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VISCOELASTIC FLOWS IN A ROUGH CHANNEL:

A MULTISCALE ANALYSIS

LAURENT CHUPIN AND SÉBASTIEN MARTIN

Abstract. In this paper, we consider viscoelastic flows in a rough domain (with
typical roughness patterns of size ε ≪ 1). We present and rigorously justify an
asymptotic expansion with respect to ε, at any order, based upon the definition
of elementary problems: Oldroyd-type problems at the global scale defined on a
smoothened domain and boundary-layer corrector problems. The resulting anal-
ysis guarantees optimality with respect to the truncation error.

1. Introduction

Many studies investigate the effect of wall roughness on Newtonian flows. In 1827,
C. L. Navier [26] was one of the first scientists to note that the roughness could drag
a fluid. Since then, numerous studies attempted to prove mathematical results in
this direction, see for instance the works of W. Jäger and A. Mikelic [20], Y. Amirat
and co-authors [3, 4] and more recently the works of D. Bresch and V. Milisic [12].
Note that all these works formulate the roughness using a periodic function (whose
amplitude and period are supposed to be small). In a context of more general
“roughness” patterns, there exists similar recent results, see [6, 19]. All the previous
work deal with a Newtonian flow, for which the Stokes or Navier-Stokes equations
are classically considered.

Much literature research has been devoted to non-Newtonian fluids, in both math-
ematical aspects and applications. It is well known that numerous biological flu-
ids, blood or physiological secretions like tears or synovial fluids, show these non-
Newtonian characteristics. In engineering applications people are interested in con-
trolling the flows characteristics to suit various requirements such as maintaining
the fluid qualities in a wide range of temperatures and stresses. Introduction of
additives lead to non-Newtonian behavior of the modern lubricants for instance.
Another application domain is linked to polymers, whose non-Newtonian charac-
teristics appear in a wide range of applications such as the molding or injection
processes. Some particular classes of non-Newtonian models have often been con-
sidered. This includes the Bingham flow or the quasi-Newtonian fluids (Carreau’s
law [13, 22], the power law or Williamson’s law, in which various stress-velocity re-
lations are chosen [33] or [8, 10] for mathematical aspects) and also micropolar ones
[25]. These models, however, consider the fluid as viscous and elasticity effects are
neglected. The introduction of such a viscoelastic behavior is primarily described
by the Weissenberg number, denoted We which can be viewed as a measure of the
elasticity of the fluid and is related to its characteristic relaxation time. One of the
laws which seems the most able to describe viscoelastic flows is the Oldroyd model.
This model is based on a constitutive equation which is an interpolation between
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2 LAURENT CHUPIN AND SÉBASTIEN MARTIN

purely viscous and purely elastic behaviors, thus introducing a supplementary pa-
rameter r which describes the relative proportion of both behaviors (the solvent to
solute ratio). Considering the Oldroyd model [27], the momentum, continuity and
constitutive equations for an incompressible flow of such a non-Newtonian fluid are,
respectively,

(1) ρ

(
∂tu+ u · ∇u

)
− η(1− r)∆u+∇p− div σ = 0,

(2) div u = 0,

(3) λ

(
∂tσ + u · ∇σ + ga(∇u, σ)

)
+ σ − δ∆σ = 2ηrD(u).

In these equations, ρ, η and λ are positive constants which respectively correspond
to the fluid density, the fluid viscosity and the relaxation time. It is important to
notice the presence of a term δ∆σ, δ > 0 corresponding to a spatial diffusion of the
polymeric stresses. Usually (i.e. for the Oldroyd model) this term is deleted, but
it can be physically justified: physical effects that can contribute to the diffusive
process include hydrodynamic interactions [18], particle diffusion [7] and semiflex-
ibility of polymer blends [23]. Thus, the diffusive Oldroyd models have been the
subject of intense studies related to the understanding of shear-banded flows or
phase coexistence, see [28, 32, 29, 24, 30] and, as a consequence, the investigation of
the mathematical properties of the diffusive model has gained an increasing interest
recently [18, 5, 17, 16].

Equations (1)–(3) make up a system of 10 scalar equations with 10 unknowns: the
lubricant velocity vector u = (ui)1≤i≤3, the pressure p and the extra-stress symmetric
tensor σ = (σi,j)1≤i,j≤3. The bilinear application ga, −1 ≤ a ≤ 1, is defined by

ga(∇u, σ) = σ ·W(u)−W(u) · σ − a(σ · D(u) + D(u) · σ)
where D(u) and W(u) are respectively the symmetric and skew-symmetric parts of
the velocity gradient ∇u. Usually, D(u) is called the rate of strain tensor and W(u) is
called the vorticity tensor. Notice that the parameter a is considered to interpolate
between upper convected (a = 1) and lower convective derivatives (a = −1), the
case a = 0 being the corotational case [21]. Note that taking r = 1 allows us to
recover various forms of the generalized Maxwell model. Conversely, a Newtonian
flow is described by choosing r = 0.

In this paper, we focus on viscoelastic flows in a rough domain (with typical
roughness patterns of size ε ≪ 1). We present and rigorously justify an asymptotic
expansion with respect to ε. The development is done at any order, so that we are
guaranteed to be optimal with respect to the truncation error. We also highlight
the particular effects of roughness.

Several relevant questions are not addressed in this article. First, recent works on
random roughness, see [6, 19], could make us think that our results can be extended
to more general cases of roughness. In fact, the construction of our development
strongly depends on the behavior of solutions of the Stokes equation on a half-
space, whose lower boundary is periodic. The behavior of such solutions must be
sufficiently decreasing at infinity to justify our development. Unfortunately, it seems
that this decrease is only logarithmic in the case of a random boundary (while it
is exponential in our periodic case). Second, another task related to the regularity
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of the roughness patterns is not addressed in this paper: what is the behavior of
the solution when the patterns are not Lipschitz continuous? In particular, what is
the influence of roughness jump discontinuities over the flow? Finally, the choice to
make appear a spatial diffusion (δ > 0) in the Oldroyd model could by argue. From
a mathematical point of view, it is clearly an advantage since we know that such
diffusion allows to have solutions to the initial problem (1)–(3). Nevertheless, even if
we admit the existence of a smooth solution to the initial problem without diffusion
(δ = 0), the development proposed with respect to the roughness parameter ε seems
to be unsuitable.

The paper is composed of five sections. In Section 2, we introduce the diffu-
sive Oldroyd model, we precisely describe the roughness geometry and we recall a
fundamental result: there exists a solution (u, p, σ) to the model. In Section 3 we
introduce the ansatz, which is a formal asymptotic expansion of the solution (u, p, σ)
with respect to the roughness parameter ε ≪ 1. By identifying the powers of ε in
such a development, we obtain some elementary problems at any order. Section 4
is devoted to the mathematical study of these elementary problems: well-posedness
and properties. Section 5 provides a rigorous justification of the asymptotic expan-
sion by analyzing the remainder and deriving error estimates. In Section 6, we show
that it is possible to effectively determine all the contributions of the ansatz. We
will notice that regarding each elementary problem and their overlaps, this crucial
result is not obvious: we prove that the solution of each problem can be built using
the only previous elementary solutions.

2. The diffusive Oldroyd system in a rough channel: statement of

the problem

As a matter of fact, the derivation of reduced models is crucial if one aims at
performing numerical simulations of the flow. However, roughness patterns lead to
a sharp increase of the computational costs because the mesh of the domain has to
be built according to the constraints defined by the roughness patterns. In order
to avoid such a costly procedure, reduced models can be defined by considering
the fluid flow in the smooth domain (therefore avoiding heavy costs in terms of
numerical computations by using coarse meshes) and adding a so-called boundary
layer correction which takes into account the influence of the roughness pattern.
More precisely, for a Newtonian flow, we can proceed as follows (see [26, 1, 20, 12],
and also [19, 6] for random roughness patterns):

• at order 0: assume that u is the velocity fluid associated to the rough do-
main ωε and u0 is the velocity fluid associated to the smooth domain (i.e. the
domain has been truncated by considering a flat boundary instead of the os-
cillating one and imposing the Dirichlet condition on the smooth boundary),
see Fig. 1. Then one has

‖u− u0‖L2(ωε) . ε and ‖u− u0‖H1(ωε) .
√
ε.

• at order 1: in order to counterbalance the error introduced by the truncation
of the domain, it is possible to introduce a corrector term which leads to the
justification of wall laws. By considering the smooth domain with a slip
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condition defined as



u(1) = α11 ∂yu
(1) + α12 ∂yu

(2)

u(2) = α21 ∂yu
(1) + α22 ∂yu

(2)

u(3) = 0

on the smooth boundary (the reals αi,j being coefficients depending on the
roughness shape), a velocity field u is defined, leading to a refinement of the
approximation. For instance we have (see [20])

‖u− u‖L2(ωε) . ε3/2 and ‖u− u‖H1(ωε) . ε.

1

ε

ε

1

1

1/ε

Figure 1. a) Rough domain. b) Flattened domain: the rough bound-
ary has been truncated by a smooth one. c) Boundary layer domain
corresponding to a focus on the vicinity of the rough periodic bound-
ary.

For a non-Newtonian flow of the viscoelastic type, we aim at describing the rough-
ness effects extensively in the following sense:

• build an asymptotic expansion based upon elementary solutions (i.e. solu-
tions of problems defined on smooth domains, thus avoiding complex geome-
tries) ;

• prove in a rigorous way that the asymptotic expansion is valid at any order ;
• define an algorithm associated to an efficient numerical procedure.

Therefore we consider the Navier-Stokes equations with the Oldroyd model in a
rough channel. Consider the domain

ωε :=
{
(x, y) ∈ T

d × R, −εH
(x
ε

)
< y < 1

}
,

where T
d is the d-dimensional torus, d = 1 or d = 2, and H a smooth periodic

and positive function. The boundary ωε is denoted γε and it is composed of two
connex components: The upper smooth boundary γ+ = T

d × {1} and the upper
highly oscillating boundary which is denoted γ−

ε , see Fig. 2.
Then we consider the following set of equations:

(4)





Re (u · ∇u)− (1− r)∆u+∇p = div σ + f, in ωε,
div u = 0, in ωε,

We (u · ∇σ + ga(∇u, σ)) + σ − D∆σ = 2rD(u), in ωε,
u = 0, on γε,

D ∂nσ = 0, on γε.
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1

ε

ε

γ+

γ−
ε

Figure 2. Channel with oscillating boundary.

This system is the non-dimensional version of the system (1)–(3). We have intro-
duced the Reynolds number Re, the Weissenberg number We, a relaxation parame-
ter r ∈ [0, 1] and the diffusion coefficient D.

In the next sections, we aim at describing the structure of the solution (u, p)
with respect to the roughness number ε. Before entering into this description, let
us recall the main mathematical results related to the stationary diffusive Oldroyd
model. The problem defined in a strong form can be associated to a variational
formulation. Then we have (see [16] for details):

Theorem 1. Let f ∈ H−1(ωε)
3. Let Re ≥ 0, We ≥ 0, 0 < r < 1, −1 ≤ a ≤ 1

and D > 0. Let us introduce the following constants:

C(I) :=
8|a|C2

ωε
We‖f‖H−1

min(1− r,D)2
, C(II) :=

√
2rmin(1− r,D)

4|a|C2
ωε
We

(
1−

√
1− C(I)

)
,

where Cωε
is a constant which only depends on the domain ωε.

• Existence. If C(I) ≤ 1 then, the problem (4) admits a variational solution
(u, σ) which satisfies

2r‖∇u‖2L2 + ‖σ‖2H1 ≤ C2
(II).

Moreover there exists a pressure field p ∈ L2(Ω) such that (u, p) satisfies the
first equation of the problem (4) in the sense of distributions.

• Uniqueness. The variational formulation of the problem (4) admits at most
one solution if one of the following conditions is satisfied:

a) ‖f‖H−1 is small enough;
b) Re and We are small enough.

• Regularity. If f is regular then the variational solution is regular and satisfies
the problem (4) in a classical sense.

Let us remark that the corotationnal case (namely a = 0) allows us to get rid of
the smallness assumption on the data.

3. Asymptotic expansion
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3.1. Main ideas: ansatz. Let us describe the structure of the solution by using a
suitable ansatz:





u(x, y) = u0(x, y) + εU1

(
x,

x

ε
,
y

ε

)
+ εu1(x, y) + ε2U2

(
x,

x

ε
,
y

ε

)
+ · · ·

=
+∞∑

k=0

εk
(
uk(x, y) + Uk

(
x,

x

ε
,
y

ε

))
,

p(x, y) = p0(x, y) + P1

(
x,

x

ε
,
y

ε

)
+ εp1(x, y) + εP2

(
x,

x

ε
,
y

ε

)
+ · · ·

=
+∞∑

k=0

εk
(
pk(x, y) + Pk+1

(
x,

x

ε
,
y

ε

))
,

σ(x, y) = σ0(x, y) + εΣ1

(
x,

x

ε
,
y

ε

)
+ εσ1(x, y) + ε2Σ2

(
x,

x

ε
,
y

ε

)
+ · · ·

=

+∞∑

k=0

εk
(
σk(x, y) + Σk

(
x,

x

ε
,
y

ε

))
.

The definition of the asymptotic expansion has to be completed by the description
of the problems satisfied by the elementary solutions. Then another task consists
in showing that each elementary problem is well posed. The final task consists in
showing that the level of truncation in the asymptotic expansion is directly related
to the quality of the approximation of the exact solution.

In order to identify the elementary problems satisfied by the elementary solutions,
we proceed as follows:

(1) separation of the macroscopic variables (x, y) and the microscopic ones which
will be denoted (X, Y ) = (x

ε
, y
ε
) ;

(2) identification of terms with the same order with respect to ε in the equations ;
(3) identification of terms with the same order with respect to ε in the boundary

conditions.

Notation 1. We will use lowercase letters to denote elements corresponding to the
real physical domain (x, u, σ, ω...) and uppercase letters for all that concerns the
microscopic field (X, U , Σ, Ω...).

To complete this subsection, and before getting into the details, let us explain
the way the asymptotic expansion has been built: at main order, the fluid flow is
governed by a classical viscoelastic model with boundary conditions located at the
flat bottom y = 0 (definition of (u0, p0, σ0)). But, of course, the boundary layer has
been omitted and, in fact, the boundary condition should have been imposed on the
oscillating boundary instead of the smooth one ; it can be shown that the result-
ing error is of order ε (the size of the boundary layer) and, therefore, a so-called
boundary layer correction is introduced in order to counterbalance the mentioned
boundary value default (definition of (U1, P1,Σ1)). Now if we analyze the approxi-
mate solution defined as (u0 + εU1, p0 + P1, σ0 + εΣ1), the equations in the domain
and the boundary condition at the oscillating boundary are satisfied by means of
construction ; unfortunately, the boundary condition on the upper boundary is not
satisfied by the approximate solution because of the behavior of the boundary layer
corrector at infinity. However the error is of order ε and it is is possible to build a
solution on the smooth domain (definition of (u1, p1, σ1)) which counterbalances this
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boundary value default on the upper boundary. Again, at his step, by considering
the smooth domain only (in particular, homogeneous boundary conditions are con-
sidered at the lower smooth boundary), the boundary layer has been omitted and, in
fact, the boundary condition should have been imposed on the oscillating boundary ;
the resulting error is now of order ε2. Thus, if we compare (uε, pε, σε)− (u0, p0, σ0)
and (uε, pε, σε)−(u0+εU1+εu1, p0+P1+εp1, σ0+εΣ1+εσ1), the error has been de-
creased by an order of magnitude and, besides, the same procedure can be applied by
introducing a boundary layer correction which counterbalances the boundary value
default of order ε2 at the oscillating boundary.

In a more general way, the boundary value default introduced at the oscillating
boundary can be counterbalanced by a boundary layer correction ; the resulting
boundary value default at the upper boundary can be counterbalanced by a vis-
coelastic flow defined in the smooth domain. Through this procedure, the resulting
approximation satisfies the equations in the domain, the boundary condition at the
upper boundary and the error on the boundary condition on the oscillating boundary
has been decreased by an order of magnitude.

Let us define the two rescaled sub-domains. As a matter of fact, the main flow is
defined on the smooth domain whereas, due to the consideration of the roughness
patterns, the boundary layer is rescaled by the homothetic transformation (X, Y ) :=
(x
ε
, y
ε
).

Definition 1. The smooth domain is defined by

ω0 :=
{
(x, y) ∈ T

d × R, 0 < y < 1
}
.

The upper boundary equals γ+ and the lower boundary corresponds to γ−
0 . The

normal outward unit vector the lower (resp. upper) boundary is n = (0,−1) (resp.
(0, 1)) on γ−

0 (resp. γ+).

Definition 2. The boundary layer domain is defined by

Ω =
{
(X, Y ) ∈ T

d × R, −H(X) < Y
}
.

The boundary {(X, Y ) ∈ T
d × R, Y = −H(X)} is denoted Γ. We denote by

N := −(∇H, 1) the outward vector to the lower boundary. Note that N is not a unit
vector.

Notation 2. The usual notation for classical operator of derivation are ∇, div
and ∆. The problems considered in this paper make appear two kinds of functions:
the first ones, like the velocity u, which only depend on the macroscopic variables
(x, y), and the others, like the velocity U which depend on (x,X, Y ). In the first
case the classical operators are defined as usual, for instance

∆u =
d∑

ℓ=1

∂2
xℓ
u+ ∂2

yu.

In the case of function depending on (x,X, Y ), the notations are the following:

∆U =

d∑

ℓ=1

∂2
Xℓ
U + ∂2

Y U and ∆xU =

d∑

ℓ=1

∂2
xℓ
U.
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Notice that the divergence with respect to the variable x is also defined for a function
U : Rd+1 → R

d+1 by

divxU =

d∑

ℓ=1

∂xℓ
U (ℓ).

The normal derivative of a function U defined on Γ is defined by

∂NU = (N · ∇)U = −
d∑

ℓ=1

∂xℓ
H ∂xℓ

U − ∂Y U.

3.2. Elementary problems. Let us define the problem at the main scale: it con-
sists in considering the viscoelastic problem on the smooth domain, i.e. by truncating
the rough boundary from the initial domain, associated to homogeneous conditions
on both boundaries.

� Main order:

pb(0)





Re (u0 · ∇u0)− (1− r)∆u0 +∇p0 − div(σ0) = f0 + a0, on ω0

div(u0) = 0, on ω0

We (u0 · ∇σ0 + ga(∇u0, σ0)) + σ0 −D∆σ0 = 2rD(u0), on ω0

u0 = 0, on γ−
0 ∪ γ+

∂nσ0 = 0, on γ+

∂nσ0 = b0, on γ−
0

where f0 = f is the source term coming from the modelisation, and where the
constants a0 and b0 have to be fixed.

Remark 1. The choice of constants a0 and b0 will be discussed further. Roughly
speaking, they play the role of a degree of freedom which will be fixed in order to en-
sure the well-posedness of elementary problems and a suitable behavior of elementary
solutions to be defined. From a practical point of view, we will set a0 = b0 = 0.

Imposing the homogeneous Dirichlet condition on the smooth lower boundary γ−
0

instead of the oscillating one γ−
ε is a source of error. Indeed, (u0, p0, σ0) satisfies all

the equations except the boundary condition at the oscillating boundary γ−
ε . The

value at the oscillating boundary can be determined by a Taylor expansion:

u0(x,−εH(x
ε
)) =

+∞∑

k=0

(
−εH(x

ε
)
)k

k!
∂k
yu0(x, 0).

Since u0(x, 0) = 0, one can check that u0|γ−

ε
is of order ε, namely

u0(x,−εH(x
ε
)) = −εH(x

ε
)∂yu0(x, 0) +O(ε2),

and this leading term of order ε will be counterbalanced by first the boundary layer
corrector.

Remark 2. Note that the other terms (of orders ε2, ε3 etc.) will be treated and
counterbalanced in subsequent boundary layer problems.

Remark 3. The same methodology applies for the Neumann condition related to
the elastic tensor.
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As a consequence of the previous remarks, we define the following boundary layer
problem.

� Correction with boundary layer no 1:

PB(1)





−(1− r)∆U1 +∇P1 = 0, on Ω

div(U1) = 0, on Ω

U1 = H∂yu0|γ−

ε
, on Γ

−D∆Σ1 = 0, on Ω

∂NΣ1 = (∇H · ∇x)σ0|γ−

ε
− b0 on Γ.

Remark 4. Let us present the behavior of the solution (the proofs will be given by
proposition 1 later).

(1) When Y → +∞, the velocity U1 exponentially decreases towards the constant
defined as

U∞ := lim
Y→∞

∫

Td

U1(·, Y ).

(2) For b0 = 0, the elastic tensor Σ1 exponentially decreases towards 0.

At this stage, it can be shown that the approximation satisfies the equations in
the domain and at the oscillating boundary. At the upper boundary, the Neumann
boundary condition for the elastic tensor is satisfied because of the exponential decay
of σ0 at infinity. However the homogeneous Dirichlet condition is not satisfied for
the velocity field. This is why a so-called main corrector defined on the smooth
domain is defined in order to counterbalance the boundary default introduced by
the approximation at the upper boundary.

Defining the linear operators L(A), L(B) and L(C) by

L(A)(u1) := Re (u1 · ∇u0 + u0 · ∇u1),
L(B)(u1) := We (u1 · ∇σ0 + ga(∇u1, σ0)),
L(C)(σ1) := We (u0 · ∇σ1 + ga(∇u0, σ1)),

we define the following problems:

� Main correction no 1:

pb(1)





L(A)(u1)− (1− r)∆u1 +∇p1 = div(σ1) + a1, on ω0

div(u1) = 0, on ω0

L(B)(u1) + L(C)(σ1) + σ1 − D∆σ1 = 2rD(u1), on ω0

u1 = − lim
Y→∞

∫

T

U1, on γ+

u1 = 0, on γ−
0

∂nσ1 = 0, on γ+

∂nσ1 = b1, on γ−
0 .
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� Correction with boundary layer no 2:

PB(2)





−(1− r)∆U2 +∇P2 = F2 − a0, on Ω

div(U2) = 0, on Ω

U2 = H∂yu1|γ−

0
− 1

2
H2∂2

yu0|γ−

0
on Γ

−D∆Σ2 = G2, on Ω

∂NΣ2 = −H∂2
yσ0|γ−

0
+ (∇H · ∇x)σ1|γ−

0

−H(∇H · ∇x)∂yσ0|γ−

0

+(∇H · ∇x)Σ1 − b1 on Γ.

with

F2 := div(Σ1)−∇xP1 + 2(1− r)∇x · ∇U1 − Re(u0 · ∇U1),
G2 := 2rD(U1) + 2D∇x · ∇Σ1 −We (u0 · ∇Σ1 + ga(∇U1, σ0)) .

Remark 5. With a suitable choice of a0 (resp. b1), the problem related to the velocity
field (resp. constraint field) is well-posed and satisfies the property with exponential
decay towards a constant (resp. 0). Moreover, b1 does not depend on σ1!

� Main correction at order k ≥ 2:

pb(k)





L(A)(uk)− (1− r)∆uk +∇pk = div(σk) + fk + ak on ω0,

div(uk) = 0 on ω0,

L(B)(uk) + L(C)(σk) + σk − D∆σk = 2rD(uk) + gk on ω0,

uk = − limY→∞

∫
T
Uk on γ+,

uk = 0 on γ−
0 ,

∂nσk = 0 on γ+,

∂nσk = bk on γ−
0 .

where fk and gk only depend on solutions that were defined previously:

fk := −Re

k−1∑

i=1

ui · ∇uk−i,

gk := We

k−1∑

i=1

(ui · ∇σk−i + g(∇ui, σk−i)).

Higher order correction terms of the asymptotic expansion are defined as the
solutions of the following elementary problems.

� Correction with boundary layer of order k ≥ 3:

PB(k)





−(1 − r)∆Uk +∇Pk = Fk − ak−2 on Ω,

div(Uk) = 0 on Ω,

Uk = Dk on Γ,

−D∆Σk = Gk on Ω,

∂NΣk = Nk − bk−1 on Γ,



VISCOELASTIC FLOWS IN A ROUGH CHANNEL: A MULTISCALE ANALYSIS 11

where Fk, Dk, Gk and Nk only depend on solutions that were defined previously.

Fk := div(Σk−1) + 2(1− r)∇x · ∇Uk−1

+(1− r)∆xUk−2 −∇xPk−1 + divx(Σk−2)

−Re
k−2∑

i=0

((ui + Ui) · (∇Uk−1−i +∇xUk−2−i) + Ui · ∇uk−i−2) ,

Dk := −
k∑

p=1

(−1)p

p!
Hp∂(p)

y uk−p|b,

Gk := 2rD(Uk−1) + 2rDx(Uk−2)− Σk−2 + 2D∇x · ∇Σk−1 +D∆xΣk−2

−We

(
k−2∑

i=0

ui · (∇Σk−1−i +∇xΣk−i−2)

+Ui · (∇σk−i−2 +∇Σk−1−i +∇xΣk−i−2)

+ga(∇ui,Σk−i−2) + ga(∇Ui+1 +∇xUi, σk−i−2 + Σk−i−2)

)
,

Nk := (∇H · ∇x)σk−1|γ−

0
+ (∇H · ∇x)Σk−1

+

k−1∑

p=1

(−1)p

p!
Hp∂(p)

y ((∇H · ∇x)σk−1−p + ∂yσk−1−p) |γ−

0
.

4. Analysis of the elementary problems: well-posedness and

properties of the solutions

The elementary problems related to the boundary layer correctors with respect
to the velocity take the following form:

PB(ref1)





−(1− r)∆U +∇P = F on Ω,

div(U) = 0 on Ω,

U = D on Γ,

with F ∈ L2(Ω) and D ∈ L2(Td).

Notation 3. We denote F̂j the following Fourier coefficients of a function F defined
on T

d × (0,+∞):

F (X, Y ) =
∑

j∈Zd

F̂j(Y )e2πij·X .

Notation 4. All constants depending only on the domain and on physical constants
will be considered harmless, there will be denoted C. In the same way, we will use
the notation Q(Y ) to denote any polynomial with coefficients depending only on the
domain or on physical constant. In particular the quantities C and Q(Y ) do not
depend on the variables x or X.

Proposition 1. If the following conditions are satisfied∥∥∥F̂0(Y )
∥∥∥ ≤ Q(Y ) e−Y , for all Y > 0,

∥∥∥F̂j(Y )
∥∥∥ ≤ Q(Y ) e−‖j‖Y , for all j ∈ Z

d \ {0} and Y > 0,

then PB(ref1) admits a unique solution (U, P ) satisfying ∇U ∈ L2(Ω) and P ∈ L2(Ω).
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(1) There exists U∞ ∈ R
d such that

∥∥∥Û0(Y )− U∞

∥∥∥+
∣∣∣P̂0(Y )

∣∣∣ ≤ Q(Y ) e−Y , for all Y > 0,
∥∥∥Û0

′
(Y )
∥∥∥+

∣∣∣P̂0

′
(Y )
∣∣∣ ≤ Q(Y ) e−Y , for all Y > 0.

(2) We have

‖U(X, Y )− U∞‖+ |P (X, Y )| ≤ Q(Y ) e−Y , for all X ∈ T
d, Y > 0,

and, for all ℓ ≥ 1,

‖∂ℓ
XU(X, Y )‖+ |∂ℓ

XP (X, Y )| ≤ Q(Y ) e−Y , for all X ∈ T
d, Y > 0.

Remark 6. In this Proposition, the vector U∞ can be identified as the limit of Û0(Y )
when Y goes to +∞:

U∞ := lim
Y→∞

∫

T

U ∈ R
d.

Proof. Let us introduce the following decomposition of the vectors U = (U (1), U (2)) ∈
R

d×R and F = (F (1), F (2)) ∈ R
d×R. Then, we pass to the Fourier transform with

respect to X. Passing in the Fourier regime, equations satisfied by (U, P ) inside the

domain Ω, in problem PB(1), can be translated into

(5)





‖j‖2Û (1)
j − Û

(1)
j

′′

+ ijP̂j = F̂
(1)
j on {Y > 0} ∀j ∈ Z

d,

‖j‖2Û (2)
j − Û

(2)
j

′′

+ P̂j

′
= F̂

(2)
j on {Y > 0} ∀j ∈ Z

d,

ij · Û (1)
j + Û

(2)
j

′

= 0 on {Y > 0} ∀j ∈ Z
d,

where Û
(1)
j

′

, Û
(2)
j

′

and P̂j belong to L2(0,+∞). Now we solve the Fourier problem
and describe the behavior of the solution of the Stokes problem.

(1) Let us discuss the case j = 0. The system reduces to




−Û
(1)
0

′′

= F̂
(1)
0 with Û

(1)
0

′

∈ L2(0,+∞),

−Û
(2)
0

′′

+ P̂0

′
= F̂

(2)
0 with P̂0 ∈ L2(0,+∞),

Û
(2)
0

′

= 0 with Û
(2)
0

′

∈ L2(0,+∞).

By integration, this leads us to the following equalities

Û
(1)
0

′

(Y ) =

∫ +∞

Y

F̂
(1)
0 (ξ) dξ,

Û
(2)
0

′

(Y ) = 0,

Û
(1)
0 (Y ) = Û

(1)
0 (0)−

∫ +∞

0

(∫ +∞

Z

F̂
(1)
0 (ξ) dξ

)
dZ

+

∫ +∞

Y

(∫ +∞

Z

F̂
(1)
0 (ξ) dξ

)
dZ,

Û
(2)
0 (Y ) = Û

(2)
0 (0),

P̂0(Y ) = −
∫ +∞

Y

F̂
(2)
0 (Z) dZ.
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By assumption on the source term, we have
∣∣∣∣
∫ +∞

Y

∫ +∞

Z

F̂
(1)
0 (ζ) dζ dZ

∣∣∣∣ ≤ Q(Y ) e−Y

∣∣∣∣
∫ +∞

Y

F̂
(ℓ)
0 (Z) dZ

∣∣∣∣ ≤ Q(Y ) e−Y , ℓ = 1, 2.

Defining U∞ := (U
(1)
∞ , U

(2)
∞ ) ∈ R

d × R as

U
(1)
∞ := Û

(1)
0 (0)−

∫ +∞

0

(∫ +∞

Z

F̂
(1)
0 (ξ) dξ

)
dZ,

U
(2)
∞ := Û

(2)
0 (0),

we obtain, for all Y > 0,

|Û (1)
0 (Y )− U (1)

∞ |+ |Û (2)
0 (Y )− U (2)

∞ |+ |P̂0(Y )| ≤ Q(Y ) e−Y ,

|Û (1)
0

′

(Y )|+ |Û (2)
0

′

(Y )|+ |P̂0

′
(Y )| ≤ Q(Y ) e−Y .

(2) Let us discuss the case j 6= 0. If the source terms F̂
(1)
j and F̂

(2)
j were written

as Q(Y )e−‖j‖Y then the estimate is proved in [15, Appendix B]. In the present
case, the source terms only satisfy

‖F̂ (1)
j (Y )‖ ≤ Q(Y )e−‖j‖Y , ∀Y > 0,

|F̂ (2)
j (Y )| ≤ Q(Y )e−‖j‖Y , ∀Y > 0,

and the proof can be adapted from [15] by using a comparison principle. In
particular, we can show that∥∥∥Ûj(Y )

∥∥∥+
∣∣∣P̂j(Y )

∣∣∣ ≤ Q(Y ) e−‖j‖Y , for all j ∈ Z
d \ {0} and Y > 0.

�

The elementary problems related to the boundary layer correctors with respect
to the elastic constraint take the following form:

PB(ref2)

{
−∆Σ = G on Ω,

∂NΣ = N on Γ,

with G ∈ L2(Ω) and N ∈ L2(Td).
We note that the problems related to the boundary layer correctors are matricial

problems: the unknowns Σk have matricial values. The elementary problem that we
analyze here is a scalar case but can easily be extend component by component.

Proposition 2. Assume that∫

{Y <0}

G(X, Y ) dX dY =

∫

Td

N(X) dX.

If the following conditions are satisfied∣∣∣Ĝ0(Y )
∣∣∣ ≤ Q(Y ) e−Y , for all Y > 0,

∣∣∣Ĝj(Y )
∣∣∣ ≤ Q(Y ) e−‖j‖Y , for all j ∈ Z

d \ {0} and Y > 0,
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then PB(ref2) admits a unique solution Σ ∈ L2(Ω). Moreover, we have
∣∣∣Σ̂0(Y )

∣∣∣ ≤ Q(Y ) e−Y , for all Y > 0,
∣∣∣Σ̂j(Y )

∣∣∣ ≤ Q(Y ) e−‖j‖Y , for all j ∈ Z
d \ {0} and Y > 0.

In particular, we have

|Σ(X, Y )| ≤ Q(Y ) e−Y , for all X ∈ T
d, Y > 0.

Proof. If the source terms satisfy Ĝ0 = 0 and, for j ≥ 1, Ĝj(Y ) = Q(Y )e−‖j‖Y , then
the estimate is proved in [14, Lemma 2.2]. In the present case, the source terms
only satisfy

|Ĝ0(Y )| ≤ Q(Y ) e−Y and |Ĝj(Y )| ≤ Q(Y )e−‖j‖Y .

The estimate on Σ̂0 can be obtained by straightforward integration. For j 6= 0, the
proof can be adapted from [14] by using a comparison principle. �

Applications: analysis of problems PB(k). Let us recall that the definition of the
boundary layer correction problems PB(k) need to specify the value of ak−2 and bk−1.
Let us first describe how to determine ak−2. In order to apply Proposition 1, we
need to impose that the source term in the momentum equation of PB(k), namely
F := Fk − ak−2, satisfies a sharp decrease for each Fourier mode:

• Averaging this source term F with respect to X gives

F̂0(Y ) =

∫

Td

(Fk(X, Y )− ak−2) dX

=

(∫

Td

Fk(X, Y ) dX − lim
Y→+∞

∫

Td

Fk(X, Y ) dX

)

+

(
lim

Y→+∞

∫

Td

Fk(X, Y ) dX − ak−2

)
.

On one hand, Fk is composed of elementary solutions (Ui, Σ̃i, Pi)1≤i≤k−1

which, by induction, satisfy the expected decreasing behavior. We have
∣∣∣∣
∫

Td

Fk(X, Y )− lim
Y→+∞

∫

Td

Fk(X, Y ) dX

∣∣∣∣ ≤ Q(Y ) e−Y .

On the other hand, in order to satisfy the assumption needed to apply Propo-
sition 1, we impose

(6) ak−2 = lim
Y→+∞

∫

Td

Fk(X, Y ) dX.

• By induction on k, the Fourier coefficients F̂j , for j 6= 0, of the source term
F = Fk − ak−2 satisfy

∥∥∥F̂j(Y )
∥∥∥ ≤ Q(Y ) e−‖j‖Y , ∀j ∈ Z

d \ {0}, ∀Y > 0.

Let us now describe how to determine bk−1. In order to apply Proposition 2, we
need to impose the compatibility condition between the source term in the Laplace
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equation of PB(k), namely G := D−1Gk, and the Neumann boundary term N =
Nk − bk−1:

(7) bk−1 =

∫

Td

Nk(X) dX −D−1

∫

Y <0

Gk(X, Y ) dX dY.

Besides, by induction on k, the Fourier coefficients Ĝj of the source term G := D−1Gk

satisfy ∥∥∥Ĝ0(Y )
∥∥∥ ≤ Q(Y ) e−Y , ∀Y > 0,

∥∥∥Ĝj(Y )
∥∥∥ ≤ Q(Y ) e−‖j‖Y , ∀j ∈ Z

d \ {0}, ∀Y > 0.

5. Error estimates

5.1. Remainder. The asymptotic expansion truncated at a given order leads us to
introduce the so-called remainder (R,Q,S):

u(x) =

N∑

j=0

εj
[
uj (x) + Uj

(
x,

x

ε

)]
+ εNR(x),

p(x) =

N∑

j=0

εj
[
pj (x) + Pj+1

(
x,

x

ε

)]
+ εNQ(x),

σ(x) =

N∑

j=0

εj
[
σj (x) + Σj

(
x,

x

ε

)]
+ εNS(x).

We aim at establishing estimates on the remainder, at any order.
Applying the Oldroyd operator to the remainder (R,Q,S) and considering the

properties of the elementary solutions, we get the following set of equations

• momentum equation, in ωε:

Re
(
εNR · ∇R+ L(A)

ε (R)
)
− (1− r)∆R+∇Q = div(S) + Fε,

• continuity equation, in ωε:

div(R) = 0,

• constitutive equation, in ωε:

We
(
εN (R · ∇S + ga(∇R,S)) + L(B)

ε (R) + L(C)
ε (S)

)
+ S − D∆S

= 2rD(R) + Gε,

• boundary conditions on the velocity, on γ−
ε ∪ γ+:

R = D(±)
ε ,

• boundary conditions on the elastic constraint, on γ−
ε ∪ γ+:

∂nS = N (±)
ε ,
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where operators are defined as follows.

L(A)
ε (R) = R ·

(
N−1∑

k=0

εk(∇uk +∇xUk +∇Uk+1)

)

+εN R · (∇uN +∇xUN ) +

(
N∑

k=0

εk(uk + Uk)

)
· ∇R,

L(B)
ε (R) = R ·

(
N−1∑

k=0

εk(∇σk +∇xΣk +∇Σk+1)

)

+εN R · (∇σN +∇xΣN ) + ga

(
∇R,

N∑

k=0

εk(σk + Σk)

)
,

L(C)
ε (S) =

(
N∑

k=0

εk(uk + Uk)

)
· ∇S + εNga(∇uN +∇xUN ,S)

+ga

(
N−1∑

k=0

εk(∇uk +∇xUk +∇Uk+1),S

)
.

The source terms are defined by

Fε = −Re

(
N∑

k=1

(uk + Uk) · (∇uN−k +∇xUN−k +∇UN+1−k)

)

−Re u0 · (∇uN +∇xUN) + (1− r)∆xUN + (1− r)∆xUN

−∇pN −∇xPN+1 + div(σN ) + divx(ΣN),

Gε = 2rD(uN) + 2rDx(UN)− σN − ΣN +D∆σN +D∆xΣN

−We
N∑

k=1

(
(uk + Uk) · (∇σN−k +∇xΣN−k +∇ΣN+1−k)

)

−We u0 · (∇σN +∇xΣN )

−We
N−1∑

k=0

(
ga(∇uk +∇xUk +∇Uk+1, σN−k + ΣN−k)

)

−We ga(∇uN +∇xUN , σ0),

and the contributions to the boundary relation are given by

D(+)
ε =

N∑

k=0

εk−N

(
lim
Y→∞

∫

T

Uk − Uk|Y=1/ε

)
,

D(−)
ε = −ε−N

N∑

k=0

εk
+∞∑

i=N−k+1

(−εH)i

i!
∂(i)
y uk|γ−

0
,

N (+)
ε = −

N−1∑

k=0

εk−N∂YΣk+1|y=1,Y=1/ε,

N (−)
ε = −ε−N

N∑

k=0

εk
+∞∑

i=N−k+1

(−εH)i

i!
∂(i)
y ((∇H · ∇x)σk + ∂yσk)|γ−

0
.

Proposition 3. The following estimates hold:

‖Fε‖L2 ≤ C, ‖Gε‖L2 ≤ C.
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For all ℓ ≥ 0, for all x ∈ T
d, we have

|∇ℓ
xD(+)

ε (x)| ≤ Q

(
1

ε

)
e−

1

ε , |∇ℓ
xD(−)

ε (x)| ≤ C ε1−ℓ,

|∇ℓ
xN (+)

ε (x)| ≤ Q

(
1

ε

)
e−

1

ε , |∇ℓ
xN (−)

ε (x)| ≤ C ε1−ℓ.

Proof.
• The estimates for Fε and Gε are obvious.
• By using Proposition 1, we know that for each integer k we have

∥∥∥∥Uk

(
x,

x

ε
,
1

ε

)
− lim

Y→∞

∫

T

Uk

∥∥∥∥ ≤ Q

(
1

ε

)
e−

1

ε , for all x ∈ T
d,

and, for all ℓ ≥ 1,
∥∥∥∥∇ℓ

XUk

(
x,

x

ε
,
1

ε

)∥∥∥∥ ≤ Q

(
1

ε

)
e−

1

ε , for all x ∈ T
d.

We immediately deduce that for all ℓ ≥ 0 and for all x ∈ T
d we have

|∇ℓ
xD(+)

ε (x)| ≤ Q

(
1

ε

)
e−

1

ε .

• We estimate ∇ℓ
xD(−)

ε remarking that, using the Taylor formulae, for each
integer k we can write

+∞∑

i=N−k+1

(−εH)i

i!
∂(i)
y uk(x, 0) =

(−εH)N−k+1

(N − k + 1)!
∂(N−k+1)
y uk(x, ξk),

with ξk ∈ [0,−εH(x/ε)]. That implies

D(−)
ε (x,−εH(x/ε)) = −ε

N∑

k=0

(−H)N−k+1

(N − k + 1)!
∂(N−k+1)
y uk(x, ξk).

Now, since D(−)
ε is a finite sum, the estimate directly follows from its analysis.

• Finally, the estimate on ∇ℓ
xN (±)

ε is based on the same arguments, noticing
that the Neumann data, for the remainder, can be reduced to a finite sum
of boundary terms, namely

N (N)
ε (x,−εH(x/ε))

= ε
N∑

k=0

(−H)N−k+1

(N − k + 1)!
∂(N−k+1)
y ((∇H · ∇x)σk + ∂yσk)(x, ζk).

�

5.2. Lift procedure. Well-posedness of the set of equations satisfied by the re-
mainder is obtained by means of construction. Let us point out the fact that the
remainder satisfies a diffusive Oldroyd-type system.

In this step, we aim at modifying the set of equations by using a lift procedure in
order to deal with homogeneous boundary conditions and preserve the homogeneous
incompressibility condition.
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Definition 3. Let τ ∈ C∞(R) be such that

τ(y) =

{
0 if y ≤ 0,
1 if y ≥ 1.

We define Rbound and Sbound as

(8)
Rbound(x, y) = τ(y)D(+)

ε (x) + (1− τ(y))D(−)
ε (x),

Sbound(x, y) = τ(y)N (+)
ε (x) + (1− τ(y))N (−)

ε (x),

and we define Rdiv as a solution of
{

div(Rdiv) = −div(Rbound) in ωε,
Rdiv = 0 on γ−

ε ∪ γ+.

The lift velocity and constraint fields are thus defined as:

Rlift := Rbound +Rdiv, S lift := Sbound

and the lifted velocity and constraint field are thus defined as:

R̃ := R−Rlift, Q̃ := Q, S̃ := S − S lift.

Remark 7. The lifted remainder (R̃, S̃) satisfies a system which is identical to the
system satisfied by (R,S), up to some modifications:

• the boundary conditions are homogeneous ;
• the incompressibility condition is (still) homogeneous ;
• the source terms Fε, Gε, and linear operators L(A), L(B), L(C) have been

(slightly) modified (see further, page 19)

Remark 8. The definition of Rdiv is guaranteed by the following result, due to
Bogovskii [9] (see also [11]):

Proposition 4 (Bogovskii). If H ∈ Hm(ωε), m ≥ 0, is such that
∫

Ωε

H = 0,

then there exists a solution R̃ ∈ Hm+1(ωε) of
{

div(R̃) = H in ωε,

R̃ = 0 on γ−
ε ∪ γ+,

such that

‖∇R̃‖Hm(ωε) ≤ C ‖H‖Hm(ωε).

Thus, the existence of such a lift function R̃ relies on the identity
∫
Ωε

H = 0 with

H = −div(Rbound). By the Stokes formula, we have
∫

Ωε

div(Rbound) =

∫

γ−

ε

D(−)
ε · n+

∫

γ+

D(+)
ε · n =

∫

Ωε

div(R) = 0.

Proposition 5. The following estimates hold:

‖Rlift‖H2 ≤ C ε−1, ‖Slift‖H2 ≤ C ε−1.

Proof.
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• By definition of Rbound and Sbound (see 8), the estimates

‖Rbound‖H2 ≤ C ε−1, ‖Sbound‖H2 ≤ C ε−1.

directly follows from the Proposition 3.
• Following the Bogovskii inequality (see Proposition 4) and the Poincaré in-

equality, we have

‖Rdiv‖H2 ≤ C ‖Rbound‖H2 .

• Since Rlift = Rbound +Rdiv and Slift = Sbound, the two previous steps imply
the result of the Proposition 5.

�

Now estimates for a homogeneous (w.r.t. boundary conditions and incompress-
ibility condition) system have to be established. This is the purpose of the next
subsection.

5.3. Estimate on the remainder. The lifted remainder (R̃, Q̃, S̃) satisfies the
following system:

• momentum equation, in ωε:

εN Re R̃ · ∇R̃+ L̃(A)
ε (R̃)− (1− r)∆R̃+∇Q̃ = div(S̃) + F̃ε,

• constitutive equation, in ωε:

εN We
(
R̃ · ∇S̃ + ga(∇R̃, S̃)

)
+ L̃(B)

ε (R̃) + L̃(C)
ε (S̃) + S̃ − D∆S̃

= 2rD(R̃) + G̃ε

• the homogeneous incompressibility condition, homogeneous Dirichlet condi-
tions for the velocity, homogeneous Neumann conditions for the constraint.

The linear operators are given by:

L̃(A)
ε (R̃) = L(A)

ε (R̃) + Re εN (R̃ · ∇Rlift +Rlift · ∇R̃),

L̃(B)
ε (R̃) = L(B)

ε (R̃) +We εN(R̃ · ∇S lift + ga(∇R̃,S lift)),

L̃(C)
ε (S̃) = L(C)

ε (S̃) +We εN(Rlift · ∇S̃ + ga(∇Rlift, S̃)).

The source terms are given by:

F̃ε = Fε − Re
(
εNRlift · ∇Rlift + L(A)

ε (Rlift)
)
+ (1− r)∆Rlift,

G̃ε = Gε − S lift +D∆S lift −We(L(B)
ε (Rlift) + L(C)

ε (S lift))

−εN We (Rlift · ∇S lift + ga(∇Rlift,S lift)) .

Remark 9. From the Propositions 3 and 5 we can obtain a bound on the new source
terms:

‖F̃ε‖L2 ≤ Cε−1, ‖G̃ε‖L2 ≤ Cε−1.

Theorem 2. The remainder satisfies:

‖∇R‖L2 + ‖S‖H1 ≤ C ε−1.
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Proof. Due to the relations between (R,S,Q) and (R̃, S̃, Q̃)

R̃ := R−Rlift, Q̃ := Q, S̃ := S − S lift,

using the Proposition 5, it suffices to analyze the error on (R̃, S̃, Q̃).
The estimate is then obtained using a classical energy estimate on the system

satisfied by (R̃, S̃, Q̃). More precisely, we first take the scalar product in L2(ωε) of

the momentum equation by 2r R̃. Next we take the scalar product in L2(ωε) of the

constitutive equation by S̃. We finally add the results to obtain

(9) 2r(1− r)

∫

ω

‖∇R̃‖2 +
∫

ω

‖S̃‖2 +D

∫

ω

‖∇S̃‖2 = RHS.

The term RHS is composed as follow:

RHS =− 2r

∫

ωε

L̃(A)
ε (R̃) · R̃+ r

∫

ωε

F̃ε · R̃−We εN
∫

ω

ga(∇R̃, S̃) : S̃

−
∫

ωε

L̃(B)
ε (R̃) · S̃ −

∫

ωε

L̃(C)
ε (S̃) · S̃ +

∫

ωε

G̃ε · S̃.

It is not very difficult to show that the source terms and linear terms of RHS
can be controlled by the terms on the left-hand side of the estimate (9). However
the quadratic term does not lead in a straightforward way to a suitable estimate.
Therefore we have to consider a new argument which is based on a fixed point
procedure. Let us consider the following linearized system, denoted (Rlin.):

εN Re R̃
n · ∇R̃

n+1
+ L̃(A)

ε (R̃
n+1

)− (1− r)∆R̃
n+1

+∇Q̃n+1

= div(S̃
n+1

) + F̃ε,

εN We
(
R̃

n · ∇S̃
n+1

+ ga(∇R̃
n
, S̃

n+1
)
)
+ L̃(B)

ε (R̃
n+1

) + L̃(C)
ε (S̃

n+1
)

+S̃
n+1 −D∆S̃

n+1
= 2rD(R̃

n+1
) + G̃ε,

and

divR̃
n+1

= 0.

where (R̃
n
, S̃

n
) are given. The idea relies on the following arguments:

(1) we show that (R̃
n
, S̃

n
)n is bounded in H1(ωε), up to smallness assumptions ;

(2) by the Cauchy criterion, we show that the sequence (R̃
n
, S̃

n
)n converges in

H1(ωε) ;

(3) we let n tend to +∞ and show that the limit of (R̃
n
, S̃

n
)n is the solution of

the system satisfied by the remainder. The limit still satisfies the estimates
of step 1.

Step 1. Using the classical energy estimate, we have

2r(1− r)

∫

ω

‖∇R̃
n+1‖2 +

∫

ω

‖S̃n+1‖2 +D

∫

ω

‖∇S̃
n+1‖2 = RHS(n).
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The term RHS(n) is composed as follow:

RHS(n) =− 2r

∫

ωε

L̃(A)
ε (R̃

n+1
) · R̃n+1

+ r

∫

ωε

F̃ε · R̃
n+1

−We εN
∫

ω

ga(∇R̃
n
, S̃

n+1
) : S̃

n+1

−
∫

ωε

L̃(B)
ε (R̃

n+1
) · S̃n+1 −

∫

ωε

L̃(C)
ε (S̃

n+1
) · S̃n+1

+

∫

ωε

G̃ε · S̃
n+1

.

We distinguish three types of terms:

• source terms

r

∫

ωε

F̃ε · R̃
n+1

+

∫

ωε

G̃ε · S̃
n+1

Using Cauchy-Schwarz, Poincaré and Young inequalities, we have
∣∣∣∣r
∫

ωε

F̃ε · R̃
n+1
∣∣∣∣ ≤ r‖F̃ε‖L2(ωε)‖R̃

n+1‖L2(ωε)

≤ rCP‖F̃ε‖L2(ωε)‖∇R̃
n+1‖L2(ωε)

≤ r(1− r)‖∇R̃
n+1‖2L2(ωε)

+
r

4(1− r)
C2

P‖F̃ε‖2L2(ωε)

As a matter of fact, r(1−r)‖∇R̃
n+1‖2L2(ωε)

can be absorbed by the heft-hand

side of the energy estimate. The other source term can be treated in a very
similar way.

• linear terms

−2r

∫

ωε

L̃(A)
ε (R̃

n+1
) · R̃n+1 −

∫

ωε

L̃(B)
ε (R̃

n+1
) · S̃n+1 −

∫

ωε

L̃(C)
ε (S̃

n+1
) · S̃n+1

.

Conventional arguments are the Hölder inequality, the Sobolev injections like
H1(ωε) ⊂ L4(ωε), with constant denoted CS, and Young’s inequality. For

instance, the first term of L̃(A)
ε (R̃

n+1
), that is R̃

n+1 · ∇u0, can be treated as
follows:
∣∣∣2r
∫

ωε

(R̃
n+1 · ∇u0) · R̃

n+1
∣∣∣ ≤ 2r ‖R̃n+1‖2L4(ωε)

‖∇u0‖L2(ωε)

≤ 2r CS ‖∇R̃
n+1‖2L2(ωε)

‖∇u0‖L2(ωε).

Under smallness assumptions on u0 (and therefore on the data of the initial
problem), the right-hand side of the above inequality can be absorbed by the
left-hand side of the energy estimate. The other linear terms can be treated
in a very similar way.

• quadratic terms

−We εN
∫

ω

ga(∇R̃
n
, S̃

n+1
) : S̃

n+1
.
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Using the inequality
∣∣∣We εN

∫

ω

ga(∇R̃
n
, S̃

n+1
) : S̃

n+1
∣∣∣

≤ We εN‖∇R̃
n‖L2(ωε)‖S̃

n+1‖2L4(ωε)

≤ We εN CS‖∇R̃
n‖L2(ωε)‖∇S̃

n+1‖2L2(ωε)

for ε sufficiently small (namely We εN CS‖∇R̃
n‖L2(ωε) < D), then the right-

hand side of the above inequality can be absorbed by the left-hand side of
the energy estimate.

From the above considerations, we deduce the following estimate

‖∇R̃
n+1‖2L2(ωε)

+ ‖S̃n+1‖2H1(ωε)
≤ C‖F̃ε‖2L2(ωε)

+ C‖G̃ε‖2L2(ωε)
.

By Remark 9, we obtain

(10) ‖∇R̃
n+1‖2L2(ωε) + ‖S̃n+1‖2H1(ωε) ≤ Cε−2.

Finally, in order to get the induction step on n, it is sufficient to guarantee that

We εN−2CSC < D to get the uniform estimate on (R̃
n
, S̃

n
). Note also that this

condition is satisfied if ε is small enough.

Step 2. We prove that (R̃
n
, S̃

n
)n is a Cauchy sequence in H1(ωε). Introducing

R̂
n+1

:= R̃
n+1 − R̃

n
, Ŝ

n+1
:= S̃

n+1 − S̃
n
, Q̂n+1 := Q̃n+1 − Q̃n,

we get by subtraction in (Rlin.)

εN Re (R̃
n · ∇R̂

n+1
+ R̂

n · ∇R̃
n
) + L̃(A)

ε (R̂
n+1

)− (1− r)∆R̂
n+1

+∇Q̂n+1

= div(Ŝ
n+1

),

εN We
(
R̃

n · ∇Ŝ
n+1

+ R̂
n · ∇S̃

n
+ ga(∇R̃

n
, Ŝ

n+1
) + ga(∇R̂

n
, S̃

n
)
)

+L̃(B)
ε (R̂

n+1
) + L̃(C)

ε (Ŝ
n+1

) + Ŝ
n+1 − D∆Ŝ

n+1
= 2rD(R̂

n+1
)

and

divR̂
n+1

= 0.

Performing an energy estimate consists, again, in multiplying the first equation

by 2rR̂
n+1

then integrate over ωε, multiplying the second equation by Ŝ
n+1

then
integrate over ωε and sum up the two contributions. We use the following estimates:

• The first contributions is easily controlled, as∣∣∣∣εN Re

∫

ωε

(R̃
n · ∇R̂

n+1
) · R̂n+1

∣∣∣∣ = 0.

• The second contribution satisfies:∣∣∣∣εN Re

∫

ωε

(R̂
n · ∇R̃

n
)) · R̂n+1

∣∣∣∣
≤ εN Re‖R̂n‖L4(ωε)‖∇R̃

n‖L2(ωε)‖R̂
n+1‖L4(ωε)

≤ CεN−1‖∇R̂
n‖L2(ωε)‖∇R̂

n+1‖L2(ωε)

≤ r(1− r)‖∇R̂
n+1‖2L2(ωε)

+ C
4r(1−r)

ε2N−2‖∇R̂
n‖2L2(ωε)

,

where we have used the estimate established in Eq. (10) and then Sobolev
imbedding and Young’s inequality.
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• The third contribution satisfies∣∣∣∣
∫

ωε

L̃(A)
ε (R̂

n+1
) · R̂n+1

∣∣∣∣ ≤ |||L̃(A)
ε ||| ‖∇R̂

n+1‖2L2(ωε),

where ||| · ||| denotes the operator norm from L2(ωε) to itself. Recalling

the expression of L̃(A)
ε , it can be shown that |||L̃(A)

ε ||| is arbitrarily small for
sufficiently small data or ε.

• The other contributions can be treated in a straightforward way or by argu-
ments similar to the previous ones.

We thus deduce that, under smallness assumptions on the data and ε,

‖∇R̂
n+1‖2L2(ωε) + ‖Ŝn+1‖2H1(ωε) ≤ Cε2N−2(‖∇R̂

n‖2L2(ωε) + ‖Ŝn‖2H1(ωε)).

It means in particular that (R̃
n+1 − R̃

n
, S̃

n+1 − S̃
n
) tends to 0 as n goes to +∞.

Consequently, (R̃
n
, S̃

n
) is a Cauchy sequence in H1(ωε). The sequence converges

to some (R̃
⋆
, S̃

⋆
) in H1(ωε) which, by means of construction, satisfies the following

estimate:

(11) ‖∇R̃
⋆‖2L2(ωε)

+ ‖S̃⋆‖2H1(ωε)
≤ Cε−2.

Step 3. Letting n tend to +∞ we come to the conclusion that (R̃
⋆
, S̃

⋆
) is the

unique solution of the system satisfied by the lifted remainder. Therefore, the lifted
remainder satisfies:

‖∇R̃‖L2 + ‖S̃‖H1 ≤ C ε−1

which concludes the proof. �

Corollary 3. The asymptotic expansion is valid at any order.

6. Algorithm and numerical procedure

We show in this section that it is possible to effectively evaluate all the con-
tributions of the ansatz. The only difficulty is to prove that the solution of each
problem can be built using the only previous elementary solutions. For instance, let
us prove that (uk, pk, σk), which is the solution of the problem pb(k), only depends
on (uj, pj, σj), j < k and on (Uj, Pj,Σj), j ≤ k. This is not so obvious since the
problem pb(k) calls for the use of a parameter ak, which seems to be related to a
forthcoming problem PB(k+2) through the relationship

ak = lim
Y→+∞

∫

Td

Fk+2(X, Y ) dX.

However we know prove that the definition of ak is a consistent:

Proposition 6. Coefficients ak (see the definition of pb(k) and PB(k+2)) satisfying
Eq. (6) can be written as

ak = lim
Y→+∞

∫

Td

[
− Re u0 · ∇xUk + (1− r)∆xUk

− Re

k−1∑

i=1

ui · ∇xUk−i − Re

k∑

i=1

Ui · (∇xUk−i +∇uk−i)
]
.
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Proof. The source contribution Fk+2 can be written as FA
k+2 + FB

k+2 with

FA
k+2 =

[
− Re u0 · ∇xUk + (1− r)∆xUk + divx(Σk)

− Re
k−1∑

i=1

ui · (∇Uk+1−i +∇xUk−i)

− Re

k∑

i=1

Ui · (∇Uk+1−i +∇xUk−i +∇uk−i)
]
,

FB
k+2 =− Re u0 · ∇Uk+1 − Re uk · ∇U1 + div(Σk+1)

+ 2(1− r)∇x · ∇Uk+1 −∇xPk+1.

The first contribution FA
k+2 using the already defined elementary solutions ((uj, pj, σj),

j < k and (Uj , Pj,Σj), j ≤ k), whereas the second ones FB
k+2 using elementary solu-

tions of problem pb(k) and PB(k+1).

We now prove that lim
Y→+∞

∫

Td

FB
k+2 = 0. For instance, we treat the first contribu-

tion (the four other contributions are similarly treated)

u0 · ∇Uk+1 =

d∑

ℓ=1

u
(ℓ)
0 ∂Xℓ

Uk+1 − u
(d+1)
0 ∂Y Uk+1.

Taking the X-average, using the periodicity we obtain∫

Td

u0 · ∇Uk+1 = u
(d+1)
0 ∂Y

( ∫

Td

Uk+1

)
.

Due to the behavior of the mean value
∫
Td Uk+1 (see the Proposition 1), we have

lim
Y→+∞

∫

Td

u0 · ∇Uk+1 = 0.

To conclude the proof, it suffices to note that some contributions of FA
k+2 vanish

too. �

The problem pb(k) calls for the use of a parameter bk, which seem to be related to
a forthcoming problem PB(k+1) through the relationship

bk =

∫

Td

Nk+1(X) dX −D−1

∫

Y <0

Gk+1(X, Y ) dX dY.

However we know prove that the definition of bk is a consistent:

Proposition 7. Coefficients bk (see the definition of pb(k) and PB(k+1)) satisfying
Eq. (7) only depend on the elementary solutions (uj, pj, σj)j<k and (Uj , Pj,Σj)j≤k.

Proof. The source contribution Gk+1 only depends on the already defined elementary
solutions ((uj, pj, σj), j < k and (Uj , Pj,Σj), j ≤ k). Only one term in the boundary
contribution Nk+1 does not depend on these elementary solution: NB

k+1 = (∇H ·
∇x)σk−1|γ−

0
. Nevertheless, its X-average is equals to 0. �

The resulting application of Propositions 6 and 7 leads to the following algorithm
which allows us to build the approximation of the solution at any fixed order of
precision:
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Initialization:

Compute a0 (compatibility of problem PB(2) at the top)

Compute b0 (compatibility of problem PB(1) at the bottom)
Compute (u0, p0, σ0)
Compute (U1, P1,Σ1)

Iterative process on k:
FOR k = 1, ...,+∞, DO

Compute ak (compatibility of problem PB(k+2) at the top)

Compute bk (compatibility of problem PB(k+1) at the bottom)
Compute (uk, pk, σk)
Compute (Uk+1, Pk+1,Σk+1)

END

7. Concluding remarks

7.1. Boundary conditions. The diffusive Oldroyd model is generally associated to
Neumann boundary conditions for the elastic stress tensor [30], as suggested by the
interpretation of the stress diffusion term as arising from the diffusion of polymeric
dumbbells [18]. However some authors also considered Dirichlet boundary conditions
[31] or mixed boundary conditions [2]. We emphasize that the method that has been
developped in this paper readily adapts to the consideration of Dirichlet boundary
conditions: the definition of the elementary problems has to be adapted and, in
particular, the behaviour at infinity of the boundary layer elastic tensor corrector
is completely determined by an exponential decay towards a constant which can be
counter-balanced by using a suitable elementary problem at next order.

7.2. Influence of the curvature of the channel. The analysis of the roughness
effects has been led in a particular geometry: a channel. When considering space-
varying profiles of the boundary such as nozzles or more general converging-diverging
profiles, additional coupling effects have to be taken into account. Although the
methodology developped in this paper still applies, source terms have to be added in
the elementary problems in order to include the scale effects at the macroscopic scale
onto the boundary term which serves as a correction in the boundary layer problems.
However, there is no additional difficulty from the mathematical point of view,
although it tends to increase the complexity of the description of the elementary
problems.

7.3. The non-diffusive model. In many studies the standard Oldroyd model is
considered without diffusion of the elastic stress tensor. The link between the stan-
dard model and the diffusive model has been investigated from the numerical point
of view by the authors [16] by considering the vanishing diffusion process in the dif-
fusive model. In the context of the roughness issue, the adaptation of our analysis is
questionable when considering the standard Oldroyd model only. Although the two
models are very close (at least formally in the regime D → 0), the asymptotic expan-
sion proposed in this paper does not apply to the case D = 0, even formally. This
is due to the degeneracy of the boundary conditions: first, the loss of the boundary
conditions in the standard model prevents us from developping the current strategy
which is based upon the correction of the boundary terms at higher orders ; second,
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ignoring the specific treatment of the boundary conditions that was done in the
diffusive model provides inconsistent elementary problems.
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