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Abstract

Among T3 receptors, TRa1 is ubiquitous and its deletion or a specific expression of a dominant-negative TRa1 isoform in
Sertoli cell leads to an increase in testis weight and sperm production. The identification of a 43-kDa truncated form of the
nuclear receptor TRa1 (p43) in the mitochondrial matrix led us to test the hypothesis that this mitochondrial transcription
factor could regulate Sertoli cell proliferation. Here we report that p43 depletion in mice increases testis weight and sperm
reserve. In addition, we found that p43 deletion increases Sertoli cell proliferation in postnatal testis at 3 days of
development. Electron microscopy studies evidence an alteration of mitochondrial morphology observed specifically in
Sertoli cells of p432/2 mice. Moreover, gene expression studies indicate that the lack of p43 in testis induced an alteration
of the mitochondrial-nuclear cross-talk. In particular, the up-regulation of Cdk4 and c-myc pathway in p432/2 probably
explain the extended proliferation recorded in Sertoli cells of these mice. Our finding suggests that T3 limits post-natal
Sertoli cell proliferation mainly through its mitochondrial T3 receptor p43.
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Introduction

Sertoli cells (SC) are essential in spermatogenesis. It is well

established that the number of SC conditions the efficiency of

spermatogenesis as one SC can only support a limited number of

germ cells [1]. SC number is defined during the foetal and pre-

pubertal periods. The SC proliferation arrest mainly depends on

thyroid hormone T3. In rodents, during the post natal period, the

arrest of SC proliferation and entry into differentiation is

correlated with a peak of T3 blood level [2]. Neonatal

hypothyroidism in mice and rats leads to an increase in the

weight of adult testis and epididymis due to an increase in the daily

sperm production [3–8].

For a while, it was assumed that thyroid hormone acts

exclusively through nuclear receptors: TRa1, TRa2, TRb1,

TRb2 encoded by the THRA and THRB genes [9]. Among T3

receptors, TRa1 is ubiquitous and it was previously described that

its total deletion in mice leads to an increase in testis weight and

sperm production [10]. Moreover, a specific expression of

dominant-negative TRa1 isoform in SC exhibited similar pheno-

typic features to the TRa1 knock-out mice: heavier testicular

weight and higher sperm reserve [11]. In 1995, a 43-kDa

truncated form of the nuclear receptor TRa1 was identified in

the mitochondrial matrix (p43) [12]. This protein is synthesized by

the use of internal initiation site of translation occuring in the

TRa1 transcript. The p43 is a mitochondrial T3 receptor

ubiquitously expressed that stimulates mitochondrial transcription

and protein synthesis in the presence of T3 [13]. The physiological

importance of p43 was recently revealed by the use of mice

overexpressing or lacking this mitochondrial receptor. In partic-

ular, these works establish that p43 receptor strongly affects muscle

mass and the metabolic and contractile features of myofibers [14–

16]. In addition, p43 was found to regulate insulin secretion and

glucose homeostasis [17].

In this work, we focused our study on testis because the presence

of high-affinity binding sites for T3 has been reported in rat Sertoli

cell mitochondria [18]. Here we report that p43 specific depletion

in mice increases testis weight and sperm reserve. In addition, we

found that p43 deletion increases Sertoli cell proliferation in

postnatal testis at 3 days of development. Moreover, gene

expression studies provided some molecular mechanisms under-

lying the ability of T3 to arrest Sertoli cell proliferation. In

particular, c-myc and Cdk4 could be the central targets of the

mitochondrial-nuclear crosstalk, controlling the proliferation of

Sertoli cells. In summary, we demonstrate that the T3 limits post-

natal Sertoli cell proliferation in part through its mitochondrial T3

receptor p43.
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Materials and Methods

Animals
All animal experiments were performed according to European

directives (86/609/CEE) and approved by the Comité d’Ethique

en matière d’Expérimentation Animale : Région Languedoc-

Rousillon. Our animal studies were conducted in accordance with

guidelines for the care and use of laboratory animals issued by the

french Ministry of Agriculture.

Mice were fed a standard laboratory diet and tap water ad

libitum. The p432/2 mice lacking specifically the mitochondrial

T3 receptor were generated by François Casas as described

previously [17]. To only inhibit p43 translation from TR1 mRNA,

we deleted the internal translation start in exon 3 using site

directed PCR mutagenesis to change the methionine codon at

position 109 to a leucine codon. Targeting construct was

electroporated into 129SV embryonic stem (ES) cells. We

generated chimeras by blastocyst injection of ES cells and

obtained germline transmissionof the mutated allele. We mated

them with C57BL/6 females. Offspring inheriting the p43-

mutated allele were intercrossed to generate the p432/2 line.

Homozygote p432/2 mice born from the 3 independent ES cell

clones were viable, fertile, and appeared normal. All the mice used

in these studies were back-crossed at least 10 times into the

C57BL/6 background.

The colony was generated by crossing p432/2 mice with wild-

type (WT) C57BL/6 breeders and generated future generation of

WT controls.

Determination of Testis Weight and Sperm Reserve
Adult p432/2 and their respective control mice were sacrificed

and one testis was weighed and then frozen for sperm reserve

determination as described previously [19]. Briefly, testis were

disrupted in 3 ml of L15 medium (Gibco-Invitrogen) in a glass

potter before sonication for 30 seconds. Remaining sperm nuclei

were counted using hemocytometry. These nuclei contain

spermatozoa and elongating spermatid nuclei (stages II-VII), and

their number defines the testicular sperm reserve [8]. The

testicular sperm reserve/mg was obtained after dividing whole

testicular sperm reserve by the weight of the testis.

Fertility Test
Each male (n = 30 per genotype) was mated with two

primiparous C57/black6 females; birth date were noted to detect

a putative delay in mating, and pups were counted at birth.

Plasma Testosterone
Mice were treated with an intraperitoneal injection of 15IU/

animal of human chorionic gonadotropin (hCG) (Chorulon).

Blood was collected before (basal level) and two hours after this

injection (stimulated level). The plasma was stored at 220uC until

tritium-based testosterone competitive radio-immunoassays were

carried out as described previously [20]. The sensitivity of the

assay was 0.125 ng/ml and the intra-assay coefficient of variation

was 7.5%. Briefly, samples (two dilutions per sample) or

testosterone dilutions (to determine the range) were incubated

for 1h at 40uC (Buffer: 0.1 M phosphate buffer 0.1% gelatin) with

tritiated testosterone plus the anti-testosterone antibody. A

secondary antibody was then added and the mixtures incubated

for one night at 4uC. Immuno-precipitation was then performed

with PEG (PolyEthyleneGlycol) 4000 and radioactivity was

counted (Packard C2900 TriCarb).

Serum FSH Levels
Serum FSH levels were determined in a volume of 100 ml using

a double Ab method and a RIA kit (rFSH RIA), kindly supplied by

the National Institutes of Health (Dr. A. F. Parlow, National

Hormone and Peptide Program, Torrance, CA). Rat FSH antigen

(NIDDK-rFSH-I) was labeled with 125I by the chloramine-T

method and the hormone concentration was expressed using the

rat FSH reference preparation (NIDDK-rFSH-RP-2) as standard.

Intraassay and interassay coefficients were less than 7 and 10%,

respectively. The sensitivity of the assay was 0.125 ng/100 ml.

Testis Histology
Testis histology (seminiferous tubule organization) was analyzed

after fixing in Bouin’s fluid and embedding in paraffin. Sections

(4 mm) were stained with haematoxylin for microscopic observa-

tion.

Determination of SC Proliferation Index in Vivo
p432/2 and WT mice at post-natal day 3 (P3) and 10 (P10)

were injected with 50 mg/g (of body weight) of 5-bromo-2-

deoxyuridine (BrdU) (Sigma) 3 hours before sacrifice and BrdU

was incorporated in proliferating cells. Testis were fixed in Bouin’s

fluid, embedded in paraffin and sectioned (4 mm). After antigen

retrieval in a boiling sodium citrate buffer (pH 6.0), endogenous

peroxidase activity was quenched with H2O2. BrdU immunode-

tection was performed using a mouse IgG monoclonal antibody

(Roche; 1/200), and revealed using a peroxidase labelled polymer

conjugated to goat anti-mouse IgG (Dako) and 3 39diaminoben-

zidine chromogen (DAB) (Dako). Negative-controls were pro-

cessed without the BrdU antibody. After counterstaining with

haematoxylin, a total of 1000 proliferating (BrdU stained) and

quiescent SC were counted (blindly) per animal using Histolab

(GT Vision) analysis software.

RNA Extraction and Quantitative RT-PCR (Q-PCR) of Testis
at P3

Total RNA was isolated from whole testis at P3 using Trizol

reagent (Invitrogen) according to the manufacturer’s instructions.

To quantify the expression of genes involved in the cell cycle and

in mitochondrial activity, we used Profiler PCR Array technology

(Qiagen; http://www.sabiosciences.com/PCRArrayPlate.php) as

recommended by the manufacturer and used by others [21]. Gene

expression levels were normalized using five reference genes in the

array: b-glucuronidase, hypoxanthine guanine, heatshock protein

90ab1, glyceraldehyde-3-phosphate dehydrogenase and b-actin.

The comparative cycle threshold (Ct) method was used to

calculate the relative quantification of gene expression. The fold

change (FC), which represents the variation in the level of

expression between p432/2and the control mice, was calculated

using the web-based RT2 profiler PCR Array Data Analysis

program. A list of differentially expressed genes was identified

using a 2-tailed t-test, with a P value ,0.05 (t-test) and a mean

difference equal to or greater than 2-fold (top right area). To

determine JunD, c-myc and b-actin mRNA levels by qRT-PCR,

RT were performed using MMLV- RT (Invitrogen) according to

the manufacturer’s recommendations. Quantitative RT-PCR

reactions were performed using SYBR Green SuperMix (Biorad)

according to the manufacturer’s instructions and run in triplicate

in an iCycler (Biorad). Specific primers and hybridization

temperatures have been previously described [11]. In order to

control the differences in RNA concentrations between each

sample, the transcript level of each target gene was normalized on

the basis of the transcript levels of the constitutive housekeeping
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gene b-actin (once we had verified that b-actin mRNA levels were

not significantly different between samples).

Western Blotting
Testes at post natal day P3 were sliced and homogenized in

50 ml of lysis buffer (Tris 10 mM pH 7.4, Triton X-100 0,7%).

The homogenate (40 mg) were denatured and electrophoresed

onto 12% SDS-PAGE and transferred onto a nitrocellulose

membrane. Proteins were visualized by enhanced chemilumines-

cence (32106, PierceH, Rockford, IL) and quantified with ImageJH
software. Antibodies Cdk4 (sc-260) and b-Actin (sc-81178) were

purchased from Santa Cruz Biotechnology.

Transmission Electron Microscopy
Testis from two different animals per genotype at 5 months of

age were collected and fixed in 4% glutaraldehyde in cacodylate

buffer 0.1M and further fixed in 1% osmium tetroxide in

cacodylate buffer prior to being embedded in Epoxy resin. Sections

(70 nm thick) were placed on 200-mesh copper grids, stained with

uranyl acetate followed by lead citrate and examined using an

electron microscope (CM 10 Philips, Eindhoven, The Netherlands).

Statistical Analysis
All data are presented as means 6 SEM. To compare means

between two groups, the Student t test, or the Mann-Whitney U-

test in case of differences in variance (Fisher test), were used.

Other comparisons were performed using a two-way ANOVA

followed by the Bonferroni post test. P,0.05 was considered

significant. Statistical analyses for the interpretation of ‘‘Volcano

Plots’’ were proposed by the Web-based RT2 profiler PCR Array

Data Analysis program.

Results

Depletion of the p43 Mitochondrial T3 Receptor Does
not Affect the Gene Expression of Other Nuclear Isoforms
of TRa

Many isoforms of TRa receptors have been identified. Among

them, two nuclear forms (TRa1 and TRa2) and a 43-kDa

truncated form of the nuclear receptor TRa1 located in the

mitochondrial matrix was previously described [9,13]. Total

deletion of all TRa receptors leads to an increase in testis weight

and sperm production. To assess the physiological importance of

p43 for testis development, we used mice carrying a specific p43

invalidation obtained by the mutation of the internal site of

translation of the mitochondrial protein [16]. As previously

described in skeletal muscle [16], we found that TRa1 and

TRa2 mRNA expressions in testis are not different in wild type

(WT) and p432/2 mice (data not shown).

The Depletion of p43 Leads to an Increase in Testis
Weight and Sperm Reserve

Whereas p432/2 mice displayed a significant decrease in body

weight at 5, 13 and 24 months of age in comparison with

respective controls (Figure 1A), knock-out animals exhibited a

significant increase in testis weight (Figure 1B). At 5 months of age

a significant increase in testicular sperm reserve, expressed per

testis, was observed in p432/2 mice (Figure 2C). No qualitative

histological alterations in seminiferous tubule structures were

observed in p432/2 mice, with all germ cell differentiation stages

being present. p432/2 males were as fertile as their controls, with

no difference in litter size (p432/26,961.8 pups versus WT

7,262.2 pups; n = 30 males per genotype).

In order to investigate a putative effect of p43 deletion on

Leydig cell steroidogenic activity, we measured testosterone levels

in two conditions: before (basal level) and after (stimulated level)

injection of hCG. As expected, injection of hCG induced a

significant increase in blood testosterone levels in WT and in

p432/2 mice. However, no significant difference between the

lines was observed for the basal (WT: 8.607565.2285 ng/ml

versus p432/2: 2.3862560.6725 ng/ml) and stimulated levels

(WT: 46.93567.965 ng/ml versus p432/2:

50.982565.2025 ng/ml). Leydig cell morphology and the surface

of the interstitium are similar in p432/2 and WT adult testis.

Altogether our data led us to propose that the increase in testis

weight observed in p432/2 mice was probably the consequence

of a significant increase in whole testicular sperm reserve

(spermatozoa and stage II-VII elongating spermatids).

The p43 Deletion Increases Sertoli Cell Proliferation in
Postnatal Testis

It is well established that the number of SC conditions the

efficiency of spermatogenesis as one SC can only support a limited

number of germ cells. SC number is defined during foetal and pre-

pubertal periods. To investigate if the testicular phenotype of adult

p432/2 mice is the result of an increase in the SC proliferation

index during post-natal development, we evaluated the prolifer-

ation rate of these cells in the young animal (Figure 2A). The

percentage of SC incorporating BrdU within 3 hours (Figure 2B)

was evaluated in p432/2 mice at P3 and P10 (i.e. when SC

proliferation is elevated (P3) and when SC are arresting (P10)).

The SC proliferation index was significantly higher in p432/2

testis than in control animals at P3, whereas at P10 it was similar

to the controls (Figure 2B). This result shows that SC proliferation

in p432/2 mice is mediated in part by p43 during post-natal

development. p43 depletion in mice does not affect FSH level

(p432/2: 0.9660.05 versus WT: 1.0360.04, ng/100 ml).

Cell Cycle Gene Expression is Altered in p432/2 Testes
at P3

In order to highlight actors in the cell cycle putatively involved

in the increase in SC proliferation observed in p432/2 mice at

P3, we analyzed 84 candidate genes by Q-PCR (table 1), which are

known to be involved in the cell cycle, using the RT2 Profiler PCR

Array dedicated to the mouse cell cycle. In p432/2 testis at P3,

19 genes were significantly up-regulated (Figure 3, black circles;

Table 1) (2-tailed t-test; p,0.05; main difference equal to or

greater than 2-fold). These genes are mainly involved in regulation

of cell cycle, the control of transition between the each of the cycle

phase, the DNA replication and repair. Several of these genes are

cell cycle checkpoints and arrest signals. Chek1 (Checkpoint kinase

1 homolog (S. pombe)) gene which is involved in cell cycle arrest

and DNA repair, was the only gene down-regulated (Table 1).

Among the genes up-regulated we found the cyclin cdk4 (2.40

fold). Interestingly, it was previously shown in the TRaAMI–SC

and TRa0/0 mice lines that T3 negatively controls post-natal

Sertoli cell proliferation by activation of TRa1 involving Cdk4/

JunD/c-myc pathway [11]. To test the possibility that a similar

pathways occurred in p432/2 mice we measured the mRNA

levels of c-myc and JunD in p432/2 testis using quantitative RT-

PCR with specific primers. We observed a significant increase of c-

myc mRNA level in knock-out testis in comparison to controls

(1.62 fold, Figure 4) whereas mRNA level of JunD was unchanged

(Figure 4). In line with the increase of Cdk4 expression at mRNA

levels we showed by western-blot blot analysis a significant raised

of the protein in p432/2 testis at P3 (Figure 5).

p43 Receptor Controls Sertoli Cell Proliferation
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Figure 1. A significant increase in testis weight and whole testicular sperm reserve was observed in p432/2 mice. A) Body weights of
mice at 5, 13 and 24 months of age (n = 8 at 13 and 24 months of age, n = 24 at 5 months of age). B) Testis weight of mice at 5, 13 and 24 months of
age (n = 8 at 13 and 24 months of age, n = 24 at 5 months of age). C) Whole testicular sperm reserve of mice at 5 months of age (n = 23). Data are
shown as the mean+/2 SEM and statistical analyses were performed using the t-test; *P,0.05, ***P,0.001.
doi:10.1371/journal.pone.0074015.g001
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The Structure of the Mitochondria in Sertoli Cells is
Impaired in p432/2 Mice in Adulthood

p43 has been shown to control mitochondrial biogenesis in

cultured cells [12,22] and in skeletal muscle [14,16]. In order to

evaluate the influence of p43 deletion on structure of mitochondria

in Sertoli and germ cells we performed electron microscopy. In

p432/2 mice the shape of mitochondria is only modified in SC

(Figure 6). They are more expanded showing a lower electron

density compared with control mice. On the other hand,

mitochondria observed in p432/2 germ cells shown the same

histological picture than in controls (Figure 7). This result indicates

that p43 deletion induced a deep modification of mitochondrial

morphology in SC.

Mitochondrial Gene Expression is Altered in p432/2
Testes at P3

As previously done for cell cycle actors, we analysed by Q-PCR

84 candidate genes putatively involved in the mitochondrial

function which could explain the increase in SC proliferation

observed in p432/2 mice at P3, (Table 2). In p432/2 testes at

Figure 2. Percentage of in vivo proliferating Sertoli cells in p432/2 testis at P3 and P10. A) Immunohistochemical labelling of proliferating
cells revealed by BrdU incorporation injected three hours before sacrifice in P3 and P10 testis of p432/2 mice. Arrowheads: Sertoli cells; arrows: germ
cells; star: myoid peritubular cells; black: BrdU-positive; white: BrdU-negative. Scale bar 10 mm. B) BrdU negative and positive Sertoli cells were
counted and proliferation index was calculated. In p432/2 testis, SC proliferation was increased at P3 in comparison to WT mice (P,0.001). At P10
there is no difference. (n = 3/genotype/age). Data are shown as the mean+/2 SEM; statistical analyses; two-way ANOVA followed by Bonferroni’s
post-test.
doi:10.1371/journal.pone.0074015.g002
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Table 1. Cell cycle gene expressions measured by Q-PCR.

Genes Symbols FC
P-
value

Abl1 C-abl oncogene 1, non-receptor tyrosine kinase ND 2

Atm Ataxia telangiectasia mutated homolog (human) 2,75 0,002

Atr Ataxia telangiectasia and rad3 related 5,21 0,016

Aurka Aurora kinase A 1,27 0,084

Aurkb Aurora kinase B 1,35 0,125

Bcl2 B-cell leukemia/lymphoma 2 1,58 0,028

Birc5 Baculoviral IAP repeat-containing 5 ND 2

Brca1 Breast cancer 1 ND 2

Brca2 Breast cancer 2 0,98 0,856

Casp3 Caspase 3 ND 2

Ccna1 Cyclin A1 1,03 0,588

Ccna2 Cyclin A2 1,8 0

Ccnb1 Cyclin B1 3,15 0

Ccnb2 Cyclin B2 2,28 0

Ccnc Cyclin C ND 2

Ccnd1 Cyclin D1 ND 2

Ccnd2 Cyclin D2 4,4 0,184

Ccnd3 Cyclin D3 1,55 0,004

Ccne1 Cyclin E1 1,62 0,006

Ccnf Cyclin F 0,84 0,334

Cdc20 Cell division cycle 20 homolog (S. cerevisiae) ND 2

Cdc25a Cell division cycle 25 homolog A (S. pombe) ND 2

Cdc25c Cell division cycle 25 homolog C (S. pombe) 1,24 0,142

Cdc6 Cell division cycle 6 homolog (S. cerevisiae) ND 2

Cdc7 Cell division cycle 7 (S. cerevisiae) 1,48 0,008

Cdk1 Cyclin-dependent kinase 1 1,7 0,013

Cdk2 Cyclin-dependent kinase 2 1,95 0,002

Cdk4 Cyclin-dependent kinase 4 2,41 0

Cdk5rap1 CDK5 regulatory subunit associated protein 1 1,1 0,602

Cdk6 Cyclin-dependent kinase 6 1,91 0,006

Cdkn1a Cyclin-dependent kinase inhibitor 1A (P21) ND 2

Cdkn1b Cyclin-dependent kinase inhibitor 1B 3,08 0

Cdkn2a Cyclin-dependent kinase inhibitor 2A 2,31 0

Cdkn2b Cyclin-dependent kinase inhibitor 2B 1,35 0,086

Cdkn3 Cyclin-dependent kinase inhibitor 3 ND 2

Chek1 Checkpoint kinase 1 homolog (S. pombe) 2,06 0,002

Chek2 CHK2 checkpoint homolog (S. pombe) 0,51 0,001

Cks1b CDC28 protein kinase 1b 0,94 0,549

Ddit3 DNA-damage inducible transcript 3 1,07 0,529

Dst Dystonin 2,36 0

E2f1 E2F transcription factor 1 1,15 0,307

E2f2 E2F transcription factor 2 1,56 0,051

E2f3 E2F transcription factor 3 2,06 0,005

E2f4 E2F transcription factor 4 1,32 0,024

Genes Symbols FC P-
value

Gadd45a Growth arrest and DNA-damage-inducible 45
alpha

1,77 0,03

Table 1. Cont.

Genes Symbols FC
P-
value

Gpr132 G protein-coupled receptor 132 ND 2

Hus1 Hus1 homolog (S. pombe) 2 0

Itgb1 Integrin beta 1 (fibronectin receptor beta) 1,39 0,038

Mad2l1 MAD2 mitotic arrest deficient-like 1 (yeast) ND 2

Mcm2 Minichromosome maintenance deficient 2 mitotin2,28 0,006

Mcm3 Minichromosome maintenance deficient 3 3,35 0,001

Mcm4 Minichromosome maintenance deficient 4
homolog

1,93 0,006

Mdm2 Transformed mouse 3T3 cell double minute 2 ND 2

Mki67 Antigen identified by monoclonal antibody Ki 67 1,67 0,036

Mre11a Meiotic recombination 11 homolog A (S.
cerevisiae)

1,3 0,116

Msh2 MutS homolog 2 (E. coli) 1,26 0,147

Myb Myeloblastosis oncogene 2 0

Nbn Nibrin 1,15 0,196

Nek2 NIMA (never in mitosis gene a)-related expressedND 2

kinase 2

Notch2 Notch gene homolog 2 (Drosophila) 0,96 0,823

Pkd1 Polycystic kidney disease 1 homolog ND 2

Pmp22 Peripheral myelin protein 22 2,03 0

Ppm1d Protein phosphatase 1D magnesium-dependent, 1,22 0,11

delta isoform

Rad17 RAD17 homolog (S. pombe) 2,48 0

Rad21 RAD21 homolog (S. pombe) 3,26 0,004

Rad51 RAD51 homolog (S. cerevisiae) 1,58 0,001

Rad9 RAD9 homolog (S. pombe) 1,55 0,097

Ran RAN, member RAS oncogene family 1,5 0

Rb1 Retinoblastoma 1 ND 2

Rbl1 Retinoblastoma-like 1 (p107) 1,7 0,014

Rbl2 Retinoblastoma-like 2 0,9 0,421

Sfn Stratifin 2,05 0,05

Shc1 Src homology 2 domain-containing transforming ND 2

protein C1

Skp2 S-phase kinase-associated protein 2 (p45) 1,3 0,034

Slfn1 Schlafen 1 1,83 0

Smc1a Structural maintenance of chromosomes 1A 2,06 0,000

Stag1 Stromal antigen 1 1,29 0,131

Stmn1 Stathmin 1 1,7 0,002

Terf1 Telomeric repeat binding factor 1 1,03 0,727

Tfdp1 Transcription factor Dp 1 1,35 0,021

Trp53 Transformation related protein 53 1,13 0,174

Trp63 Transformation related protein 63 ND 2

Tsg101 Tumor susceptibility gene 101 2,57 0,002

Wee1 WEE 1 homolog 1 (S. pombe) 1,38 0

For each gene: fold values (FC) and p value obtained in p432/2 mice versus
respective controls. Significant genes changed in p432/2 mice are in bold. ND:
gene expression was no detected.
doi:10.1371/journal.pone.0074015.t001
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P3, we found 13 genes significantly up-regulated (Figure 8, black

circles; Table 2) (2-tailed t-test; p,0.05; main difference equal to

or greater than 2-fold). These genes are involved in: small

transport of molecules, in import and cleavage of proteins, in

metabolism, in localization of proteins mitochondrial localization,

in apoptosis and in cell cycle. No down-regulated genes were

found (Table 2). These results demonstrate that the mitochondrial

T3 receptor plays an important role in many mitochondria

functions.

Discussion

We show for the first time a mitochondrial control of the

differentiation of Sertoli cells by T3 via the mitochondrial T3

receptor p43. p432/2 mice display a testicular phenotype which

is very similar to the phenotype of TRa0/0 knockout mice [10],

with an increase in testicular sperm reserve and testis weight. In

vivo at P3, the SC proliferation index was significantly higher in

both p432/2 and TRa0/0 mice than in their respective controls.

Recently, it was demonstrated that the dominant-negative

TRa1L400R5 (TRaAMI) only expressed in Sertoli cells displays

a testis phenotype, which is very similar to the phenotype of

TRa0/0 and p432/2 mice [11]. These interesting results

Figure 3. Cell cycle gene expression is impacted in p432/2 testis at P3. The volcano plot is an arbitrary representation (proposed by the
web-based RT2 prolifer PCR Array Data Analysis program) of the fold change (FC) for each of the 84 genes in the array. It represents the log2 FC of
each gene expression between the p432/2 group (n = 6) and the control group (n = 8) versus the negative Log10 P-values from the t-test. The red
vertical line indicates that the gene expression fold change threshold is 2. The blue horizontal line indicates that the P-value of the T-test threshold is
0.05. Genes, which were significantly upregulated in p432/2 in comparison with controls, were indicated.
doi:10.1371/journal.pone.0074015.g003
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evidenced that an increase in round spermatid number was the

consequence of an increase in the proliferation rate of Sertoli cells

during postnatal period. The similar phenotype observed in

p432/2, TRa0/0 and TRaAMI–SC testis prompt us to propose

that the mitochondrial p43 receptor could be the main T3

receptor isoform involved in the physiological situation of T3-

control of the post-natal Sertoli cell development. The prolifera-

tion rate of Sertoli cells during post natal period is mainly

regulated by FSH. But recently Pitetti et al. show that ablation of

insulin/IGF signalling reduction in testis size and daily sperm

production as a result of a reduced proliferation rate of immature

SCs during the late fetal and early neonatal periods. These

analyses revealed that the insulin/IGF signalling pathway is

required for FSH-mediated SC proliferation [23]. Here we found

that the plasma FSH level was the same in p432/2 mice than in

WT mice at 5 months of age. However, we have previously

showed that the depletion of p43 induces a loss of glucose-

stimulated insulin secretion [17]. Insulin levels were significantly

higher in p432/2 mice in fasting condition and lower after

refeeding. Perhaps, these defects in insulin secretion in p432/2

mice could activate insulin/IGF pathway and potentiate the action

of FSH on Sertoli cells.

This result demonstrates and confirms that the mitochondrial

p43 receptor has physiological functions. In fact, recently, this

receptor has been shown to be involved in the control of the

secretion of insulin from the pancreas and glucose homeostasis

[17] and to affect muscle mass and the metabolic and contractile

features of myofibers in mice [16]. The physiological role of this

receptor is also confirmed by our study showing its importance for

T3 control of Sertoli cell differentiation during the postnatal

period. The same testicular phenotype was observed in p432/2

and TRaAMI-SC transgenic mice lines. In p432/2 mice, we are

showing that only the mitochondrial isoform p43 receptor is

disabled. The TRa1 and 2 nuclear isoform expressions were

unaffected. In TRaAMI-SC mice, there is coexistence of a wild

form of TRa1 and a dominant-negative form, TRaAMI. The

mitochondrial p43 receptor expression is unaffected (personal

communication of Frederic Flamant, creator of the TRaAMI line).

Because p43 is a truncated form of TRa1, this implies that in

TRaAMI-SC mice, the wild form of p43 coexists with a dominant-

negative form of the mitochondrial receptor. This result suggests

that the dominant-negative form of p43 is able to block the

physiological function of p43 in mitochondria.

The Q-PCR array analysis of the expression of a focused panel

of genes involved in cell cycle regulation indicates that 19 of the 84

genes tested were significantly up-regulated. These data suggest

that p43 through a mitochondrial-nuclear cross-talk regulates the

expression of genes involved in the cell cycle in testis as previously

described for others cells and tissues [14,24–26].

Figure 4. c-myc gene expression is increased in p432/2 testis at P3. Q-PCR analyses for c-myc and junD gene expressions were performed
with p432/2 and WT testes at P3 (n = 6 for p432/2, n = 4 for WT) using specific primers. Normalization was achieved using ß-actin levels. c-myc
mRNA levels were increased (P,0,01). JunD mRNA levels were not different in p432/2 and WT testis. Data are shown as the mean+/2 SEM and
statistical analyses were performed using the student t test.
doi:10.1371/journal.pone.0074015.g004

Figure 5. CDK4 expression is increased in P432/2 testis at P3.
Western blot analyses were performed with p432/2 and WT proteins
extract testes at P3 (n = 5 for P432/2, n = 4 for WT) using a specific
CDK4 and ß-actin antibodies. Normalization was achieved using ß-actin
levels. Data are shown as the mean+/2 SEM and statistical analyses
were performed using the student t test. CDK4 level was increased
(P,0,001).
doi:10.1371/journal.pone.0074015.g005

p43 Receptor Controls Sertoli Cell Proliferation

PLOS ONE | www.plosone.org 8 September 2013 | Volume 8 | Issue 9 | e74015



Figure 6. The mitochondrial morphology is strongly affected in Sertoli cells of p432/2 mice. Mitochondria observed in Sertoli cells in the
adult testis of wild type mice (WT) and in the adult testis of p432/2 mice at 5 months of age (p432/2). Mitochondria present in the Sertoli cells of
p432/2 mice were morphologically different; they are larger and have a lower opacity to electrons. The mitochondria size was evaluated by
measuring the diameter of mitochondria. Data are shown as the mean+/2 SEM; statistical analyses; two-way ANOVA followed by Bonferroni’s post-
test (n = 50). *** = P,0.001. Star Wheel: Germs cells; star: Sertoli cells; arrowheads: Mitochondria.
doi:10.1371/journal.pone.0074015.g006
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Figure 7. The mitochondrial morphology is unaffected in germ cells of p432/2 mice. Mitochondria observed in germ cells in the adult
testis of wild type mice (WT) and in the adult testis of p432/2 mice at 5 months of age (p432/2). Mitochondria present in germ cells of p432/2
mice were morphological identical at those presenting in germ cells of WT mice. Data are shown as the mean+/2 SEM; statistical analyses; two-way
ANOVA followed by Bonferroni’s post-test (n = 60). Arrowheads: Mitochondria.
doi:10.1371/journal.pone.0074015.g007
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Table 2. Mitochondrial gene expressions measured by Q-PCR.

Genes Symbols FC P-value

Aifm2 Apoptosis-inducing factor, mitochondrion-associated 2 4.26 0.017

Aip Aryl-hydrocarbon receptor-interacting protein 2.34 0.127

Bak1 BCL2-antagonist/killer 1 1.74 0.076

Bbc3 BCL2 binding component 3 ND 2

Bcl2 B-cell leukemia/lymphoma 2 2.05 0.211

Bcl2l1 Bcl2-like 1 2.30 0.158

Bid BH3 interacting domain death agonist 3.48 0.011

Bnip3 BCL2/adenovirus E1B interacting protein 3 1.31 0.428

Cdkn2a Cyclin-dependent kinase inhibitor 2A 3.80 0.005

Cox10 COX10 homolog, cytochrome c oxidase assembly protein, 3 0.091

heme A

Cox18 COX18 cytochrome c oxidase assembly homolog 1.54 0.208

(S. cerevisiae)

Cpt1b Carnitine palmitoyltransferase 1b, muscle ND 2

Cpt2 Carnitine palmitoyltransferase 2 2.84 0.031

Dnajc19 DnaJ (Hsp40) homolog, subfamily C, member 19 2.23 0.093

Dnm1l Dynamin 1-like 2.81 0.074

Fis1 Fission 1 (mitochondrial outer membrane) homolog (yeast) 2.41 0.087

Fxc1 Fractured callus expressed transcript 1 2.27 0.228

Grpel1 GrpE-like 1, mitochondrial 2.51 0.098

Hsp90aa1 Heat shock protein 90, alpha (cytosolic), class A member 1 2.03 0.235

Hspd1 Heat shock protein 1 (chaperonin) 1.81 0.349

Immp1l IMP1 inner mitochondrial membrane peptidase-like 1.94 0.332

(S. cerevisiae)

Immp2l IMP2 inner mitochondrial membrane peptidase-like 2.13 0.251

(S. cerevisiae)

Lrpprc Leucine-rich PPR-motif containing 2.86 0.094

Mfn1 Mitofusin 1 2.80 0.058

Mfn2 Mitofusin 2 2.31 0.131

Mipep Mitochondrial intermediate peptidase 3.40 0.025

Msto1 Misato homolog 1 (Drosophila) 2.02 0.617

Mtx2 Metaxin 2 2.34 0.053

Nefl Neurofilament, light polypeptide 5.56 0.014

Opa1 Optic atrophy 1 homolog (human) 3.19 0.007

Pmaip1 Phorbol-12-myristate-13-acetate-induced protein 1 1.37 0.415

Rhot1 Ras homolog gene family, member T1 1.60 0.228

Rhot2 Ras homolog gene family, member T2 3.93 0.023

Sfn Stratifin 3.40 0.011

Sh3glb1 SH3-domain GRB2-like B1 (endophilin) 2.22 0.326

Slc25a1 Solute carrier family 25, member 1 ND 2

Slc25a10 Solute carrier family 25 member 10 2.23 0.089

Slc25a12 Solute carrier family 25, member 12 1.75 0.204

Slc25a13 Solute carrier family 25, member 13 2.08 0.240

Slc25a14 Solute carrier family 25, member 14 2.39 0.109

Slc25a15 Solute carrier family 25, member 15 3.46 0.012

Slc25a16 Solute carrier family 25, member 16 2.43 0.057

Slc25a17 Solute carrier family 25, member 17 2.65 0.099

Slc25a19 Solute carrier family 25, member 19 2.69 0.045

Slc25a2 Solute carrier family 25, member 2 ND 2
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Table 2. Cont.

Genes Symbols FC P-value

Slc25a20 Solute carrier family 25, member 21 2.61 0.026

Genes Symbols FC P-value

Slc25a21 Solute carrier family 25, member 21 ND 2

Slc25a22 Solute carrier family 25, member 23 3.65 0.109

Slc25a23 Solute carrier family 25, member 23 1.49 0.267

Slc25a24 Solute carrier family 25, member 24 2.64 0.021

Slc25a25 Solute carrier family 25, member 25 3.03 0.068

Slc25a27 Solute carrier family 25, member 27 1.77 0.094

Slc25a3 Solute carrier family 25, member 3 2.24 0.057

Slc25a30 Solute carrier family 25, member 30 2.64 0.018

Slc25a31 Solute carrier family 25, member 31 1.52 0.037

Slc25a37 Solute carrier family 25, member 37 2.27 0.042

Slc25a4 Solute carrier family 25, member 4 1.58 0.195

Slc25a5 Solute carrier family 25, member 5 1.16 0.864

Sod1 Superoxide dismutase 1, soluble 1.22 0.659

Sod2 Superoxide dismutase 2, mitochondrial 1.46 0.185

Stard3 START domain containing 3 1.24 0.324

Taz Tafazzin 1.72 0.043

Timm10 Translocase of inner mitochondrial membrane 10 homolog 1.08 0.654

(yeast)

Timm17a Translocase of inner mitochondrial membrane 17a 1.23 0.730

Timm17b Translocase of inner mitochondrial membrane 17b 1.53 0.122

Timm22 Translocase of inner mitochondrial membrane 22 homolog 1.30 0.278

(yeast)

Timm23 Translocase of inner mitochondrial membrane 23 homolog 0,8 0.256

(yeast)

Timm44 Translocase of inner mitochondrial membrane 44 1,4 0.065

Timm50 Translocase of inner mitochondrial membrane 50 homolog 1.45 0.045

(yeast)

Timm8a1 Translocase of inner mitochondrial membrane 8 homolog a1 0,8 0.163

(yeast)

Timm8b Translocase of inner mitochondrial membrane 8 homolog b 0,9 0.259

(yeast)

Timm9 Translocase of inner mitochondrial membrane 9 homolog 1 0.959

(yeast)

Tomm20 Translocase of outer mitochondrial membrane 20 homolog 0,9 0.238

(yeast)

Tomm22 Translocase of outer mitochondrial membrane 22 homolog 1 0.986

(yeast)

Tomm34 Translocase of outer mitochondrial membrane 34 1.46 0.025

Tomm40 Translocase of outer mitochondrial membrane 40 homolog 1.71 0.016

(yeast)

Tomm40l Translocase of outer mitochondrial membrane 40 homolog-like 1.14 0.401

(yeast)

Tomm70a Translocase of outer mitochondrial membrane 70 homolog A 0,9 0.670

(yeast)

Trp53 Transformation related protein 53 0,8 0.064

Tspo Translocator protein 1.12 0.450
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Table 2. Cont.

Genes Symbols FC P-value

Ucp1 Uncoupling protein 1 (mitochondrial, proton carrier) ND 0.136

Ucp2 Uncoupling protein 2 (mitochondrial, proton carrier) 1.30 2

Ucp3 Uncoupling protein 3 (mitochondrial, proton carrier) ND 2

For each gene: fold values (FC) and p value obtained in p432/2 mice versus respective controls. Significant genes changed in p432/2 mice are in bold. ND: gene
expression was no detected.
doi:10.1371/journal.pone.0074015.t002

Figure 8. Mitochondrial gene expression is altered in p432/2 testis at P3. The volcano plot is an arbitrary representation (proposed by the
web-based RT2 prolifer PCR Array Data Analysis program) of the fold change (FC) for each of the 84 genes in the array. It represents the log2C FC of
each gene expression between the p432/2 group (n = 6) and the control group (n = 4) versus the negative Log10 P values from the t-test. The red
vertical line indicates that the gene expression fold change threshold is 2. The blue horizontal line indicates that the P value of the T-test threshold is
0.05. Genes, which were significantly up-regulated in p432/2 mice in comparison with controls, were indicated.
doi:10.1371/journal.pone.0074015.g008
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The comparison of the list of up-regulated genes in the testis at

early postnatal period (P3) in p432/2 and in TRaAMI-SC mice

could provide some clue of the molecular mechanisms underlying

the ability of T3 to arrest SC proliferation. Whereas in TRaAMI-

SC testes, only 4 genes were significantly up-regulated [11], 19

genes were concerned in p432/2 mice. Interestingly, Cdk4, Sfn,

and Cdkn2a were up-regulated in both cases. Our data suggest

that the Cdk4 pathway could be the central target of the

mitochondrial-nuclear cross-talk, controlling the proliferation of

Sertoli cells. In line with this possibility, Cdk42/2 mice [27] have

growth retardation and reproductive dysfunction associated with

testicular atrophy and hypoplastic seminiferous tubules in the

testis. Cdk4 transcription is controlled by two main regulators: c-

myc (activator; [28,29]), and JunD (repressor; [30,31]). In

TRaAMI-SC, an increase in the expression of c-myc and a

decrease in JunD expression were shown [11]. In p432/2 mice,

we only observed an increase in c-myc expression while JunD is

not altered. c-myc is known to regulate Cdk4 and mitochondrial

function [25]. This data suggesting that c-myc is an important

target of mitochondrial activity is fully in line with the work of

Seyer et al. [26] showing that in myoblast C2C12, an inhibition of

mitochondrial activity by chloramphenicol (which mimics a lack of

p43) increased c-myc mRNA and protein levels. Conversely,

stimulation of mitochondrial activity by overexpression of the T3

mitochondrial receptor (p43) down-regulates c-myc expression. In

addition, c-myc overexpression mimicked the influence of

mitochondrial activity inhibition on myoblast differentiation.

These data suggest that p43 regulates Sertoli cell proliferation by

a similar mechanism involving the control of c-myc expression.

Moreover, these set of data suggest that the mechanism identified

in the control of the differentiation of myoblasts and Sertoli cells

could concern numerous other cell types.

The mitochondrial ultrastructure is deeply altered in Sertoli

cells of p432/2 mice while the mitochondrial morphology in

germ cells is unchanged. This observation suggests that the p43

receptor was probably not expressed in germ cells. In addition, the

alteration of mitochondrial morphology observed in p432/2

Sertoli cells is associated with a deregulation of expression of genes

which are involved in mitochondrial function. The p43 receptor is

known to act as a T3-dependent transcription factor of the

mitochondrial genome, which regulates the synthesis of mito-

chondrial proteins, oxygen consumption and the activities of the

complexes of the respiratory chain [12,13,22]. In testis, we have

measured the expression level of 84 genes involved in various

cellular functions of mitochondria including regulators and

mediators of mitochondrial molecular transport, metabolites

needed for the electron transport chain and oxidative phosphor-

ylation, intrinsic apoptosis pathway genes activated by intracellular

damage signalling. We show that many mitochondrial genes were

up-regulated in the testes at early postnatal period (P3) of p432/2

mice. These genes mainly code for molecules involved in transport

(Slc25 family), metabolism (CPT2, Mipep, Opa1, Rhot2), anti-

apoptosis pathway (AIfm2, Bid) and also in cell cycle control

(Cdkn2a and Sfn). We can postulate that this up-regulation of the

expression of several genes encoding mitochondrial proteins is

intended to offset the decrease of mitochondrial activity which

probably occurs in Sertoli cells lacking p43.

In summary, these results establish that p43 depletion in mice

induced a testicular phenotype very similar to those observed in

TRa0/0 [10] and TRaAMI–SC mice [11]. This indicates that the

mitochondrial p43 receptor is likely the main T3 receptor isoform

involved in the physiological situation of T3-control of the post-

natal Sertoli cell development. In addition, gene expression studies

provide some molecular mechanisms underlying the ability of T3

to arrest Sertoli cell proliferation. In particular, c-myc and Cdk4

could be the central target of the mitochondrial-nuclear crosstalk,

controlling the proliferation of Sertoli cells. Given the results

previously obtained on myoblasts [25], these data suggest that p43

could regulate proliferation and differentiation of numerous other

cell types by a mechanism involving the control of c-myc

expression.
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