14] is that we can consider much longer semiclassical times using the fact that we
are on T

d. Precisely, we fix ν0 > 0 and T = T (~) := ~
−ν0 . We introduce the averaged

operator

A(T, ~) :=
1

T

∫ T

0
e−

it~∆
2 ae

it~∆
2 dt.

Using the fact that ψj
~
is an eigenmode for every 1 ≤ j ≤ N(~), one can write that

V~,2(a) =
1

N(~)

N(~)
∑

j=1

∣

∣

∣

〈

ψj
~
, A(T, ~)ψj

~

〉

L2

∣

∣

∣

2
.

Using the Cauchy-Schwarz inequality, we find that

V~,2(a) ≤
1

N(~)

N(~)
∑

j=1

〈

ψj
~
, A(T, ~)2ψj

~

〉

L2
.

Recall now that (ψj
~
)
N(~)
j=1 is an orthonormal basis of the space

H~ = 1[1−α~,1+α~](−~
2∆)L2(Td).

We will now take advantage of the fact that we are on the torus. Precisely, we have

(5) V~,2(a) ≤
1

N(~)

∑

k∈Zd:(2π~‖k‖)2∈[1−α~,1+α~]

‖A(T, ~)ek‖2L2 .

where ek(x) := e2iπk.x. We write the following exact formula

(A(T, ~)ek) (x) =





1

T (~)

∫ T (~)

0

∑

p∈Zd−{0}
âpe

it~(2π)2‖p‖2

2 ep(x+ 2π~tk)dt



 ek(x),
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where a :=
∑

p∈Zd âpep(x). We now fix s > d+4
2 . We note that, uniformly for x in T

d and
t in R, one has
∣

∣

∣

∣

∣

∣

∑

p∈Zd−{0}
âpe

it~(2π)2‖p‖2

2 ep(x+ 2π~tk)− a(x+ 2πk~t)

∣

∣

∣

∣

∣

∣

≤ 2π2~t
∑

p 6=0

‖p‖2|âp| ≤ cs~t‖a‖Hs ,

for some constant cs > 0 depending only on d and s. Implementing this in our upper
bound (5), we obtain that
(6)

V~,2(a) ≤
2

N(~)

∑

k∈Zd:(2π~‖k‖)2∈[1−α~,1+α~]

∫

Td

(

1

T (~)

∫ T (~)

0
a(x+ 2πk~t)dt

)2

dx+‖a‖2HsO(~2−2ν0),

where the constant in the remainder is independent of a.

3.2. Trace asymptotics. In order to compute the previous expression, we proceed as
in [DuGu75] – see [DiSj99] (Ch. 11) for a semiclassical version. We will in fact follow
the presentation of Prop. 1 in [Sch06] and we will take advantage of the fact that we are
working on T

d.

Regarding (6), we now have to estimate

Ṽ~,2(a) :=
1

N(~)

∑

k∈Zd:(2π~‖k‖)2∈[1−α~,1+α~]

∫

Td

b~(x, 2πk~)dx.

where we set

b~(x, ξ) := χ1(‖ξ‖2)
(

1

~−ν0

∫

~−ν0

0
a(x+ tξ)dt

)2

,

with 0 ≤ χ1 ≤ 1 a smooth cutoff function which is equal to 1 in a small neighborhood of
1 and is 0 outside a slightly bigger neighborhood, say outside [1/4, 4]. We fix a smooth
function ρ ≥ 0 in the Schwartz class S(R), which is ≥ 1 on the interval [−α,α]. We also
suppose that ρ̂ has compact support, say that the support is included in [−1/8, 1/8].

Remark 3.1. In order to construct such a function, one can start from a nonzero smooth
even function f ≥ 0 which is compactly supported in [−1/16, 1/16] and take ρ to be the
inverse Fourier transform of A0f ∗ f with A0 > 0 large enough. We note that the function
ρ̂ satisfies ρ̂′(0) = 0.

We can then write that

Ṽ~,2(a) =
1

N(~)

∑

k∈Zd

ρ

(

4π2‖k‖2~2 − 1

~

)∫

Td

b~(x, 2πk~)dx,

and thus

Ṽ~,2(a) =
1

N(~)

∑

k∈Zd

∫

R

ρ̂(τ)e−
iτ
~ e

i4π2τ‖k‖2~2

~

∫

Td

b~(x, 2πk~)dxdτ.



QUANTITATIVE EQUIDISTRIBUTION PROPERTIES OF TORAL EIGENFUNCTIONS 9

Thanks to the Poisson summation formula, we get

(7) Ṽ~,2(a) =
1

N(~)

∫

Td





∑

l∈Zd

1

(2π~)d

∫

R×Rd

ρ̂(τ)ei
τ(‖ξ‖2−1)−ξ.l

~ b~(x, ξ)dτdξ



 dx.

We will now make use of the stationary (and non-stationary) phase lemma. To do so,
we fix l in Z

d and we denote by ϕl(τ, ξ) to be the phase function of the above oscillatory
integral. We observe that, for l 6= 0, one has ‖dξϕl‖ ≥ ‖l‖ − 2τ‖ξ‖ ≥ ‖l‖ − 1/2, for τ in
the support of ρ̂ and ‖ξ‖2 in the support of χ1. For l 6= 0, we introduce the operator

Pl :=
~

i

dξϕl.dξ
‖dξϕl‖2

.

We perform N integration by parts using this operator and we find that, for every x in
T
d,

∣

∣

∣

∣

1

(2π~)d

∫

R×Rd

ρ̂(τ)ei
τ(‖ξ‖2−1)−ξ.l

~ b~(x, ξ)dτdξ

∣

∣

∣

∣

≤ C
~
N(1−ν0−ν1)−d

(‖l‖ − 1/2)N
,

for some uniform constant C > 0 that depends only on ρ, a and d. Using the upper
bound (7) and taking N large enough in the previous equation, we get

(8) V~,2(a) ≤
1

N(~)

∫

Td

(

1

(2π~)d

∫

R×Rd

ρ̂(τ)ei
τ(‖ξ‖2−1)

~ b~(x, ξ)dτdξ

)

dx+O(~2(1−ν0−ν1)).

We now disintegrate the measure dξ along the energy layers {‖ξ‖2 − 1 = E} (or in other
words we use the coarea formula), to write for every x in T

d,
∫

R×Rd

ρ̂(τ)ei
τ(‖ξ‖2−1)

~ b~(x, ξ)dτdξ =

∫

R

∫ +∞

−1
ρ̂(τ)ei

τE
~ 〈b~〉(x,E)dEdτ,

where

〈b~〉(x,E) :=

∫

‖ξ‖2−1=E

b~(x, ξ)dLE(ξ).

We can now use the stationary phase formula and the fact that ρ̂′(0) = 0 – see for
instance [Zw12] (Ch. 3). Precisely, we find that
(9)
∫

R×Rd

ρ̂(τ)ei
τ(‖ξ‖2−1)

~ b̃~(x, ξ)dτdξ = ρ̂(0)2π~

(

∫

‖ξ‖2=1
b~(x, ξ)dL0(ξ) +O(~2(1−ν0−ν1))

)

.

As before we take N large enough (depending only on ν0, ν1 and d) in the stationary phase

lemma to ensure that the remainder is of order O(~2(1−ν0−ν1)). We give emphasis that the
remainder term is of the form ~

2(1−ν0−ν1) and not ~1−2(ν0+ν1): this is due to the fact that
ρ̂′(0) = 0 and to the symmetry of the phase function – e.g. Theorem 3.17 of [Zw12].

Now by the Weyl’s law, we know that N(~) ∼ αCd~
1−d, for some constant depending only

on d – see for example Ch. 11 of [DiSj99]. Thus, combining (6), (8) and (9), we have that

V~,2(a) ≤ C0

∫

Td

∫

Sd−1

∣

∣

∣

∣

∣

1

~−ν0

∫

~−ν0

0
a(x+ tξ)dt

∣

∣

∣

∣

∣

2

dξdx+ C ′
s‖a‖2Hs~

2−2ν0 +O(~2(1−ν0−ν1)),
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where C0 depends only on d and on the choice of ρ, and where C ′
s depends only on s.

We also note that the constant in the remainder depends only on finitely many of the Cα

appearing in (4).

3.3. The conclusion. We can now apply Proposition 2.1 and we finally find that

V~,2(a) ≤ C0Cd‖a‖2L2(Td)~
ν0 +O(~2(1−ν0−ν1)) + C ′

0‖a‖2Hs(Td)~
2−2ν0 ,

which concludes the proof of Theorem 1.4.

4. Proof of Corollary 1.7

The proof of this result is a direct consequence of the quantum ergodicity property on the
2-torus, of Zygmund’s theorem on the L4 norms of the eigenfunctions on the 2-torus [Zy74],
and of the Banach-Alaoglu theorem.

Let (ψj
~
)j=1,...N(~) be an orthonormal basis of 1[1−α~,1+α~](−~

2∆)L2(T2) made of eigen-

functions of −~
2∆ on the rational 2-torus. Then by Theorem 1.2, there exists a full

density subsequence of Λ(~) of {1, 2, . . . , N(~)} such that for all a(x) ∈ C0(T2)

(10) lim
~→0,j∈Λ(~)

∫

T2

a(x)|ψj
~
(x)|2dx =

∫

T2

a(x)dx.

We refer to section 15.4 in [Zw12] for the details of the extraction argument. We want to
show that (10) holds for all a ∈ L2(T2). To prove this, we first note that by Zygmund’s
theorem [Zy74], there exists a uniform constant A such that

∫

T2

|ψj
~
(x)|4dx ≤ A4.

Thus, the sequence F := (|ψj
~
|2)1≤j≤N(~),0<~≤1 is bounded in L2. By the Banach-Alaoglu

theorem, it is relatively compact for the weak-⋆ topology on L2(T2). On the other hand,
by (10), F has at most one weak-⋆ limit in L2, and that is the constant function 1. This
proves the corollary.
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