
HAL Id: hal-01129406
https://hal.science/hal-01129406v1

Submitted on 11 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Consensus in Opportunistic Networks
Abdulkader Benchi, Pascale Launay, Frédéric Guidec

To cite this version:
Abdulkader Benchi, Pascale Launay, Frédéric Guidec. Solving Consensus in Opportunistic Networks.
2015 International Conference on Distributed Computing and Networking, Jan 2015, Goa, India.
pp.1:1-1:10, �10.1145/2684464.2684479�. �hal-01129406�

https://hal.science/hal-01129406v1
https://hal.archives-ouvertes.fr

Solving Consensus in Opportunistic Networks

Abdulkader Benchi
IRISA Laboratory

Université de Bretagne-Sud
France

abdulkader.benchi@univ-
ubs.fr

Pascale Launay
IRISA Laboratory

Université de Bretagne-Sud
France

pascale.launay@univ-
ubs.fr

Frédéric Guidec
IRISA Laboratory

Université de Bretagne-Sud
France

frederic.guidec@univ-
ubs.fr

ABSTRACT
Opportunistic networks are partially connected wireless ad
hoc networks, in which pairwise unpredicted transient con-
tacts between mobile devices are the only opportunities for
these devices to exchange information or services. Ensuring
the coordination of multiple parts of a distributed applica-
tion in such conditions is a challenge. This paper presents a
system that can solve consensus problems in an opportunis-
tic network. This system combines an implementation of the
One-Third Rule (OTR) algorithm with a communication
layer that supports network-wide, content-driven message
dissemination based on controlled epidemic routing. Exper-
imental results obtained with a small flotilla of smartphones
are also presented, that validate the system and demonstrate
that consensus can be solved effectively in an opportunistic
network.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Test-
ing, and Fault-Tolerance; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design—distributed
networks, wireless communication; C.4 [Performance of
Systems]: Fault tolerance, Measurement techniques, Reli-
ability, availability, and serviceability

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Consensus, opportunistic networking, opportunistic comput-
ing

1. INTRODUCTION
Opportunistic networks constitute a category of mobile ad

hoc networks (MANETs) in which the sparse or irregular
distribution of mobile devices (or nodes) yield frequent link
disruptions and network partitions [6]. While a MANET is
often represented as a time-varying graph (TVG [9]) that re-
mains connected at any time, an opportunistic network must
rather be depicted as a non-connected TVG, as shown in Fig-
ure 1: mobile nodes only come into contact with each other
every now and then, depending on the mobility patterns of
their respective carriers (which can be human beings, but
also vehicles, animals, etc.). When a transient contact oc-
curs between two nodes, this contact has not been planned

Figure 1: Example of an opportunistic network com-
posed of mobile nodes carried by human beings

in advance so it must be exploited opportunistically by these
two nodes to exchange information or services [32].

Relying exclusively on unpredicted pairwise contacts be-
tween mobile nodes does not imply that long-distance com-
munication is not feasible in an opportunistic network. In-
deed, each mobile node can serve as a “data mule” for mes-
sages that propagate in the network, storing messages in a
local cache, and carrying them for a while before they can be
forwarded to other nodes. This “store, carry and forward”
principle is the foundation principle of Delay/Disruption-
Tolerant Networking (DTN [17]): messages can indeed prop-
agate in a partially or intermittently connected environment,
but their delivery is not guaranteed and can be delayed by
minutes, or even hours or days, as it depends on the wan-
derings of benevolent mobile carriers.

Opportunistic computing has recently been proposed as a
new computing paradigm to build upon opportunistic net-
working. The general idea is to develop a framework that
enables collaborative computing in environments where long
disconnections and network partitions are the rule [14]. Sev-
eral middleware systems have already been proposed to ease
the development of distributed applications that are meant
to run in opportunistic networks: a middleware system that
supports asynchronous messaging based on opportunistic
communication is proposed in [3], one that supports the
tuple-space model in opportunistic networks is described in
[4], and systems that support service provisioning and de-
livery in opportunistic networks are presented in [15] and
[28].

Such middleware systems constitute a first step toward
application development targeting opportunistic networks.
Yet, in complex distributed applications, multiple processes
running on different mobile nodes must be able to agree
on a common course of actions. Consensus problems have
been studied extensively in the literature, with various sys-
tem models. Each system model makes specific assumptions

about the underlying communication model (synchronous or
asynchronous, based on either reliable or faulty links) and
about the processes themselves (reliable, susceptible to crash
or to exhibit Byzantine failures). A large majority of papers
addressing consensus adopt system models that suit tradi-
tional wired networks, such as the Internet. To date only a
few papers have considered the consensus problem in wire-
less ad hoc networks and, to the best of our knowledge, no
paper has considered the consensus problem in opportunistic
networks yet.

As observed in [7] the models for wired networks are of-
ten strongly biased towards node failures to the detriment of
link failures. Yet, mobile ad hoc networks –including oppor-
tunistic networks– require a model that admits both tran-
sient process and link faults, and that considers such faults
as benign failures. The Heard-Of (HO) model [13] meets
these requirements. This model does not distinguish faulty
processes from faulty links, as it focuses on transmission
faults (effects) without accounting for the faulty components
(causes) [13].

Indeed, in an opportunistic network such as that shown
in Figure 1, a wireless link between two neighbor nodes is
inherently transient, so when this link disappears (for exam-
ple because both nodes have moved away from each other)
this should not be considered as a “fault”: this is the ex-
pected consequence of both mobility and limited transmis-
sion range in an opportunistic network. Similarly, mobile
nodes in an opportunistic network often run on batteries,
so a common strategy to preserve their power budget is to
turn them off –or put them in suspend mode, or disable
their wireless transceiver– frequently. When a node sud-
denly “disappears” from the network, this should not always
be considered as a “fault” (not even a benign one), because
this is a perfectly legitimate behavior for this kind of node
in this kind of environment.

As mentioned above, delivering messages to remote nodes
in an opportunistic network is not guaranteed, for it de-
pends on the wanderings of carriers whose mobility patterns
are neither planned nor controlled. Messages can therefore
get lost before reaching their destination(s). Two of the
consensus algorithms defined in [13] for the HO model can
easily tolerate message loss: the Paxos/LastVoting (P/LV)
algorithm, and the One-Third Rule (OTR) algorithm. An
implementation of the P/LV algorithm for mobile ad hoc
networks has been proposed in [7]. This implementation
could not run in an opportunistic network, though, as it
does not allow mobile nodes to store and carry messages
while moving in the network.

In the remainder of this paper we present a middleware
system that implements the OTR algorithm, and that can
run effectively in an opportunistic network. This system has
been fully implemented in Java, and it has been tested in
real conditions using a small flotilla of smartphones as mo-
bile nodes. The OTR algorithm is implemented on top of a
communication layer that supports network-wide, content-
driven message dissemination based on controlled epidemic
routing. This combination of the OTR algorithm and epi-
demic routing is consistent, because epidemic routing is an
effective way to disseminate messages in an opportunistic
network, where mobility patterns are neither planned nor
controlled, and where mobile nodes (with the messages they
carry) can disappear for a while from the network. Besides,
the OTR algorithm requires n-n communication: in every

step each process (or mobile node) must send a message to
all other processes (or nodes). With epidemic routing, send-
ing a message to all nodes is not significantly different from
sending a message to a single node, so combining the OTR
algorithm with epidemic routing makes sense when targeting
opportunistic networks.

The remainder of this paper is organized as follows. Re-
lated work is presented and discussed in Section 2. The sys-
tem model we consider in this work is detailed in Section 3.
The Heard-Of (HO) model and the One-Third Rule (OTR)
algorithm are presented in Section 4. Section 5 presents
our implementation of the OTR algorithm, and Section 6
presents experimental results obtained with this implemen-
tation. Section 7 concludes the paper.

2. RELATED WORK
Consensus problems have been studied extensively during

the last decades, most often with system models that fit the
characteristics of traditional wired networks. As a general
rule, the papers assume that the network is static and con-
nected, that is, any node can send a message at any time
to any other node. Moreover, they also assume that the
system can eventually become synchronous, or that it can
be augmented with failure detectors, so as to go round the
so-called “FLP impossibility result” [18].

Most system models focus on node failures and tend to
neglect link failures, though. According to Borran et al. [7]
this bias may have its root in the FLP paper [18] (which as-
sumes process crashes and reliable links), but solutions de-
signed for environments where this bias is acceptable should
not be used in environments where it is not acceptable.

Mobile ad hoc networks are such environments where re-
liable links should never be assumed, and for which system
models must admit transient link failures. Yet several con-
sensus protocols and algorithms have been proposed for such
networks, based on overly optimistic assumptions.

Crash-tolerant broadcast protocols that can be used to
solve consensus problems in mobile ad hoc networks are
presented in [38]. These protocols assume the existence of
oracles that can predict contacts and transmission times be-
tween nodes at any point of time. Such an assumption can
only be satisfied in very specific mobile networks such as
those where the mobility patterns of nodes are planned or
controlled explicitly.

A hierarchical consensus protocol involving failure detec-
tors is proposed in [39]. Mobile hosts are distributed into
clusters, each cluster being controlled by a clusterhead. The
protocol can tolerate faulty nodes, but links are assumed to
be reliable.

An algorithm to solve consensus without knowing which
nodes –and how many of them– are participating in the con-
sensus is presented in [10], but the system model for this al-
gorithm assumes reliable links and nodes that cannot crash.
Variants of this algorithm have later been proposed in [11]
and [19]. Both variants can admit faulty nodes, but links
are still assumed to be reliable.

An implementation of the Paxos/Last Voting (P/LV) al-
gorithm is proposed in [7]. This round-based algorithm re-
quires the election of a coordinator, which once elected col-
lects the contributions of all other nodes until consensus is
reached. Interestingly, unlike the abovementioned solutions
the P/LV algorithm can admit both link and node failures,
as it relies on the Heard-Of (HO) model that makes no dis-

tinction between both kinds of failures. It assumes end-to-
end connectivity in the network, though, which is a reason-
able assumption for traditional mobile ad hoc networks, but
an unfit one for opportunistic networks.

Byzantine agreement protocols for highly dynamic syn-
chronous networks have been proposed in [2] and [20]. In [2]
two randomized round-based protocols are presented, that
can achieve almost-everywhere Byzantine agreement with
high probability, even under a large number of Byzantine
nodes and continuous adversarial churn. The network is rep-
resented as a sparse bounded degree expander graph that
is assumed to remain connected at any time, although its
topology can change arbitrarily from round to round. The
protocol presented in [20] creates and maintains an expander
overlay of clusters. Each cluster is used to inhibit the behav-
ior of Byzantine nodes, and the overlay ensures communica-
tion among clusters. Although these protocols can support
Byzantine failures, they can only run in connected networks
and could hardly be used in opportunistic networks.

As explained in Section 1, an opportunistic network is a
mobile ad hoc network that is at best only partially con-
nected. Such a network can be continuously partitioned,
so end-to-end transmission between remote nodes cannot
rely exclusively on multiple rounds of short-range wireless
transmissions. In fact, a temporaneous multi-hop path be-
tween two nodes may never exist during the network’s whole
lifetime. In such conditions the “store, carry and forward”
principle, which is the key principle of Delay/Disruption-
Tolerant Networking (DTN), must be used to allow mes-
sages to cover long distances by being carried physically by
mobile nodes [30, 36]. With this approach mobility is an
asset, as it helps bridge the gap between nodes that would
otherwise be unable to communicate.

Message routing in opportunistic networks has already
justified a fair amount of research. Most of the algorithms
proposed rely on more or less constrained variants of the
epidemic dissemination scheme, as defined in [37] and [16]:
whenever a message is sent, several copies of this message
are actually produced so these copies can propagate sepa-
rately in the network, each copy being carried by a distinct
mobile node. This approach is clearly a costly one but it
helps preventing message loss, which can occur because of
transmission failures (when a message is transmitted wire-
lessly between two neighbor nodes), or because the carrier
of a copy may unexpectedly disappear from the network.
Many solutions have been proposed to keep the cost of epi-
demic routing at a reasonable level, using heuristics that
basically aim at reducing the number of carriers for each
message, and also sometimes at selecting the “best” carri-
ers for each message. Some solutions rely on probabilistic or
semi-probabilistic heuristics [27, 31, 40], or take into account
the context of each mobile node [1, 5, 33]. Others assume
that mobile nodes are carried by human beings, whose social
interactions can be captured and used to drive message for-
warding by predicting how people move or meet [29, 34], or
by identifying what communities each person belongs to [12,
23, 24].

In this work we make no assumption about the carriers of
mobile nodes. These carriers could thus be human beings,
but they could as well be vehicles, robots, animals, or any
combination of these. The system we define relies on a se-
lective epidemic dissemination model, which in essence can
be considered as an effective implementation of the abstract

model described in [16].

3. SYSTEM MODEL

3.1 General architecture
The system model we consider consists of a finite set of

mobile nodes V. Each node features a short-range wireless
interface that allows it to exchange messages in ad hoc mode
–that is, without relying on any fixed infrastructure– with
nodes in its radio range.

At any time a node is either up or down: a node can
disable its wireless transceiver or enter standby mode spon-
taneously to save battery, or it can be switched off and on
alternatively by a user. This behavior is normal and is not
considered as a failure. When a node is down, it cannot
communicate with its neighbors. When it is switched on
again, its previous state is restored, and it initiates a neigh-
bor discovery phase in order to adjust rapidly to its current
surroundings.

No assumption is made about the mobility of nodes, or
about their spatial distribution. A node can thus be some-
times isolated from the other nodes, when the distance to
its closest neighbor exceeds its radio range.

The relations between nodes take place over a time span
T . At some time in T the system model is represented by
the static graphG = (V, E), where V denotes the set of nodes
and E the set of edges. There exists an edge between two
nodes u and v if u and v are within mutual radio range, and
can thus exchange messages over the wireless medium. Over
time, the system model can be represented by a time-varying
graph (TVG) [9] G = (V, E , T , ρ, ψ), where ρ : E×T → {0, 1}
is the edge presence function that indicates whether a given
edge is available at a given time; and ψ : V × T → {0, 1} is
the node presence function that indicates whether a given
node is available at a given time. At some time in T , the
underlying graph G of G is not necessarily connected. In
fact, the underlying graphs of G may all be disconnected
over T .

3.2 Communication model
In the TVG formalism, a journey in G is defined by a

sequence of couples {(e1, t1), (e2, t2), . . . , (en, tn)}, such that
{e1, e2, . . . en} is a walk in G and ρ(ei, ti) = 1 and ti+1 > ti
for all i < n [9]. At time t, a message sent by a node u
may eventually be received by a node v if a journey u
v exists in the TVG G, with a starting date t1 such that
t1 ≥ t. In other words, a message sent by u may reach v
after being stored, carried, and forwarded successively by
several nodes, even if an end-to-end path between u and
v never exists in any underlying graph G of G. The time
elapsed between two consecutive hops (ti+1 − ti) may range
between a few milliseconds (the message being forwarded
rapidly between successive neighbor nodes) and minutes or
hours (the message being carried for a while before being
forwarded to another node).

In our system model, any message sent by a node dissemi-
nates in the network according to the epidemic model: when
two nodes meet, they can seize this opportunity to create
new copies of the messages they are carrying, thus increas-
ing the number of carriers for these messages. This basic
interaction scheme takes inspiration from the Autonomous
Gossiping (A/G) algorithm [16], which itself defines a selec-
tive version of the epidemic routing model proposed in [37].

In our model, each node defines an interest profile that de-
termines the kinds of messages it is willing to collect from
other nodes, and for which it is therefore willing to serve as
a mobile carrier.

The epidemic model increases the probability of message
delivery, as it simultaneously exploits all possible journeys
that involve nodes whose interest profiles match the kind of
message considered. In practice, messages that match an
interest profile p can be carried only by a subset of nodes
Vp ⊆ V, which consists of all nodes in V whose interest
profile is p (or larger than p). Possible journeys for copies of
a message that matches p are defined in Gp = (Vp, E , T , ρ, ψ).

3.3 Fault model
The nodes in our system model can be switched off and

on at any time. When a node is switched off this is not con-
sidered as a “failure”, for this is consistent with its normal
behavior. Nodes may sometimes crash spontaneously and
never recover, though, but this is assumed to be an excep-
tional event, concerning only a very small number of nodes.
Using the TVG formalism, the notation ψ(v, t) = 0 is used
to indicate that the node v is switched off at time t.

In an opportunistic network, any wireless link between two
neighbor nodes is inherently transient. However, journeys
between any pair of nodes do not require any temporaneous
end-to-end connectivity between these nodes, and can thus
rely on successions of transient links. As a consequence, dis-
ruptions of wireless links are not considered as “link failures”
in our model.

The epidemic routing model cannot guarantee that each
message sent in the network eventually gets delivered to all
possible recipients. Our system model therefore admits re-
ceive omissions, and these are considered as benign faults.

We do not consider Byzantine faults in this system model:
an active node is assumed to behave properly, and to re-
cover appropriately after being switched off and on again.
Furthermore, messages transferred wirelessly between neigh-
bor nodes are assumed to be unaltered. More specifically,
whenever a message is received from a neighbor node, the
integrity of the received copy is checked, and this copy is
simply discarded if it has been altered during the transmis-
sion. The epidemic model ensures that the receiver will find
other opportunities to obtain the message anyway (possibly
again from the same neighbor).

3.4 Assumptions
In an opportunistic network, no guarantee can be pro-

vided about message delivery ratios, transmission delays,
node availability, etc. A few assumptions can however be
made to limit uncertainties in our system model.

In the remainder of this paper we call a session the process
that consists in starting a consensus agreement procedure,
and pursuing this procedure until a decision is made. Several
sessions may of course progress simultaneously in the net-
work, and some nodes may participate in several consensus
sessions simultaneously.

We assume that a consensus session S involves a subset VS
such that VS ⊆ V (i.e., all nodes in the network are not nec-
essarily involved in S). Nodes in VS are called participants
for session S. Each of these nodes is expected to provide an
initial value for S, and to help run the consensus algorithm
until a decision is made. We assume that any node u ∈ VS
knows that it belongs to VS , and knows |VS | (i.e., how many

nodes participate in S). The definition and creation of the
subset VS is application-dependent, and is therefore out of
the scope of this paper.

A consensus session S spans over a time period TS . Dur-
ing some periods in TS , some nodes in VS may disappear
temporarily from the network. We assume that these nodes
will eventually reappear during TS , and resume their ac-
tivity regarding S. Some nodes in VS may also crash and
disappear definitively from the network. We assume that
the number of crash failures for nodes in VS is unknown but
can be bounded, and that the bound is low with respect to
VS .

Nodes in VS are all expected to serve as mobile carriers for
messages pertaining to S. Additionally, any node u ∈ V \ VS
can also serve as a benevolent carrier for messages pertaining
to S. Nodes that can carry messages pertaining to S thus
belong to a subset VC(S) (carriers for session S) such that
VS ⊆ VC(S) ⊆ V. These nodes all exhibit an interest profile
p that matches messages pertaining to S.

Any message pertaining to S, whatever its sender u ∈
VS , is assumed to disseminate thanks to nodes in VC(S),
and eventually reach all or some of the nodes in VS . The
reason why only some of the nodes in VS are considered
here is a consequence of the epidemic routing model, which
cannot guarantee that each message eventually reaches all
its possible recipients. The failure ratio is assumed to be low
and bounded, though.

Finally, we assume that, for any given node u ∈ VS , there
are some periods in TS , called “good periods for u” during
which all the messages sent by u eventually reach all other
nodes in VS (except nodes that crashed during TS). This
assumption is not required to ensure the termination of the
OTR algorithm, but it makes it possible to terminate faster
in some cases: as soon as node u decides, then if u is in
a “good period” its decision can be transmitted to all other
nodes in VS . As observed in [7], assuming good periods in an
asynchronous system is often more realistic than assuming
that the system is partially synchronous.

4. SOLVING CONSENSUS WITH THE OTR
ALGORITHM

4.1 Consensus
The consensus problem over a set Π = {p1, p2, ...pn} of

processes (which in our system model are called participants
and are assumed to run on distinct nodes) is defined by the
following properties:

• Validity: Any decision is the initial value of some par-
ticipant.

• Agreement: No two participants decide differently.

• Termination: All correct participants1 eventually de-
cide.

4.2 Overview of the Heard-Of model
A computation in the Heard-Of (HO) model [13] evolves

in asynchronous communication-closed rounds, without any
need for a failure detector. In each round, each process
sends a message to all the other processes and then waits

1In our system model, a correct participant is a participant
that does not crash permanently during a consensus session.

to receive similar messages sent in the same round. Late
messages pertaining to former rounds are discarded. The
features of a specific system are captured by a communica-
tion predicate, which is expressed in terms of Heard-Of sets:
HO(p, r) represents the set of processes from which process
p “hears of” (i.e., receives some messages) at round r. A
consensus problem is solved in the HO model by a Heard-
Of machine defined by a pair M = (A,P) where A is an
algorithm and P is a communication predicate.

Several consensus algorithms have been expressed in the
HO model [13]. These algorithms can hardly tolerate mes-
sage loss, except for the Paxos/LastVoting (P/LV) algorithm
and the One-Third Rule (OTR) algorithm. An implementa-
tion of the P/LV algorithm for mobile ad hoc networks has
been proposed in [7]. This implementation could not run
in an opportunistic network, though, as it is coordinated-
based which requires temporaneous end-to-end connectivity
between the coordinator and all the other processes.

4.3 Overview of the OTR algorithm
The One-Third Rule (OTR) algorithm is a perfect candi-

date for opportunistic computing. In [13] it is defined with
the formalism of the HO model, but similar structure and
decision conditions can be observed in other algorithms (e.g.,
first round in [8]). Each round r in the OTR algorithm con-
sists of two steps (see Algorithm 1): a sending step Sr

p in
which process p sends its current contribution (for round r)
to the other processes (line 3), followed by a transition step
T r
p in which, provided it has received enough contributions

from the other processes (line 5), process p either takes a
decision (line 8) or determines its contribution for the next
round (line 6) and proceeds to that round (line 7).

Algorithm 1 The One-Third Rule algorithm
Initialization:

1: xp ← vp {vp is the initial value of process p}

Round r:
2: Sr

p :
3: send <xp> to all other processes
4: T r

p :

5: if | HO(p,r) | > 2n/3 values then
6: xp ← the smallest most often received value
7: if more than 2n/3 values received are equal to x then
8: DECIDE(x)

A node p can tolerate not to receive messages from up
to one-third of the other participants in round r, while still
being able to decide or proceed to the next round. In prac-
tice, in an opportunistic network this may occur because
some of the other participants have not reached round r yet
(for example because these participants are currently in sus-
pend mode), or because some participants have indeed sent
their contributions for round r but these messages have not
reached node p yet (and possibly never will).

Moreover, with the OTR algorithm a consensus compu-
tation involving n participants can progress from round r
to the next if at least one participant can receive contri-
butions (pertaining to round r) from more than 2n

3
other

participants. In an opportunistic network where message
delivery can sometimes be delayed significantly (at least for
some receivers), this property of the OTR algorithm is an
asset, for the consensus computation can proceed from one
round to the next as soon as one node has received enough
contributions to do so.

Conversely, at least 2n
3

participants must send contribu-
tions in each round, since this is a requirement for the algo-
rithm to proceed to the next round or to the final decision.

Based on these observations the assumptions made in our
system model (Section 3.4) can be refined so as to account
for the specific requirements of the OTR algorithm:

• At each round r, the number of participants sending
their contribution in the network should not be smaller
than 2n

3
(which means that about n

3
participants can

actually “skip” a round without preventing the compu-
tation to progress). By extension, the number of crash
failures among the participants must be smaller than
n
3

.

• At each round r, message loss should be such that at
least one node can receive more than 2n

3
contributions

(which means that receive omissions are admitted for
most of the participants but one, which should be able
to receive enough contributions to proceed to the next
round). Using the HO formalism, this assumption can
be expressed as:

∀r, ∃ p ∈ Vs s.t. |HO(p, r)| > 2n/3

Note that these requirements fit perfectly with the charac-
teristics of an opportunistic network, in which node avail-
ability and message delivery cannot be guaranteed. More-
over, the n-to-n communication pattern used in the OTR
algorithm is satisfied by the epidemic routing model, since
with this model sending a message to many or all nodes is
not really different from sending a message to a single node.

According to [13] the communication predicate P(C0)∞ as-
sociated with the OTR algorithm ensures that the consensus
can be solved if there exists a round r0 where C0 holds:

∃Π0 s.t. |Π0| > 2n/3, ∀p ∈ Π : HO(p, r0) = Π0

where Π stands for the set of participants involved in the
consensus. In other words, during r0 all participants must
be able to receive contributions from the very same subset of
more than 2n

3
participants (with n = |Π|), so they can make

the same decision. This predicate can be expressed nicely in
terms of HO sets, and it is sufficient to ensure that consen-
sus is solved. Yet it does not define a necessary condition. If
there exists a round r0 where the contributions collected by
participants are such that the smallest most frequent value
is the same for all participants, then the consensus can be
solved as well, even though all participants may not have
received these values from the same contributors. This con-
dition can hardly be expressed in terms of HO sets, yet it is
weaker than predicate P(C0)∞ and allows more flexibility in
the system model.

5. OPPORTUNISTIC IMPLEMENTATION OF
THE OTR ALGORITHM

Our system is architectured in two layers: the lower layer
can support network-wide, content-driven message dissemi-
nation based on controlled epidemic routing, and the upper
layer is an implementation of the OTR algorithm that in-
terfaces with the communication layer.

5.1 Opportunistic communication layer
The communication layer implements a content-driven mes-

sage dissemination model. It can actually be perceived as
an effective implementation of the abstract model described
in [16]. An overview of this communication layer is provided
below. Further details can be found in [21].

Each node periodically broadcasts an announce in order
to inform its neighbors (if any) about its presence. When
two nodes meet they first exchange their interest profiles,
that characterize the types of messages each node is willing
to receive, and for which it is therefore willing to serve as a
mobile carrier. Based on this exchange of profiles, each node
can determine accurately which messages could be of interest
to its neighbor, and make an offer accordingly. Messages are
then effectively exchanged through a succession of query-
and-reply cycles.

Each node maintains a local cache to store the messages it
carries, so they can be proposed to any new neighbor. In or-
der to prevent network congestion, each message is allowed
a specific lifetime. When this lifetime is over, all copies of
this message are removed from the caches of mobile nodes,
so this message actually stops disseminating in the network.
The dissemination of a message can also be canceled ex-
plicitly on a mobile node. Once a message is canceled, the
node does not propose it to any neighbor anymore, and if
conversely a neighbor actually offers to provide this mes-
sage, this neighbor is notified that it too should cancel the
message whose dissemination is not required anymore. This
approach is referred to as network healing in the literature.
It is an effective way to limit the cost of epidemic routing
in an opportunistic network, using either Passive Cure [25,
22] or Active Cure techniques [35].

The communication layer provides a publish/subscribe ap-
plication programming interface (API), presented in Algo-
rithm 2. With this API, the content-driven nature of mes-
sage selection is based on the notion of group. A group,
identified by a group identifier (grpId), is a set of nodes that
cooperate in a common task and are thus potentially in-
terested in the same kind of messages. The interest profile
of a node is a compilation of the ids of all the groups it
belongs to. Function subscribe (line 2) allows a process to
specify that it is interested in receiving the messages for a
given group. This function adds the specified group id in
the node’s interest profile, and consequently the node will
try to collect messages addressed to this group from any
neighbor it will meet thereafter. Whenever a message is re-
ceived that matches a group the node belongs to, a receive
event is triggered (line 3) accordingly.

Algorithm 2 The communication layer API

1: Function publish (msgId, grpId, sndId,BODY, [dln])
2: Function subscribe (grpId)
3: Event receive (msgId, grpId, sndId,BODY, [dln])
4: Function cancel (msgId)
5: Function relay (grpId)

The communication layer assigns a unique identifier to
each node. This identifier can for example be the IMEI on a
smartphone, or an auto-configured link-local IPv6 address.
Each message must likewise be assigned a unique identifier,
which will notably be used by the system to detect dupli-
cates, and thus prevent useless transfers of message copies
between neighbor nodes. Sending a message in the network

is done with the publish function (line 1), that takes as pa-
rameters identifiers for the message itself (msgId), for its
sender (sndId), and for the group of nodes it is addressed
to (grpId). The body of the message is just perceived as a
payload by the system.

When a message is published on a node, or received from
a neighbor, this message is deposited in the local cache. Af-
terwards every contact with a new interested neighbor is an
opportunity to transfer a copy of the message to that neigh-
bor.

As explained above, each message can optionally be as-
signed a set lifetime when it is published (last parameter in
line 1), and the dissemination of a message can also be can-
celed explicitly (line 4). Both mechanisms, if used wisely,
can help reduce the cost of epidemic routing.

By default a message disseminates by being stored, car-
ried, and forwarded by nodes that have subscribed to the
group this message is addressed to. A node can however be
configured so as to serve as a benevolent carrier for messages
addressed to a group it does not belong to. With the API
this is obtained through the relay function (line 5), which
basically has the same effect as function subscribe, except
that messages received by a benevolent carrier will not trig-
ger any receive event on that node.

5.2 Opportunistic OTR algorithm
Our implementation of the OTR algorithm based on the

opportunistic communication layer is shown in Algorithm 3.
A consensus session is initiated by calling function startSes-
sion, taking the group identifier, the number of participants
in this group, and the initial value for the local participant as
parameters. A subscription is then set for the group (line 8)
before starting the first round of the OTR algorithm (line 9).

At each round, the current contribution is published (line 12),
and the identifier of the message hence published is recorded
in contribIds so it can be canceled later (line 13).

When a contribution is received from another participant,
the behavior of the receiver depends on whether this contri-
bution pertains to a new round (lines 18-22), to the current
round (lines 24-30), or to a former round (line 32). In the
first case the receiver cancels messages pertaining to the cur-
rent round before moving to the new round. In the second
case it checks if enough contributions have been received
to either make a decision (line 29) or start the next round
(line 30). In the third case it simply discards the contri-
bution it has just received, but cancels the corresponding
message so as not to take part in its dissemination (line 32).

Note that message cancellation is here used systemati-
cally as a means to prevent messages that pertain to former
rounds to keep propagating in the network. This form of
cross-layering between the OTR algorithm and the oppor-
tunistic communication layer helps reduce the cost of epi-
demic message dissemination.

Function decide is called when a decision is made locally
(line 29), or when a decision message is received from an-
other participant (line 41). In any case this function is run
only once on each node (line 33): all pending messages are
canceled (lines 36-37) and the decision is published (line 40)
with a unique message identifier that is produced using grpId
as a seed (line 39). Thus, if several nodes make a decision
in the same session, all messages carrying this decision will
have the same identifier and will thus be considered as du-
plicates of the same message by the communication layer.

As explained in Section 3.4, publishing the decision is not
required by the OTR algorithm, but it can help terminate a
consensus session faster.

Algorithm 3 Opportunistic version of the OTR algorithm
Initialization:

1: idp ← id of local node {must be unique in the network}
2: contribp ← {} {contributions received for rp (multi-set)}
3: contribIdsp ← {} {ids of messages received during rp (set)}

Function startSession(grpId, nbNodes, v):
4: xp ← v {initial value for node p}
5: grpIdp ← grpId
6: nbNodesp ← nbNodes
7: solved← false
8: subscribe(grpIdp)
9: startRound(1)

Function startRound(r):
10: rp ← r
11: msgId← genId() {call id generator}
12: publish(msgId, grpIdp, idp, CONTRIB(rp, xp))
13: contribIdsp ← contribIdsp ∪ {msgId}

Upon receive (msgId, grpId, sndId, CONTRIB(r, x)) do
14: if solved then
15: cancel(msgId)
16: switch (r)
17: case (r > rp):
18: for id ∈ contribIds do
19: cancel(id)
20: contribp ← {x}
21: contribIdsp ← {msgId}
22: startRound(r)
23: case (r = rp):
24: contribp ← contribp ∪ {x}
25: contribIdsp ← contribIdsp ∪ {msgId}
26: if |contribp| > 2/3 ∗ nbNodesp then
27: xp ← smallest most often received value in contribp
28: if all values are equal to X in contribp then

29: decide(X)
30: startRound(rp + 1)
31: case (r < rp):
32: cancel(msgId)

Function decide(v):
33: if ¬solved then
34: solved← true
35: xp ← v
36: for id ∈ contribIds do
37: cancel(id)
38: contribIdsp ← {}
39: msgId← genId(grpId)
40: publish(msgId, grpIdp, idp, DECISION(xp))

Upon receive (msgId, grpId, sndId, DECISION(v)) do
41: decide(v)

6. EXPERIMENTAL EVALUATION
Evaluating the performance of a system capable of run-

ning in opportunistic networks is a challenge. In the litera-
ture, protocols and systems designed for such networks, and
more generally for Delay/Disruption-Tolerant Networks, are
often evaluated using simulators, and little or no effort is de-
voted to producing code that can be used in a real setting.
Yet, as observed in [26] “rare are the [DTN] protocols that
were implemented, tested in real-life and proven to be free of
lethal stealthy assumptions”. A salient feature of our system
is that it has been fully implemented, and validated in real
conditions using a small flotilla of smartphones as mobile
nodes.

6.1 Experimentation conditions

%

0

20

40

60

80

100

Contact duration (min)

1 2 3 4 5 6 7 8 9 >9

Figure 2: Cumulative distribution of radio contact
durations

Figure 3: Timeline of the average number of neigh-
bors during the experiment

In order to demonstrate that our system can indeed solve
consensus in an opportunistic network, volunteers have been
equipped with HTC smartphones, whose Wi-Fi chipsets were
configured to operate in ad hoc mode. Each smartphone
ran a small Android application (named iAgree) based on
our system. This simple application allows a user to initiate
new consensus sessions, and to join, participate, and dis-
play the status of ongoing and past sessions. The volunteers
were asked to carry their smartphone while roaming the lab-
oratory building or its surroundings, and to use application
iAgree every now and then. Trace logs were collected and
analyzed after the end of the experiment.

The experiment spanned over 8 hours and involved a small
population of 7 volunteers (and as many smartphones). It
was mostly meant to serve as a proof of concept. A compre-
hensive evaluation of the system’s effectiveness and efficiency
would require a far larger population of mobile nodes, and
should ideally span over several days or weeks.

During this experiment the system was configured to give
each message a lifetime of 12 hours. No message was there-
fore removed because of an exhausted lifetime. Moreover,
because only 7 smartphones were available for this experi-
ment, none of them was configured to serve as a benevolent
carrier: every smartphone was systematically enrolled as a
consensus participant.

6.2 Results
3424 radio contacts occurred between smartphones during

this 8 hour experiment, with an average contact duration of
162 seconds. The cumulative distribution of contact du-
rations is presented in Figure 2. It can be observed that
almost 60% of radio contacts lasted for less than a minute,
which confirms the transient nature of the radio contacts
established between smartphones.

A timeline of the evolution of the average number of neigh-
bors is presented in Figure 3, and the cumulative distribu-

Figure 4: Cumulative distribution of the average
number of neighbors

%

0

20

40

60

80

100

Smartphone id

SP1 SP2 SP3 SP4 SP5 SP6 SP7

[4-6] hops

3 hops

2 hops

1 hop

Figure 5: Amount of contributions received in a
direct/multi-hop manner per smartphone

tion of this number is shown in Fig 4. It can be observed that
each smartphone had at most one neighbor during about
40% of the experiment’s duration, but was actually alone
(i.e., with no neighbor) during more than 20% of that time.
Moreover, there was no period of time during which all
smartphones were connected all together (each smartphone
would otherwise have detected 6 neighbors simultaneously).
These results confirm the dynamic and disconnected nature
of the network, whose topology changed continuously and
rapidly during the whole experiment.

151 consensus sessions were initiated by users (either se-
quentially or concurrently) during the experiment, and run-
ning these sessions led to the exchange of 4530 contributions
among the smartphones.

Figure 5 shows the distribution of the number of hops
required for contributions to reach each smartphone. For
example, 50% of the contributions received by smartphone
SP6 were received directly from the sender (1-hop), 33%
contributions were received by SP6 after 2 hops, etc. The
smartphones actually received most of the contributions af-
ter multi-hop trips during the experiment, a few of these
trips requiring up to 6 hops between sender and receiver.

This observation confirms the interest of multi-hop relay-
ing between smartphones, but it is not sufficient to demon-
strate the interest of the store, carry and forward principle in
an opportunistic network such as that formed by the smart-
phones during the experiment. In order to clarify this point,
Figure 6 illustrates how one particular consensus contribu-
tion sent by smartphone SP2 actually disseminated during
the experiment. A few minutes after this particular contri-
bution was published (i.e. sent to all other nodes) by our
system on SP2, a radio contact was established with SP6,
which thus got a copy of the contribution and became a new

Figure 6: Timeline of the dissemination of a contri-
bution during the experiment

Figure 7: Cumulative distribution of the execution
times of sessions

carrier for this contribution. SP2 later managed to forward
the contribution to SP7, while SP6 forwarded it to SP1 first,
and later to SP3. The contribution thus kept disseminating,
until it reached the last smartphone SP5, almost half an
hour after it was initially published on SP2.

These results confirm the need to rely on delay/disruption-
tolerant multi-hop forwarding to ensure information dissem-
ination in an opportunistic network. Any consensus algo-
rithm requiring temporaneous end-to-end connectivity would
be completely ineffective in such a network.

Since consensus contributions had to propagate oppor-
tunistically between the smartphones, each consensus ses-
sion could take a while before a decision was made. Actually,
9% of the sessions could not reach a decision during the ex-
periment, but these sessions were initiated shortly before the
end of the experimentation period. Figure 7 presents the cu-
mulative distributed of the execution times for all completed
sessions. The execution time of a session is here defined as
the time elapsed between the sending of the first contribu-
tion by one of the participants, and the last decision made
or received by any of the participants. It can be observed
that a few sessions were completed in only a few seconds,
but most of them required several minutes, and some even
took a couple of hours to complete. These results clearly
show that consensus solving in an opportunistic network
can indeed take a while, but is perfectly feasible provided
an appropriate communication model is used.

Figure 8 shows the cumulative distribution of the average
number of rounds required to solve consensus in all com-
pleted sessions. It can be observed that consensus was ob-
tained in only one round for about 5% of the sessions. Most
sessions required a couple of rounds to complete, though,
and it is likely that more rounds would have been required
with a larger population of consensus participants.

%

0

20

40

60

80

100

Number of rounds

1 2 3 4 5

Figure 8: Cumulative distribution of the number of
rounds required to solve consensus

All these results globally demonstrate that our system,
which combines the OTR algorithm with an opportunistic
communication layer, is effective at solving consensus in an
opportunistic network. As mentioned above this short ex-
periment was only meant to serve as a proof of concept.
Further experiments would be required to observe how this
system can perform in far larger networks involving hun-
dreds of mobile nodes, roaming large areas over long time
spans. Larger experiments would notably make it possible
to observe phenomena that could not be highlighted with a
flotilla of only 7 smartphones, such as the effect of relying on
benevolent carriers (i.e., mobile nodes that carry messages
they are not directly interested in) to carry consensus con-
tributions, or the effect of receive omissions when consensus
sessions involve many participants.

7. CONCLUSION
The One-Third Rule (OTR) algorithm is an elegant solu-

tion to solve consensus in networks where message loss can
occur. Being based on the Heard-Of (HO) model, it is well
suited to support transient process and link faults, which
makes it an ideal solution to solve consensus in opportunis-
tic networks. In such networks, messages propagate by being
carried physically by mobile carriers whose mobility is usu-
ally neither planned nor controlled, so there is no guarantee
that messages finally get delivered to their destinations.

In this paper we have presented a system that combines
an implementation of the One-Third Rule (OTR) algorithm
with a communication layer that supports network-wide,
content-driven message dissemination based on controlled
epidemic routing. Experimental results obtained with a
small flotilla of smartphones confirm that this system is ef-
fective at solving consensus problems in an opportunistic
network. The source code of this system is now distributed
under the terms of the GNU General Public License2.

8. ACKNOWLEDGEMENTS
The authors would like to thank the reviewers for their

helpful comments and suggestions. They would also like
to extend these thanks to Prof. Achour Mostéfaoui for his
precious insight into distributed computing issues and solu-
tions.

9. REFERENCES
2http://www-casa.irisa.fr/consensus

[1] V. Arnaboldi, M. Conti, and F. Delmastro. CAMEO:
A Novel Context-Aware Middleware for Opportunistic
Mobile Social Networks. Pervasive and Mobile
Computing, 2013.

[2] J. Augustine, G. Pandurangan, and P. Robinson. Fast
Byzantine Agreement in Dynamic Networks. In
Proceedings of the 2013 ACM Symposium on
Principles of Distributed Computing, PODC ’13, pages
74–83, New York, NY, USA, 2013. ACM.

[3] A. Benchi, F. Guidec, and P. Launay. A Message
Service for Opportunistic Computing in Disconnected
MANETs. In 12th IFIP International Conference on
Distributed Applications and Interoperable Systems,
pages 118–131, Stockholm, Sweden, June 2012.
Springer.

[4] A. Benchi, P. Launay, and F. Guidec. A P2P Tuple
Space Implementation for Disconnected MANETs.
Peer-to-Peer Networking and Applications, pages
1–16, Aug. 2013.

[5] C. Boldrini, M. Conti, and A. Passarella. Context and
Resource Awareness in Opportunistic Network Data
Dissemination. In The Second IEEE WoWMoM
Workshop on Autonomic and Opportunistic
Communications, Newport Beach, CA, USA, June
2008.

[6] C. Boldrini, K. Lee, M. Önen, J. Ott, and E. Pagani.
Opportunistic networks. Computer Communications,
pages 1–4, March 2014.

[7] F. Borran, R. Prakash, and A. Schiper. Extending
Paxos/LastVoting with an Adequate Communication
Layer for Wireless Ad Hoc Networks. In 2008
Symposium on Reliable Distributed Systems, page
227–236. IEEE, 2008.

[8] F. V. Brasileiro, F. Greve, A. Mostéfaoui, and
M. Raynal. Consensus in One Communication Step. In
Parallel Computing Technologies, volume 2127 of
LNCS, pages 42–50. Springer, 2001.

[9] A. Casteigts, P. Flocchini, W. Quattrociocchi, and
N. Santoro. Time-Varying Graphs and Dynamic
Networks. International Journal of Parallel, Emergent
and Distributed Systems, 27(5):387–408, Apr. 2012.

[10] D. Cavin, Y. Sasson, and A. Schiper. Consensus with
Unknown Participants or Fundamental
Self-Organization. In ADHOC-NOW, volume 3158 of
LNCS, pages 135–148. Springer, 2004.

[11] D. Cavin, Y. Sasson, and A. Schiper. Reaching
Agreement with Unknown Participants in Mobile
Self-Organized Networks in Spite of Process Crashes.
Technical report, 2005.

[12] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass,
and J. Scott. Impact of Human Mobility on
Opportunistic Forwarding Algorithms. IEEE
Transactions on Mobile Computing, 6(6):606–620, jun
2007.

[13] B. Charron-Bost and A. Schiper. The Heard-Of Model:
Computing in Distributed Systems With Benign
Faults. Distributed Computing, 22(1):49–71, 2009.

[14] M. Conti, S. Giordano, M. May, and A. Passarella.
From Opportunistic Networks to Opportunistic
Computing. IEEE Communications Magazine,
48(9):126–139, Sept. 2010.

[15] M. Conti, E. Marzini, D. Mascitti, A. Passarella, and

http://www-casa.irisa.fr/consensus

L. Ricci. Service Selection and Composition in
Opportunistic Networks. In 9th IEEE International
Wireless Communications and Mobile Computing
Conference, pages 1565–1572. IEEE CS, July 2013.

[16] A. Datta, S. Quarteroni, and K. Aberer. Autonomous
Gossiping: a Self-Organizing Epidemic Algorithm for
Selective Information Dissemination in Mobile Ad Hoc
Networks. In International Conference on Semantics
of a Networked World, number 3226 in LNCS, pages
126–143, Paris, France, June 2004.

[17] K. Fall. A Delay-Tolerant Network Architecture for
Challenged Internets. In Proceedings of The 2003
Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communications, pages 27–34, New York, USA, 2003.
ACM.

[18] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of Distributed Consensus With One
Faulty Process. Journal of the ACM, 32(2):374–382,
Apr 1985.

[19] F. Greve and S. Tixeuil. Knowledge Connectivity vs.
Synchrony Requirements for Fault-Tolerant
Agreement in Unknown Networks. In Dependable
Systems and Networks, 2007. 37th Annual IEEE/IFIP
International Conference on, pages 82–91, June 2007.

[20] R. Guerraoui, F. Huc, and A.-M. Kermarrec. Highly
Dynamic Distributed Computing with Byzantine
Failures. In Proceedings of the 2013 ACM Symposium
on Principles of Distributed Computing, PODC ’13,
pages 176–183. ACM, 2013.

[21] J. Haillot and F. Guidec. A Protocol for
Content-Based Communication in Disconnected
Mobile Ad Hoc Networks. Journal of Mobile
Information Systems, 6(2):123–154, 2010.

[22] K. A. Harras, K. C. Almeroth, and E. M.
Belding-Royer. Delay Tolerant Mobile Networks
(DTMNs): Controlled Flooding in Sparse Mobile
Networks. In IFIP Networking Conference, Waterloo,
Ontario, CANADA, May 2005.

[23] P. Hui, J. Crowcroft, and E. Yoneki. BUBBLE Rap:
Social Based Forwarding in Delay Tolerant Networks.
In 9th ACM International Symposium on Mobile Ad
Hoc Networking and Computing, pages 241–250, Hong
Kong, China, may 2008. ACM.

[24] P. Hui, E. Yoneki, S.-Y. Chan, and J. Crowcroft.
Distributed Community Detection in Delay Tolerant
Networks. In Sigcomm Workshop MobiArch, Kyoto,
Japan, aug 2007.

[25] L. jyh Chen, C. hung Yu, C. long Tseng, H. hua Chu,
and C. fu Chou. A Content-Centric Framework for
Effective Data Dissemination in Opportunistic
Networks. IEEE Journal of Selected Areas in
Communications, 2008.

[26] M. J. Khabbaz, A. Chadi M., and F. Wissam F.
Disruption-Tolerant Networking: a Comprehensive
Survey on Recent Developments and Persisting
Challenges. IEEE Communications Surveys and
Tutorials, 14(2):607–640, 2012.

[27] A. Lindgren, A. Doria, and O. Schelen. Probabilistic
Routing in Intermittently Connected Networks. In
Proceedings of the 1st International Workshop on
Service Assurance with Partial and Intermittent

Resources, Fortaleza, Brazil, Aug. 2004.

[28] A. Makke, Y. Mahéo, and N. Le Sommer. Towards
Opportunistic Service Provisoning in Intermittently
Connected Hybrid Networks. In 4th International
Conference on Networking and Distributed Computing,
pages 28–32, Honk Kong, China, Dec. 2013. IEEE CS.

[29] M. Musolesi, B. Hui, C. Mascolo, and J. Crowcroft.
Writing on the Clean Slate: Implementing a
Socially-Aware Protocol in Haggle. In IEEE
International Workshop on Autonomic and
Opportunistic Communications, Newport Beach, CA,
jun 2008.

[30] H. A. Nguyen and S. Giordano. Routing in
Opportunistic Networks. International Journal of
Ambient Computing and Intelligence, 1(3):19–38, 2009.

[31] H. A. Nguyen, S. Giordano, and A. Puiatti.
Probabilistic Routing Protocol for Intermittently
Connected Mobile Ad hoc Network (PROPICMAN).
In International Symposium on a World of Wireless,
Mobile and Multimedia Networks, pages 1–6, Helsinky,
Finland, June 2007. IEEE CS.

[32] L. Pelusi, A. Passarella, and M. Conti. Opportunistic
Networking: Data Forwarding in Disconnected Mobile
Ad Hoc Networks. IEEE Communications Magazine,
44(11):134–141, Nov. 2006.

[33] R. F. P. Quelhas. Improving Opportunistic with Social
Context Communications. PhD thesis, Universidade
do Minho, Escola de Engenharia, Oct. 2011.

[34] J. Scott, P. Hui, J. Crowcroft, and C. Diot. Haggle: a
Networking Architecture Designed Around Mobile
Users. In Proceedings of the 2006 IFIP Conference on
Wireless on Demand Network Systems and Services,
Jan. 2006.

[35] J. P. Tower and T. D. Little. A Proposed Scheme for
Epidemic Routing With Active Curing for
Opportunistic Networks. In 2008 22nd International
Workshops on Advanced Information Networking and
Applications (AINA Workshops), pages 1696–1701.
IEEE, 2008.

[36] A. Triviño-Cabrera and S. Cañadas-Hurtado. Survey
on Opportunistic Routing in Multihop Wireless
Networks. International Journal of Communication
Networks and Information Security, 3(2), Aug. 2011.

[37] A. Vahdat and D. Becker. Epidemic Routing for
Partially Connected Ad Hoc Networks. Technical
report, Duke University, Apr. 2000.

[38] E. W. Vollset and P. D. Ezhilchelvan. Design and
Performance-Study of Crash-Tolerant Protocols for
Broadcasting and Reaching Consensus in MANETs.
In Proceedings of the 24th IEEE Symposium on
Reliable Distributed Systems, volume 0, page 166–178,
Washington, DC, USA, 2005. IEEE Computer Society.

[39] W. Wu, J. Cao, J. Yang, and M. Raynal. Design and
Performance Evaluation of Efficient Consensus
Protocols for Mobile Ad Hoc Networks. IEEE
Transactions on Computers, 56(8):1055–1070, 2007.

[40] Z. Zhang. Routing in Intermittently Connected Mobile
Ad Hoc Networks and Delay Tolerant Networks:
Overview and Challenges. IEEE Communications
Surveys and Tutorials, 8(1):24–37, Jan. 2006.

	Introduction
	Related Work
	System Model
	General architecture
	Communication model
	Fault model
	Assumptions

	Solving consensus with the OTR algorithm
	Consensus
	Overview of the Heard-Of model
	Overview of the OTR algorithm

	Opportunistic implementation of the OTR algorithm
	Opportunistic communication layer
	Opportunistic OTR algorithm

	Experimental evaluation
	Experimentation conditions
	Results

	Conclusion
	Acknowledgements
	References

