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Abstract

The mTORC1 pathway is required for both the terminal muscle differentiation and hypertrophy by controlling the
mammalian translational machinery via phosphorylation of S6K1 and 4E-BP1. mTOR and S6K1 are connected by interacting
with the eIF3 initiation complex. The regulatory subunit eIF3f plays a major role in muscle hypertrophy and is a key target
that accounts for MAFbx function during atrophy. Here we present evidence that in MAFbx-induced atrophy the
degradation of eIF3f suppresses S6K1 activation by mTOR, whereas an eIF3f mutant insensitive to MAFbx polyubiquitination
maintained persistent phosphorylation of S6K1 and rpS6. During terminal muscle differentiation a conserved TOS motif in
eIF3f connects mTOR/raptor complex, which phosphorylates S6K1 and regulates downstream effectors of mTOR and Cap-
dependent translation initiation. Thus eIF3f plays a major role for proper activity of mTORC1 to regulate skeletal muscle size.
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Introduction

The mammalian target of rapamycin (mTOR, also known as

FRAP, RAFT1 or RAPT) has emerged as a critical nutritional and

cellular energy checkpoint sensor and a regulator of cell growth

[1–3] This evolutionary conserved Ser/Thr kinase is a member of

the PIKK family of protein kinases [2] controlling many cellular

processes, including protein synthesis, ribosome biogenesis,

nutrient transport and autophagy [4]. mTOR assembles in two

distinct multiprotein complexes, termed mTORC1 and mTORC2

[5,6]. mTORC1 consists of raptor (regulatory associated protein of

mTOR), mLST8, PRAS40 and mTOR [7] and is sensitive to

rapamycin. mTORC2 consists of rictor (rapamycin insensitive

companion of mTOR), mSIN1, mLST8 and mTOR [5,6]. In

response to growth factors, hormones and amino acids, mTORC1

is classically known to regulate cell growth and proliferation

through modulation of protein synthesis by phosphorylation

toward its downstream effectors, S6K1 [8] and 4E-BP1 [1].

Phosphorylation of 4E-BP1 promotes its dissociation from eIF4E

bound to the mRNA 7-methylguanosine cap structure, allowing

the assembly of the preinitiation complex (PIC), composed of eIF3,

eIF4F, 40S ribosomal subunit and the ternary complex eIF2/

GTP/Met-tRNA [9]. S6K1 activation needs initial phosphoryla-

tion by mTORC1 on T389 [10] and additional inputs on T229

for fully activation by the phosphoinositide-dependent kinase 1

(PDK1) [11]. S6K1-mediated regulation of translation is thought

to occur through phosphorylation of the 40S ribosomal protein S6.

Thus, the increased activation of S6 is linked to cellular growth

control [12].

Changes in the size of adult muscle, in response to external

stimuli, are mainly due to the growth of individual muscle fibers

rather than an increase in fiber number [13]. Muscle hypertrophy

is associated with increased protein synthesis [14]. Previous studies

pointed towards a key role of mTOR as a regulator of skeletal

muscle growth in vivo and in cellulo. For example, rapamycin

inhibits recovery of skeletal muscle from atrophy [15]. Moreover,

activation of Akt/PKB (upstream regulator of mTORC1) induces

muscle hypertrophy in a rapamycin-sensitive fashion [15–17]. In

contrast, muscle fibers of mice deficient for S6K1 are atrophic [18]

and muscle-specific ablation of raptor prevents the phosphoryla-

tion of 4E-BP1 and S6K1 and results in muscle dystrophy [19].

However, it is not yet clear how mTOR and S6K1 regulate the

translational machinery in skeletal muscle.

The regulatory subunit of the eIF3 (eukaryotic Initiation Factor

3) complex; eIF3f, is a member of the Mov34 family, containing an

Mpr1/Pad central motif [20]. eIF3f function within the eIF3

complex remains to be defined. However, it is essential for

Schizosaccharomyces pombe viability, and its depletion markedly
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decreased the global protein synthesis in fission yeast [21]. eIF3f

overexpression has been associated with inhibition of HIV-1

replication [22] and with activation of apoptosis in melanoma and

pancreatic cancer cells [23]. In skeletal muscle, eIF3f has been

reported as a crucial checkpoint in the crossroads of signaling

pathways controlling muscle size [24]. On one hand, eIF3f has

been identified as a major target that accounts for MAFbx/

Atrogin-1 function during skeletal muscle atrophy [25] and could

explain that muscle atrophy involves a suppression of the same

program of gene expression that is activated during work-induced

hypertrophy or by IGF in normal growth [26]. On the other hand,

previous studies have identified eIF3 complex as a scaffold for the

rate-limiting step in protein translation, the association of mTOR

and S6K1 (among other components) leading to the formation of

the PIC [27,28]. These findings suggest an important role of this

initiation factor in the process of protein synthesis in skeletal

muscle. Indeed, overexpression of eIF3f in muscle cells and in

adult skeletal muscle induces hypertrophy associated with an

increase of sarcomeric proteins. In contrast, eIF3f repression in

differentiated skeletal muscle induces atrophy [25]. Furthermore,

an eIF3f mutant insensitive to MAFbx polyubiquitination (eIF3f

K5–10R) shows enhanced hypertrophic activities in vivo and in cellulo

[29].

However, little is known about the mechanistic underlying the

eIF3f-mediated hypertrophy and its relation with mTOR and

S6K1 in skeletal muscle.

In the present work, we show in MAFbx-induced atrophy that

the decreased activity of mTORC1 is correlated with the

degradation of eIF3f and inversely mTOR and its downstream

targets S6K1 and 4E-BP1 via eIF3f control muscle size. mTOR

and S6K1 physically interact with two different domains of eIF3f.

The Mov34 motif, involved in MAFbx-mediated polyubiquitina-

tion of eIF3f [25] is responsible for the interaction with the inactive

hypophosphorylated form of S6K1. mTOR interacts with the C-

terminal domain of eIF3f, a region recently shown to be critical for

proper eIF3f activity in skeletal muscle [29]. Moreover, an

increase in both affinity and accessibility of mTOR and raptor for

the conserved TOS motif present in the COOH domain of eIF3f

elucidates the hypertrophic activity of the mutant eIF3f K5–10R. In

muscle hypertrophy eIF3f not only up-regulates the muscle

structural proteins expression but also increases the association

of translational components with the 7-methylguanosine-cap

complex and activates Cap-dependent translation. These different

observations lead us to envision the involvement of the eIF3f

regulatory subunit acting as a scaffold to coordinate mTOR and

S6K1 mediated the assembly of a PIC specific to mRNAs

encoding proteins involved in muscle hypertrophy.

Results

Degradation of eIF3f by MAFbx Suppresses S6K1
Activation by mTOR

Food deprivation leads to rapid muscle wasting and increase in

MAFbx expression [30,31]. This increase of atrogin-1/MAFbx is

related to polyubiquitination of eIF3f for further proteasome-

mediated degradation [25]. Furthermore, food deprivation is

accompanied with decreased phosphorylation of intermediate

proteins of the PI3K/Akt/mTOR pathway although mTOR

phosphorylation does not change during myotubes atrophy [32].

To address the question of whether the loss of eIF3f during muscle

atrophy is implicated with the observed down regulation of

mTOR activity, we assessed the phosphorylation of downstream

targets of mTORC1 in starving mouse primary myotubes. After

6hr of serum and nutrients deprivation, MAFbx levels were

increased, leading to a decrease of eIF3f. As expected, mTOR

protein levels did not change. In contrast, atrophy induced a

dramatic reduction of phosphorylation of 4E-BP1, S6K1 and its

target the rpS6 (Figure 1A). On the other hand, overexpression of

an eIF3f mutant protein lacking the MAFbx polyubiquitination

sites (eIF3f K5–10R) [29] is associated with persistent phosphor-

ylation of these mTOR downstream targets during starvation-

induced atrophy, suggesting the implication of eIF3f degradation

on the decreased activity of mTORC1 signaling during muscle

atrophy. To confirm this, expression vectors coding for Flag-

MAFbx and HA-eIF3f mutant K5–10R were co-transfected into

mouse primary muscle cells. Overexpression of MAFbx led to

myotubes atrophy [33] and a reduction of both the levels of

endogenous eIF3f and the phosphorylation of S6K1. In contrast,

overexpression of the stable mutant eIF3f K5–10R in the presence

of MAFbx was associated with higher phosphorylation of S6K1

and protection of endogenous eIF3f (Figure 1B). Thus, these data

suggest that during muscle atrophy the decreased activity of

mTORC1 is correlated with the degradation of eIF3f and the

accumulation of unphosphorylated forms of S6K1.

mTOR and S6K1 Physically Interact with Two Different
Domains of eIF3f

Recent data proved that the eIF3 complex acts as a scaffold to

coordinate mTOR and S6K1 mediated translation [27]. Howev-

er, the correlation between mTOR and S6K1 activation and their

respective association and dissociation from eIF3 complex need

still to be determined. The results outlined above and thus

previously described [27,28] suggested that in muscle cells the

activation state of S6K1 could be governed by its binding to eIF3f.

Thus we tested a panel of deletion mutants of eIF3f for their ability

to coimmunoprecipitate with endogenous S6K1. As shown in

Figure 2A, we found that the central domain containing amino

acid residues 91–221 is sufficient for a high specific binding to

S6K1. The protein sequence of this domain was found to

correspond to the Mov34 domain of eIF3f. Because the

phosphorylation of the hydrophobic motif at T389 in S6K1 has

been shown to regulate the interaction between S6K1 and the

eIF3-PIC complex [27], this prompted us to examine the

phosphorylation state of S6K1 that physically interacts with eIF3f

by using a GST pull down assay with total cellular extracts from

normal myotubes and/or atrophied myotubes. As shown in

Figure 2B, we observed that the hypophosphorylated forms of

S6K1 preferentially bound to eIF3f. Our data are in agreement

with the previous observations that S6K1 phosphorylation

corresponding to its activation, promotes its dissociation from

eIF3f.

To map the domain of eIF3f that interacts with mTOR, the

same panel of deletion mutants of eIF3f was cotransfected with an

expression vector encoding HA-tagged mTOR in mouse primary

muscle cells. Total cell lysates were immunoprecipitated with anti-

HA antibodies and eIF3f mutants were detected by immunoblot-

ting with anti-Flag antibodies. We found that the C-terminal

domain of eIF3f mediated its binding to mTOR (Figure 2C). To

further confirm that eIF3f mediates activation of S6K1 by mTOR,

an eIF3f mutant deleted of the C-terminal domain was transfected

in mouse primary muscle cells and the phosphorylation of

downstream targets of mTOR was assessed. As shown in

Figure 2D, increasing amounts of the mutant (eIF3f 1–221)

disrupted the activation of S6K1 by mTOR as evidenced by the

decrease in both the S6K1 and rpS6 phosphorylation and an

increase in hypophosphorylated form of S6K1 bound to eIF3f.

Altogether our data confirm that eIF3f connects mTOR kinase to

S6K1 and the non-phosphorylated forms of S6K1 physically

eIF3f Controls mTORC1
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interact with eIF3f. Interestingly, we previously reported that the

C-terminal domain of eIF3f is believed to be critical for proper

regulation and contribute to a fine-tuning mechanism that plays

an important role for eIF3f function in skeletal muscle [29].

mTOR and Its Downstream Targets Control Muscle Size
via eIF3f

Recent data established mTOR as an important element in

skeletal myocyte differentiation and hypertrophy. mTOR seems

to promote the initial myoblast-myoblast fusion via a kinase-

independent function involving the action of PLD1 and IGF-II

[34,35]. However, in late differentiation, the kinase activity of

mTOR becomes necessary for the formation of mature

myotubes, by modulating the activity of 4E-BP1 and S6K1

[34]. The latter has been shown to be essential for the control of

muscle cytoplasmic volume [18]. Among the known substrates of

S6K1, the ribosomal protein S6 (rpS6) seems to be directly

involved in the control of cell size [12]. Given that eIF3f

accumulates during skeletal muscle differentiation and that its

genetic activation causes hypertrophy while its repression induces

atrophy [25], we hypothesized that eIF3f plays a major role in

mediating the mTOR-dependent control of late myogenesis and

hypertrophy.

To examine the role of eIF3f regarding the mTORC1 activity,

we transfected expression vectors coding for HA-tagged eIF3-f wt,

the mutant eIF3f K5–10R or a shRNAi against eIF3f in mouse

primary muscle cells and then we examined during terminal

muscle differentiation the components of the Akt/mTORC1

pathway known to play a prominent role in muscle hypertrophy

[15]. As shown in Figure 3A, mTOR and raptor expression was

up regulated during muscle differentiation [34] independently of

eIF3f expression while S6K1 activity increased and 4E-BP1

phosphorylation remained elevated. As expected, overexpression

of eIF3f wt was characterized by up-regulation of the myosin

heavy chain and increased myotube diameters. This phenomenon

was associated with increased hyperphosphorylated forms of S6K1

and 4E-BP1. Higher phosphorylation of S6K1 in Thr389 and

rpS6 in Ser235/236 were also observed (Figure 3A, lane 3,

Figures 3B and 3C). Furthermore, overexpression of the mutant

eIF3f K5-10R lead to a hypertrophic phenotype and the

phosphorylation of these downstream targets of mTORC1 were

even higher than those observed with eIF3f wt (Figure 3A lane 4,

Figures 3B and 3C). In addition, rapamycin treatment destabilized

the mTOR-raptor complex [10] but does not completely

abolished eIF3f effects (Figure S1). Altogether, these data show

that the eIF3f-mediated hypertrophy is characterized by increased

activity of mTORC1.

To further address the role of eIF3f in mediating the mTOR

signaling, primary skeletal myotubes were subjected to shRNAi-

mediated silencing of eIF3f. When myoblasts expressing the

shRNA were induced to differentiate, the eIF3f-knockdown cells

presented a defect in the muscle differentiation process, with a

significant reduction of the fibers diameter and the expression of

the MyHC (Figure 3A lane 5, Figures 3B and 3C). Moreover,

eIF3f knockdown resulted in significant decreases in the

phosphorylation of S6K1 in T389 and its target the rpS6 in

Ser235/236, accompanied with increasing non-phosphorylated

forms of 4E-BP1. Furthermore, specific repression of eIF3f did not

induce significant changes in either the levels or the phosphory-

lation of the mitogen-activated protein kinases Erk1 and Erk2 and

PKB/Akt (Figure 3A). Thus, we conclude that eIF3f exerts its

myogenic function by controlling the mTORC1/S6K1 pathway

during muscle terminal differentiation.

Figure1. Down regulation of mTORC1 activity is correlated to
MAFbx mediated eIF3f degradation during skeletal muscle
atrophy. (A) Effects of starvation on components of the mTOR/S6K1
kinase pathway. Mouse primary cultured satellite cells myotubes at 4th

day of differentiation were starved by removal of growth medium and
incubated in PBS for the indicated times. Proteins were extracted and
subjected to immunoblots analysis. (B) Primary cultures of satellite cells
were transfected with expression vectors encoding Flag-tagged MAFbx
and/or the HA-tagged mutant eIF3f K5–10R and cultured in differenti-
ation medium for 4 days. Total cellular lysates were analyzed by
immunoblotting.
doi:10.1371/journal.pone.0008994.g001

eIF3f Controls mTORC1
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Figure 2. mTOR and S6K1 physically interact with two different domains of eIF3f. (A) Interaction of eIF3f mutants with S6K1. Mouse
primary cultured satellite cells were transfected with expression vectors encoding Flag-tagged eIF3f wt and deletion mutants of eIF3f. Total cellular
extracts were subjected to immunoprecipitation with anti-S6K1 followed by immunoblotting analysis with anti-Flag antibodies. (B) Phosphorylation
of S6K1 regulates the interaction with eIF3f. Interaction of hyperphosphorylated (control) or hypophosphorylated S6K1 (starved) was tested for
binding to eIF3-f. GST or GST-eIF3f beads were incubated with total cellular extracts (300 mg) of mouse primary culture of satellite myotubes in
differentiation medium (control) or starved for 3h. Bound proteins were eluted, subjected to SDS-PAGE and analyzed by immunoblotting. (C)
Interaction of eIF3f mutants with mTOR. Same as in (B) except that mouse primary cultured satellite cells were cotransfected with expression vector
encoding HA-tagged mTOR. (D) An eIF3f mutant deleted of the mTOR-binding domain suppresses S6K1 phosphorylation. Mouse primary cultured
satellite cells were transfected with increasing amounts of expression vectors encoding the deletion mutants eIF3f (aa1–221). Total cellular extracts
were subjected to immunoprecipitation with anti-S6K1 followed by immunoblotting.
doi:10.1371/journal.pone.0008994.g002

eIF3f Controls mTORC1
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Identification of a Conserved TOS Motif in the C-Terminus
of eIF3f That Is Essential for mTOR-Raptor Activation

The mTOR-raptor interaction has been shown to involve

multiple subdomains in raptor protein and a large region of

mTOR suggesting that the two proteins make extensive contact

between each other [10]. Raptor association with mTOR is

required for efficient S6K1 and 4E-BP1 phosphorylation and

raptor has been suggested to function as a scaffolding protein that

brings mTOR in close proximity to its substrates [36]. We focused

our work on defining mTOR-raptor interactions with the eIF3

subunit, eIF3f. Deletion of the C-terminus of eIF3f has been

shown to repress mTOR activity in muscle cells (Figure 2D).

Because recent reports demonstrated that TOS (TOR Signaling)

motif is necessary for the binding of S6K1 and 4E-BP1 to raptor

[37,38], this prompted us to research whether such a motif is

present in the C-terminal part of eIF3f. We found a five amino

Figure 3. eIF3f regulates the mTORC1 pathway in differentiated myotubes. (A) Mouse primary cultured satellite cells were transfected with
expression vectors encoding HA-tagged eIF3f wt or the mutant K5–10R, or subjected to RNAi-mediated silencing of eIF3f. At 24h posttransfection cells
were induced to differentiate. Total lysates from proliferating control cells (GM) or 4 days (DM 96h) differentiated myotubes were analyzed by
immunoblotting using the indicated antibodies and phospho-specific antibodies. (B) Effects of the overexpression and/or the knockdown of eIF3f on
myotubes size. Mouse primary cultured satellite cells were transfected with expression vectors as indicated in (A). Cells were cultured in
differentiation medium for 4 days. Bright-field images of differentiated myotubes are shown. Scale bar, 20 mm. (C) Myotube mean diameter of
experiments as in (A) was measured. Data represent the average 6 s.e.m for three experiments #, P,0,05 compared to control. At least 150
myotubes for each condition were analyzed.
doi:10.1371/journal.pone.0008994.g003

eIF3f Controls mTORC1
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acid sequence in eIF3f, FETML (amino acids 323–327) that is

evolutionary conserved and matched with other TOS motif that

have been shown to function in their respective proteins (Table 1).

To determine the importance of this motif for mTOR-raptor

function and because the first position in the TOS motif is critical,

we mutated the phenylalanine residue to alanine (F323A). Then,

we investigated whether the TOS motif is required for mTORC1

regulation by eIF3f. We cotransfected HA-tagged eIF3f wt and/or

the TOS motif mutant eIF3f (F323A) with Myc-tagged raptor in

mouse primary muscle cells. The introduced mutation had a

dramatic inhibitory effect on mTORC1 activity (Figure 4A) and

lead to a lack of muscle differentiation (Figure S2). In addition, the

TOS motif mutant eIF3f (F323A) failed to coimmunoprecipitate

with raptor and mTOR whereas the eIF3f wt coimmunoprecipi-

tated (Figures 4B and 4C) indicating that the TOS motif in eIF3f is

required both for the binding and the activity of mTOR-raptor in

muscle cells.

Mutation of the C-Terminal Lysines in eIF3f Increases
Interaction with mTOR and Raptor

Our previous results demonstrated that the mutant eIF3f K5–

10R leads to increased hypertrophy when compared to the wild-

type protein in vivo and in cellulo [29]. These observations agree

with the data presented in Figure 3, overexpression of the eIF3f

mutant K5–10R is correlated with increased activation of

downstream targets of mTORC1, but exactly how this mutant

protein mediates this enhanced activity remains unknown. To

investigate how the mutation of C-terminal lysines affected

mTORC1 activity, computational modeling of eIF3f was first

undertaken. The sequence of mouse eIF3f can be divided in three

sub-domains. The N-terminal domain (1–86) is predicted

unfolded. The central region (87–260) is a Mov34 domain. The

C-terminal region (261–350) is folded, and not found in other

proteins containing a Mov34 domain. The three-dimensional

structure of central and C-terminal regions was modeled using two

support structures, one for each region. For the central region, the

MPN domain of the 26S proteasome non-ATPase regulatory

subunit 7 (PDB code 2O95; Ref 39) was used as support structure.

Among the proteins with known three-dimensional structure

containing a Mov34 domain, it is the one sharing the highest

sequence identity with eIF3f (29%); it is also the longest one. In

particular, it contains, as compared to other Mov34 domain

structures, a supplementary C-terminal alpha helix that is also

present in eIF3f.

For the C-terminal region, possible support structures were

searched for using the @tome server [40]. Among the possible

support structures with comparable scores, we have chosen the C-

terminal sub-domain of a putative ribose 5-phosphate isomerase

from Novosphingobium aromaticivorans (PDB code 3C5Y,

unpublished). This choice was based on two elements: firstly,

although the sequence identity is very low (12.1%), conserved

positions in eIF3f correspond to conserved positions in 3C5Y;

secondly, the concerned C-terminal region in 3C5Y is not shared

by most proteins homologous to 3C5Y, showing that this region

might be an autonomous domain. These two elements could not

be established for any of the other candidates. In order to model

the two regions together, the two support structures were

assembled in a chimerical structure. Prior to this, the 2O95

structure was minimized; using rigid body, then simulated

annealing, to bring the C-terminal helix against the structure.

Indeed, in the dimmer, this helix rotates outwards to make

extensive contacts with the second monomer. To orient the two

domains relative to each other, we took advantage of the fact that

the helix separating the two domains can be modeled using as

support structure either the C-terminal helix of 2O95, or the first

helix of the 3CY5 C-terminal domain. Thus, these two helices

were superimposed. Noteworthy, both in the chimerical structure

and in 3CY5, 3CY5 C-terminal domain appears as an ‘‘arm’’

closing up on the rest of the structure.

The wild type and mutants were modeled separately. Both

models were evaluated, giving good PROSA scores (24.88 for

wt and 25.25 for mutant). In both cases, Verify3D also shows

good score for most of the model except for regions where the

scores are very low or negatives. The first region corresponds to

a region in 2O95, which also exhibits negative scores. The

second and third regions correspond to loops that have no

equivalent in the support structures. The last region corre-

sponds to the C-terminal amino acids that have no equivalent

in 3CY5. Noteworthy, the ‘‘arm’’, modeled from that of 3CY5

allows covering hydrophobic regions that would otherwise be

exposed (Figure 4D). In both models (mutant and wild-type),

the TOS motif is exposed. Three of the positions mutated in

eIF3f K5–10R appear very close to this TOS motif and could

explain the differences observed in affinity of eIF3f for mTOR/

raptor.

Since eIF3f serves as a connecting platform between mTOR-

raptor and S6K1 in muscle cells (Figure 2) and mutation of the

C-terminal lysines in eIF3f increases phosphorylation of S6K1,

we assessed the binding affinities of both eIF3f wt and mutant

eIF3f K5–10R proteins with S6K1 and mTOR-raptor. As

previously shown in Figure 2B, the non-phosphorylated form

of S6K1 interacts with eIF3f. Thus, we determined whether

eIF3f wt and/or the mutant eIF3f K5–10R could be captured

with the same affinity in vitro by using a GST-S6K1 (unpho-

sphorylated) bound to GSH-agarose. As seen in Figure 5A, the

amount of in vitro-translated eIF3f wt recovered with the S6K1

affinity resin was equivalent to the retained amount of eIF3f

mutant K5–10R. The same results were obtained by co-

immunoprecipitation of HA-tagged eIF3f wt and/or the mutant

eIF3f K5–10R protein with endogenous S6K1 in rapamycin-

treated mouse primary myotubes (data not shown). In contrast,

HA-tagged eIF3f mutant K5–10R overexpressed in mouse

primary myotubes at 4th day of differentiation was able to bind

both endogenous mTOR and raptor by about 2-fold higher

than HA-tagged eIF3f wt leading to a higher phosphorylation

and activity of S6K1 as evidenced by an increased phosphor-

ylation of rpS6 on Ser235/236 residues (Figure 5B). These

findings strengthen the notion that the modifications of C-

terminal lysines in arginine increase affinity of mTOR-raptor

for the TOS motif in the mutant eIF3f K5–10R.

Table 1. TOS motifs that have been shown to function in
their respective proteins.

Sequence eIF3 proteins

S6K1 FDIDL Human FETML

S6K2 FDIDL chimpanzee FETML

4E-BP1 FEMDI cow FETML

4E-BP2 FEMDI rat FETML

4E-PB3 FEMDI mouse FETML

HIF1a FVMVL chicken FETML

PRAS40 FVMDE zebra fish FENML

eIF3f FETML

doi:10.1371/journal.pone.0008994.t001
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Figure 4. A TOS motif in eIF3f is necessary for binding to mTOR-raptor. (A) Effects of TOS mutation on the activity of mTORC1. Mouse
primary muscle cells were transfected with expression vectors encoding HA-tagged eIF3f wt, HA-tagged TOS motif mutant eIF3f F323A and the
empty vector. At 24h post-transfection cells were induced to differentiate. Protein expression and phosphorylation levels were assayed from lysates
of 4 days differentiated myotubes by immunoblotting. (B) Mouse primary muscle cells were co-transfected with expresion vector encoding Myc-
raptor and either HA-eIF3f wt, the TOS motif mutant HA-eIF3f F323A and/or the empty vector. Transfected cells were induced to differentiate during
4 days and lysed in immunoprecipitation buffer without detergent. Total cellular extracts were subjected to immunoprecipitation with anti-Myc
antibody, followed by immnoblotting. Asterisk indicates a non specific band . (C) Mouse primary muscle cells were transfected, differentiated and
lysed as indicated in B. Total cellular extracts were subjected to immunoprecipitation with anti-HA antibody, followed byimmunoblotting. (D)
Modeling of eIF3f shows that the functional TOS is accessible for eIF3f/raptor interaction. Models of the three-dimensional structures of wild type and
mutant eIF3f K5-10R. The left-side images correspond to mutant eIF3f K5–10R (panels a and c), right-side to eIF3f wt (panels b and d). The mutated
lysines are coloured red, and corresponding arginines are colored green. The C-terminal arm is colored salmon. The mTOR binding region is colored
pink. The TOS motif is colored blue. The bottom panel is a zoom on the central region in a 90u rotation.
doi:10.1371/journal.pone.0008994.g004
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eIF3f Regulates the Association of Translational
Components with the 7-Methylguanosine-Cap Complex
in Muscle Cells

Our data suggest that during terminal differentiation and

hypertrophy eIF3f plays a scaffolding role for the activation of

4E-BP1 and S6K1 by mTORC1. While the precise role of

S6K1 in translational control is still poorly understood, it is

known that the hypophophorylated 4E-BP1 acts as negative

regulator of the cap-binding protein eIF4E. Phosphorylation of

4E-BP1 by mTORC1 promotes its dissociation from the eIF4E

bound to the mRNA 7-methylguanosine cap structure,

allowing for the recruitment of eIF4G and eIF4A, 40S

ribosomal subunits and the ternary complex (eIF2/Met-

tRNA/GTP), resulting in the assembly of the preinitiation

complex (PIC) [9].

We set out to determine the functional consequences of the

eIF3f-induced activation of mTORC1 and phosphorylation of

S6K1 and 4E-BP1 (Figure 3), thus we investigated the formation of

the translational PIC by using a cap-binding assay. Mouse primary

muscle cells were transfected with expression vectors coding for

Figure 5. The hyperactive eIF3f mutant K5–10R shows increased affinity for binding to mTOR/raptor. (A) Interaction of S6K1 with eIF3f
wt and mutant K5–10R in vitro. GST or GST-S6K1 beads were incubated with in vitro translated HA-tagged eIF3f wt or mutant K5–10R. Bound proteins
were eluted, subjected to SDS-PAGE and analyzed by immunoblotting. (B) Co-immunoprecipitation of endogenous mTOR/raptor with eIF3f wt and
mutant eIF3f K5–10R. Mouse primary skeletal muscle cells were transfected with expression vectors encoding HA-tagged eIF3f wt or the mutant
K5–10R. Cell extracts of 3 days differentiated myotubes were subjected to immunoprecipitation with anti-HA antibody. Immune complexes were
subjected to SDS-PAGE and Western blotting. The bar graphs show the ratio of mTOR and raptor recovered relative to HA-tagged eIF3f wt or mutant
K5–10R. Data represent the combined results from three different experiments.
doi:10.1371/journal.pone.0008994.g005
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HA-tagged eIF3f wt, the mutant eIF3f K5–10R or subjected to

shRNA-mediated silencing of eIF3f. After 4 days of differentiation,

cell extracts were prepared without detergent, incubated with 7-

methyl-GTP (m7-GTP) Sepharose beads, and the bound proteins

were analyzed by immunoblot. HA-eIF3f K5–10R showed a higher

affinity to copurify on m7-GTP beads when compared to HA-

eIF3f wt. We also observed that endogenous eIF4G, raptor and

rpS6 were robustly recruited to the m7-GTP cap complex and 4E-

BP1 was released in myotubes overexpressing eIF3f wt when

compared to empty vector, and even higher in those overexpress-

ing the mutant eIF3f K5–10R (Figure. 6A). In contrast, eIF3f

knockdown abolished the recruitment of these translational

components to the m7-GTP cap structure and increased the

retention of 4E-BP1, when compared to shRNA Luc (Figure 6B).

These results show that eIF3f is involved in the proper assembly of

the translation initiation complex in skeletal muscle cells.

eIF3f Activates the Cap-Dependent Translation in Muscle
Cells

Translation initiation is the rate-limiting step in cap-dependent

protein translation and the majority of protein synthesis is though

to be cap-dependent [41]. Thus, we set out to determine whether

eIF3f contribute in vivo to cap-dependent translation. For this, we

used a dual luciferase reporter system previously described

(Figure 7A) [27,42]. Using this assay, we first measured the effect

of insulin known to induce hypertrophy and rapamycin (Figure S3)

on cap-dependent translation in muscle cells. As shown in

Figure 7B, insulin induced a 2-fold increase in cap-dependent

over cap-independent translation rates in muscle cells. This effect

was completely rapamycin sensitive suggesting that signaling

through the mTOR pathway modulated the insulin-induced cap-

dependent translation. Then, we measured the effect of eIF3f on

cap-dependent translation. As shown in Figure 7B, eIF3f wt

overexpression led to increase in translation rates in muscle cells.

Interestingly, overexpression of the mutant eIF3f K5–10R increased

the cap-dependent translation in the same order as observed with

insulin. Consistently with this, we observed that overexpression of

eIF3f in primary skeletal myotubes increased total protein

synthesis by about 23% for the wt protein and 60% for the

mutant K5–10R, when compared with empty vector. In contrast,

knockdown of eIF3f in myotubes reduced global protein synthesis

by about 25% (Figures 7C and 7D).

Discussion

The inhibitory effects of rapamycin on skeletal muscle

hypertrophy and the critical role of raptor for muscle function

and prolonged survival [19] suggest the involvement of mTORC1

pathway in the muscle regulation and hypertrophy. The

downstream effector of mTOR, S6K1 has also been shown to

be a regulator in this process [18]. In the present work, we

provided several important new insights concerning the implica-

tion of the regulatory subunit eIF3f in the control of mTORC1

activation and its implication in the regulation of the Cap-

dependent translation in muscle fiber size.

S6K1 and mTOR-raptor physically interact with two different

domains of eIF3f. The binding of S6K1 to the eIF3 complex is not

mediated by the TOS motif [27]. The Mov34 domain of eIF3f is

able to associate with the hypophosphorylated form of S6K1 adds

to the evidence of a physical association of eIF3f and S6K1 prior

to S6K1 activation. Interestingly, the Mov34 motif in eIF3f

interacts directly with the Leucine Charged Domain (LCD) of

MAFbx during atrophy [25]. MAFbx could control cell growth by

interacting with eIF3f for further degradation by the 26S

proteasome, preventing the activation of S6K1 by mTOR.

Muscles undergoing atrophy accumulates the inactive form of

S6K1 suggesting that degradation of eIF3f mediated by MAFbx

participates to S6K1 inactivation during atrophy and raises the

question whether MAFbx interacts with free eIF3f molecules or

bound to hypophosphorylated S6K1. Indeed association of eIF3f

with mTOR and its activation is correlated with S6K1 activation

and its respective dissociation from eIF3f. The raptor-mTOR

binding to eIF3f physically does displace S6K1 from eIF3f but

S6K1 phosphorylation by mTORC1 alters the ability of eIF3f and

S6K1 to interact.

Figure 6. eIF3f regulates the recruitment of translational proteins to the mRNA 7-methylguanosine cap structure. (A) Binding of
translational components to the 7-methylguanosine cap complex is enhanced by eIF3f. Mouse primary cultured satellite cells were transfected with
expression vectors encoding HA-tagged eIF3f wt and/or the mutant eIF3f K5–10R and differentiated for 3 days. Cap-binding proteins in lysates were
purified by 7-methyl GTP (m7GTP) affinity beads. Levels of proteins and phosphoproteins were analyzed by Western blotting. (B) eIF3f silencing leads
to decreased recruitment of translational components to the m7-GTP cap complex. Mouse primary cultured satellite cells were subjected to RNAi-
mediated silencing of eIF3f using specific small hairpin RNA. A nonspecific shRNAi was used as control. Cell lysates were purified by m7-GTP and
analyzed as described in (A).
doi:10.1371/journal.pone.0008994.g006
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In myotubes, the mTOR-raptor activation seems to be

dependent of interactions with a TOS motif located in the C-

terminal domain of eIF3f. Only eIF3f with an intact TOS motif

coimmunoprecipitates with mTOR-raptor (Figures 4B and 4C)

and activates mTOR-raptor/S6K1 pathway (Figure 4A). The

TOS motif is found in substrates of the mTOR kinase. TOS

interacts with the WD40-containing adaptor protein raptor that is

required to bring mTOR together with its substrates. eIF3f has

been shown to be phosphorylated by CDK11 during apoptosis

[43]. Although our preliminary data did not show major

posttranslational modifications of eIF3f during muscle differenti-

ation, it is possible that mTOR directly phosphorylates eIF3f and

Figure 7. eIF3f regulates cap-dependent translation. (A) Structure of the bicistronic reporter plasmid allowing cap-dependent expression of
renilla luciferase and expression of firefly luciferase dependent on HCV IRES. (B) Overexpression of eIF3f modulates cap-dependent translation. Mouse
primary cultured satellite cells were cotransfected with the bicistronic reporter vector and expression vectors encoding HA-tagged eIF3f wt and the
mutant eIF3f K5–10R. Twenty-four hours posttransfection cells were grown for an additional 24h in 20% serum (control), stimulated with insulin or
pretreated with rapamycin and stimulated with insulin for and additional 24 h. Cells transfected to express eIF3f wt or the mutant eIF3f K5–10R were
grown in 20% serum. Luciferase activities were measured by a dual-luciferase assay. The ratio of Renilla (Cap-dependent) to Firefly (IRES-dependent)
luciferase activity was calculated. Data are presented as the mean 6 standard error from three independent experiments carried out in triplicate,
*P,0,05 compared to control; #P,0,05 compared to Insulin + rapamycin. (C) Mouse primary cultured satellite cells were transfected with expression
vectors as described in (B) and/or subjected to shRNAi-mediated silencing of eIF3f prior to labeling new protein synthesis with 35S methionine. Newly
synthesized proteins were separated by SDS-PAGE, and visualized by autoradiography. (D) Newly synthesized proteins from three experiments as in
(C) were quantified. *P = 0,002 and #P,0,001 compared to control; {P.0,001 compared to shRNAi eIF3f. (E). Model depicting the central role of eIF3f
in the signaling pathways controlling skeletal muscle mass.
doi:10.1371/journal.pone.0008994.g007
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we are currently pursuing this line of investigation to see whether

there is any mTOR-dependent and rapamycin-sensitive phos-

phorylation sites within eIF3f. This TOS motif is derived from the

conservation observed in the 4E-BP translation initiation factors

and the S6K1, S6K2 kinases and shows a strong beta

amphipathicity. The motif alternates between hydrophobic and

negatively charged residues. Although the structure of a TOS-

Raptor complex is not yet known, the conservation might imply

that the motif is bound in a sandwiched pocket. In our model, the

TOS motif is exposed, and thus accessible to raptor (Figure 4D).

Moreover, this motif is very close to the mTOR binding region.

Three of the K/R mutations (positions 218, 242 and 321) lie

between these two motifs, and are exposed, thus belonging either

to the raptor or to the mTOR binding sites. Consequently these

three mutations alone could explain the observed enhancement of

the affinity of the mutant for raptor/mTOR (Figure 5). Together

with a fourth mutation (position 301), they could also be

responsible of a change in the stability of the arm’s position (in

salmon) relative to the rest of the structure, especially the mTOR-

binding region. Mutation at position 258 is situated in the mTOR

binding region, and could thus influence the affinity for mTOR.

Finally, although the position of the last mutation (position 357)

cannot be determined on the model, since the support structure is

slightly shorter than eIF3f, it is very likely that this position is in the

vicinity of the TOS motif, and could thus belong to the raptor-

binding region.

eIF3f is one of two eIF3 subunits that contain a Mov34 motif.

The function of this domain is unclear, but it is found in the N-

terminus of the proteasome regulatory subunits, eukaryotic

initiation factor 3 (eIF3) subunits f and h and in certain subunits

in the COP9 signalosome and the lid of the 19S proteasome [20].

The role of eIF3f within the eIF3 complex has not been defined.

eIF3f is not found in S. Cerevisiae. However in Schizosacchar-

omyces pombe eIF3f is essential for viability and depleting eIF3f

remarkably decreases global protein synthesis in fission yeast [21].

eIF3f overexpression has been associated with inhibition of HIV-1

replication [22] and with activation of apoptosis in melanoma and

pancreatic cancer cells [23]. Changes in the composition of eIF3

represent another potential mechanism for controlling eIF3

function. It has been shown that the amount of eIF3j in eIF3

complex influences the amount of 40S subunit associated with

eIF3 [44]. During terminal muscle differentiation the amount of

eIF3f increase [25] as well as mTOR and raptor (Figure 3), leading

to an increase in S6K1 activation and phosphorylation of rpS6

and 4E-BP1. Recent reports on the biological function of eIF3f in

translation and apoptosis in tumor cells demonstrated that eIF3f is

down regulated in most human tumors and that overexpression of

eIF3f inhibited cell proliferation suggesting a function associated

with differentiation [23]. Overexpression of eIF3f in myotubes

(Figure 3) and in mouse skeletal muscle [2] induces a massive

hypertrophy. mTOR is believed to be a master regulator of

skeletal myogenesis by controlling multiple processes through

different mechanisms. In particular the formation of mature

myotubes requires mTOR kinase activity [45] and mTOR

function in skeletal muscle requires only mTORC1 activation

[19]. In contrast, eIF3f knockdown was sufficient to induce the

repression of S6K1 activity and the lack of myogenic differenti-

ation (Figure 1). Ablation of eIF3f in muscle cells prevents

mTORC1 activity, phosphorylation of S6K1, rpS6 and 4E-PB1.

This mTOR-signaling pathway has been shown to directly control

protein synthesis. Thus increased mTORC1 signaling leads to

increased translation. Impaired efficacy of protein synthesis in

muscle atrophy via degradation of eIF3f extends previous data in

which mTOR inhibition by rapamycin was shown to prevent

compensatory hypertrophy and recovery from atrophy [15]. Our

data are also consistent with the findings that skeletal muscles of

S6K1-deficient mice are atrophic [18]. The targeting of eIF3f in

the atrophic pathway regulated by MAFbx in muscle atrophy

suggested an unexpected implication for eIF3f in the control of

muscle cell size. We have demonstrated that the regulatory eIF3f

subunit acts as a scaffold for mTORC1-and S6K1-mediated

assembly of the translation initiation complex during muscle

terminal differentiation. Our results add to the evidence that both

physical and functional links exist between mTOR-raptor, S6K1

and eIF3f. Genetic repression of eIF3f in differentiated skeletal

muscle is sufficient to induce atrophy [25] and degradation of

eIF3f by MAFbx suppresses S6K1 activation by mTOR.

Moreover inhibition of eIF3f degradation (mutant eIF3f K5–10R)

in MAFbx-induced atrophy maintained S6K1 activation by

mTOR (Figure 1) and electroporation of eIF3f K5–10R expression

vector in mice not only protects against muscle atrophy but also

induces hypertrophy [29]. Altogether these observations pinpoint

the important role of eIF3f in S6K1 activation and function in the

control of muscle mass and size. We recently suggested that eIF3f

may act as a « translational enhancer » driving specific mRNAs to

polysomes and thus increasing the efficiency of protein synthesis.

The role of these proteins in muscle hypertrophy are under

investigation. These different observations lead us envision the

involment of eIF3f in the regulation of S6K1 and mTOR

activation in the assembling of a preinitiation complex specific to

mRNA encoding proteins involved in terminal muscle differenti-

ation and hypertrophy. The role of eIF3f as a central element of

both atrophy and hypertrophy pathways represents an attractive

therapeutic target against muscle wasting. Efficient design of

MAFbx specific inhibitors should aim to disrupt its specific

interaction with eIF3f by developping compounds to prevent and/

or slow down skeletal muscle atrophy.

Materials and Methods

Ethics Statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant national and/or local animal

welfare bodies, and all animal work was approved by the Ministere

de l’’Enseignement Superieur et de le Recherche (decret N. 4962

du 12 /06/ 2008).

Reagents
Insulin was purchased from SIGMA. Rapamycin was a kind

gift from A. Sotiropoulos (Institut Cochin, Paris, France). The 35S-

translabel was obtained from Perkin Elmer.

Plasmid Constructs
Reporter plasmid pRL-HCV-FL was provided by John Blenis

(Harvard Medical School, Boston, USA). The coding sequence of

human eIF3f obtained from the two-hybrid screen [25] was

transferred in pCMV-Myc (Clontech) after Bgl2 restriction digest.

The full-length coding sequence and eIF3f mutants were amplified

by PCR to introduce BamH1 and EcoR1 sites on each side of the

open reading frame and cloned as BamH1 and EcoR1 fragments

into pGEX-3X. The coding sequence of mouse eIF3f was

amplified by RT-PCR by using forward primer 59-GGATC-

CATGGCTTCTCCGGCCGTACCGG-39 and reverse primer

59- GAATTCTCAGCCCTGTGGTGAAAACCTC-39 and sub-

cloned into pCDNA3-T7-3HA after BamH1 and EcoR1 restric-

tion digest. The shRNAi for eIF3f were provided by C. Brou

(Institut Paster, Paris). The muscle specific expression plasmid for

eIF3f was carrying out first by using the 1256 bp HindIII-BstEII

eIF3f Controls mTORC1

PLoS ONE | www.plosone.org 11 February 2010 | Volume 5 | Issue 2 | e8994



filled-in fragment of the muscle regulatory elements of the Muscle

Creatine Kinase (MCK) and subcloned in pEGFP-C1 instead of

the pCMV promoter (pMCK-GFP). Then deletion of the GFP

sequence was introduced by NheI-BspEI filled-in digestion of

pMCK-GFP plasmid and reannealing of the resulting plasmid

(pMCK). The HA-tagged eIF3f coding sequence was cloned in

sense into SmaI-XbaI sites of the pMCK. The eIF3f deletion

mutants were previously described [29]. The eIF3f mutant F323A

in which Phe-323 was substituted with Ala was obtained by

oligonucleotide-directed mutagenesis as described in the manu-

facturer’s protocole (PCR-based mutagenesis kit, Stratagene). The

mutation was confirmed by sequencing. The pRK5/myc-raptor

construct has been described [10].

Cell Cultures
Primary cultures were prepared from male mice from our own

breeding stocks. All animals were treated in accordance with

institutional and national guidelines. Briefly, mice satellite cells

were isolated from the whole muscles of the paw. Cells were plated

at a density of 26104 cell/cm2 on Matrigel-coated Petri dishes (BD

Biosciences), in 80% Ham’s-F10 medium containing glutamine,

penicillin and amphotericin B (Invitrogen), supplemented with

20% horse serum. After two days, cells were washed with Ham’s-

F10 and placed in complete medium supplemented with 5 ng/mL

basic fibroblast growth factor. Primary cultures of satellite cells

were transfected with 2 mg of total plasmid using Dreamfect

(OZBiosciences). High-level transfection efficiency for eIF3f

knockdown by shRNA in primary satellite cells was achieved by

using a modified protocol for Lipofectamin 2000. Four pShRNAi

mouse eIF3f were constructed by inserting at the BamHI-HindIII

sites of the pTER+ plasmid [25] a double synthetic oligonucle-

otides (sense oligo 1: (59-GATCCCCCGATGAAGTGGCTGT-

TATTTTCAAGAATAACAGCCACTTCTTCTTTTTGGAAA-

39; antisense oligo 1: 59-AGCTTTTCCAAAAA GATGAAGT-

GGCTGTTTACTCTTGAAATAACAGCCACTTCTACGGG-

39. Sense oligo 2: 59-GATCCCCGCCTATGTCAGCACTT-

TAATTTTCAAGAATTAAAGTGCTGACATAGGCTTTTT -

GGAAA-39; antisense oligo 2: 59-AGCTTTTCCAAAAAGCC-

TATGTCAGCACTTTAAT ACTCTTGAAATTAAAGTGCT-

GACATAGGGGG-39. Sense oligo 3: 59-GATCCCCCGCATC-

GGAGTTGATCTGATTTTCAAGAATCAGATCAACTCCG-

ATGCGTTTTTGGAAA-39; antisense oligo 3: 59-AGCTTTTC-

CAAAAA CGCATCGGAGTTGATCTGACTCTTGAAATC-

AGATCAACTCCGATGCGGGG-39). Sense oligo 4: 59-GAT-

CCCCGAGTGATTGGACTCTTAAGTTTTCAAGAACTTA-

AGAGTCCAATCACTCTTTTTGGAAA-39; antisense oligo 4:

59-AGCTTTTCCAAAAA GAGTGATTGGACTCTTAAGTC-

TCTTGAAACTTAAGAGTCCAATCACTCGGG-39.To design

the control construct, two sets of oligonucleotide pair (sense: 59-

GATCCCCGTACGCGGAATACTTCGATTCAAGAGATCG-

AAGTATTCCGCGTACGTTTTTGGAAA-39 and antisense 59-

AGCTTTTCCAAAAACGTACGCGGAATACTTCGATCTC -

TTGAATCGAAGTATTCCGCGTAGGG-39) directed against

the Firefly luciferase were inserted into the BamHI-HindIII sites of

the pTER+ plasmid. Protein extraction was performed as

described previously [25] and ShRNAi efficiency was tested by

Western blot (Figure S4).

For microscopy experiments, primary skeletal muscle myotubes

cells at 4th day of differentiation fixed in 3% paraformaldehyde in

PBS at pH 7.4 for 30 minutes at room temperature. Bright-field

images of myotubes were randomly taken and analyzed by the

Axiovision 4.4 Software (Zeiss). The Perfect Image v.5.5 Software

(Claravision, France) was used to measure diameters of at least 150

myotubes in a region where myonuclei were absent and the

diameter was constant.

Atrophy Assay
Atrophy was induced in cultured myotubes by switching the

medium to PBS (100 mM NaCl, 5 mM KCl, 1.5 mM MgSO4,

50 mM NaHCO3, 1 mM NaH2PO4, 2 mM CaCl2) during the

indicated times.

Immunoprecipitation and Western Blot
Muscle cells were rinsed in cold PBS and lysed in IP buffer

(50 mM Tris pH 7.4, 150 mM NaCl, 10% glycerol, 0.5% NP40,

0.5 mM Na-orthovanadate, 50 mM NaF, 80 mM b-glycerophos-

phate, 10 mM Na-pyrophosphate, 1 mM DTT, 1 mM EGTA

and 1 mg/ml leupeptin, 1 mg/ml pepstatin and 10 mg/ml

aprotinin). Lysates were precleaned for 30 min with protein-G

beads and immunoprecipitated by using standard procedures.

Immunoprecipitated proteins were loaded onto 10% SDS/PAGE

gels before electrophoretic transfer onto nitrocellulose membrane.

Analyses of the mobility of differently phosphorylated forms of 4E-

BP1 and S6K1 were made as described previously [29]. Gel

loading was normalized to protein concentration. Western blotting

was performed by using an ECL kit (Amersham Biotech.)

according to the manufacturer’s instructions. Blots were exposed

with Amersham Biosciences Hyperfilm ECL (GE Healthcare)

films. Signals were quantified by gel scan and with the ImageJ

software.

Antibodies
An anti-MAFbx antibody was generated by injecting rabbits

with a GST-MAFbx fusion protein corresponding to aa 1-102 of

the human MAFbx protein. Antibodies were affinity purified

against an MBP-MAFbx fusion protein. Anti-Troponin T

monoclonal (JLT-12), anti-Myosin Heavy Chain monoclonal

(My32) and anti-FLAG epitope (M2) antibodies were from Sigma,

anti-HA epitope (12CA5) was from Roche Applied Science.

Polyclonal anti-S6K1 (C-18), monoclonal anti-Raptor (10E10),

anti-phospho Tyr204 ERK1/2 polyclonal, monoclonal anti-Myc

(9E10) and anti-Cdk4 were purchased from Santa Cruz. Rabbit

polyclonal anti-eIF3f was from Rockland Immunochemicals Inc.

Anti-mTOR polyclonal, anti-4E-BP1 polyclonal, anti-phospho-S6

(Ser235/236), anti-phospho-Akt (S473), anti-Rheb and anti-eIF4G

were from Cell Signaling Technology. The monoclonal anti-

Desmin was purchased from DakoCitomation. The Texas red-

conjugated F(ab’)2 fragments of goat anti-mouse IgG and the

FITC-conjugated F(ab’)2 fragments of goat anti-rabbit IgG were

obtained from Jackson Immunoresearch Inc.

Preparation of Recombinant Proteins and GST
(Glutathione-S-Transferase) Pull Down Assay

GST-tagged forms of S6K1 and eIF3-f were made by

transforming pGEX-3X-eIF3-f constructs and pGEX2T-S6K1

constructs, respectively, into BL21-(DE3)-Lys bacterial cells

(Stratagene). Cells were grown to OD600 = 0.520.7 and induced

with 0.1 mM isopropyl a-D-thiogalactopyranoside (IPTG) at 21uC
for 12 h. Cell lysis, and affinity purification with glutathione-

agarose beads (Sigma) were done as described previously (46).

Fusion proteins were collected on Glutathione-Sepharose 4B

(Pharmacia) and then the purity of the GST and GST fusion

proteins were analyzed by SDS-PAGE followed by Coomassie

brilliant blue staining of the gels. 400 mg of myotubes lysate was

diluted in binding buffer (20 mM HEPES pH 7.9, 50 mM KCl,

2.5 mM MgCl2, 10% glycerol, 1 mM DTT and 10 mg/ml
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leupeptin 10 mg/ml pepstatin and 10 mg/ml aprotinin), and pre-

cleaned with Glutathione sepharose beads for 30 min. Then the

resulting supernatant was incubated with the beads for 3 hours.

Beads were washed four times in NTEN buffer at room

temperature and then mixed with 1 volume of 2X SDS loading

buffer, and bound proteins were analyzed by SDS-PAGE using

standard procedures.

Molecular Modeling
3D structure of eIF3f was modeled using MODELLER

9v7 [47]. Support structure for modeling of the central region

(87–260) was found using Psi-Blast [48]. Support structure for

the C-terminal region was found using SP3 [49], through the

@tome2 server [50]. Structures were minimized using Xplor-

NIH [51]. Images were obtained using PyMol [52]. Unfolded

regions predictions were made using Prelink [53]. Quality of

the models was assessed using PROSA [54] and Verify3D

[55].

Cap Pull-Down Assay
Primary skeletal muscle myotubes were lysed in cap lysis buffer

(140 mM KCl, 10mM Tris pH 7,5, 1mM EDTA, 4mM MgCl2,

1mM DTT, 1% NP-40, 1 mM sodium orthovanadate, 50 mM b-

glycerophosphate, 10 mM NaF and proteases inhibitors). 50 ml of

detergent-free cap lysis buffer and 20 ml of pre-washed cap beads

(m7GTP Sepharose 4B from GE Healthcare Lifesciences) were

added to 300 mg of cleared lysate and incubated at 4uC overnight

with tumbling. The beads were washed twice with 400 ml of cap

wash buffer (cap lysis buffer with 0,5% NP-40 instead of 1%) and

twice with 500 ml of ice-cold PBS. The beads were boiled in SDS-

PAGE sample buffer and the retained proteins analyzed by

Western blot.

Bicistronic Luciferase Assay
Primary skeletal muscle myotubes were transfected with

pRL-HCV-FL reporter plasmid [27,42] and the indicated

DNA. Forty-eight hours post-transfection cells were harvested,

and the Renilla and Firefly luciferase activity was measured

using the Dual-luciferase kit (Promega). Differences in the ratio

of Renilla to Firefly luciferase signals were analyzed for

statistical significance by one-way ANOVA with Tukey’s post

test.

35S Labeling of New Protein Synthesis
Transfected primary skeletal muscle myotubes at 4th day of

differentiation were washed once with DMEM lacking cysteine

and methionine (DMEM-noS), and the medium was replaced

with DMEM-noS with serum. After incubation for 1 h, 50 mCi

of 35S (Perkin Elmer) was added to the cells for 4 h. Myotubes

were washed once with ice-cold PBS and lysed as described

above for western blotting. Following separation by SDS-PAGE

and treatment with an amplifier fluorographic reagent (GE

Healthcare), 35S-labelled proteins were visualized by autoradi-

ography.

Statistics
All data are expressed as the mean 6 S.E. Data were evaluated

by one-way analysis of variance followed by Tukey’s honestly

significant differences test (SigmaSTAT software). A p value of

,0.05 was considered statistically significant.

Supporting Information

Figure S1 Rapamycin destabilizes the mTOR-raptor/eIF3f

interaction. Mouse primary skeletal muscle cells were transfected

with expression vectors encoding HA-tagged eIF3f wt or the

mutant K5-10R. Cell extracts of 3 days differentiated myotubes

were treated for min with 20nM rapamycin prior to immunopre-

cipitation with anti-HA antibody. Immune complexes were

subjected to SDS-PAGE and probed with anti-mTOR, anti-

raptor and anti-HA antibodies.

Found at: doi:10.1371/journal.pone.0008994.s001 (3.06 MB EPS)

Figure S2 Mutation of the TOS motif in eIF3f represses muscle

differentiation in mouse primary muscle cells. Pools of mock, eIF3-

f and mutant TOS F323A eIF3f expressing mouse primary muscle

myoblasts were cultured in differentiation medium for 4 days.

Bright-field images of differentiated myotubes are shown. Scale

bar, 20 mm.

Found at: doi:10.1371/journal.pone.0008994.s002 (4.17 MB TIF)

Figure S3 Opposite effects of rapamycin and insulin on the

terminal muscle differentiation. Mouse primary cultured satellite

myoblasts were induced to differentiate in the absence (control) or

in the presence for 2 days of 20mM rapamycin and/or for 2-3

days in the presence of 100nM insulin. Cell lysates were prepared

and analyzed by immunoblotting.

Found at: doi:10.1371/journal.pone.0008994.s003 (5.38 MB EPS)

Figure S4 Specific down regulation of eIF3f expression by

ShRNAi. The small interfering RNA (ShRNAi) studies used

oligonucleotide complementary RNA with symmetrical two

nucleotide overhangs which were cloned in pTer+ and transfected

in muscle cells. Twenty hours after transfection, mouse primary

myoblasts were induced to differentiation for three days and then

totall cellular lysates were analyzed by Western blot with anti eIF3f

and anti Cdk4 antibodies respectively. Asterisk indicates a non-

specific band.

Found at: doi:10.1371/journal.pone.0008994.s004 (1.81 MB EPS)
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