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Members of the family Iridoviridae are animal viruses that infect only invertebrates and

poikilothermic vertebrates. The invertebrate iridovirus 31 (IIV31) was originally isolated from adult

pill bugs, Armadillidium vulgare (class Crustacea, order Isopoda, suborder Oniscidea), found in

southern California on the campus of the University of California, Riverside, USA. IIV31 virions are

icosahedral, have a diameter of about 135 nm, and contain a dsDNA genome 220.222 kbp in

length, with 35.09 mol % G+C content and 203 ORFs. Here, we describe the complete genome

sequence of this virus and its annotation. This is the eighth genome sequence of an IIV reported.

The family Iridoviridae consists of large dsDNA viruses that
infect species of both poikilothermic vertebrates (fishes,
amphibians and reptiles) and invertebrates (arachnids,
cephalopods, crustaceans, insects, molluscs, nematodes and
polychaetes; Williams, 2008). These viruses are members of
the order Megavirales (Colson et al., 2013), so-called
nucleocytoplasmic large DNA viruses (NCLDVs; Iyer et al.,
2001). The dsDNA genomes of iridoviruses are circularly
permuted with terminal redundancy. As a consequence, the
map of their genomes is represented as a circular molecule.
Only one linear molecule is encapsidated in each virion, with
the ends of individual encapsidated genomes being located
at different positions on the map of different virions (Bigot
et al., 2000). The genome of vertebrate iridoviruses is highly
methylated, whereas little or no methylation occurs in the
genomes of the invertebrate iridoviruses (IIV). Replication
of the iridoviral genome includes distinct nuclear and
cytoplasmic phases, but virions only assemble in the cyto-
plasm (Jancovich et al., 2011). The genomes are encapsi-
dated within an icosahedral capsid ranging between 120 and
180 nm in diameter. Capsids are composed predominantly
of a 50 kDa major capsid protein. The IIV studied by

cryo-electron microscopy have surface fibrils 2 nm in
diameter (Yan et al., 2000).

The taxonomic structure of the family Iridoviridae is
currently organized into five genera: Chloriridovirus, Irido-
virus, Lymphocystivirus, Megalocytivirus and Ranavirus.
Members of the two first genera have a host range restricted
to invertebrate species, whereas the three others infect only
poikilothermic vertebrates. The model species for the genus
Chloriridovirus is IIV3 (Delhon et al., 2006; Jancovich et al.,
2011), the only species reported in this genus. The type
species for the genus Iridovirus is IIV6, and only two species,
IIV1 and IIV6, have been recognized by the International
Committee for Virus Taxonomy (ICTV) as representatives
of this genus. Ten other related viruses that may be Iridovirus
species await biological and genomic data before it can
be determined whether they are valid species or variants of
existing species. Interestingly, the phylogenetic analyses of
proteins encoded by IIV3, IIV6 (Jakob et al., 2001) and IIV9
(Wong et al., 2011) have revealed that IIV9 is more closely
related to IIV3 than to IIV6. This has been confirmed with
IIV22, IIV22A, IIV25 and IIV30, four close relatives of IIV9
(Piégu et al., 2013a, b, c, d), indicating that some species of
the genus Iridovirus are more closely related to members of
the genus Chloriridovirus than to other Iridovirus species
from insects. Consequently, this suggests that the genus

The GenBank/EMBL/DDBJ accession number for the complete
genome sequence of IIV31 is HF920637.

A supplementary table is available with the online version of this paper.
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Iridovirus contains several diverse species or species com-
plexes. Division of the Iridovirus genus into three species
complexes, the Polyiridovirus (type species IIV9), the
Oligoiridovirus (type species IIV6) and the Crustaceoiri-
dovirus (type species IIV31), has been proposed (Williams,
1994; Williams & Cory, 1994), among which members of the
Polyiridovirus complex would share a common iridovirus
ancestor with those of the genus Chloriridovirus. This
proposal has not been accepted formally by the ICTV, but
in agreement with it are data showing that members of the
Oligoiridovirus complex are the closest IIV relatives of the
family Ascoviridae (Bigot et al., 2011), and share a common
IIV ancestor (Stasiak et al., 2003; Bigot et al., 2009).
Moreover, ascoviruses and IIVs are more closely related to
each other than to vertebrate iridoviruses. Although first
determined through phylogenetic analyses, this classification
is strongly supported by data showing that these invertebrate
viruses share 26 core genes, of which only 19 are found in
vertebrate iridoviruses (Eaton et al., 2007; Bigot et al., 2009).
A precise definition of genera among the IIVs therefore
remains unresolved at present, and further investigations are
required to elucidate whether or not species complexes
should be elevated to genus rank.

To date, six genomes of IIVs have been sequenced: IIV3,
the mosquito iridescent virus (Delhon et al., 2006), IIV6,
the Chilo iridescent virus (Jakob et al., 2001), IIV9, the
Wiseana iridovirus (Wong et al., 2011), IIV22 (Piégu et al.,
2013a), IIV22A (Piégu et al., 2013b), IIV25 (Piégu et al.,
2013c) and IIV30 (Piégu et al., 2013d). Here, we present a
summary classification and a set of features for IIV31, the
eighth IIV sequenced, together with the description of the
sequencing and annotation of its genome. To date, the
classification status of IIV31 reveals that it is a tentative
species belonging to the genus Iridovirus, in which it is
related to the Crustaceoiridovirus complex (Williams, 1994;
Williams & Cory, 1994; Jancovich et al., 2011).

IIV31 was originally isolated from a sample of adult pill
bugs of the species Armadillidium vulgare (Crustacea,
Isopoda, Oniscidea) in southern California on the campus
of the University of California, Riverside, USA (Federici,
1980; Williams, 1994). IIV31 has been found to have a wide
host range in populations of crustacean species (Wijnhoven
& Berg, 1999). Large quantities of virions can be directly
purified from adults recovered from natural habitats such as
leaf litter. However, it can also be produced per os and by
injection of healthy isopods, or larvae of a coleopteran (Cole
& Morris, 1980). Here, virions of iridovirus type IIV31
were harvested in April 2010 from isopods collected from a
bed of ivy on the campus of the University of California,
Riverside, and frozen at 280 uC. IIV31-infected isopod
adults are recognizable by a characteristic blue discoloration
of the normally grey cuticle. IIV31 virions and their gen-
omic DNA (gDNA) were purified as described elsewhere
(Federici, 1980; Bigot et al., 2009). The purity of our IIV31
sample was determined by digesting virion gDNA with
restriction enzymes using published data as a reference
(Federici, 1980; Williams, 1994).

In 2009, the scientific committee of GENOSCOPE selected
the IIV31 genome for sequencing. The complete genome
sequence and annotation are now available in the EMBL
database (accession no. HF920637). A summary of the
project results is shown in Table 1. The genome of IIV31
was sequenced using the 454 FLX pyrosequencing platform
(Roche/454). Library construction and sequencing were
performed as previously described elsewhere (Henn et al.,
2010). De novo genome assembly was performed using the
Newbler v2.3 assembly software package as previously
described elsewhere (Henn et al., 2010). Assembly metrics
are described in Table 1. The assembled contig representing
the entire IIV30 genome sequence was confirmed by
comparing five predicted restriction fragment profiles from
the genome, for BamHI, EcoRI, HindIII, PstI and SalI, with
the matching fragment profiles produced by actual restric-
tion digestions of the IIV31 genome (Federici, 1980;
Williams, 1994).

Genes were identified using the Broad Institute Automated
Phage Annotation Protocol as described elsewhere (Ashburner
et al., 2000; Henn et al., 2010). Briefly, evidence-based and
ab initio gene prediction algorithms were used to identify
putative genes, followed by construction of a consensus
gene model using a rules-based evidence approach. Gene
models were manually checked for errors such as in-frame
stops, very short peptides, splits and merges. Additional
gene prediction analysis and functional annotation were
performed as previously described (Bigot et al., 2009).

General features of the IIV31 genome sequence (Table 2)
include a nucleotide composition of 35.09 mol % G+C
(Fig. 1). Pair alignment using BLASTN of the IIV31 genome
with those of the IIV3, IIV6, IIV9, IIV22, IIV22A, IIV25
and IIV30 genomes did not reveal any identity at the level
of nucleotide sequences. Similarly, we did not find any
conserved cluster of collinear genes between IIV31 and the
other IIVs.

A total of 203 genes encoding proteins were predicted.
No genes coding for tRNAs were found. Of the 203 coding
DNA sequences (CDSs), 125 were in forward orientation
and 78 in reverse orientation. Four gene pairs were found
to overlap: 103R/104L, 114R/155L, 129L/130R and 162L/
163R. Eighty-four CDSs (41.4 %) have been annotated
with functional product predictions. The annotation of
the 203 genes, described in Table S1 (available in the
online Supplementary Material), revealed that 184 of the
203 CDSs have a related gene in databases, with e values
below 1023. One hundred and seventy-two genes have an
orthologue in the IIV6 genome, three genes (004R, 040R,
067L) have an orthologue in the IIV9 genome that did not
occur in the IIV6 genome, four genes (015L, 024R, 084R,
119R) have a viral orthologue that did not occur in one
of the currently sequenced IIV genomes, and five genes
(013L, 022L, 082L, 128L, 136L) have no orthologue in any
currently sequenced viral genomes, but have an orthologue
in a prokaryotic or a eukaryotic genome. Finally, 19 genes
have no orthologue in databases and putatively correspond

B. Piégu and others

1586 Journal of General Virology 95



to novel genes (003R, 010L, 025L, 034R, 035L, 072L, 074R,
080R, 085R, 091R, 098R, 101R, 102R, 105L, 109R, 114R,
153L, 183R, 192R). Due to its close relatedness to IIV6, the
functions of 84 of the proteins, assigned by Jakob et al.
(2001), are considered the same for this isopod IIV.

With regard to repeats, three families of gene paralogues
occur in the IIV31 genome. The first contains 10 members
that are related to CIV genes 006L, 019R, 029R, 146R,
148R, 211L, 212L, 238R, 313L, 388R, 420R and 468L. The
second contains three members related to CIV261R, 396L
and 443R. The third contains eight members that belong to
the family bro-like genes, a widespread family of repeated
genes in NCLDVs (Bideshi et al., 2003).

Three gene fossils, i.e. genes containing stop codons or
frameshifts, were found in IIV31. The status of these genes
was confirmed by PCR and sequencing, and therefore we
decided to annotate them as fossil genes. The first is located
between nucleotides 27 211 and 27 755. It is a derivative
of a mimivirus gene, MIMI_R865, that belongs in the
Acanthamoeba polyphaga mimivirus genome to a family of
gene paralogues to which also belong genes MIMI_L17,
MIMI_R298 and MIMI_L754. The second fossil is located
between nucleotides 55 260 and 55 883. It is related to the

gene CIV261R and has a functional paralogue in the IIV31
genome, 051R. The third fossil is located between
nucleotides 190 307 and 191 099. It was determined as a
member of the family bro-like genes.

The presence of certain mobile genetic elements that occur
in some NCLDVs belonging to the families Phycodna-
viridae, Mimiviridae and Ascoviridae was searched for in
the IIV31 genome (Desnues et al., 2012; Bao & Jurka,
2013). No transpovirons, group I introns and Fanzor1 or
Fanzor2 DNA transposons were found. In contrast to IIV6,
IIV9, IIV22, IIV22A, IIV25 and IIV30, no inteins were
found inserted into the ORF 097R of IIV31, which encodes
the alpha subunit of the ribonucleotide-diphosphate
reductase. However, one intein was found to be specifically
inserted in-frame in 001R, which encodes the delta DNA
polymerase, as reported previously (Bigot et al., 2013).

A miniature transposon (MITE) was found between
nucleotides 38 829 and 39 878. This 1049 bp MITE was
named IIV31-MITE. We think that this is a derivative of a
class II transposon (Wicker et al., 2007). Indeed, both of its
extremities correspond to inverted terminal repeats (ITRs)
about 371 bp in length that are juxtaposed at their outer
ends by a CTAG tetranucleotide that corresponds to a

Table 1. Genome sequencing project information

MIGS ID Property Information

MIGS-31 Finishing quality Finished (.99 %)

No. of contigs 1

Assembly size 220 222 bp

Assembly coverage 306
Total number of reads used 33 821

MIGS-29 Sequencing plate form 454

MIGS-30 Assemblers Newbler version 2.3, post-release – 19.11.2009

Gene calling method Annotation protocol – Bigot et al. (2009)

EMBL accession no. HF920637

Table 2. Genome statistics of IIV31

Attribute Value % of total*

Size (bp) 220 222 100

G+C content (bp) 77 276 35.09

Coding region (bp) 189 465 86.0

Pseudogenes 3 100

Total genes (putatively functional) 203 100

Protein-encoding genes with function prediction 84 41.3

Protein-encoding genes with orthologues in

databases

– –

Family of gene paralogues 3 –

Genes in families of paralogous genes 21 10.4

Non-coding regions over 200 bp in length 10 788 (20 segments) 4.9

*The total is based on either the size of the genome in bp or the total number of protein-encoding genes in

the annotated genome, where applicable.

IIV31 genome
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target site duplication (TSD), which occurred at the time of
the MITE insertion (Fig. 2). Its inner regions contain two
repeat motifs that are 39 and 10 bp in length, each repeated
four times. In the IIV31 genome, this MITE overlapped two
small paralogous CDSs, 034R and 035L (Table S1), that had
no orthologue in other sequenced iridoviruses.

The nucleotide sequence comparison of IIV31-MITE
with IIV9-MITE and IIV22-MITE revealed that they were
not related. Interestingly, the TSD and the ITR length of

the IIV31-MITE match those of a prokaryotic family of
insertion sequence, IS5. An IS5-like transposon with
similar TSD and ITR features, IS5_Av, has already been
described in the genome of a bdelloid rotifer, Adineta vaga
(Gladyshev & Arkhipova, 2009). Here, we propose that
IIV31-MITE and IS5_Av could represent the only two
members of a currently unknown eukaryotic family of
transposable elements that would be related to the IS5
prokaryotic family. However, no sequence data for the
transposase that mediated the transposition of IIV31-MITE
are available to confirm this proposition.

IIV31 is, to our knowledge, the first iridovirus genome
infecting a crustacean species to be sequenced and
reported. This genome revealed 19 new putative proteins
with sizes varying from 105 to 435 aa residues. Many (184)
of the CDSs identified displayed high conservation with
their counterparts in other IIVs, insect and bacterial
genomes. Further sequencing of related strains will reveal
more about the genetic and functional diversity of these
interesting viruses.

The discovery of IIV31-MITE, together with that of
IIV09-MITE and IIV22-MITE, and of Fanzor1 and 2
DNA transposons (Bao & Jurka, 2013) in two ascoviruses,
SfAV1a and HvAV3e, suggests that these closely related
invertebrate viruses (Stasiak et al., 2003; Bigot et al., 2009)
might be, a priori, vectors of horizontal transfers of
transposable elements between host species. However,
their presence in these genomes must be considered as
unexpected for two reasons. First, the cellular niche of
these viruses is mostly cytoplasmic, whereas that of the
DNA transposons is only nuclear. Second, the genome of
these viruses has a molecular configuration in which the
DNA is not negatively supercoiled or is negatively super-
coiled to only a small extent (Bigot et al., 2000). Such
genome configurations are incompatible with some needs
of DNA transposons. Indeed, DNA transposons need a
negatively supercoiled DNA environment for an efficient
mobility at the excision and the insertion sites (Sinzelle

200 000

180 000

160 000

IIV31
220 222 bp

140 000

120 000 100 000

80 000

60 000

40 000

20 000

220 000
0

Fig. 1. Circular map of the 220 222 bp IIV31 genome. The outer
scale is numbered clockwise in bp. Circles 1 and 2 (from outside
to inside) denote CDSs (forward strands in red and reverse
strands in blue). Green boxes in circle 3 represent ORF-free
regions with a size of over 200 bp. The orange boxes in circle 4
represent the three fossil genes. Circle 5 represents the local
variations of G+C content along the genome sequence (green,
regions with a GC content above the average; purple, regions with
a GC content below the average).

 IIV31-MITE
38820 - gaaga

aatgc - 39887

Fig. 2. Nucleotide sequence of the IIV31-MITE
that was found in the region spanning nucleo-
tides 38 829 and 39 878. ITRs are highlighted
in black with white text, and the duplicated
CTGA tetranucleotide at the insertion site is
in bold type. The four 39 bp motifs that are
tandemly repeated in the inner region are in
italic type and alternately highlighted in light or
dark grey. The four TATAAAAATT motifs are
underlined.
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et al., 2008; Crénès et al., 2009; Claeys Bouuaert &
Chalmers, 2013). Given these requirements, DNA transpo-
sons are expected to be found in the genomes of nuclear
viruses such as baculoviruses (van Oers & Vlak, 2007),
nudiviruses and hytrosaviruses, but not in those of
cytoplasmic viruses. As a consequence, an alternative
interpretation is to suggest that the presence of the DNA
transposon in these viruses would have a function under a
selection pressure, which would be advantageous for the
viruses bearing them in their genome. This might find
support based on two observations. First, DNA transpo-
sons and MITEs are repeated elements that are interspersed
in eukaryotic genomes, including introns, and 59 and 39

regions of genes that are transcribed in mRNA, but are not
translated. Due to the presence of ITRs at their ends, DNA
transposon and MITE transcripts can assemble in intra-
strand dyad structures (Petit et al., 2007), i.e. short hairpin
RNA (shRNA) molecules that are good substrates for the
RNA interference machineries. Second, IIVs and asco-
viruses were found to encode enzymes able to manipulate
the host RNA interference machineries (Bigot et al., 2009;
Hussain et al., 2010; Wong et al., 2011). Since all the
genome of IIVs and ascoviruses seems to be transcribed
during the viral cycle (D’Costa et al., 2004), our hypothesis
is that shRNA transcripts from DNA transposon and MITE
provide another way used by these viruses to modify the
expression of some host genes by RNA interference.
Further sequencing of the genome of their hosts will be
required to verify the consistency of this hypothesis.
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Augé-Gouillou, C. (2008). Factors acting on Mos1 transposition
efficiency. BMC Mol Biol 9, 106.

Stasiak, K., Renault, S., Demattei, M. V., Bigot, Y. & Federici, B. A.
(2003). Evidence for the evolution of ascoviruses from iridoviruses.
J Gen Virol 84, 2999–3009.

van Oers, M. M. & Vlak, J. M. (2007). Baculovirus genomics. Curr Drug

Targets 8, 1051–1068.

Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P.,
Chalhoub, B., Flavell, A., Leroy, P., Morgante, M. & other authors
(2007). A unified classification system for eukaryotic transposable

elements. Nat Rev Genet 8, 973–982. .

Wijnhoven, H. & Berg, M. P. (1999). Some notes on the distribution

and ecology of Iridovirus (Iridovirus, Iridoviridae) in terrestrial

isopods (Isopoda, Oniscidae). Crustaceana 72, 145–156.

Williams, T. (1994). Comparative studies of iridoviruses: further

support for a new classification. Virus Res 33, 99–121.

Williams, T. (2008). Natural invertebrate hosts of iridoviruses

(Iridoviridae). Neotrop Entomol 37, 615–632.

Williams, T. & Cory, J. S. (1994). Proposals for a new classification of

iridescent viruses. J Gen Virol 75, 1291–1301.

Wong, C. K., Young, V. L., Kleffmann, T. & Ward, V. K. (2011).
Genomic and proteomic analysis of invertebrate iridovirus type 9.

J Virol 85, 7900–7911.

Yan, X., Olson, N. H., Van Etten, J. L., Bergoin, M., Rossmann, M. G. &
Baker, T. S. (2000). Structure and assembly of large lipid-containing

dsDNA viruses. Nat Struct Biol 7, 101–103.
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