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Abstract

Random chemical mutagenesis of the mouse genome can causally connect genes to specific phenotypes. Using this
approach, reduced pinna (rep) or microtia, a defect in ear development, was mapped to a small region of mouse
chromosome 2. Sequencing of this region established co-segregation of the phenotype (rep) with a mutation in the Prkra
gene, which encodes the protein PACT/RAX. Mice homozygous for the mutant Prkra allele had defects not only in ear
development but also growth, craniofacial development and ovarian structure. The rep mutation was identified as a
missense mutation (Serine 130 to Proline) that did not affect mRNA expression, however the steady state level of RAX
protein was significantly lower in the brains of rep mice. The mutant protein, while normal in most biochemical functions,
was unable to bind dsRNA. In addition, rep mice displayed altered morphology of the skull that was consistent with a
targeted deletion of Prkra showing a contribution of the gene to craniofacial development. These observations identified a
specific mutation that reduces steady-state levels of RAX protein and disrupts the dsRNA binding function of the protein,
demonstrating the importance of the Prkra gene in various aspects of mouse development.
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Introduction

The Prkra gene encodes a double-stranded RNA binding

protein, which was identified and named independently as Protein

Activator of PKR (PACT) in human [1], and PKR-associated

protein X (RAX) in mouse [2]. PACT and RAX are almost

identical in their amino acid sequences; only 6 out of 313 residues

are different with 4 substitutions being with similar residues. Initial

studies on this protein were focused on its ability to induce

autophosphorylation of and activate interferon inducible, double-

stranded RNA dependent protein kinase (PKR) (encoded by the

Eif2ak2 gene) in response to various stresses such as ceramide [3],

arsenite [2,4], tumor necrosis factor a (TNFa) [5], ethanol [6], low

dose actinomycin D [7], growth factor withdrawal [2,4],

chemotherapeutics [8], endoplasmic reticulum (ER) stress [9,10],

or peroxide [2,4]. Activation of PKR results in phosphorylation of

eukaryotic initiation factor 2a (eIF2a) leading to inhibition of

protein synthesis [11,12]. In addition to PACT/RAX, PKR is

modulated by another dsRNA binding protein, TAR (trans-

activating region) RNA-binding protein (TRBP in human, PRBP

in mouse) (encoded by the Tarbp2 gene) [13,14,15]. In contrast to

PACT/RAX, TRBP/PRBP inhibits PKR activation [14]. Aside

from binding PKR, PACT and TRBP have also been shown to

heterodimerize through interaction of their N-terminal dsRNA

binding motifs, as well as through their C-terminal Merlin-Dicer-

PACT liaison (Medipal) domain [16,17].

Upon appropriate stimulation, PACT is phosphorylated on

serine 246 and serine 287 [18], while RAX is phosphorylated on

serine 18 [19]. Phosphorylation causes PACT/TRBP heterodi-

mers to dissociate [20,21], freeing PACT to bind PKR through its

two amino-terminal double stranded RNA binding domains [7].

This leads to conformational change facilitating interaction of

PACT’s carboxy-terminal domain with the kinase domain of PKR

(residues 328–335) leading to PKR activation [16,22,23] and

subsequent eIF2a activation.

Studies in mice in which the Prkra gene was disrupted

(Prkratm1Gsc/tm1Gsc mice) produced unexpected results. In contrast

to mice in which the Eif2ak2 gene has been disrupted

(Eif2ak2tm1Cwe/tm1Cwe), which had no discernable developmental

phenotype [24], Prkratm1Gsc/tm1Gsc mice showed defects in ear and

craniofacial development, growth and fertility [25]. Further

investigation revealed that Prkratm1Gsc/tm1Gsc mice developed

hypoplastic anterior pituitaries resulting from reduced cell

proliferation in this tissue [26]. As the anterior pituitary contains
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cells which secrete hormones required for growth and sexual

development, this likely accounts for some of the developmental

anomalies observed in the mouse [26].

In addition to its ability to activate PKR, PACT has also been

shown to have a role in production of small RNAs involved in

RNA silencing. PACT (as well as TRBP) interacts with Dicer,

which processes small RNAs from their precursor to mature forms,

and is a component of the RNA Induced Silencing Complex

(RISC) whose key components include Dicer and Argonaut

proteins [27]. While not essential for cleavage of pre-microRNAs

to their mature form by Dicer, PACT may be required for RISC

assembly, as depleting PACT led to reduced levels of mature

miRNAs in vitro [27]. While knockout mice for Dicer have been

generated, these are embryonically lethal [28]. The relevant tissue

specific knockouts for Dicer, however, [29,30] show similar

reproductive defects to the Prkratm1Gsc/tm1Gsc mice. This observation

supports the idea that at least some of the developmental defects

seen in the Prkra deficient mouse might result from defects in

miRNA processing.

In humans, mutations in Prkra are associated with Dyt16, an

autosomal recessive young onset dystonia-parkinsonism disorder

[31,32]. Dyt16 patients show retarded speech learning in infancy

and involuntary muscle contraction starting during teenage years.

The respective mutations correspond to a frameshift (266–

267delAT) causing premature termination of the protein [32]

and to a missense mutation P222L [31].

Ethylnitrosylurea (ENU) mutagenesis provides a mechanism for

generating random point mutations in the mouse germline [33].

Offspring of mice that have been mutagenized can be sequentially

crossed with wild-type mice to segregate mutated recessive alleles

and intercrossed to generate mice homozygous for the recessive

mutation [34]. The location of a mutation can then be mapped

within the genome and the mutated gene can be identified [34,35].

Subsequent to performing such a screen for dysmorphology one

mouse line named rep for ‘‘reduced pinna’’ was identified and

established carrying a recessive mutation in Prkra.

This study describes similarities and differences in the

phenotypes of the rep mutant mouse generated by ENU

mutagenesis and the existing Prkra null mutant mouse

(Prkratm1Gsc/tm1Gsc, described above) in which a portion of Exon 8

of Prkra was replaced with a neomycin resistance cassette [25].

This study demonstrates that the rep mutation produces a mutant

of the PACT/RAX protein which is present at significantly

reduced steady-state levels. This low level of PACT/RAX results

in a phenotype with many similarities to that of the Prkratm1Gsctm1Gsc

mouse in which no protein can be detected, in contrast to the

lethal effect observed in the deletion of the entire gene [36].

Results

Characterization of the reduced pinna recessive mutation
affecting the Prkra gene

In the course of the Phenotype Homozygote Mutants program

[34], the rep mutant mouse line which displays microtia (Figure 1A)

and growth retardation (Figure 2, Table 1) was isolated. The

mutation was induced by ENU on the C57BL/6J background and

was further established by backcrossing on the C3HeB/FeJ genetic

background. We used this backcross to precisely map the position

of the mutation using a panel of markers already described

[34,35]. The rep mutation was located between rs13476586 and

rs13476589 on mouse chromosome 2 (Figure 1B). Looking at

candidate genes in this region, we identified the Prkra gene for

which a knock-out displaying similar dysmorphology was previ-

ously described [25]. We sequenced the Prkra coding sequence and

exon/intron borders. We found a point mutation TRC in exon 4

affecting codon 130 and introducing the missense mutation S130P

(Figure 1C). Thus we conclude that the rep mutation affected the

Prkra gene so we named the mutation Prkrarep. We verified that this

change was not found in either C57BL/6J or C3HeB/FeJ

background, or in other mouse strains including 129S2, BALB/c

and DBA2/J (data not shown). Performing a more detailed

phenotypic analysis we noticed two major changes in Prkrarep/rep

homozygous mice. First, adult homozygous mice were smaller

compared to their control littermates (Table 1). The weight

difference was also found in younger individuals starting at 7 days

post partum, with no major difference between sexes in

homozygous mice (Figure 2). Second we noticed a defect in

fertility when we crossed the Prkrarep/rep females with wild-type (wt)

or heterozygous mice. No progeny were obtained by breeding 7

homozygous females with wt males over a 2 month period.

Histopathological analysis of the ovaries showed all stages of

folliculogenesis from primordial to preovulatory follicles and

corpus luteum formation were present in mutant mice

(Figure 3A, B). No abnormalities were observed in the histology

of testes from male mutants (Figure 3C, D). We also observed

differences in the skull of rep homozygous mutants. We

characterized those changes by 3D-cranial morphology assessment

using a series of landmarks as indicated in the Materials and

Methods. Prkrarep/+ (data not shown) and Prkrarep/rep mouse skulls

were characterized by very short nasal bones (Figure 4A). They

also differed from the wt morphology by the shape of the

zygomatic process of the temporal bone which was relatively more

robust than the wt and their mandible differed from the wt by a

reduced coronoid process and a reduced mandibular condyle

(Figure 4A). Interestingly, Prkratm1Gsc/tm1Gscspecimens presented an

open area at the top of the skulls resulting from the lack of fusion of

the frontal and parietal bones. They also differed from the wt

morphology by a reduction of the interparietal bone associated

with a medial displacement of the parietal/interparietal/occipital

junction. Mandibles of homozygous specimens presented a

reduced mandibular condyle when compared to the wt specimens.

The cranial and mandibular morphologies of Prkrarep/+ (data not

shown), Prkrarep/rep and Prkratm1Gsc/tm1Gsc individuals differed from

the wt and also differed from one another (Figure 4B). These data

highlight that although phenotypes resulting from the Prkrarep and

Prkratm1Gsc mutations share many common features, the mutations

have different impacts on cranial and mandibular morphology.

Presence of RAX mRNA in the brains of rep mice
To understand the physiological defects seen in rep mice it was

important to determine whether Prkra mRNA was present at wild-

type levels in these animals. It was possible that the S130P

mutation would alter the production, processing or stability of

Prkra mRNA. RT-PCR was used to determine whether Prkra

mRNA was produced in brain. Primer sequences targeting the 59

region (exons 2 and 3) and 39 region (exon 8) were used in separate

reactions to determine whether the entire mRNA or simply the

portion 59 of the T-C substitution leading to the S130P mutation

was generated. Both 59 and 39 portions of Prkra mRNA were

present in rep mice at levels comparable to those seen in wt mice,

indicating the S130P mutation does not impair production of full

length Prkra mRNA (Figure 5).

RAX (S130P) dimerizes and activates PKR in response to
stress, but is unable to bind dsRNA

To investigate the biochemical basis for the rep phenotype, the

S130P mutation was introduced in RAX for expression in mouse

Developmental Defects in Prkra Mutant Mice
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and bacterial cells. The mutant protein was characterized for its

ability to bind and activate PKR, bind dsRNA and homodimerize.

The ability of RAX (S130P) to bind dsRNA was determined by

electrophoretic mobility shift assays using radiolabeled dsRNA and

bacterially-expressed, purified WT and mutant His-RAX. There

was a clear shift in electrophoretic mobility of the dsRNA probe in

the presence of 1 mM WT His-RAX which could be competed out

by unlabeled synthetic dsRNA, poly(I:C), demonstrating dsRNA

specific binding activity of WT RAX. The mutant protein

however could not bind dsRNA, as measured by this assay

(Figure 6A). To further examine this observation, a different

dsRNA-binding assay was used. In this assay, His-RAX was

incubated with radiolabeled dsRNA and then purified using Ni-

NTA agarose; the amount of dsRNA probe, bound to RAX, was

quantified by scintillation counting. Again, there was clear dsRNA

binding to the WT protein, which could be competed out with the

addition of unlabeled poly(I:C), while the mutant protein was

unable to bind the dsRNA probe (Figure 6B). These results

demonstrate that the S130P mutation disrupts the dsRNA binding

capacity of RAX.

Dimerization was examined by incubating purified WT or

S130P His-RAX with lysates from L929 cell lines expressing

similar levels of WT or S130P FLAG- RAX, as generated by

lentiviral transduction (Figure 6C, middle panels). Both WT and

mutant RAX homodimerized (Figure 6C, top panel) demonstrat-

Figure 1. Characterization and genetic identification of the rep
mutation. A 15days post-partum rep homozygous mice (right) displayed
reduced pinna compared to control littermates (left). B Haplotype analysis
of 81 mutant mice derived from the outcross-intercross strategy. Markers
are shown with their position (cM) on chromosome 2 (Ensembl V50). The
C57BL/6J alleles are shown with black boxes whereas the white boxes
indicate the presence of the C3HeB/FeJ allele. Haplotypes with the same
allelic distribution were collected and their number is given at the top of
each column. C Sequence chromatograph spanning the rep mutation site
compared with that of a wild-type control.
doi:10.1371/journal.pone.0028537.g001

Figure 2. Growth curves of the rep homozygote mutants and
control littermates. Body weight curves of rep/rep individuals
generated from heterozygote intercrosses (male rep/rep n = 9; male
wt n = 15; female rep/rep n = 12; female wt n = 22) reveal that growth of
mutant homozygotes is affected during post-natal development
compared to control littermates.
doi:10.1371/journal.pone.0028537.g002

Table 1. Weights of adult rep mice compared to those of WT
controlsa.

Sex WT rep/rep P Value

Male 24.9+/22.1 g
n = 11

19.2+/22.4 g
n = 10

0.0013

Female 21.8+/21.1 g
n = 8

17.5+/20.5 g
n = 4

0.0005

aWeights of adult rep and WT littermates (male age 54 days+/21.4 days; female
age 54.3+/21.3 days) and the P-values of the corresponding Student T-test.

doi:10.1371/journal.pone.0028537.t001

Developmental Defects in Prkra Mutant Mice
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ing that the mutation does not interfere with dimerization of

RAX.

To assess the ability of the S130P mutant protein to bind

PKR, cell lysates from WT or S130P FLAG-RAX expressing

L929 cells treated with sodium arsenite (to induce RAX

phosphorylation) were immunoprecipitated using a FLAG

antibody, followed by western blot for endogenous PKR. There

were clear interactions between PKR and WT or S130P RAX

proteins, independent of the arsenite treatment (Figure 6D),

demonstrating that the S130P mutation does not interfere with

PKR interaction of RAX.

For testing the ability of RAX (S130P) to activate PKR, we

generated L929 cells in which expression of RAX had been

ablated by a shRNA that targets the 39UTR of RAX mRNA. In

this cell line, WT or mutant RAX was ectopically expressed

using lentiviral vectors encoding the corresponding RAX

mRNAs without the UTRs (Figure 6E, bottom panel). These

cells were treated with sodium arsenite to activate RAX whose

ability to activate PKR was monitored by measuring eIF2a
phosphorylation; there were comparable stress-induced increases

in phospho-eIF2a in cells expressing WT or mutant RAX

(Figure 6E, top panel) demonstrating that the S130P mutation

does not impair the stress-induced PKR activation function of

RAX.

Reduced steady-state levels of ectopically expressed
mutant RAX

In L929 cells, ectopic expression levels of FLAG-RAX (S130P)

were consistently lower than those of WT FLAG-RAX (data not

shown). To determine whether the observed difference was

operative at the transcription or the translation level, we

measured the levels of RAX protein by western blot and mRNA

by realtime RT-PCR, in several cells lines that we generated. In

cells infected with RAX-expressing lentivirus at moi of 1, as

compared to WT, there was a slightly reduced level of the mutant

mRNA (Figure 7A) but an almost undectable level of the mutant

protein (Figure 7B). However, when the mutant-expressing virus

was used at a moi of 3, a comparable level of the mutant protein

was expressed from more than twice the level of the mutant

mRNA, indicating a defect in the synthesis or turnover of the

mutant protein. To distinguish between the two possibilities, we

measured the stability of the mutant protein in cells expressing

equal levels of WT and mutant proteins. New protein synthesis

was inhibited by cyclohexamide treatment, and the rate of decay

of existing RAX was monitored by western blot analysis at

different time points (Figure 7C). Data were quantified as FLAG

signals relative to actin signals (Figure 7D). We did not observe

any significant difference in the rates of WT and mutant protein

decay. These results indicate that the lower steady-state level of

Figure 3. Analysis of the gonads of rep/rep mutant mice. A, B Histological analysis of hematoxylin-stained sections. In ovaries, all stages of
folliculogenesis from primordial to preovulatory follicles and corpus luteum were observed in mutant mice (A) as in wild-type (B), suggesting that
ovaries are functional. Scale bar = 150 mm. C Histology of the testis from adult rep mutant male. All stages of spermatogenesis were visible, and no
alteration of tubule diameter was observed. Scale bar = 50 mm. D Histology of the cauda epididymis from adult rep mutant male. No abnormalities
were observed. Scale bar = 20 mm.
doi:10.1371/journal.pone.0028537.g003

Developmental Defects in Prkra Mutant Mice
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the mutant protein is probably due a defect in its synthesis, but

not due to an accelerated decay.

Significantly reduced levels of mutant RAX in the brains
of rep mice

To extend our observations in cell lines to mice, we measured

RAX protein levels in brains of WT and rep mice; we chose the

brain as a representative tissue because RAX is highly expressed

there. Proteins precipitated from the trizol extracts of the brains of

the mice used to measure RAX mRNA levels (Figure 5) was used

to detect RAX protein levels by western blot, revealing

significantly reduced levels in mutant mice compared with WT

mouse (Figure 8A). To rule out the possibility that the reduced

protein levels were an artifact of precipitation from the trizol

fractionation, we prepared a third rep brain, along with WT and

tm1Gsc (RAX2/2) brains, using conventional detergent lysis.

These additional samples showed reduced mutant RAX protein in

the rep mouse and no RAX in the RAX2/2 mouse brains

(Figure 8B). These results, combined with those shown in Figure 5,

indicate that in rep mice much less RAX is present because of a

defect in the synthesis of the mutant protein.

Discussion

In this report we described the characterization of a new ENU-

induced missense mutation (S130P) in the coding sequence of the

Prkra gene. The new allele of the Prkra gene (rep) induces several

alterations in growth, and the development of the ear and skull of the

mutant mice. During this analysis we further characterized in rep

homozygous mutants, the craniofacial defects previously observed in

tm1Gsc mice. Rep mice were found to have a very short nasal bone and

a reduced coronoid process and mandibular condyle. Parallel analysis

carried out for the Prkratm1Gsc mutation revealed similar mandibular

alteration but major changes of the skull shape with a lack of fusion of

the frontal and parietal bones. These series of data elaborate upon the

role of Prkra in controlling cranio-facial development.

Figure 4. Morphological variations observed in skulls and mandibles of wt, rep and Tm1Gsc mice. A Major cranial anomalies observed in
Prkrarep and Prkratm1Gsc mice. Arrows indicate the principal defects for each mutant, i.e. the reduced coronoid process and mandibular condyle, and
the short nasal bone in rep mice and the bregmatic fontanelle-like structure of Prkratm1Gsc mice. Scale bar: 5 mm. B Plot of principal components 1
and 2 based on Procrustes analysis of 3D landmark coordinates of wt, rep and Prkratm1Gsc mice. Squares: wt mice; Triangles: Prkratm1Gsc mice; Filled
diamonds: rep heterozygous mice; Open diamonds: rep homozygous mice. On the principal components analysis (PCA) performed from cranial
landmarks (top panel), PC1 represents 54.7% of variance and PC2 15.1%. On the PCA performed from mandibular landmarks (bottom panel), PC1
represents 46.0% of variance and PC2 16.1%.
doi:10.1371/journal.pone.0028537.g004

Figure 5. Analysis of RAX mRNA expression in the brains of rep
mice. Total RNA was isolated from one WT and two rep mouse brains,
treated with DNase and analyzed by RT-PCR with appropriate primers
to measure the levels of the 59 region (exons 1 and 2) and the 39 region
(exons 7 and 8) of RAX mRNA. 18S rRNA was measured as a loading
control and –RT controls were used to ensure the absence of any
genomic DNA in the RNA preparations.
doi:10.1371/journal.pone.0028537.g005

Developmental Defects in Prkra Mutant Mice
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Figure 6. Functional characterization of the RAX (S130P) mutant. A DsRNA electrophoretic mobility shift assay: Purified His-RAX or His-
RAX (S130P) was incubated at the indicated concentration with 59end labelled dsRNA. In the indicated lanes, poly(I:C) was added to the reaction as a
competitor to demonstrate dsRNA-binding specificity. B DsRNA-pull-down assay: Purified His-RAX or His-RAX (S130P) was incubated with 59end
labelled dsRNA. His-RAX was pulled-down from the reactions with Ni-NTA agarose and bound dsRNA was measured by liquid scintillation (expressed
in counts per minute). CPM bound to BSA control has been subtracted from all lanes as background. C Dimerization assay: Purified His-RAX or His-

Developmental Defects in Prkra Mutant Mice
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The S130P mutation is located in the second dsRNA binding

domain of the protein and disrupts dsRNA binding without

affecting RAX dimerization or its ability to activate PKR. The

mutation also leads to a decrease in steady-state levels of RAX

protein, in tissue such as the brain, resulting in the phenotypes

observed in the rep mutant which are similar to those of a mouse

with a targeted disruption in the Prkra gene and as such the

phenotype is likely a result of the significantly reduced steady-state

protein level. At this time, we can not discern whether this is

connected to the inability of the mutant protein to bind dsRNA.

Another factor, that may play a role, is TAR RNA binding protein

(TRBP); its binding to PACT is partly mediated by the second

domain, the site of the S130P mutation [17].

Human TRBP and PACT directly interact with each other and

associate with Dicer to facilitate the production of small interfering

RNA [27,37]. Recently, Zehir et al. (2010) demonstrated that

controlled inactivation of Dicer in neural crest cells (which function

in skull development) results in craniofacial malformation [38].

The phenotypes we have observed in Prkra mutant mice may be

reminiscent of hypomorphic phenotypes of Dicer indicating that

defects in the miRNA pathway might contribute to the

craniofacial malformations we observed. As the rep mutation

disrupts dsRNA binding by RAX, there may be an effect on the

miRNA pathway in the rep mutant.

The rep mutant is, to our knowledge, the third allele of Prkra.

Rowe et al. (2006) published the Prkratm1Gsc mutant for Prkra with a

targeted disruption of the 39end of the gene that was used here

for comparison. Almost all the phenotypes present in the tm1Gsc

mouse were recapitulated to some extent in the rep mutant.

Interestingly the two mutations respectively affect the second and

the third RNA binding domains of the protein. In contrast,

deletion of the entire gene, Prkratm1Wsmay, engineered by Bennett

Figure 7. Reduced ectopic expression of RAX (S130P) in L929 cells. A RAX mRNA levels: Realtime RT-PCR analyses were used to determine
the levels of FLAG-RAX mRNA relative to 18S rRNA using RNA samples isolated from the indicated cells. B RAX protein levels: FLAG western blot of
L929 cells infected with empty lentivirus, or lentivirus encoding a provirus to ectopically express FLAG-RAX or FLAG-RAX (S130P) at the indicated MOI.
Three times more virus was required for FLAG-RAX (S130P) to achieve protein levels comparable to WT. C RAX turnover analyses: Cells were
treated with cycloheximide to inhibit de novo protein synthesis, cells lysates were prepared at the indicated time points and protein levels were
measured by Odyssey quantitative western blot of FLAG- RAX and FLAG-RAX (S130P) using actin as the internal control. D Normalized levels of
RAX: FLAG-RAX signal was normalized to that of actin and plotted at the indicated times following cycloheximide treatment.
doi:10.1371/journal.pone.0028537.g007

RAX (S130P) was incubated with lysates from L929 cells expressing empty provirus, FLAG-RAX or FLAG-RAX (S130P). His-RAX was pulled-down from
the reactions with Ni-NTA agarose and incubated with micrococcal nuclease to eliminate dsRNA-facilitated protein-protein interactions. Samples
were resolved by SDS-PAGE and subjected to western blotting with the indicated antibodies. Total input lysates were directly analyzed for measuring
the levels of expression of the indicated proteins. D PKR interaction assay: FLAG-RAX was immunoprecipitated with an agarose-conjugated
antibody against FLAG from lysates prepared from unstressed or arsenite treated L929 cells expressing empty provirus, FLAG-RAX or FLAG-RAX
(S130P). Immunoprecipitated samples were incubated with micrococcal nuclease to eliminate dsRNA-facilitated protein-protein interactions. Samples
were resolved by SDS-PAGE and PKR was detected by western blot to measure RAX-PKR interaction (top panel: PKR is the upper band and IgG is the
lower band (denoted by *)). Other panels show the levels of FLAG-RAX in the immunoprecipitates and the levels of PKR and actin in the input lysates.
E PKR activation assay: eIF2a phosphorylation was monitored by western blotting with a phospho-eIF2a-specific antibody (top panel). The middle
and the bottom panels show the levels of eIF2a and RAX respectively. In these experiments, expression of endogenous RAX had been ablated by
expressing a shRNA directed toward the 39UTR of the mRNA. In those cells, WT or mutant RAX was ectopically expressed using lentivirus vectors; cells
were stressed by treating them with sodium arsenite (100 mM), where indicated.
doi:10.1371/journal.pone.0028537.g006
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et al. (2008), induces an early developmental lethality with no

embryos detected after 3.5 days post conception. The less severe

phenotype seen in the Prkratm1Gsc and Prkrarep mutants could occur

because these mutant proteins retain some function mediated by

the domains that have not been mutated. Indeed, although the

protein encoded by the Prkrarep allele is deficient in dsRNA

binding, it still maintains dimerization activity and the ability to

activate PKR. Similarly, the Prkratm1Gsc transcript could poten-

tially be translated, although it contains multiple stop codons in

all 3 reading frames and has never yielded detectable protein

[25]. The mutant protein identified in rep and theoretically

present in tm1Gsc shared similar properties and activities

suggesting that a minimal level of expression of the RAX protein,

as observed in the rep homozygote animal, is necessary and

sufficient to rescue the early embryonic phenotypes observed in

Prkratm1Wsmay mutant.

The Prkratm1Gsc and Prkrarep mutants represent a class of

hypomorphic allele with similar phenotypes affecting growth,

ear, craniofacial development, fertility and pituitary hormone

production (not shown). They should be considered as good

candidate models for studying Dystonia 16 (Dyt16) which is linked

to mutations in the human PRKRA gene leading to either

truncated form of the protein or changes in amino-acid sequences.

So far two mutations have been described in Dyt16 patients that

correspond to a frameshift (266–267delAT) causing premature

termination of the protein [32], and to a missense mutation P222L

[31]. These complementary data suggest that the strong

phenotype observed in the Prkratm1Wsmay allele is more a

consequence of the complete absence of RAX protein with no

residual activities rather than the inactivation of the first binding

domain. Until now the Prkra partial loss of function mutants have

been studied for other purposes but both models should be

explored further for traits observed in human patients to be

validated as a model for Dystonia 16.

Materials and Methods

Mice
The rep mutation was isolated from PhenHomut a genome wide

recessive mutagenesis program for phenotyping homozygote

mutants previously described [34,35]. The screening was oriented

toward recessive mutations affecting morphology, the cardiovas-

cular system, metabolism and the immune response. For rep, F1

males, derived from the first progeny of ENU-treated C57BL/6J

(B6) males, were mated with wild-type females C3HeB/FeJ (C3H)

to generate G2 individuals. G3 individuals were derived from the

backcross of G2 females with the F1 males, and were screened

following a hierarchical and standardized phenotyping analysis.

We also took advantage of the backcross for the genetic mapping

and phenotypic analysis as described previously [34,35]. For

analysis of RAX expression, brains were dissected, snap-frozen

and stored in liquid nitrogen prior to isolation of RNA and/or

protein. All experiments were performed within the guidelines of

the French Ministry of Agriculture for experiments with laboratory

animals or in strict accordance with the recommendations in the

Guide for the Care and Use of Laboratory Animals of the National

Institutes of Health. The protocols were approved by the

Institutional Animal Care and Use Committee of Cleveland

Clinic (Approval Number ARC 08738) or the Ethical Committee

for the Region Centre to Y Herault (law 87 848; YH accreditation

45–31). All efforts were made to maximize animal welfare.

Phenotypic analysis of mice
Cohorts of age and sex-matched mutant and wild-type mice

were tested for a variety of phenotypic parameters according to the

standard operating procedures of the EUmorphia network

[34,35]. Mice were weighed daily to generate growth curves.

For histological analysis of gonads, tissues were fixed in Bouin’s

fixative, embedded in paraffin, sectioned at a thickness of 7 mm

and stained with hematoxylin. For X-ray analysis skulls were

preserved in 95% ethanol at 4uC prior to analysis.

To examine variations in skull and mandible shape, we used a

3D morphometric method based on landmark comparisons

adapted from Hallgrimsson et al. 2004 [39]. Landmarks were

taken on virtual reconstructions of the specimens’ skulls and

mandibles obtained by X-ray microtomography. The resulting

voxel size varied among specimens between 18 and 24 mm. The

skull and mandible surfaces were extracted using VGStudiomax

software. Twenty-two landmarks were defined using Landmark

software on each mandible and forty-nine on each skull (Figure

S1). Specimen size was normalised and landmarks from different

specimens superpimposed using the Procrustes method. Principal

Component Analyses was performed using Morphologika2 v2.4

software using the full tangent space projection. Statistical tests

(MANOVA) were performed using Statistica software.

Plasmids, cell Lines and reagents
Mouse L929 and human HT1080 and HEK293T cell lines

were cultured in Dulbecco’s modified Eagle’s medium containing

10% fetal bovine serum (Atlanta Biologicals) supplemented with

glucose (4.5 g/L), penicillin (50 U/ml), streptomycin (50 mg/ml),

L-glutamine (2 mM) and sodium pyruvate (1 mM). Sodium

arsenite was obtained from Sigma. Trizol reagent was obtained

from Invitrogen. The plasmids pLVX-IRES-ZsGreen1 and

pVSG-G were obtained from Clontech, pCMV-R8.74 was

obtained from Addgene, pET15b was obtained from Novagen,

pcDNA3 was obtained from Invitrogen, pLKO.1-puro was

obtained from Sigma.

Figure 8. Lower levels of RAX protein in the brains of rep mice.
A RAX levels in proteins recovered from the same samples
used for RAX mRNA measurements: Protein re-precipitated from
trizol extracts of the same brain preparations shown in Figure 5 was
analyzed by western blot for RAX and actin expression. B RAX levels in
conventional protein extracts of brains: RAX western blot from
brains homogenized and lysed in detergent-lysis buffer (see materials
and methods). RAX expression was analyzed in wild-type, Prkratm1Gsc

(denoted 2/2) and rep (denoted 3) mice.
doi:10.1371/journal.pone.0028537.g008
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Cloning of FLAG-RAX
The oligonucleotides AGC TTG GTA CCA TGG ACT ACA

AGG ACG ATG ACG ATA AGC ATG and GAT CCA TGC

TTA TCG TCA TCG TCC TTG TAG TCC ATG GTA CCA

were annealed and ligated into HindIII and BamHI digested

pcDNA3 (Invitrogen) using Rapid DNA Ligation Kit (Roche) to

generate pcDNA3-FLAG. RNA was extracted from L929 cells

using Trizol (Invitrogen) according to the manufacturer’s instruc-

tions, followed by DNAse treatment using DNA-free (Ambion)

according to manufacturer’s instructions. Extracted, DNase-

treated RNA was then reverse transcribed with the Superscript

III system (Invitrogen) using random hexamers according to

manufacturers instructions. The resulting cDNA was used to PCR

the coding sequence of RAX using the primers: 59 AGT AGT

GGA TCC ATG TCC CAT AGC AGG C and 39 AGT AGT

TCT AGA CTA CTT TCT TTC TGC TAT TAT C with

Expand High Fidelity PCR System (Roche), the PCR product was

then digested with BamHI and XbaI (New England Biolabs) and

ligated into BamHI-XbaI digested pcDNA3-FLAG with Rapid

DNA Ligation Kit (Roche), this clone was designated pcDNA3-

FLAG-RAX. pcDNA3-FLAG-RAX was used as a template in a

PCR reaction using the primers: 59 59AAC TCG AGG TAC CAT

GGA CTA CTA CAA GG and 39 AAT CTA GAG GAT CCC

TAC TTT CTT TCT GCT ATT ATC TTT AAA T with

Expand High Fidelity PCR System (Roche), the product was

digested with XhoI and XbaI (New England Biolabs) and ligated

into pLVX-IRES-ZsGreen1 (Clontech) with Rapid DNA Ligation

Kit (Roche) to generate pLVX-FLAG-RAX-IRES-ZsGreen1.

Mutation of FLAG-RAX
The S130P mutation was introduced to pLVX-FLAG-RAX-

IRES-ZsGreen1 by primer overlap mutagenesis, briefly one PCR

reaction was performed using the primers: 59AAC TCG AGG

TAC CAT GGA CTA CTA CAA GG and 39 GCT AAT TCC

TGT AAT GGG CCA ATT GGA TTC AGC TGG while a

second PCR reaction was performed using the primers: 59 CCA

ATT GGC CCA TTA CAG GAA TTA GCA ATT CAC CAT

G and 39 AAT CTA GAG GAT CCC TAC TTT CTT TCT

GCT ATT ATC TTT AAA T, both reactions were performed

using Expand High Fidelity PCR System (Roche). The resulting

overlapping PCR products were then used as template for a

second round PCR using the primers: 59 AAC TCG AGG TAC

CAT GGA CTA CTA CAA GG and 39 AAT CTA GAG GAT

CCC TAC TTT CTT TCT GCT ATT ATC TTT AAA T with

Expand High Fidelity PCR System (Roche), the mutagenized

product was digested with XhoI and XbaI (New England

Biolabs) and ligated into pLVX-IRES-ZsGreen1 (Clontech) with

Rapid DNA Ligation Kit (Roche) to generate pLVX-FLAG-

RAX(S130P)-IRES-ZsGreen1.

Construction of the RAX shRNA expression clone
The DNA oligonucleotides CCG GCC GTC AAC TTT CCA

GAT TTC TCG AGA AAT CTG GAA AGT TGA CGG TTT

TTG and AAT TCA AAA ACC GTC AAC TTT CCA GAT

TTC TCG AGA AAT CTG GAA AGT TGA CGG were

annealed and ligated into pLKO.1-puro digested with AgeI and

EcoRI (New England Biolabs) using Rapid DNA Ligation Kit

(Roche) to generate pLKO.1-RAX (1199)-puro.

Production of and infection with recombinant
lentiviruses

The lentiviral plasmids pLVX-IRES-ZsGreen1, pLVX-FLAG-

RAX-IRES-ZsGreen1, pLVX-FLAG-RAX (S130P)-IRES-ZsGreen1

or pLKO.1-RAX (1199)-puro were cotransfected with the

packaging plasmid pCMV-dR8.74 and the pseudotyping

plasmid pVSV-G by calcium phosphate into HEK293T cells.

Lentivirus-containing supernatants were harvested three times

every 12–16 hours, the collections were pooled, and the

lentivirus titered on HT1080 cells by estimating percentage

ZsGreen1 positive cells microscopically. L929 cells were infected

with recombinant lentivirus in complete DMEM (containing

10% FBS, penicillin and streptomycin) containing 8 mg/ml

polybrene (hexadimethrine bromide) for 24 hours before split-

ting into fresh media without polybrene and passaging as a

stable line. For RAX knockdown with pLKO.1-RAX (1199)-

puro, after 48 hours of recovery in complete DMEM,

puromycin was added at 5 mg/ml; after selection the cells were

grown in puromycin containing media as a stable line.

Bacterial expression and purification of recombinant RAX
pLVX-FLAG-RAX-IRES-ZsGreen1 was used as a template in

a PCR using the primers: 59 AAA AGC TTG GAT CCT ATG

TCC CAT AGC AGG CAT CG and 39 AAT CTA GAG GAT

CCC TAC TTT CTT TCT GCT ATT ATC TTT AAA T using

Expand High Fidelity PCR System (Roche), the product was

digested with BamHI (New England Biolabs) and ligated into

pET15b (Novagen) using Rapid DNA Ligation Kit (Roche) to

generate pET15b-RAX. pLVX-FLAG-RAX(S130P)-IRES-

ZsGreen1 was used as a template in a PCR using the primers:

59 AAA AGC TTG GAT CCT ATG TCC CAT AGC AGG

CAT CG and 39 AAT CTA GAG GAT CCC TAC TTT CTT

TCT GCT ATT ATC TTT AAA T using Expand High Fidelity

PCR System (Roche), the product was digested with BamHI (New

England Biolabs) and ligated into pET15b (Novagen) using Rapid

DNA Ligation Kit (Roche) to generate pET15b-RAX(S130P).

pET15b-RAX and pET15b-RAX(S130P) were transformed into

Rosettagami B(DE3) pLysS expression E. coli cells (Novagen).

These expression cells were grown to A600 of 1.0, at which time

IPTG (Denville) was added to 1 mM, the cells were incubated

shaking at room temperature for one hour. Induced cells were

collected by centrifugation, washed in cold PBS, and lysed in Ni-

NTA lysis buffer (20 mM Tris-HCl pH 7.5, 500 mM NaCl,

10 mM imidazole, 5 mM 2-mercaptoethanol, 0.1% NP-40,

100 mg/ml lysozyme, 10% glycerol, supplemented with complete

protease inhibitor tablet (Roche)). Cells were subjected to one

freeze-thaw cycle followed by lysis by sonication. Lysate was

clarified by centrifugation for 30 min at 200006g prior to binding

to Ni-NTA superflow resin (Qiagen). Protein-bound resin was

poured into a column and attached to an AKTA FPLC, the

column was washed to background with wash buffer (20 mM Tris-

HCl pH 7.5, 500 mM NaCl, 35 mM imidazole, 10% glycerol),

then eluted in a 10 ml linear gradient between wash buffer and

elution buffer (20 mM Tris-HCl pH 7.5, 500 mM NaCl, 300 mM

imidazole, 10% glycerol). Peak fractions were pooled and dialyzed

against dialysis buffer (20 mM Tris-HCl pH 7.5, 500 mM NaCl,

5 mM 2-mercaptoethanol, 10% glycerol).

RNA isolation, reverse transcription and RT-PCR
RNA was isolated from brains of wild-type, tm1Gsc or rep mice

using TRIZOL (Invitrogen) according to the manufacturer’s

instructions. RNA was isolated from L929 cell lines using

TRIZOL according to the manufacturer’s instructions. Following

RNA isolation, residual genomic DNA contamination was

removed by DNAse I treatment using DNA-free (Ambion).

RNA was reverse transcribed using the SuperScript III cDNA

First Strand Synthesis Kit (Invitrogen) according to manufacturer’s
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instructions using random hexamer primers. RT-PCR using

Clontech Advantage 2 Taq was performed using 18SrRNA

primers on DNAse treated RNA (withour reverse transcription)

and cDNA samples to determine the efficacy of DNAse treatment.

RT-PCR using this same protocol was used to amplify sequences

in the 59 and 39 regions of RAX, cDNA from 100 ng RNA was

used per amplification reaction, and the reaction cycle number

titrated for each primer set to determine the logarithmic range for

product growth. Cycling was as follows: 19 95uC, followed by

cycles of 19 95uC, 300 Tm, 19 68uC, finishing with 59 68uC. Primer

sequences, melting temperatures and cycle numbers were as

follows:RAX Exons 2 and 3: 31 cycles, Tm = 52uC. 59 primer TAA

GCC TGG GAA AAC ACC, 39 primer CCA GCT TCT TAC

TCG TAC CTT; RAX Exon 8: 30 cycles, Tm = 60uC. 59primer

TCT CTT CAG ATT CCG TCA ACT TTC, 39 primer ACA

TTC ATC ACA AGC CTC AAC AC. 18S rRNA: 25 cycles,

Tm = 55uC. 59 primer ATT GAC GGA AGG GCA CCA CCA G,

39 primer CAA ATC GCT CCA CCA ACT AAG AAC G.

Realtime PCR was performed using SYBR Green Core reagents

(Ambion) using 18S rRNA primers from RT-PCR method and

FLAG-PACT/RAX primers: 59 primer CTA CAA GGA CGA

TGA CGA TAA GC, 39 primer CAG CTT CTT ACT TGT

ACC TTC ACC. The reactions were run in a Roche Lightcycler

480, cycling was as follows: 39 95uC followed by 50 cycles of 300

95uC, 19 52uC, 300 72uC (SYBR green signal was acquired during

the 72uC incubation per cycle).

DsRNA electrophoretic mobility shift assay
The RNA oligonucleotide GGG AAC AAA AGC UGG GUA

CCG GGC CCC CCC was 59 end labelled using T4

polynucleotide kinase (Promega) according to the manufacturer’s

instructions. The oligonucleotide GGG GGG GCC CGG UAC

CCA GCU UUU GUU CCC was annealed to the radiolabelled

oligonucleotide and ethanol precipitated. His-RAX or His-

RAX(S130P) was added to binding buffer (20 mM Tris pH 7.5,

50 mM KCl, 2 mM MgCl2, 2 mM MnCl2, 5% glycerol) to the

indicated concentration along with 30000 cpm (25 fmol) labelled

dsRNA probe; for poly(I:C) competition, poly(I:C) was added to

10 ng/ml and incubated on ice for 10 minutes prior to adding

labelled probe. Binding reactions were incubated at room

temperature for 15 minutes, prior to loading on a gel of 0.256
TBE, 5% Acrylamide (37.5:1 acrylamide:bis-acrylamide) which

was run in cold buffer in a cold room.

DsRNA pull-down assay
Labelled dsRNA was incubated with His-RAX in binding buffer

(20 mM Tris pH 7.5, 50 mM KCl, 2 mM MgCl2, 2 mM MnCl2,

5% glycerol), the protein was pulled-down by Ni-NTA agarose,

washed and bound radioactivity was measured by scintillation

counting. Incubation with BSA was used to measure non-specific

binding of the probe and unlabelled poly(I:C) was used as a

competitor, where indicated.

Protein isolation and western blot
Protein was isolated from tissue by re-precipitating the organic

phase generated during TRIZOL (Invitrogen) RNA isolation

according to the manufacturer’s instructions. Briefly this

involved re-precipitation of protein using isopropanol followed

by washing with guanidine hydrochloride. Protein was isolated

from cultured cells and whole brain by washing in cold PBS

followed by lysis in Triton X-100 lysis buffer (20 mM Tris-HCl

pH 7.5, 150 mM NaCl, 1% Triton X-100, 1 mM EDTA, 5 mM

2-mercaptoethanol, 10% glycerol, supplemented with Complete

protease inhibitor tablet and PhoSTOP tablet (Roche). Where

indicated, sodium arsenite dissolved in water to 100 mM was

added to culture media to a final concentration of 100 mM for

one hour prior to harvesting cells. Protein was separated using

SDS-PAGE and transferred to PVDF membrane for western

blotting.

Antibodies
We used commercial antibodies to PACT/RAX [40], b-actin

(Clone AC-15, Sigma-Aldrich, A1978), FLAG (Clone M2, Sigma-

Aldrich, Catalog # F1804), P-eIF2a (Ser52) (Invitrogen, Catalog

# 44-728), eIF2a (Cell Signalling, Catalog # 9722), His Probe (H-

15, Santa Cruz Biotechnology, Catalog # sc-803), PKR (D-20,

Santa Cruz Biotechnology, Catalog # sc-708)

Immunoprecipitation and pulldown
FLAG-RAX was immunoprecipitated from cell lysates with

anti-FLAG M2 affinity gel (Sigma). Immunoprecipitation was

performed in Triton X-100 lysis buffer. Immunoprecipitated

samples were washed twice with lysis buffer then washed once

with 16 micrococcal nuclease buffer, resuspended in 50 ml 16
micrococcal nuclease buffer containing 2000 gel units micrococ-

cal nuclease (New England Biolabs), and incubated at 37uC for

30 minutes. Samples were washed an additional two times before

separation by SDS-PAGE, and subsequent western blotting.

Recombinant 6xHis-tagged WT or mutant RAX (2 mg) were

incubated with 200 ng empty vector, FLAG-RAX or FLAG-

RAX (S130P) transduced L929 lysate in binding buffer (20 mM

Tris-HCl, 150 mM NaCl, 10 mM imidazole, 10% glycerol,

supplemented with complete protease inhibitor tablet and

PhoSTOP tablet (Roche)), the samples were then pulled-down

using Ni-NTA agarose (Qiagen). Two washes were performed

with binding buffer, then washed once in 16 micrococcal

nuclease buffer, resuspended in 50 ml 16 micrococcal nuclease

buffer containing 2000 gel units micrococcal nuclease (New

England Biolabs), and incubated at 37uC for 30 minutes.

Samples were washed an additional four times with binding

buffer before separation by SDS-PAGE, and subsequent western

blotting.

FLAG-RAX decay kinetics
L929 cells expressing empty provirus, FLAG-RAX or FLAG-

RAX (S130P) were split into replicate plates and treated with

cycloheximide (100 mg/ml). Cells were lysed in Triton X-100 lysis

buffer at 0, 2, 4, 8, 12 or 24 hours following cycloheximide

treatment. Lysates were analyzed for FLAG-RAX by quantitative

western blot using the Odyssey infrared detection system (Licor;

IRDye 680 goat anti-rabbit for actin detection and IRDye 800

goat anti-mouse for FLAG detection). FLAG-RAX signal was

normalized to actin and the normalized signal was plotted as a

function of time.

Supporting Information

Figure S1 Landmarks used in morphological analysis of
the skull (shown only for left side). A Landmarks of the skull: 1.

nasale; 2. nasion; 3. bregma; 4. parietal-occipital junction; 5

midline of the interparietal-occipital junction; 6. dorsal midpoint

of the foramen magnum; 7. antero-lateral corner of the nasal; 8.

parietal-premaxillar-maxillar junction; 9. anterior-most point of

the zygomatic spine; 10. posterior-most point of the frontal-

maxillary dorsal junction; 11. Anterior-most point of the

squamosal-parietal junction; 12. anterior-most point of the
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temporal-zygomatic junction; 13. ventral-most point of the incisor

alveoli; 14. anterior-most point of the anterior palatine foramen;

15. Ventral-most point of the premaxillar, maxillar and anterior

palatine foramen junction; 16. posterior-most point of the anterior

palatine foramen; 17. medial-most point of the first upper molar

cervix; 18. Point of greatest curvature of the posterior margin of

molar process; 19. distal-most point of the third upper molar

cervix; 20. Posterior-most point of the zygomatic fenetra on the

zygomatic process of the squamosal; 21. posterior-most point of

the zygomatic/squamosal junction; 22. Antero-medial projection

of ectotympanic in basicranial; 23. junction of basioccipital,

ectotympanic and basisphenoid; 24. Posterior edge of ectotympa-

nic along its margin with basioccipital; 25. anterior process of

auditory bulla; 26. ventral midpoint of the foramen magnum; 27.

Anterior-most point of the nasal/premaxillary junction; 28. dorsal-

most point of the incisor alveoli; 29; tip of the post-tympanic hook.

B Landmarks of the mandible: 1. tip of the coronoid process; 2. distal-

most point of the third lower molar cervix; 3. mesial-most point of

the first lower molar cervix; 4. dorsal-most point of the incisor

alveoli; 5. inferior-most point of the incisor alveoli; 6. Inferior-most

point of the mandibular symphysis; 7. Posterior-most point of

insertion site of mandibular transverse muscle; 8. tip of the

mandibular process; 9. ventral-most point of the mandibular

condyle; 10. anterior-most point of the mandibular condyle; 11.

posterior-most point of the mental foramen.

(TIF)
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