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vitro maturation affects lipid metabolism in bovine oocytes. Am J
Physiol Endocrinol Metab 67: E599–E613, 2013. First published
January 15, 2013; doi:10.1152/ajpendo.00469.2012.—Cumulus cells
(CC) surround the oocyte and are coupled metabolically through
regulation of nutrient intake. CC removal before in vitro maturation
(IVM) decreases bovine oocyte developmental competence without
affecting nuclear meiotic maturation. The objective was to investigate
the influence of CC on oocyte cytoplasmic maturation in relation to
energy metabolism. IVM with either cumulus-enclosed (CEO)
or -denuded (DO) oocytes was performed in serum-free metabolically
optimized medium. Transmission electron microscopy revealed dif-
ferent distribution of membrane-bound vesicles and lipid droplets
between metaphase II DO and CEO. By Nile Red staining, a signif-
icant reduction in total lipid level was evidenced in DO. Global
transcriptomic analysis revealed differential expression of genes reg-
ulating energy metabolism, transcription, and translation between
CEO and DO. By Western blot, fatty acid synthase (FAS) and
hormone-sensitive phospholipase (HSL) proteins were detected in
oocytes and in CC, indicating a local lipogenesis and lypolysis. FAS
protein was significantly less abundant in DO that in CEO and more
highly expressed in CC than in the oocytes. On the contrary, HSL
protein was more abundant in oocytes than in CC. In addition, active
Ser563-phosphorylated HSL was detected in the oocytes only after
IVM, and its level was similar in CEO and DO. In conclusion, absence
of CC during IVM affected lipid metabolism in the oocyte and led to
suboptimal cytoplasmic maturation. Thus, CC may influence the
oocyte by orienting the consumption of nutritive storage via regula-
tion of local fatty acid synthesis and lipolysis to provide energy for
maturation.

bovine oocyte; cumulus cells; in vitro maturation; ultrastructure; lipid
metabolism

IN THE GROWING FOLLICLES, the mammalian oocyte is enclosed
with somatic cells and sequentially acquires the capacities
leading to the success of fertilization, embryo development,
and offspring (49, 65). Follicular environment and bidirec-
tional dialog between somatic and germinal cells allow the
oocyte to acquire its meiotic and developmental competence
during folliculogenesis (6, 7) and subsequent maturation of the
oocyte, preparing it to ovulate and to accept spermatozoa.

Oocyte maturation is viewed at nuclear, cytoplasm, and mo-
lecular levels (for review, see Ref. 63). RNA, protein, and
nutrition stockpiles are accumulated in the oocyte before ovu-
lation and expected to support embryo development through
several cleavages before major embryo genome activation
occurring at 4/8-cell transition in human and 8/16-cell in
bovine (74). In antral follicles, specialized granulosa cells
surrounding the oocyte, named cumulus cells (CC), are in-
volved in the acquisition of oocyte developmental competence.
These cells are physically and metabolically coupled with an
oocyte during its growth and maturation and also participate in
ovulation and fertilization (26, 71). Indeed, during antral fol-
licle growth, CC are in tight relation with the oocyte through
gap junctions that allows a bidirectional paracrine signaling
(36, 38), thus regulating different processes, including chro-
matin remodeling and RNA synthesis in the oocyte (45). CC
are particularly involved in antioxidative and metabolic pro-
cesses, such as reducing cystin to cystein and metabolizing
glucose to pyruvate, respectively; these components are pro-
vided to the oocytes by CC and known to improve oocyte
quality (70, 71, 73). Glucose is the main energy source for the
oocyte, and therefore glucose metabolism is crucial for oocyte
maturation and early embryo development (70). However,
because of the low capacity of the oocytes to utilize glucose,
this substrate is mainly metabolized by CC via different path-
ways, including glycolysis and the pentose phosphate pathway
to provide an oocyte with pyruvate for energy production (55,
67). CC are involved in providing energy substrates as fatty
acids (FA), carbohydrates, and amino acids from surrounding
fluids to the oocyte. The oocyte also contributes to CC func-
tioning through the secretion of different oocyte-specific fac-
tors and thus regulates its own microenvironment to acquire a
better capacity to develop into an embryo (25). Environmental
conditions of oocyte maturation have a strong impact on
embryo developmental capacity (64). Gene expression patterns
in the oocyte (33, 44) and in CC (5, 22) during maturation are
associated with its developmental potential in bovine and
human species in vitro and in vivo. Several global transcrip-
tomic studies were carried out in cattle to identify molecular
markers or signatures of oocytes associated with developmen-
tal competence by comparing gene expression patterns before
and after in vitro maturation (IVM) (20, 47, 76) as well as in
vitro vs. in vivo matured oocytes (35).

The importance of CC during IVM of bovine oocytes was
highlighted in the studies comparing developmental potential
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of the oocytes matured in vitro with or without CC. In fact,
cumulus-denuded oocytes (DO) could be fertilized only when
coincubated with intact cumulus-enclosed oocytes (CEO) dur-
ing in vitro fertilization (IVF), although, even in such condi-
tion, zygotes obtained from DO showed significantly lower
developmental rate compared with CEO in bovine (46). How-
ever, coincubation of DO with CEO during IVM partially
restored their capacity to develop (14, 46). Differences in
developmental competence of DO and CEO are linked to
several factors, including cAMP and glutathione content in the
oocyte (46). In bovine oocytes, meiosis resumption is associ-
ated with a decrease in AMP-activated protein kinase (AMPK)
activity both in the oocyte and surrounding CC (78). AMPK is
considered as a key regulator of glucose and lipid metabolism
(34). We showed previously that IVM in the presence of
AMPK activator metformin led to meiotic arrest of CEO but
not DO in bovine (78). Recent transcriptomic study reported
that a number of genes involved in cellular metabolism were
differently expressed between bovine CEO and DO after IVM
in medium complemented with serum (56). All these findings
support the hypothesis that CC are strongly involved in proper
regulation of the oocyte metabolism during IVM.

The aim of the present work was to investigate the conse-
quences of CC removal before IVM on oocyte maturation in
relation with its energy metabolism factors, which may corre-
late with oocyte development competence. Toward these per-
spectives, it appears important to gain a better knowledge
concerning CC participation in oocyte energy metabolism
regulation. We bring complementary information to previous
studies, since here we used defined serum and FA-free meta-
bolically optimized medium TCM199EM containing an equil-
ibrated quantity of pyruvate, glutathione, and amino acids and
enriched in gonadotropins and growth factors, which was
reported to be very efficient for IVM of bovine oocytes in
terms of developmental potential (15, 57). An original integra-
tive comparative approach, including analysis of oocyte ultra-
structure, transcriptome, lipid content, and associated proteins,
was employed to enlighten the cytoplasmic and molecular
aspects of oocyte maturation. Beyond the fundamental interest,
this information is of importance in the context of reproductive
technologies. IVM of human oocytes after morphological ob-
servation as DO may be useful in human reproductive tech-
nology protocols. Moreover, IVM and further fertilization of
DO is helpful for functional studies when using microinjec-
tions in immature oocytes in mammalian species.

MATERIALS AND METHODS

Ethics

All procedures were approved by the Agricultural and Scientific
Research Government Committees in accordance with the guidelines
for Care and Use of Agricultural Animals in Agricultural Research
and Teaching (approval A37801).

Materials

All substances where the name of a commercial supplier is not
stated were purchased from Sigma (Saint Quentin Fallavier, France).

Samples

Oocyte collection and IVM. Bovine ovaries were collected from a
slaughterhouse; 3- to 8-mm antral follicles from 40–50 ovaries/

experiment were aspirated and pooled. Cumulus-oocyte complexes
(COC) with several compact layers of CC were selected and washed
several times in TCM199/HEPES medium supplemented with 50 mg/l
gentamycin and 0.1% BSA. One-half of oocytes was stripped off CC
by repetitive aspirating-ejecting movements using a P100 Gilson
pipette with a tip in several successive 100-�l drops under observation
with a stereomicroscope. Completely naked morphologically undam-
aged oocytes were removed from the drops and washed from residual
CC two times in a Petri dish containing 3 ml of TCM199 medium.
Next, groups of either 50 CEO or DO were subjected to IVM at
38.8°C for 22 h in a humidified atmosphere containing 5% CO2 in 500
�l of TCM199-enriched medium containing recombinant human (rh)
epidermal growth factor (EGF, 10 ng/ml), rh insulin-like growth
factor-I (IGF-I, 19 ng/ml), rh basic fibrobalst growth factor (2.2
ng/ml), human chorionic gonadotropin (hCG, 5 IU/ml; Intervet, Beau-
couze, France), pregnant mare serum gonadotropin (PMSG, 10 IU/ml;
Intervet), rh insulin (5 �g/ml), rh transferrin (5 �g/ml), sodium
selenite (5 ng/ml), L-cystein (90 �g/ml), �-mercaptoethanol (0.1
mM), ascorbic acid (75 �g/ml), glycine (720 �g/ml), glutamine (0.1
mg/ml), and pyruvate (110 �g/ml) as described (15). At the end of
maturation, CEO were stripped off CC, and oocytes from both CEO
and DO groups were collected and then kept frozen at �80°C until
RNA or protein extraction. Immature naked oocytes (IO) were also
collected before IVM. Meiotic status of oocytes was established by
chromatin labeling with Hoechst 33342 (1 �g/ml), followed by
microscopic observation. At least 100 mature oocytes were analyzed
for their nuclear status in each experimental situation (CEO and DO).
In total, three groups of naked oocytes were analyzed as follows:
1) CEO, oocytes matured enclosed in intact COCs and denuded after
IVM; 2) DO, oocytes denuded from the compact COCs before IVM
and so matured; and 3) IO, immature oocytes denuded from the
compact COCs before IVM.

IVF. After 22 h of IVM, CEO and DO were washed in fertilization
medium (Tyrode medium with 25 mM bicarbonate, 10 mM lactate, 1
mM pyruvate, 6 mg/ml fatty acid-free BSA, 100 �g/ml heparin, and
40 �g/ml gentamycin) and transferred into four-well dishes (25 CEO � 25
DO in 250 �l fertilization medium/well). Motile spermatozoa, ob-
tained by centrifugation of frozen/thawed semen on a discontinuous
Percoll (Pharmacia, Uppsala, Sweden) density gradient (45/90%),
were diluted in fertilization medium (2 � 106 spermatozoa/ml).
Oocytes and spermatozoa (250 �l of the previous suspension/well)
were incubated together for 18 h at 38.8°C in a humidified atmosphere
with 5% CO2 in 95% air. At the end of the fertilization period, CEO
and DO were separated; presumptive zygotes were mechanically
denuded and washed in 199H/BSA medium.

In vitro development. Presumptive zygotes after IVF were washed
three times in modified synthetic oviduct fluid (mSOF) (28) with 5%
FBS (MP Biomedicals, Illkirch, France) and then cultured in a
microdrop of mSOF with 5% FBS (20–25 embryos/25 �l) under
paraffin oil at 38.8°C for 8 days in a water-saturated atmosphere of 5%
CO2-5% O2-90% N2. Embryonic cleavage rate (ratio of the number of
cleaved zygotes to the total number of the oocytes subjected to IVF)
and blastocyst rate (ratio of the number of blastocysts to the number
of cleaved embryos) were determined 48 h and 8 days after IVF,
respectively. The rate of hatched blastocysts (no. of hatched blasto-
cysts/total blastocyst no.) was recorded at day 8 post-IVF. In total,
developmental rates of 577 CEO and 566 DO were checked in four
independent IVF experiments. Cleavage, blastocyst, and hatching
rates were compared between CEO and DO groups (4 replicates/
group) by using the �2-test and nonparametric Mann Whitney test.

Microphotographs of 8-day blastocysts were obtained by using
camera 11.2 Color Mosaic and Spot Advanced 4.0.1 software (Diag-
nostic Instruments). The diameter of the blastocyst derived from CEO
(n � 39) and DO (n � 16) was measured by using Visilog software
(Neosis, Gif sur Yvette, France) and compared by using t-test.
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RNA Analysis

RNA extraction and amplification. Mature oocytes from both CEO
and DO groups after IVM were selected on the criteria of the presence
of polar body. Luciferase (luc, 250 pg) as an external standard was
added to each pool of 25 oocytes (10 pg of luc/oocyte; CEO and DO)
(Promega, Charbonnières-les-bains, France), and total DNase-treated
RNA was extracted using a Picopure RNA isolation kit (Alphelys,
Plaisir, France) according to the manufacturer’s instructions. Total
RNA was subsequently amplified using a RiboAmp Plus kit (Al-
phelys) following the manufacturer’s instructions, and aRNA pro-
duced was validated using the Bioanalyzer 2100 RNA 6000 nanochip
(Agilent Technologies).

RT-PCR. RNA from 25 oocytes was converted in 25 �l of cDNA
using oligo(dT)15 primers (0.25 �g/reaction) and mouse Moloney
leukemia virus reverse transcriptase (Invitrogen) for 1 h at 37°C
(cDNA concentration � 1 oocyte equivalent/�l). To validate the
primers, PCR was performed using SYBR Green supermix (Bio-Rad,
Marnes la Coquette, France) and specific primers (Table 1) from 1%
of obtained cDNA as a template for each gene. PCR products were
visualized by migration on 1.5% agarose gel.

Real-time RT-PCR. Real-time PCR was performed on a MyiQ
Cycler apparatus (Bio-Rad). Reactions were performed in a total
volume of 20 �l using SYBR green Bio-Rad supermix and 0.3 �M of
each specific primer in triplicate for each sample. Routinely, cDNA
was diluted 100 times (cDNA concentration � 0.01 oocyte equiva-
lent/�l). For one PCR reaction, 5 or 10 �l of this dilution were used
(0.05 or 0.1 oocyte equivalents). A three-step protocol (95°C for 30 s,
60°C for 30 s, 72°C for 20 s) was repeated for 40 cycles, followed by
acquisition of the melting curve. The standard curve for each gene was
deduced from serial dilutions of the correspondent cDNA fragment.
Correlation coefficients and PCR efficiencies were �0.99 and 92%,
respectively.

The relative level of mRNA expression was calculated in at least
four independent oocyte samples for each condition as follows. The
median value from technical triplicates was considered for each
sample and then it was normalized to the correspondent median value
of external luc mRNA and to serine-threonine aurora kinase A
(AURKA), considered as the internal reference gene since its level
does not change during IVM in bovine oocytes (75). Values of relative
mRNA levels (ratio gene of interest/geometric mean luc and AURKA)
were compared using nonparametric Mann Whitney test (GraphPad
Prism, San Diego, CA); the difference was considered significant at a
P value 	0.05.

Microarray Hybridization

aRNA labeling and hybridization. Two micrograms of each sample
were labeled using the ULS aRNA labeling kit (Kreatech, Amster-
dam, Netherlands) according to the manufacturer’s instructions. The
dye swap approach was used by labeling CEO and DO alternatively
by cyanine 3 and 5. Subsequently, 50 pmol of each condition (CEO
and DO) were then fragmented for 15 min at 70°C using the RNA
Fragmentation Reagents (Ambion, Austin, TX) and then stopped with
Stop solution. Hybridization was achieved using bovine 22K arrays
obtained from CRB GADIE (INRA, Jouy en Josas, France) and
SlideBooster apparatus (Advalytix; Beckman Coulter Biomedical).
Briefly, a presoak step was performed for 30 min at 42°C using the
Pronto Background Reduction Kit (Corning) and then washed tree
times with water. Next, the slides were dynamically hybridized for

16 h at 42°C using the SlideBooster system in 60 �l of Advahyb
buffer (Advalytix; Beckman Coulter Biomedical). Finally, slides were
washed using AdvaWash apparatus and buffers (Advalytix; Beckman
Coulter Biomedical).

Microarray data acquisition, statistics, and gene ontology analysis.
Slides were scanned at both dye channels (532 nm for cyanine 3, 635
nm for cyanine 5) with a GenePix 4000B scanner, and data acquisition
was performed using GenePix Pro 6.0 (Axon Molecular Devices,
Sunnyvale, CA).

For this experiment, gene expression analysis was carried out
between CEO and DO, representing a total of eight slides (dye
swap protocol), and differentially expressed genes were identified
using the Anapuce package of R software (29). For each spot,
median intensity values were log 2 transformed before a normal-
ization step that consisted of a global locally weighted regression
(Lowess) to compensate dye bias between the two cyanines. Next,
a block effect was adjusted by subtracting from each block the
median intensity. Data were deposited in the public repository
Gene Expression Omnibus with the following series entry:
GSE31361.

Statistics

Data were analyzed with a mixture model variance [VarMixt
method (13)] and a standard Student’s t-test to detect differentially
expressed genes; probability values were adjusted using the Ben-
jamini and Hochberg correction at 5% to limit false positives (18).

Table 1. Oligonucleotide primer sequences used for real-time RT-PCR

Gene Primer Sequence (5=-3=) Accession No. Amplicon Size, bp

AURKA Forward TCGGGAGGACTTGGTTTCTT DQ334808 234
Reverse TGTGCTTGTGAAGGAACACG

FASN Forward CACTCCATCCTCGCTCTCC AY343889 181
Reverse GCCTGTCATCATCTGTCACC

LIPE Forward GAGTTTGAGCGGATCATTCA NM_001080220 102
Reverse TGAGGCCATGTTTGCTAGAG

LEO1 Forward AGCAGCGCCGCATGAGAG BC120399 95
Reverse TCACCCTCCTTCCTCCTCCTC

Luc Forward TCATTCTTCGCCAAAAGCACTCTG AB644228 149
Reverse AGCCCATATCCTTGTCGTATCCC

MED10 Forward CCCGCGCTGACAGTTTTCTTG BC102439 169
Reverse ACGCATTCTTTATGCACCACACTC

RPS20 Forward CCACAAGCGACTCATTGACCTG BC103289 106
Reverse GGCATCAGCAATGGTGACTTCC

RPS9 Forward GGAGACCCTTCGAGAAGTCC BC148016 180
Reverse GGGCATTACCTTCGAACAGA

AURKA, serine-threonine kinase aurora A; LEO1, Paf1/RNA polymerase II complex component; luc, firefly luciferase, external control RNA; MED10,
mediator of RNA polymerase II transcription subunit 10; RPS20, ribosomal protein S20; RPS9, ribosomal protein S9; FASN, fatty acid synthase; LIPE,
hormone-sensitive lipase.
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Gene Ontology

Differentially expressed genes were classified according to their
biological and molecular functions using the online Database for
Annotation, Visualization and Integrative Discovery (DAVID) tools
(29) (http://david.abcc.ncifcrf.gov/). Significantly enriched annotation
terms and pathways were identified in a differentially expressed gene
set compared with the total gene list using the DAVID web service,
which employs a Fischer exact test with corrected P value cutoff of
0.05.

Protein Analysis

Antibodies. Mouse monoclonal antibodies to rh proteins RPS17
(clone 2C7), �-tubulin (TUBA, clone DM1), and rabbit polyclonal
antibodies to rh RPS20 were purchased from Sigma (Saint Quentin).
Rabbit polyclonal antibodies to synthetic phosphopeptide correspond-
ing to residues surrounding Thr202/Tyr204 and Thr185/187 of human
mitogen-activated protein kinase (MAPK) 3 and MAPK1, to phospho-
Ser563 of human hormone-sensitive lipase (HSL), to synthetic peptide
of human HSL, and rabbit monoclonal antibodies to synthetic peptide
within human fatty acid synthase (FAS, clone C20G5) were purchased
from Cell Signaling Technology (Ozyme, Saint Quentin Yvelines,
France). Rabbit polyclonal antibodies to rat ERK2 (MAPK1, C14)
were from Santa Cruz Biotechnology (Santa Cruz, CA). Polyclonal
goat antibodies against human MED10 and mouse polyclonal anti-
bodies to synthetic peptide of human LEO1 were provided by Abcam
(Cambridge, UK).

Horseradish peroxidase (HRP)-conjugated goat anti-rabbit and
donkey anti-goat antibodies were purchased from Cell Signaling
Technology; HRP-conjugated goat anti-mouse IgG was from Lab
Vision (Fremont, CA).

Western Immunoblotting

Groups of 50 oocytes were lysed in Tris-saline-EGTA buffer (pH
7.5) supplemented with 2 mM sodium orthovanadate and 1 �l/ml of
protease inhibitor cocktail (Sigma) and then freeze-thawed three times
by rapid incubation in liquid nitrogen followed by immersion in a
warm water bath at 30°C. Before loading, concentrated reducing
Laemmli buffer, containing 80 mM dithiothreitol at a final concen-
tration was added to all protein extracts, and samples were boiled for
8 min and then centrifuged 5 min at 12,000 g.

Protein extracts were resolved on 10–15% SDS-PAGE and trans-
ferred on nitrocellulose membranes. Blots were blocked with 5% of
milk powder in Tris-buffered saline/0.1% Tween 20 for 1 h at room
temperature and probed with the various antibodies overnight at 4°C.
Dilutions were 1:50 for MED10, RPS17, and RPS20; 1:500 for
pSer563-HSL, HSL, and FAS; and 1:1,000 for vinculin, TUBA, LEO1,
phospho-MAPK3/1, and MAPK1 primary antibodies. After washing,
immunoreactivity was detected using the appropriate HRP-conjugated
secondary antibodies (diluted 1:5,000, incubated 1 h at room temper-
ature) and revealed by an enhanced chemiluminescence ECL Plus kit
(Amersham Biosciences, Orsay, France). Densitometry was per-
formed by scanning the original radiographs and then analyzing the
bands with Scion Image for Windows (Scion). At least three inde-
pendent samples were analyzed for each experimental condition. The
data are expressed as a ratio of signal intensities in arbitrary units of
protein of interest to TUBA protein. Normalized data have been
subjected to the nonparametric Mann Whitney test; difference was
considered significant at a P value 	0.05.

Electron Microscopy Analysis of Oocyte Ultrastructure

Oocytes from each group (IO, IVM CEO, and IVM DO) com-
pletely denuded from their CC were fixed for 48 h in 4% paraformal-
dehyde/1% glutaraldehyde/0.1 M phosphate buffer pH 7.2 [Electron
Microscopy Science (EMS)] and then postfixed by incubation for 1 h
with 1% osmium tetroxide (EMS). Samples were dehydrated in

graded ethanol and propylene oxide baths, embedded in Epon resin
(Fluka), and incubated at 60°C for 48 h. Serial semithin (1 �m) and
ultrathin (70 nm) sections were cut using an Ultracut UCT ultrami-
crotome (Leica).

In total, 10 IO, 8 CEO, and 7 DO were analyzed. Semithin sections
were colored by toluidine blue (Merck) and examined with an Olym-
pus FluoView 500 (Japan) confocal microscope (laser HeNe 544 nm).
Microphotographs of semithin sections were obtained by using cam-
era 11.2 Color Mosaic and Spot Advanced 4.0.1 software. The total
area of midequatorial sections of each oocyte (n � 25) and the number
and areas of gray lipid droplets (LDs) and white vesicles were
measured using ImageJ 1.45o software (61). The LDs and vesicle area
fractions were compared between IO, CEO, and DO using ANOVA
followed by Tukey’s Multiple-Comparison Test.

A series of 10–20 ultrathin sections intercalated each 5–10 semi-
thin section. Ultrathin sections were placed on Ni EM grids (Oxford
Instruments), stained with 4% uranyl acetate and 1% lead citrate, and
then observed with a JEM 1011 electron microscope (Jeol, Tokyo,
Japan) equipped with a Gatan digital camera driven by Digital
Micrograph software (Gatan, Pleasanton, CA). The outermost optical
sections (110 nm) of the first and the last sections from semithin series
were collected. The corresponding subsequent or previous ultrathin
sections were found with an electron microscope and investigated on
different magnifications (�1,000 up to �40,000). Whole oocyte EM
images were obtained by combining four to five neighboring images
(�2,000 magnification) by using Adobe Photoshop CS software.

Total Lipid Content Analysis

Analysis of total lipid content was performed according to the Nile
Red-based protocol developed for bovine oocytes (23). Briefly, DO
before and after IVM were fixed in 4% paraformaldehyde/1% glutaral-
dehyde/0.1 M phosphate buffer pH 7.2 for 2 h. After three times washing
in PBS, they were stained in 0.2 �g/ml of Nile Red diluted in PBS
overnight at 4°C. Oocytes were then incubated for 15 min in PBS
solution with 1 �g/ml of Hoechst 33258 (Sigma). After being washed
three times in PBS, oocytes were put on slides and mounted with Mowiol
supplemented with 1 mg/ml of antifading DABCO. Fluorescence was
observed using either an Axioplan Zeiss fluorescent microscope or with
an Olympus FluoView 500 confocal microscope supplied with appropri-
ate filters. Microphotographs were obtained by using camera 11.2. Color
Mosaic and Spot Advanced 4.0.1 software (Diagnostic Instruments) at
�20 magnification, 100 ms exposition was applied for all the oocytes.
Images were analyzed using NIS-Elements Microscope Imaging Soft-
ware (Nikon, Champigny sur Marne, France). Mean luminosity values
(total luminosity/oocyte square) of immature (n � 26) and mature (n �
89) CEO or denuded (n � 83) individual oocytes were compared using
ANOVA followed by Tukey’s Multiple-Comparison Test. Differences
were considered significant at P 	 0.05.

RESULTS

Maturation and Developmental Potential of CEO and DO

CEO and DO showed a similar level of oocyte nuclear matu-
ration after 22 h of IVM: 89.3 � 3.3 and 88.2 � 3.0% of oocytes,
respectively, reached metaphase II stage in our conditions. Devel-
opmental rates of CEO and DO after IVF are shown in Fig. 1. As
expected, significantly less DO were cleaved at day 2 compared
with CEO. Moreover, a significantly lower proportion of cleaved
embryos has developed to the blastocyst from DO than from CEO
at day 8 post-IVF (20.3 � 4.3 and 43.5 � 5.4%, respectively,
P � 0.015). The percentage of hatched blastocysts was not
statistically different between two groups. However, the size of
the blastocysts obtained from cleaved CEO was 20.1 � 8.0%
larger in diameter than from their DO counterparts (P �
0.022).
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Ultrastructural Analysis of CEO and DO

IO and in vitro matured CEO and DO were analyzed on thin
and ultrathin serial sections using light and electron micros-
copy, respectively. IO (n � 10) were characterized by a clearly
visible nucleus (germinal vesicle, Fig. 2, A and B) up to 30 �m
in diameter. A large number of low electron density yolk
vesicles, sometimes visibly bounded to endoplasmic reticulum
(ER) membranes, were distributed throughout the ooplasm.
Large dispersed gray LDs, distributed all over the ooplasm,
were clearly detected by their characteristic color caused by
osmium treatment (Fig. 2, C–F). Numerous mitochondria rang-
ing from 0.5 to 1.0 �m in diameter, with a dark matrix and
well-developed inner membranes, were located mainly to the
periphery of oocytes. They formed complexes with the vesicles
and LD (Fig. 2E) located throughout the ooplasm. Cortical
granules, 
0.25 �m in diameter, were concentrated in clusters
that were often located to the periphery of the ooplasm in IO
(Fig. 2F).

After IVM, only the oocytes with visible polar body were
analyzed (CEO, n � 8 and DO, n � 7). Ultrastructural analysis
of mature CEO is shown in Fig. 3. Polar body was observed in
all mature oocytes (Fig. 3, A and B). The overall aspect of all
the oocytes after IVM was quite different compared with
immature ones. Fewer vesicles (especially those situated at the
periphery of the oocyte) were observed in mature CEO oocytes
compared with IO, and also fewer complexes including LDs
and mitochondria were in evidence. Morphological aspects of
LDs and mitochondria were similar between IO and mature
CEO. Cortical granules were organized in larger islets close to
the zona pellucida (Fig. 3D). Ultrastructural analysis of the DO
group revealed high similarity to CEO: the polar body and
islets of cortical granules at the periphery of the ooplasm were
observed in all mature oocytes (Fig. 4). Regarding white
vesicle abundance, in DO an intermediate level between IO
and CEO was observed. The area fraction occupied by the
vesicles or by gray LDs in the ooplasm was measured in each
oocyte (Fig. 5). A significant difference in vesicle area fraction
was observed between DO and CEO (11.07 � 1.50 and 4.34 �

0.86%, respectively, P 	 0.05). A significantly higher vesicle
area fraction was evidenced in IO (18.61 � 1.87%) compared
with CEO (P 	 0.001) and DO (P 	 0.01). The morphological
appearance of vesicles in most of CEO differed compared with
IO and DO: vesicles in CEO were more translucent and seem
to be “resorbed” in the ooplasm (Fig. 3, E and F). Gray LD
area fractions did not differ (P � 0.10) and averaged 0.90 �
0.17% in DO, 1.21 � 0.29% in CEO, and 1.76 � 0.39% in IO.

Total Lipid Content Analysis in CEO, DO, and IO

To compare total lipid content in the oocytes from different
groups, lipid-specific fluorochrome Nile Red staining of the
oocytes was quantified (198 oocytes in 3 replicates). This
method was validated as a reliable technique for quantifying
the total lipids in bovine and porcine oocytes (2, 23, 68). Nile
Red fluorescence revealed different distribution of lipids within
the ooplasm (Fig. 6A). Relative fluorescence mean intensity
(Fig. 6B) in both CEO and DO after IVM was less than in IO
(P 	 0.05 and P 	 0.001, respectively), and DO had less
fluorescence intensity level than CEO (P 	 0.001).

Transcriptomic Analysis of CEO and DO

A global gene expression analysis using oligo microarray
showed that from 13,609 detected oligonucleotides, only 68
appeared to be differentially expressed between metaphase II
DO and CEO (P 	 0.05, ANOVA, Benjamini and Hochberg
correction) with the degree of change ranging from 0.23 and
2.06. Among those 68 oligonucleotides, 34 were overexpressed
in CEO and 34 were overexpressed in DO, corresponding to 26
and 30 genes upregulated in CEO and in DO, respectively
(Table 2). Differentially expressed genes were subsequently
classified according to their gene ontology. Several genes were
involved in the regulation of transcription (DDIT3, POLR2L,
MED10, LEO1) and translation (RPS10, RPS20, EIF1AX)
processes. More genes overexpressed in DO were involved in
RNA binding (RPS10, HEXIM2, RPS20, SNRPA1, RPUSD2,
RPS17) and metal ion/cation binding (FTH1, POLR2L,
RASA3), whereas genes involved in different enzyme activity
(EIF1AX, NDUFA13, GYG1, ACADSB, PSMB3, GARNL1,
ASNSD1) and cytoskeleton maintenance (CEP110, MYO6,
CUL3) were overexpressed in CEO. In terms of gene ontology
description, such as biological processes, 58.8% of differen-
tially expressed genes were involved in the regulation of
cellular metabolism, including different biosynthesis, RNA
metabolic processes, proteasomal catabolism, and posttransla-
tional protein modifications. Molecular functions significantly
enriched in the list of differential genes compared with the
whole list of genes of microarray (P 	 0.05) were RNA
binding and oxidoreductase/peroxidase activity. Among the
genes overexpressed in CEO, many were involved in apoptosis
induction and cellular component organization, whereas most
of the genes upregulated in DO were assigned to different
metabolic functions. We also noted an increased mRNA level
(P 	 0.05) in DO for genes involved in mitochondrial activity
(ACN9, COX8A, ATPIF1), stress response (PRDX2), and in
steroid and lipid synthesis (FDPS, ACLY, APOO). Besides,
expression of numerous genes involved in lipid metabolism was
detected in both groups of mature oocytes by microarray hybrid-
ization. Among them there were genes coding for elongation of
very long chain fatty acid proteins ELOVL4 and ELOVL5, fatty
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Fig. 1. Comparison of the competence of cumulus-enclosed (CEO, n � 577)
and cumulus-denuded (DO, n � 566) oocytes with in vitro embryo develop-
ment after in vitro maturation (IVM) and in vitro fertilization (IVF). CEO and
DO were matured separately in groups of 50 and then were fertilized in vitro
together. After IVF CEO and DO were again separated, and presumptive
zygotes were cultured in vitro. Cleavage rate was calculated as a ratio of a
number of cleaved zygotes to a number of oocytes subjected to fertilization at
day 2 after IVF; blastocyst rate was checked at day 8, and it is relative to a
number of cleaved zygotes. Data are presented as means � SE of four
independent experiments. *The mean differs from CEO mean (P 	 0.05).
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acid synthase FASN, long-chain fatty acid transport proteins
SLC27A1, SLC27A2, SLC27A3, and SLC27A6, several lipases
including LIPE (alias HSL), and also fatty acid-binding proteins
FABP1, 3, 4, and 7. However, their transcript level did not vary
significantly between CEO and DO.

Differential expression of two genes involved in the regula-
tion of transcription, MED10 and LEO1 (microarray CEO/DO
ratio 0.66 and 1.84, respectively), was validated by real-time
RT-PCR analysis (Fig. 7) to confirm the significantly higher
abundance of MED10 and the lower level of LEO1 mRNA in
DO compared with CEO (P � 0.03 and P � 0.02, respec-
tively). However, no statistically significant difference was
found by this method for RPS17 and RPS20 genes, related to
translation machinery. Expression of genes LIPE and FASN
was also analyzed by real-time RT-PCR, and no significant
variation in mRNA level between CEO and DO was found as
expected from microarray data (data not shown). We detected
LIPE and FASN transcripts in the oocytes but also in CC before
and after IVM and in adipose tissue as a positive control (Fig. 8).

Here, the fragments of expected sizes were amplified by PCR
from oocyte, CC, and adipose cDNAs.

Candidate Protein Abundance in CEO and DO

To see the differences between CEO and DO at the protein
level, we quantified the abundance of the proteins either
encoded by the differentially expressed genes issued from
microarray analysis or those coding for candidate proteins
involved in lipid metabolism. Neither LEO1 nor MED10
proteins, encoded by differentially expressed genes, could be
detected by Western blot using commercial antibodies in pro-
tein extracts from groups of 50 mature DO and CEO. Relative
abundance of two ribosomal proteins, corresponding to the
products of RPS17 and RPS20 genes, was similar in CEO and
DO (Fig. 9A). We also measured abundance and phosphoryla-
tion of one of the major kinases involved in meiosis progres-
sion, MAPK1 (alias ERK2). No significant difference in phos-
phorylation of MAPK1 was observed between the oocytes after
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Fig. 2. Ultrastructural analysis of immature
bovine oocytes. A: representative image of
semithin section of immature oocyte stained
with toluidine blue and captured with a con-
focal microscope. B: one of the following ul-
trathin sections of the same oocyte obtained by
the assembly of several electron microscopy
microphotographs. Outlined rectangle surfaces
are magnified in C and D. E and F: magnifica-
tion of outlined areas in C and D, respectively.
GV, germinal vesicle; ZP, zona pellucida; V,
vesicle; LD, lipid droplet; m, mitochondrion;
CG, cortical granules. Bars: 20 �m (A and B),
5 �m (C and D), and 1 �m (E and F).
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22 h of IVM with or without CC (Fig. 9B). Analysis of the
proteins involved in lipid metabolism revealed that the level of
FAS (a protein involved in lipogenesis, encoded by the FASN
gene) was significantly lower in DO than in CEO (Fig. 10).
Relative abundance and Ser563 phosphorylation of HSL (a
protein involved in lipolysis, encoded by the LIPE gene) was
similar between DO and CEO, and phosphorylation of HSL was
not detected in IO but in both DO and CEO. The presence of FAS
and HSL was also detected in CC recovered before IVM.

DISCUSSION

Absence of CC During IVM Had No Effect on Oocyte
Maturation Rate but Impaired In Vitro Development

According to the present data, removal of CC before IVM
affected different aspects of oocyte cytoplasmic maturation.
Cytoplasmic and molecular maturation of the oocyte are poorly
defined compared with nuclear meiotic maturation. Neverthe-
less, cytoplasmic and molecular modifications, including or-

ganelle relocation, posttranscriptional modifications of mRNA,
protein synthesis, and posttranslational modification, enzyme
activation, etc., are essential to support embryo development
(65, 66). Nuclear maturation rate of DO was not significantly
affected compared with CEO in our conditions. Enriched
maturation medium 199EM used here may counterbalance the
lack of CC and thus prevented alteration of maturation and
assured the high nuclear maturation rate of DO. Indeed,
199EM was supplemented with several metabolites such as
pyruvate and cystein, which can be used by DO in the absence
of CC. In cow, CC metabolize glucose to pyruvate and cystin
to cystein to provide the oocyte with these energy sources, and
this input promotes oocyte maturation (24, 71, 73). Supple-
mentation of IVM medium with gonadotropins (here, 5 U/ml
of hCG and PMSG) or with EGF (10 ng/ml) is known to
improve oocyte maturation and in vitro embryo development
(43, 57, 82). Insulin and IGF-I were used in IVM medium as
growth- and survival-promoting factors; however, both of
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Fig. 3. Ultrastructural analysis of bovine
oocyte after 22 h IVM with CEO. A: repre-
sentative image of semithin section of mature
CEO stained with toluidine blue and captured
with a confocal microscope. B: one of the
following ultrathin sections of the same
oocyte obtained by the assembly of several
electron microscopy microphotographs. Out-
lined rectangle surfaces are magnified in C
and D. E and F: magnification of outlined
areas in C and D, respectively. PB, polar
body. Bars: 20 �m (A and B), 5 �m (C and
D), and 1 �m (E and F).
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these factors are also able to induce oocyte maturation (60).
Members of the insulin-signaling cascade, including glycogen
synthase kinase 3B and protein kinase B (AKT), are involved
in meiosis completion in bovine (77, 79); however, insulin had
no effect on AKT phosphorylation in oocytes (54). IVM in our
media supplemented with insulin and IGF-I did result in
similar meiotic maturation rate in CEO and DO. Similar
maturation of CEO and DO was also confirmed by an equal
level of phospho-MAPK1 in these groups, since phospho-
MAPK1 increased throughout IVM.

In contrast to nuclear maturation, developmental competence of
DO was altered, and blastocyst rate was about one-half of that in
the CEO group. This result was consistent with previous studies
that reported the lower cleavage and blastocyst rates from DO in
different media (14, 46). Interestingly, DO cocultivated with CEO
during IVM were reported to have twofold higher blastocyst rate
compared with DO matured alone (14). This fact indicates that
CEO provides beneficial factors for developmental competence of
DO. In our experiments, DO and CEO were only cocultured

during IVF to ensure their fertilization, as previously shown (46).
Therefore, in our experiments, poorer development of fertilized
DO up to blastocyst stage was likely the result of the lack of
factors from CC during IVM, which could affect oocyte matura-
tion and embryo development. Early embryo development before
embryo genome activation (EGA) is supported exclusively by
oocyte transcripts and proteins (3, 62). In contrast, after EGA, the
embryo is capable of producing its own mRNA and therefore to
regulate further development. In our study, hatching rate of
blastocysts developed from DO than CEO was not significantly
different, consistent with the idea that oocyte components are not
crucial for hatching, which is mainly assured by factors produced
by the embryo itself.

Absence of CC During IVM Affected the Oocyte
Transcriptome

Global gene expression analysis showed a small number of
differentially expressed genes and relatively low variation level
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Fig. 4. Ultrastructural analysis of bovine de-
nuded oocyte after 22 h IVM without cumu-
lus cells. A: representative image of semithin
section of mature DO stained with toluidine
blue and captured with a confocal micro-
scope. B: one of the following ultrathin sec-
tions of the same oocyte obtained by the
assembly of several electron microscopy mi-
crophotographs. Outlined rectangle surfaces
are magnified in C and D. E and F: magni-
fication of outlined areas in C and D, respec-
tively. Bars: 20 �m (A and B), 5 �m (C and
D), and 1 �m (E and F).
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between mature CEO and DO. Nevertheless, among differen-
tial genes PRDX2 was overexpressed in DO, which may
indicate a higher response to oxidative stress, probably asso-
ciated with the lack of CC, since cumulus is known to be
involved in oocyte protection against oxidative stress during
maturation (9). We also evidenced significantly increased
mRNA levels of FDPS, APOO, and ACLY (genes involved in
steroid and lipid synthesis) in DO compared with CEO (Table
2). Although no significant difference in FASN mRNA expres-
sion was evidenced, Western blot analysis showed the signif-
icantly lower level of FAS protein in DO. In contrast, expres-
sion of genes ACADSB involved in fatty acid �-oxidation,
GYG1 participating in glucose metabolism and ASNSD1 re-
lated to amino acid metabolism, was downregulated in DO
(Table 2). Because CC provide energy substrates like FA and
pyruvate to the oocyte, in the presence of reduced CC, oocyte

energy metabolism machinery is deviant and likely partially
compensates for the lack of nutrients by utilizing the oocyte’s
own storage. The products of these genes might be involved in
these processes. Because 199EM IVM medium contains pyru-
vate but not FA, it might be hypothesized that lipid synthesis is
mainly affected in the oocyte and CC in this condition.

Several genes involved in transcription and translation also
showed differences. Indeed, throughout oocyte growth, there is
synthesis and accumulation of a large amount of RNA that can
be translated or stored as stable transcripts for later recruitment
during the last maturation steps or early embryonic develop-
ment. Here, MED10, a component of the mediator complex
involved in the regulation of RNA polymerase II gene and
which may contribute to EGA (52), was overexpressed in DO.
LEO1, an RNA polymerase II-associated protein that is in-
volved in the regulation of transcription via histone modifica-
tions, showed the opposite regulation, i.e., overexpressed in
CEO. It was also shown that LEO1 was overexpressed in
bovine oocytes from superovulated cows compared with non-
stimulated ones (10). In addition, several ribosomal proteins
(RPS10, RPS17, RPS20) were overexpressed in DO compared
with CEO, and this might reflect a need for a higher level of
translation to obtain enough proteins for proper oocyte matu-
ration. However, at the protein level, neither RPS17 nor RPS20
were differentially abundant between DO and CEO groups. In
fact, in the oocytes, a decoupling of transcription and transla-
tion levels was frequently observed. This is because of the
absence of transcriptional activity in the oocyte during matu-
ration, so an increase of transcript level may not reflect an
increase in protein abundance. A recent transcriptomic study of
bovine oocytes cultured in vitro either with or without their
surrounding CC, in medium supplemented with 12% of estrus
cow serum, had shown 265 differentially expressed genes
representing 
2% of detected transcripts (56). The low pro-
portion of differentially expressed genes between these two
conditions in our experiment (	0.5%) could be explained by
the use of metabolically optimized enriched maturation me-
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dium, which may partially compensate for the absence of CC
in DO by providing optimal nutrients for oocyte maturation.

Altogether, our transcriptomic data indicated that, in oocytes
cultivated without their CC, transcriptional and translational
processes are modified in a way to compensate for the absence
of CC.

Absence of CC During IVM Affected Oocyte
Cytoplasmic Maturation

Maturation, whether in vitro or in vivo, strongly affected
oocyte ultrastructure compared with the immature state (this
study and Refs. 12, 30, and 31). Our study focuses and reports

Table 2. List of genes differentially expressed in metaphase II oocytes after IVM cumulus-enclosed compared with denuded
oocytes (P 	 0.05)

Gene Symbol Gene Description
Ratio CEO

vs. DO Known Function in Human

EIF1AX Eukaryotic translation initiation factor 1A, X-linked 2.06 Protein biosynthesis
GARNL1 GTPase-activating Rap/RanGAP domain-like 1 2.02 Regulation of transcription
NDUFA13 NADH dehydrogenase [ubiquinone] 1 �-subcomplex subunit 13 1.90 NADH dehydrogenase
SEP15 15-kDa selenoprotein precursor 1.89 Thioredoxin peroxidase activity
RNF166 RING finger protein 166 1.84 Zinc ion binding
LEO1 RNA polymerase-associated protein 1.84 RNA processing
LOC532883 Hypothetical LOC532883 1.83 Unknown
KIAA1598 Shootin-1 1.78 Kinase binding
GTSF1 Gametocyte-specific factor 1 1.74 Metal ion binding
CNIH4 Protein cornichon homolog 4 1.73 Unknown
PSIP1 PC4 and SFRS1-interacting protein 1 1.70 Transcriptional coactivator
MYO6 Myosin VI 1.55 Actin-based motor with ATPase activity
CUL3 Cullin-3 1.53 Ubiquitination and proteasomal degradation
ASNSD1 Asparagine synthetase domain-containing 1 1.53 Glutamine metabolic process
UACA Uveal autoantigen with coiled-coil domains and ankyrin repeats 1.51 Regulation of stress-induced apoptosis
OPA1 Dynamin-like 120-kDa protein mitochondrial precursor 1.49 Mitochondrial fusion and regulation of apoptosis
ARRDC4 Arrestin domain-containing 4 1.49 Signal transduction
CEP110 Centrosomal protein 110 kDa 1.44 Spindle formation, cytokinesis
KCTD10 BTB/POZ domain-containing protein 1.41 Ubiquitination and proteasomal degradation
EPRS Bifunctional aminoacyl-tRNA synthetase 1.38 RNA binding
FAM108A1 Family with sequence similarity 108, member A1 1.35 Hydrolase activity
HNRNPD Heterogeneous nuclear ribonucleoprotein D0 1.33 RNA and DNA binding
DENND4A C-myc promoter-binding protein 1.32 DNA binding
TMEM66 Transmembrane protein 66 precursor 1.30 Unknown
ACADSB Short/branched-chain specific acyl-CoA dehydrogenase

mitochondrial precursor
1.30 Fatty acid metabolism

GYG1 Glycogenin-1 1.28 Glucose metabolism
RASA3 Ras GTPase-activating protein 3 0.86 Inhibitory regulator of AMP pathway
KIAA2013 Uncharacterized protein KIAA2013 precursor 0.82 Unknown
APOO Apolipoprotein O precursor 0.79 Lipid metabolism
C9orf119 Uncharacterized protein C9orf119 0.78 Unknown
ACN9 Protein ACN9 homolog mitochondrial precursor 0.78 Mitochondrion activity
POLR2L DNA-directed RNA polymerases I, II, and III subunit 0.78 Regulation of transcription
PSMB3 Proteasome subunit � type-3 0.78 Proteosomal protein degradation
PSMC3 26S protease regulatory subunit 6A 0.76 Proteosomal protein degradation
RPUSD2 RNA pseudouridylate synthase domain-containing protein 2 0.76 RNA binding
DDIT3 DNA damage-inducible transcript 3 0.76 DNA-binding activity
COX8A Cytochrome c oxidase subunit 8A 0.74 Mitochondrion electron transport
RPS17 Ribosomal protein S17 0.74 Regulation of translation
SH3GL2 Endophilin-A1 0.74 Endocytosis
FTH1 Ferritin, heavy polypeptide 1 0.74 Iron storage
WDR13 WD repeat-containing protein 13 0.74 Unknown
RPS10 Ribosomal protein S10 0.73 Regulation of translation
ACLY ATP-citrate synthase 0.73 Energy metabolism
RPS10 Ribosomal protein S10 0.73 Regulation of translation
TMEM42 Transmembrane protein 42 0.73 Unknown
OOEP Oocyte-expressed protein homolog 0.71 Subcortical maternal complex maintenance
HSPA8 Heat shock 70-kDa protein 8 0.70 Regulation of transcription
SNRPA1 Small nuclear ribonucleoprotein polypeptide A 0.70 RNA and protein binding
HEXIM2 Protein HEXIM2 0.69 Transcriptional regulator
ATPIF1 ATPase inhibitor mitochondrial precursor 0.67 Mitochondrion activity
WDR13 WD repeat-containing protein 13 0.67 Protein binding
FDPS Farnesyl diphosphate synthase 0.67 Energy metabolism
MED10 Mediator of RNA polymerase II transcription subunit 10 0.66 Regulation of transcription
RPS20 Similar to ribosomal protein S20 0.62 Regulation of translation
PRDX2 Peroxiredoxin-2 0.60 Stress response
LOC493779 18S ribosomal RNA 0.59 Regulation of translation

IVM, in vitro maturation.
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novel information on ooplasm modifications related to the
presence or absence of CC during IVM in fatty acid-free
medium. Our study clearly demonstrated that absence of CC
led to aberrant cytoplasmic maturation of DO compared with
CEO. Electron microscopy analysis revealed differences in
ooplasm ultrastructure between DO and CEO notably in energy
stock-containing structures like vesicles and LDs. For the first
time, we reported that the abundance and morphology of low
optical density vesicles were different between CEO and DO.
Before maturation vesicles filled out the whole ooplasm, and
during IVM their quantity decreased much more in CEO than
in DO. Such vesicles are named “yolk” or nutritive vesicles
and contain a mix of proteins, lipids, and carbohydrates of
different origin (59). All these components are imported to the
oocyte mainly from external fluids via diffusion, endocytosis,
or via CC gap junctions and then stocked in such vesicles that
are frequently associated with smooth ER. In bovine oocytes
such vesicles are closely associated with mitochondria and LDs
through smooth ER and form metabolic units (30). In pig
oocytes, functional association of LDs with mitochondria,
shown by fluorescence resonance energy transfer, strongly
suggested a role for lipid metabolism during oocyte maturation
(69). Most FA are stored as triacylglycerol (TAG) in neutral
LDs, which are clearly visible in the ooplasm as gray spots
using microscopy. The number of LDs varied significantly
between species. TAG is a major lipid in mammalian oocytes,
especially in porcine and bovine oocytes, which contain many
more lipids compared with mice (23). We observed that LDs’
content also decreased after IVM, being more consumed in DO
than in CEO. Therefore, a decrease of vesicle and LD abun-
dance during IVM means that they are consumed by the
oocytes as an energy source during maturation in FA-free
medium; however, their consumption rate seems to be influ-
enced by CC. In porcine, by comparing in vitro mature CEO
and DO using fluorescent lipid and mitochondrial trackers, it
was shown that CC interfered with ooplasmic LD-mitochon-
dria distributions; moreover, LD distribution in oocytes was
more sensitive to absence of CC than mitochondria, thus
influencing oocyte morphological appearance and glutathione-
ATP content (11).

Therefore, the quantitative and qualitative changes of LDs
and yolk vesicles between CEO and DO in our experiments
could reflect functional differences notably in oocyte energy
metabolism.

Absence of CC During IVM Impaired Oocyte Lipid Content

It was reported that intracellular lipids are a very important
endogenous source of energy in the oocyte during maturation
in different mammalian species, including bovine (51, 68), in
addition to glucose and pyruvate uptake, which are considered
key substrates to provide energy for oocyte maturation (39,
70). In fact, in our study using Nile Red, we observed a
decrease of intracellular lipid contents in the oocytes after IVM
compared with IO, and this was in concordance with other
studies reporting lower TAG and total cholesterol content in
mature oocytes than in IO (21, 37). Our measurements also
provide evidence for significantly higher total lipid content in
CEO compared with DO after IVM, suggesting differences in
cumulus-related lipid metabolism between these oocyte
groups. In contrast, the quantity of vesicles was higher in DO,
indicating a lower consumption of their content by the oocytes
lacking CC. The content of these vesicles is not clearly defined,
but they likely contain phospholipids as well as carbohydrates
and proteins. LDs containing mostly TAG were visible using
transmission electron microscopy analysis as gray-colored and
more optical dense inclusions. Intraoocyte FA composition
might reflect oocyte quality in humans (48) and in cattle (37).
Several studies revealed that high oocyte lipid content is
associated with improved oocyte development ability (32, 69)
and thus is consistent with higher blastocyst rate for CEO in
our experiments. It was even suggested that lipid contained in
the oocyte could be sufficient to support the metabolic require-
ments of preimplantation development as a sole energy source
in porcine and bovine (69). Oocyte lipids may be used as
oxidative substrates during maturation and explained the de-
crease in TAG and cholesterol content observed in bovine
oocytes (37). This fact is consistent with a decrease in lipid
content during IVM, which was observed in our study. There-
fore, the lower content of total lipid observed in DO compared
with CEO can reflect more intensive lipolysis and FA oxidation
in DO, higher lipogenesis in CEO, or both.
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Lipogenesis and Lipolysis in the Oocyte During IVM

Here for the first time we demonstrate the presence of FAS
in the oocytes and in CC both at the transcript and protein
level. Synthesis of FA that constitutes LDs is assured by
several enzymes, including FAS. FAS is encoded by FASN
gene and is a multifunctional enzyme with a main purpose to
catalyze the synthesis of palmitate into long-chain saturated
FA. According to our data, FAS is more abundant in CC than
in oocytes relative to total protein content; however, FAS is
also present in the oocytes before and after IVM, which might
support the idea of continuous lipogenesis in the oocytes and
CC during IVM in lipid-free maturation medium. Moreover,
FAS was significantly more abundant in CEO compared with
DO, suggesting either more intensive lipogenesis in oocytes

maturing within COC or additional lipid intake from CC to
oocyte during IVM. In fact, in cow COC, the high level of
metabolic coupling between corona CC and the oocyte was
maintained up to 9 h of IVM (i.e., up to oocyte metaphase I
stage) and followed by a decrease to a constant low level at 13
h (41). In the absence of FA in maturation medium, FA could
be synthesized by CC from the external carbohydrates present
in the medium, notably glucose (1 mg/ml) and pyruvate (0.11
mg/ml), and then transported to oocytes. Moreover, IVM
medium was supplemented with insulin (5 �g/ml), which is
known to stimulate glucose uptake and activate FA synthesis
while inhibiting lypolysis (58). Insulin receptor (IR) is present
in both CC and oocytes (1). However, IR substrates (IRS) were
different in CC and oocyte (IRS-1 and IRS-2, respectively),
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and insulin-stimulated glucose uptake occurred in CC but not
in oocyte in mice (54). Different IRS had complementary roles
in the control of insulin-stimulated energy metabolism: IRS-1
is more closely linked to glucose and IRS-2 to lipid metabolism
(72). Therefore, insulin might act differently on FA metabo-
lism in the oocytes enclosed or not with CC.

IGF-I was also present in our IVM 199EM medium, and in
mesangial cells it was shown to induce lipid accumulation and
to impair cell migration (4). Different IGF-I receptors and
IGF-binding proteins were evidenced in bovine oocyte and CC
(53). We could hypothesize that IGF-I had stimulated lipid
accumulation in both CC and oocyte, and CEO have therefore
more lipids than DO because of additive intake from CC.
Alternatively, the oocyte might also synthesize FA by itself,
since genes of different enzymes involved in lipogenesis are
expressed in bovine oocyte according to our data and to a
recent study of Van Hoeck et al. (80). However, this hypothesis
needs further investigation.

In contrast to lipogenesis, lipolytic activity was well docu-
mented in bovine oocyte and thus indicates its active partici-
pation in lipid catabolism during IVM (8). In rats, immunore-
active HSL was detected in the oocytes and granulosa cells of
mature follicles (42). In our study we, for the first time,
detected HSL both in oocyte and CC in bovine, both at the
transcript and protein level. HSL is a rate-limiting enzyme that
is able to catalyze the first two steps in the breakdown of stored
TAG, i.e., hydrolysis of TAG and diacylglycerol freeing the
FA and monoacylglycerol, and HSL can also release choles-
terol esters (40). HSL is activated by phosphorylation at
several serine residues by protein kinase A, lipolytic hormones,
and AMPK. Here, we detected for the first time in CC and in
mature oocytes the HSL phosphorylated at the Ser563 regula-
tory site, which is thought to play a critical role in the
activation of HSL, and this phosphorylation is regulated hor-
monally via a cAMP-dependent pathway (40). Hence, the
presence of the active HSL in the oocyte during IVM indicated
hydrolysis of lipid storage and release of FA for potential
oxidation. Interestingly, total HSL was detected in the oocytes
whatever the maturation stage; however, phosphorylation at
Ser563 was detected in only mature oocytes, indicating that
activation of HSL occurs during maturation. Moreover, HSL is
relatively more abundant in oocytes than in CC.

In mice it was shown that fatty acid oxidation (FAO) is an
important regulator of oocyte meiotic maturation (19). In
addition, FAO is influenced by the level of AMPK activity
(17). In bovine oocytes, meiosis resumption is associated with
a decrease in AMPK activity (78), in contrast to mouse oocytes
maintained in meiotic arrest by cAMP analogs in which AMPK
activation stimulated meiosis resumption (16). Activation of
AMPK is known to also inhibit lipid biosynthesis by phosphor-
ylation and inactivation of key metabolic enzymes (27).
AMPK activation is also associated with higher lipolysis rate in
adipocytes in vitro (81). A significant decrease in nuclear
meiotic maturation rate after IVM in the presence of different
AMPK activators was observed in CEO but not in DO in
bovine (78) and in porcine (50), species containing much
higher lipids in the oocyte compared with mice. Therefore, CC
might influence AMPK-dependent lipolysis in the oocyte. In
mature CEO after IVM, we demonstrate herein that phospho-
HSL protein was present at higher levels than in IO, and this is
in accordance with a decrease in AMPK phosphorylation after

IVM (78). However, no significant variation was found in the
phospho-Ser563 HSL level between CEO and DO, which
means no significant influence of CC on the first steps of
lypolysis in the oocyte.

In conclusion, CC removal before IVM in serum-free opti-
mized medium had no effect on oocyte meiotic maturation and
moderately affected oocyte transcriptome but led to suboptimal
cytoplasmic maturation of DO that alters their developmental
competence. Lipid storage was consumed at a higher level by
DO than CEO, and this was probably because of a lack of FA
provision from CC and decreased lipogenesis in the oocyte. CC
therefore could influence the choice of intracytoplasmic nutri-
tive storage available to use as an energy source for IVM in
serum-free conditions.
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