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Abstract. Interactive Scores (IS) is a formalism for composing and per-
forming interactive multimedia scores with several applications in video
games, live performance installations, and virtual museums. The com-
poser defines the temporal organization of the score by asserting tempo-
ral relations (TRs) between temporal objects (TOs). At execution time,
the performer may modify the start/stop times of the TOs by triggering
interaction points and the system guarantees that all the TRs are sat-
isfied. Implementations of IS and formal models of their behavior have
already been proposed, but these do not provide usable means to rea-
son about their properties. In this paper we introduce ReactiveIS, a
programming language that fully captures the temporal structure of IS
during both composition and execution. For that, we propose a semantics
based on tree-like structures representing the execution state of the score
at each point in time. The semantics captures the hierarchical aspects
of IS and provides an intuitive representation of their execution. We
also endow ReactiveIS with a logical semantics based on linear logic,
thus widening the reasoning techniques available for IS. We show that
ReactiveIS is general enough to capture the full behavior of IS and it
also provides declarative ways to increase the expressivity of IS with, for
instance, conditional statements and loops.

1 Introduction

Preliminaries. Interactive multimedia (e.g., live-performance arts) refers to
computer-based design systems consisting of multimedia content that interacts
with the performer’s actions and other external events. Multimedia content is
structured in a spatial and temporal order according to the author’s require-
ments. The potential high complexity of these systems requires adequate speci-
fication languages for the complete description and verification of scenarios.

Interactive Scores (IS) [6] is a formalism for composing and performing inter-
active multimedia scores where the performer has the possibility to influence the
execution of the score. This means the composer allows the performer to modify,
during execution, the temporal organization of the score by adding interaction



points (IPs). Hence, the performer enjoys a certain freedom in choosing the time
of interaction (or whether it takes place) leaving the system the task of main-
taining the temporal constraints of the score. The IS model thus combines two
temporal paradigms used in current multimedia tools [6]: time-line and time-
flow. The former is represented at composition time when the composer defines
multimedia processes by their start and end times, as well as by temporal rela-
tions between them. The time-flow paradigm is represented by the time at which
the processes are actually executed.

Let us describe a simple example to introduce the terminology we shall use.
In IS, boxes represent temporal objects (TOs) whose temporal organization is
defined by asserting temporal relations (TRs) that those objects must obey.
TRs define temporal (quantitative) and logical (qualitative) relations between
TOs. More precisely, there are two qualitative relations that are defined between
boxes: precedence and posteriority. Hence, TRs are enhanced with quantitative
constraints by giving a range of possible durations in [0,∞]. Consider for instance
the IS on the left of Figure 1 which specifies the atmosphere of a cloud forest
in a theatrical installation. The composer defines the score S in which the box
A controls a machine that generates white smoke; the box B controls a group of
fans that evenly distributes the smoke; all the boxes in the box C are performed
once the smoke has been well distributed (defined by TRs r3 and r4); box E

controls a set of lights in order to represent a sudden beam of light; finally, box
D plays the sound of the howling of a wolf whose starting time depends on a
performer’s action (a mouse click).

TOs are classified into textures and structures. Textures represent the exe-
cution in time of a given multimedia process (e.g., changing the brightness of a
light) while structures (i.e., the hierarchical organization of the score) represent
the execution of a group of TOs with their own temporal organization. In our
example, texture A has a duration of 2 time-units (TU) and it starts at TU 1
(relation r1); structure C starts after 5 TU of stopping A (r3) and after 3 TU of
stopping B (r4) and stops when textures D and E have finished (r7, r8); texture
D starts when the message “/mouse 1” arrives between 2 and 5 TU after starting
C (r5); Finally, the score S finishes when C has finished (r9).

In all executions of the score, the start time and duration of textures A, B
and E do not change. Such TOs are seen as static control points that must be
handled by the system without interaction with the environment. The start time
of texture D, however, depends on triggering an IP. The starting of D modifies
the duration of structures C and S. Hence, those TOs are controlled by dynamic
control points that depend on the interaction with the environment. We also
note that texture D starts automatically after 5 TU of starting C if the IP is not
triggered. This default action guarantees that TRs are satisfied during execution.

The IS model is implemented in i-score (http://i-score.org), a tool
that offers two different stages or times: composition and performance. In the
former, composers place TOs on a horizontal time-line. Then, they add IPs and
connect TRs between the TOs in order to define temporal properties. During the
execution stage, the performer can dynamically trigger the IPs while the static
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Fig. 1. Example of an interactive score and its program tree.

control points are triggered by the system. Since multimedia processes and IPs
are handled by external applications, i-score uses multimedia protocols like
OSC in order to send/receive the messages defined by the composer.

Scores in i-score are executed by the ECO machine [9] which is responsible
of (1) triggering the static control points; (2) controlling the triggering of the dy-
namic control points; and (3) maintaining the temporal organization of the score.
This machine relies on a Hierarchical Time Stream Petri Net (HTSPN) [12] to
represent and execute the partially ordered set of events. Therefore, each time a
score is written or modified, it must be translated into a HTSPN to be executed.

Motivation and Contributions. Some applications of IS such as video games,
live performance installations, and virtual museum visits [1] demand two features
that i-score as well as its execution model (HTSPN) do not currently support:
(1) the use of more flexible control structures such as conditionals and loops [5];
and (2) scores must be verified before being played since they can be seen as
critical systems where raise conditions (abnormal behaviors) should not happen.
As an example of (1), consider a score where the composer may define an IP
that decides between executing the TO A or B. As for (2), consider the situation
where a given texture is never played due to inconsistent start/end conditions
or a multimedia resource that receives an unexpected number of messages that
it cannot handle concurrently. Dealing with (1) in i-score (i.e., on a horizontal
time-line) would be hard and it would require a complete redesign of the HTSPN
execution model. Moreover, due to the fact that there is one language to specify
the score and another, completely different, to define the execution model, it
does not seem trivial to define effective reasoning techniques to deal with (2).

In this paper we define ReactiveIS, a programming language that takes ad-
vantage and extends the full capacity of temporal organization during the com-
position and execution of IS. The syntax of ReactiveIS allows composers to
define arbitrary hierarchies of processes and conditional commands –(1) above–.
We endow the language with an operational semantics based on labelled trees
that we claim to be simpler and more flexible than the current execution model
in HTSPN. These structures allow to model the hierarchical aspect of IS and



provide an intuitive representation of their execution. Roughly, the program
is represented by a tree whose nodes define the conditions needed to stop/s-
tart the TOs. The state of the system is a proper subtree of the program tree
that contains information about the start/stop times of each TO. Hence, trees
are considered as semantic and syntactic formal objects that are very close to
the structure and behavior of IS. More interestingly, they can be defined and
handled by means of a well-founded theory. This simple yet powerful characteri-
zation of IS allowed us to quickly develop an interpreter of ReactiveIS written
in Ocaml. The tool produces a graphical representation of the execution of the
IS as the one depicted in Figure 2.

In order to deal with (2) above, we give a declarative interpretation of Reac-
tiveIS programs as formulas in intuitionistic linear logic (ILL) [7] with subex-
ponentials [4]. We show that such interpretation is adequate: derivations in the
logic correspond to traces of the program and vice-versa. Then, we can use all
the meta-theory of ILL to reason about IS. In particular, we can verify whether
an IS is free of raise conditions. Moreover, we can rely on the recent develop-
ments on the specification of temporal and spatial modalities in ILL (see [10])
to declaratively enrich ReactiveIS with new constructs. For instance, it would
be possible to define IS whose hierarchy may change dynamically by allowing
TOs to move into another TO according to the stimulus from the environment.

ReactiveIS thus offers the following advantages wrt to its predecessor i-
score: 1) it offers an intuitive yet precise description of the behavior of IS; 2)
the tree-based semantics gives a more concrete guidance to the implementer on
how a score should be executed without dealing with the HTSPN model; 3) it
is a first step towards a model for defining non-linear behavior (e.g., conditional
statements) in IS; 4) the ILL characterization sets the basis for developing tech-
niques and tools for the verification and analysis of IS.

Organization. Section 2 develops the theory of ReactiveIS: syntax, semantics
and its properties (Sections 2.1, 2.2, 2.3). Section 2.4 is dedicated to the logi-
cal interpretation of programs and the kind of properties that can be verified.
Section 2.5 discusses the ideas on how to extend the IS model to handle more
flexible structures. Section 3 concludes the paper. Due to space restrictions, some
auxiliary definitions and results appear in the extended version of this paper [3].

2 ReactiveIS: a Language for Specifying IS

In this section we introduce the syntax, semantics and logic characterization of
ReactiveIS. We start with the constructors already available in i-score and
later, in Section 2.5, we introduce the mechanisms for conditional statements.
Syntax. ReactiveIS programs are built from the following syntax:

〈score〉 ::= 〈structure〉
〈texture〉 ::= texture(〈params〉 〈msg〉 〈msg〉)
〈structure〉 ::= structure(〈params〉 〈TO-list〉)
〈params〉 ::= 〈name〉 〈condition〉 〈condition〉
〈TO-event〉 ::= start 〈name〉 | end 〈name〉

〈condition〉 ::= wait(〈TO-event〉 〈min〉 〈max〉)
| event 〈msg〉
| (〈condition〉 ∧ 〈condition〉)
| (〈condition〉 ∨ 〈condition〉)



Recall that a structure is a TO used to define the hierarchical organization
of the score and a texture represents the execution of a given multimedia process
by an external application. Hence, a score is a structure that represents the
execution of a set of TOs (i.e., structures and textures). A structure is comprised
of a set of parameters (explained below) and a (possibly empty) list of other TOs
(TO-list). A texture requires, besides the parameters, two messages used to start
and stop the external process. These messages are the output of the system
and so they have to be sent to some other application by means of multimedia
protocols such as OSC.

The syntactic unit params specifies a name (an identifier) for the TOs and
also the starting and stopping conditions. Such conditions represent the TRs
between TOs and define the temporal organization of the score.

Conditions in ReactiveIS can be: (1) wait conditions that define a delay
from the start or from the end of a TO (TO-event). Delays are defined as a range
between 0 and ∞, thus allowing flexibility in temporal specifications; (2) an
event condition represents the triggering of a specific event by the environment.
Such events are messages (msg), for instance “/mouse 1”, sent by the performer
during execution (at IPs). Such messages represent the inputs of the system.
More complex conditions can be written by using conjunctions and disjunctions.

As an example, consider the definition for the structure C in Figure 1:

1 Structure C = {
2 start.c = (Wait(End(A) ,5,5) & Wait(End(B) ,3,3));
3 stop.c = (Wait(End(D),0,INF) & Wait(End(E),0,INF));
4 Texture D = {
5 start.c = ((Wait(Start(C) ,2,5) & Event("/mouse 1")) | Wait(Start(C) ,5,5));
6 stop.c = Wait(Start(D) ,1,1);
7 start.msg = "/sound /1 on"; stop.msg = "/sound /1 off";
8 }; ... };

Attributes start.c and stop.c represent, respectively, the start and stop
conditions of the TO. The Wait condition receives three arguments: an event
representing the start/end of a TO, its minimum and its maximum duration
(that can be infinite, denoted INF). Condition Event receives a particular OSC
message that will be sent by the performer (e.g., “/mouse 1 ”). If 5 time-units
have elapsed after starting C and such message has not yet arrived, D will au-
tomatically start (due to the disjunction in the starting condition). Attributes
start.msg and stop.msg specify the messages that must be sent to external mul-
timedia processes.

2.1 Conditions and Program Representation

In this section we give a tree-based representation of ReactiveIS programs and
we formalize the idea of conditions. Such definitions will be later used to describe
the operational semantics of the language.

Conditions are built from a Condition System (CS) which is a first-order sig-
natureΣ that contains the distinguished predicates WaitFromStart, WaitFromEnd,
EndScenario and WaitEvent. We also assume a (decidable) first-order theory
∆ over Σ for dealing with deductions such as x > 40 |= x > 0. We shall use



C to denote the set of conditions (formulas) built from Σ and the grammar:
F,G, . . . := true |A |F ∧G |F ∨G, i.e., conditions can be atomic formulas (e.g.,
predicates) or conjunctions/disjunctions of formulas.

A program in ReactiveIS is defined as a labelled tree whose nodes represent
the TOs of the score. We will sometimes abuse notation and refer to TOs simply
as nodes. Each node is associated with the conditions for starting and stopping
the TO, and the corresponding messages.

Definition 1 (Program Tree). Let N be a countable set of nodes, B the set
of labels representing the names of TOs, andM the set of messages. A program
tree is a labelled tree P = 〈N,E, `,m, r〉 where: N ⊆ N is the set of nodes;
E ⊆ N ×B×N is the set of edges; ` : N → C×C is a total function representing
the start/end conditions; m : N ⇀M×M is a partial function representing the
messages for starting/stopping an external application; and r ∈ N is the root of
the tree. Given n ∈ N , we shall use cs(n) and ce(n) (resp. ms(n) and me(n)) to
to denote the starting/stopping conditions (resp. messages) for n.

For a given tree T , the nodes, the edges, and the root node of T are denoted
by V (T ), E(T ) and root(T ), respectively. We write s

a−→ t to represent an a-
labeled edge from s (the source) to t (the target). As usual, sequences of labels
α = a0.a1 . . . an represent a path from the root r to a given node u in T . We use
the empty sequence ε to represent the root of T . For a path p in T , targetT (p)
is its ending node.

The right part of Figure 1 shows a fragment of the program tree for our
running example. The predicates WaitFromStart(p,t1,t2) and WaitFromEnd(p,t1

,t2) hold when the time elapsed since the start and the end, respectively, of the
target node of the path p is within the interval [t1, t2]. WaitEvent(e) waits for
the external message e. Observe that the root node has no wait condition for
starting (true) and it finishes when all its children have finished (EndScenario).

2.2 State Tree and Tree Operations

An execution state of a ReactiveIS program is also represented as a labelled
tree that identifies the TOs currently being executed and the ones that have
already stopped. Each node in the tree has associated the times on which the
TO started and stopped. If a TO has not been stopped yet, we use as stop time
the special symbol ⊥ /∈ Z+. We shall use Z⊥ to denote Z+ ∪ {⊥}.

Definition 2 (State Tree). A state tree is a labelled tree S = 〈N,E, `, r〉 where
N , E and r are as in Definition 1 and ` : N → Z+ × Z⊥ is a total function
giving, for each node, its starting and ending times. Functions ts : N → Z+ and
te : N → Z⊥ give the starting and stopping time of a node, respectively.

S is a valid state for a program tree P if S is homomorphic to P , i.e., there
exists f : V (S)→ V (P ) that preservers the structure: f(root(S)) = root(P ) and

s
a−→ t ∈ E(S) iff f(s)

a−→ f(t) ∈ E(P ) (see Figure 2(a)).



Now we define two operations on state trees, stopping and starting a TO.
We use L(S) to denote the set of all paths in S including ε.

Stopping a TO. When a node n is stopped, its stop time, and the stop time
of its (non already stopped) children, must be updated with the current time of

execution. Formally, stop(S, p, t)
4
= 〈N,E, `C− {n 7→ (ts(n), t) | n ∈ k}, r〉 where

k = { n | n ∈ D(targetS(p)) ∧ te(n) = ⊥ }. “C−” means relational overriding,
i.e, ` C− R =̂ R ∪ { x 7→ y | x 7→ y ∈ ` ∧ x 6∈ dom(R)}; D(v) denotes the set
containing v and its descendants in S; p ∈ L(S) is a path; and t ∈ Z+ is the
current time of execution.

Starting a TO. This operation causes that a new b-labelled edge be added to
the current state tree. This edge points to a new node having the current time as
its start time and an undefined stop time. More precisely, for a non-empty path
p, let up(p) be the sequence of labels without the last label, and last(p) be the
last label of the sequence. For a path p ∈ L(S) and a time t ∈ Z+, starting a TO

is defined as start(S, p, t)
4
= 〈N ∪ {n1}, E ∪ {n

b−→ n1}, ` ∪ {n1 7→ (t,⊥)}, r〉
where n1 /∈ N,n = targetS(up(p)), b = last(p). Figure 2(b) shows the start of C.
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Fig. 2. Basic operations on state trees.

2.3 Operational Semantics

The semantics of ReactiveIS considers two kind of reduction relations, −→
and =⇒, parametric on the program tree P (see Figure 3). Recall that the
input of the program is a set of messages produced by the environment and the
output is the set of messages the program must produce during a time-unit.

Hence, the observable transition 〈S, t〉 I,O
=⇒P 〈S′, t + 1〉 means that at time t,

the state tree S on input I reduces in one time unit to S′ and outputs O. The
observable transitions are obtained from finite sequences of internal transitions.
Such internal transitions represent how the state S is gradually updated by
starting/stopping TOs. It is important to notice that the changes in the state
of the score are only visible at the end of the time-unit, i.e., it is assumed that
internal transitions cannot be directly observed.

The internal transition 〈St,O〉I,tS −→P 〈St′, O′〉I,tS means that, given that the
input in the current time-unit is I and the initial state is S, the state St moves
to St′ possibly adding new messages to the set O leading to O′. Let us give some



RSTART
p ∈ canStart(S, P ) 〈P, S, I, t〉 |= cs(n)

〈St,O〉I,tS −→P 〈start(St, p, t), O ∪ {ms(n)}〉I,tS

where n = targetP (p)

RSTOP
p ∈ canStop(S) 〈P, S, I, t〉 |= ce(n)

〈St,O〉I,tS −→P 〈stop(St, p, t), O ∪ {me(n)}〉I,tS

where n = targetP (p)

RTIME
〈S, ∅〉I,tS −→∗P 〈S

′, O〉I,tS 6−→P

〈S, t〉 I,O
=⇒P 〈S′, t + 1〉

Fig. 3. Rules for the internal reduction −→ and the observable reduction =⇒.

intuition. We define palive(S) = {p | p ∈ L(S) ∧ te(targetS(p)) = ⊥}, i.e., the
set of TOs that are currently running. Moreover, let Children(p) be the set of
paths of a program tree P from the root node to the children of the ending node
of p (i.e., targetP (p)). Since a TO can only start if its parent is running and it
has not stopped yet, we can compute the set of TOs that can start by defining

canStart(P, S)
4
= {p | pparent ∈ palive(S) ∧ p ∈ Children(pparent)} \ L(S).

The rule RStart says that a TO is executed only if (a) it has not yet been
executed and (b) its start condition is satisfied. Premise (a) is ensured with the
aid of the set canStart(S, P ) explained before. Premise (b) is asserted by means
of the relation 〈P, S, I, t〉 |= F that intuitively means that the current state
satisfies the condition F . The precise definition of |= is in [3].

The rule RSTOP dictates that a TO is stopped only if (a) it is currently
being executed and (b) its end condition is satisfied. Premise (b) is similar as in

the previous rule. Premise (a) is ensured with the aid of the set canStop(S)
4
=

{p | p ∈ L(S) ∧ te(targetS(p)) = ⊥} that contains the nodes in the state tree
whose end time is not defined.

The only non-determinism of ReactiveIS programs is due to the signals
provided by the environment. Then, we can prove that the observable relation
is indeed a function (the proof is in [3]).

Theorem 1 (Determinism). For all state S and input I, if 〈S, t〉 I,O1
=⇒P 〈S′1, t′〉

and 〈S, t〉 I,O2
=⇒P 〈S′2, t′〉 then O1 = O2 and S′1 = S′2.

2.4 Logical Characterization of IS

An appealing feature of ReactiveIS is that it allows a logic characterization as
formulas in intuitionistic linear logic (ILL) [7] with subexponentials [4] (SELL).
The technical details of this semantics can be found at [3]. In the following, we
shall give some intuitions to understand what kind of properties we are able to
verify about IS.

The formula !aF in SELL means that F is marked with a given modality a.
The index a is taken from a poset 〈I,�〉 (the subexponential signature) and it
can be interpreted as a spatial location or a time-unit [10]. Here, we shall mark



the formulas with subexponentials of the form t.x where t represents the current
time-unit and “x” can be:

!t.iF : F is an input from the environment, e.g., !t.ievt(mouse1)
!t.oF : F is an observable action, e.g., !t.omsg(m) means that the start-

ing/stopping message m was added.

!t.s.pF : F represents information about the state, e.g., !t.s.Abox(−,−) means
that A has not been started yet. We use “−” instead of “⊥”, as in the
previous section, since “⊥” is a logical symbol in ILL.

The advantage of using subexponentials is that we can neatly split the logical
context in a sequent. In our particular case, the context is split into different
time-units and each time-unit stores information about inputs from the envi-
ronment (t.i), observable actions (t.o) and information about the state of the
system (t.s). To better understand this idea, consider the following derivation:

!4.ievt(e2), !4.ievt(e3) −→ !4.ievt(e3)

!3.ievt(e1), !4.ievt(e2), !4.ievt(e3), !4.s.Abox(5,7) −→ !4.ievt(e3)
!R

Roughly, we are trying to prove that the event e3 occurred in the time-unit 4.
The introduction rule for ! ( !R, called promotion rule) forces to delete (weaken)
from the context all the formulas with subexponentials not related to 4.i. Then,
we cannot use the information available on time-unit 3 (i.e., !3.ievt(e1)) nor the
information about the state of the system (i.e., !4.s.Abox(5, 7)).

The encoding of each TO in a ReactiveIS program gives rise to three for-
mulas. Namely, ctr to control when to start/stop the TO and str and stp to
handle the action of starting/stopping the TO. Let us consider the texture D in
our running example whose starting condition depends on the starting of C and
an event from the environment. We define the control formula as follows:

ctr(D,t)
def
= !t.s.DP STOP−◦ stop-imm(D, t) & !t.s.DP RUN−◦ decide(D, t)&

!t.s.DP IDLE−◦ ∀n,m.(!t.s.Dbox(n,m)−◦ !(t+1).s.Dbox(n,m))

Intuitively, D can only proceed if its parent C has already added to the con-
text one of the predicates P STOP, P RUN or P IDLE notifying its current state
(stopped, currently running or idle –already stopped or not started–). We recall
that F −◦G represents linear implication. The additive conjunction & allows us
to choose between three possible choices: stop immediately (stop-imm), decide
to start or stop (decide) or continue in the same state. The definition of these
formulas can be found in [3].

Let us consider the formulas needed to start the execution of D:

str(D,t)
def
= (condition−◦ start(D, t)) & (default−◦ !(t+1).s.Dbox(−,−))

start(D, t)
def
= !t.s.Dbox(t,−)⊗ !(t+1).s.Dbox(t,−)⊗ !t.omsg(ms(D))

The formula condition is obtained by translating the starting condition of
D into a SELL formula. The formula default (see [3]) says that the starting
conditions cannot be satisfied in the current time-unit and then, the state of D

remains the same. Note that the formula start(D, t) adds to the context the



information needed to deduce that D started at time-unit t and it also adds to
the context t.o the starting message of D. The formulas controlling the stopping
of D can be defined similarly.

With the aid of these formulas and some auxiliary definitions in [3], we can
define an encoding [[·]] mapping ReactiveIS programs into SELL formulas.
Moreover, by relying on a focused [2] proof system for SELL, we can show that
operational steps correspond to derivations in SELL and vice-versa (see theorem
below). Focusing is a discipline on proofs to reduce the non-determinism during
proof search. Hence, focused proofs can be interpreted as the normal form proofs
for proof search. Roughly, once we choose to work on a formula (i.e., we focus
on it), we do not have more choices that decompose it completely. Hence, in
the end of the focused phase, we observe that the logical derivation mimicked
exactly the operational steps of the encoded program.

Theorem 2 (Adequacy). Let P be a ReactiveIS program. Then, 〈S, t〉 I,O
=⇒P

〈S′, t+ 1〉 iff the sequent [[P ]], [[S]]t, [[I]]t −→ [[S′]]t+1⊗ [[O]]t is provable in SELL.

The previous theorem opens the possibility of reasoning about IS by using
well established techniques in proof theory. Moreover, all the tools developed for
SELL [10] can be applied to verify properties of scores. For that, we consider
SELL sequents of the form [[P ]], [[Sinit]]0, env −→ G where P is the program (the
score); Sinit = 〈{r}, ∅, {r 7→ (0,⊥)}, r〉 is the initial configuration of the score;
env encodes any possible input from the environment (i.e., a disjunction of all
the possible inputs from the environment); and G encodes the property to be
verified (i.e., the goal).

Let us give some examples of G-formulas. Consider the case where we want to
verify that two TOs A and B must be executed concurrently. Then we can set G =
dt.∃n,m.!t.s.Abox(n,−)⊗ !t.s.Bbox(m,−) meaning that there exists a time-unit
t (dt) such that in that time-unit A and B have already started and not stopped.
As another example, consider the fact that regardless the inputs from the envi-
ronment, the TO B cannot be currently playing if A has finished its execution.
In that case, we have G = et.∃n1, n2.!t.s.Abox(n1, n2)−◦∃n′1, n′2.!

t.s.Bbox(n′1, n
′
2)

meaning that for all time-unit t (et), if A has already stopped, then it must
be the case that B has already stopped too. Now assume that there is a prece-
dence relation between A and B, i.e., B cannot start if A is currently playing.
In this case, G = et.(∃n.!t.s.Abox(n,−))−◦ !t.s.Bbox(−,−). Finally, one may be
interested in proving that there exists at least one execution path such that
a given TO A is executed. This can be formalized by proving the property
G = dt.∃n,m.!t.s.Abox(n,m).

2.5 Extending the IS Model

Having a formal model for IS opens the possibility to propose new programming
constructs and reason about its behavior. For instance, it turns out that the
notion of conditions as logical formulas and its realization in the operational
semantics (〈P, S, I, t〉 |= F ) are general enough to define conditional statements



in ReactiveIS. For that, let us extend the syntax of ReactiveIS to consider
conditions of the form 〈conditions 〉 ::= . . . | event (e(n) op 〈value〉) where e is
an event with a carried value n and op is a relational operator (e.g., ≤, =, etc).
Let mouse be a parametric event with two possible values, 1 and 2. By defining
the starting condition of a TO A as event(mouse(n) = 1), and the condition of B
as event(mouse(n) = 2), we can define a score that waits until the mouse event
is detected. Then, it decides whether to execute A or B. Since the conditions on
the carried value n are mutually exclusive, it would be more natural to write if

c then A else B to specify such behavior. Hence, IPs can now be used to express
non-linear behaviors: once an event is detected, the evaluation of the expression
“n op value” will determine the flow of the score.

Interestingly, the logical semantics of ReactiveIS will allow the composer
to verify that, regardless the path taken by the performer, the desired properties
of the score hold. These techniques can also be used to avoid mistakes during
composition. For instance, consider the situation where the starting condition of
another TO C depends on both the starting of A and B. In this case, the logical
semantics will detect that C will be never played.

Loops can be also obtained in a similar fashion. However, special attention
must be paid to avoid two copies of the same TO during execution. For that
it suffices to consider that the repetition of a TO A is restricted to: (1) A has
already stopped and (2) the performer must send an event to control whether
A has to be played again (i.e., loops are guarded by IPs). The semantics and
the logic characterization require a minimal change to reset the starting and
stopping times of A in order to enable its next execution.

3 Concluding Remarks and Related Work

We have introduced ReactiveIS, a new programming language for the compo-
sition and performing of interactive scores. We defined an operational semantics
for ReactiveIS based on labelled trees which is simpler and more intuitive that
the HTSPN model of i-score. We also endowed ReactiveIS with a declar-
ative semantics based on intuitionistic linear logic with subexponentials, thus
allowing us to prove the correct behavior of scores. ReactiveIS then strives at
setting the foundations for reasoning about IS and, more importantly, to extend
its functionality in a declarative way.

The idea of a tree-based semantics is influenced by the works in [8] and [14].
In [8] a semantics for Orc, a language to specify programs to orchestrate the in-
vocation of sites that are subject to constraints on their execution, is presented.
Such semantics considers trees annotated with information about the values of
the program variables and the times at which they are assigned. In [14] a graph
model to represent the semantics of video (VideoGraph) is presented. In such
model the nodes represent events and they are linked to each other based on their
containment and temporal relationships. On the other side, our logical charac-
terization of ReactiveIS is based on the ideas in [10] where subexponentials
in linear logic were used to give logical semantics to concurrent programming



languages featuring modalities. In [11,13] the authors propose a semantics for IS
based on process calculi. However, no practical techniques were proposed for the
verification of the score as the logical characterization presented here. Moreover,
the models proposed in [11, 13] cannot be straightforwardly extended to deal
with non-linear behavior.

Our next step is to formalize, for instance in Coq, the semantics presented
here in order to generate a verified interpreter. Since the use of SELL formulas
for specifying score’s properties may be cumbersome for non-experts, we plan to
develop a front-end, e.g., a small assertion language, to express such properties.
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Appendix

We present here some technical details about the operational semantics of Re-
activeIS (Section A) and its logical characterization (Section B).

A Operational Semantics

In this section we introduce some definitions and auxiliary results needed to
define the operational semantics of ReactiveIS.

The following definition formalizes the idea of when a condition can be satis-
fied by the current information. We consider configurations of the form 〈P, S, I, t〉
where P is the program, S the state of the score, I the input (set of messages)
and t the current time unit. The assertion 〈P, S, I, t〉 |= F means that the con-
figuration satisfies the condition F (recall that F are built from a Condition
System (see Section 2.1)).

Definition 3 (Semantics of |=).

〈P, S, I, t〉 |= true

〈P, S, I, t〉 |= WaitFromStart(p, t1, t2) iff
∃n · n ∈ V (S) ∧ n = targetS(p) ∧ t1 ≤ t− ts(n) ≤ t2

〈P, S, I, t〉 |= WaitFromEnd(p, t1, t2) iff
∃n · n ∈ V (S) ∧ n = targetS(p) ∧ te(n) 6= ⊥ ∧ t1 ≤ t− te(n) ≤ t2

〈P, S, I, t〉 |= EndScenario iff
∀p · p ∈ outP (root(P ))⇒ te(targetS(p)) 6= ⊥

〈P, S, I, t〉 |= WaitEvent(e) iff e ∈ I

〈P, S, I, t〉 |= F ∧G iff 〈P, S, I, t〉 |= F and 〈P, S, I, t〉 |= G

〈P, S, I, t〉 |= F ∨G iff 〈P, S, I, t〉 |= F or 〈P, S, I, t〉 |= G

In the following, we state some basic properties of the internal relation −→
on the operational semantics.

Proposition 1 (Monotonicity). For any ReactiveIS program P and valid

state S, if 〈St,O〉I,tS −→P 〈St′, O′〉I,tS then:

1. O ⊆ O′
2. St is homomorphic to St′. Moreover, St′ is a valid state of P (i.e., St′ is

homomorphic to P ).



Proof. The proof proceeds by induction on the derivation −→P with case anal-
ysis on the last rule applied. By simple inspection, we know that rules RSTART

and RSTOP only add elements to O. Then (1) holds. As for (2), if S is a valid
state of P , then there exists a homomorphism f relating S and P . Let us analyze
the rule RSTART. Assume that p is the path of a TO to be started. By definition
of canStart, we know that the parent of the ending node of p is currently being
executed. Moreover, by definition of start(S, p, t), the node denoted by p is lo-
cated right below its parent (since p is a path in the tree). Hence, there exists
a homomorphism f ′ between St′ and St. In rule RSTOP, the set of nodes and
edges is not modified (only the stop information of the ending node of p). Then,
trivially St is homomorphic to St′.

In the following, we shall use γ, γ′ to range over configurations of the form
〈St,O〉I,tS . We shall say that a TO p is enabled in a configuration γ if p triggers
a STOP/START reduction. The next observation shows that firing an event
during a time-unit does not disable other events. This fact will be later used to
prove that ReactiveIS is deterministic.

Observation 1 (TO-Potentiality). Consider a configuration γ where two dif-
ferent TOs p, p′ are enabled. Assume also that γ −→P γ′ using the TO p. Then:

1. p is not enabled at γ′, and

2. p′ is enabled at γ iff p′ is enabled at γ′.

Proof. To prove (1), note that operations start(S, p, t) and stop(S, p, t) (see Sec-
tion 2.2) guarantee that p cannot be started/stopped again (see canStop and
canStart predicates). As for (2), note that the enabled conditions depend only
on the initial state S. Hence, p′ is enabled at γ iff it is enabled at γ′.

Lemma 1 (Confluence). For any ReactiveIS program P and valid state St,

if 〈St,O〉I,tS −→P γ1, 〈St,O〉I,tS −→P γ2 and γ1 6= γ2 then there exists γ3 such
that γ1 −→P γ3 and γ2 −→P γ3.

Proof. Assume that 〈St,O〉I,tS −→P γ1, 〈St,O〉I,tS −→P γ2. If γ1 6= γ2 we have
to consider 4 cases: both reductions are STOP-reductions; both reductions are
START-reductions; one reduction corresponds to the START rule the other to
the STOP rule and vice versa. In the first two cases, since γ1 6= γ2, it must be the
case that the selected TO p in the reductions is different. By using Observation 1,
we can show that there exists γ3 such that γ1 −→P γ3 and γ2 −→P γ3.

Corollary 1 (Determinism). For all state S and input I, if 〈S, t〉 I,O1
=⇒P 〈S′1, t′〉

and 〈S, t〉 I,O2
=⇒P 〈S′2, t′〉 then O1 = O2 and S′1 = S′2.

Proof. Directly from Lemma 1.



B Logical Characterization of ReactiveIS

In this section we present at length the logical characterization of ReactiveIS
programs as formulas in SELL [10]. We shall use the notations and definitions
in Section 2, e.g., function ms(·),me(·), cs(·), ce(·), etc.

Subexponential Signature. First we need to define the subexponential signa-
ture 〈I,�〉. As we explained in Section 2.4, we shall use subexponential indexes
of the form t.i, t.o, t.s to mark formulas related to the environment (the inputs),
the observable actions (the outputs) and the state of the system respectively. Fol-
lowing [10], the structure of the subexponentials to deal with temporal modalities
must consider subexponentials of the shape i and i+. The former represents a
given-time unit i. The latter is used to store formulas valid from the time-unit i
on. The structure is depicted in Figure 4. Note that the subexponentials of the
shape t.i and t.o are unrelated. The subexponentials of the shape t.s preserve
the hierarchical structure of the score. For instance, in our running example,
the TO C have two children D and E. As we shall see in brief, this will allow
C to control the behavior of D and E. The subexponential TI (which is greater
than any t.i) will be used to define the encoding of the environment. Finally,
the subexponential TP (which is grater than any t.p) will be used to store the
encoding of the TOs.

0+

0

1+

1

2+

2

3+

3

…

where t is defined as

tTI

t.i t.ot.s.scenario

t.s.A t.s.B t.s.C

t.s.D t.s.E

t.p

TP

Fig. 4. Subexponential structure 〈I,�〉. a→ b means b � a.

Input-Output. Let us start encoding the inputs and outputs of ReactiveIS,
i.e., the set of messages the program can input and output. For any message
mi we define a constant symbol m i (e.g., mouse1). We also consider the unary
predicates evt(·) and msg(·) to represent, respectively, the fact that an input
and an output have been added. Hence, a set of input (resp. output) messages



I = {m1,m2, · · · ,mn} (resp. O = {m′1,m′2, · · · ,m′m}) is encoded in SELL as:

[[I]]t = !t.ievt(msg1)⊗ !t.ievt(msg2)⊗ · · · !t.ievt(msgn)
[[O]]t = !t.omsg(m′1)⊗ !t.omsg(m′2)⊗ · · · !t.omsg(m′m)

Intuitively, the messages from the set I (resp. O) are available in the logical
context t.i (resp. t.o).

Encoding Textures. The encoding of a TO defines three kind of formulas:
ctr to control when to start/stop the TO and str and stp to handle the action
of starting/stopping the TO. Such formulas modify the state of the TO in the
current time-unit and define the state of the TO for the next time-unit. The
interpretation of textures and structures is similar. However, in the case of a
structure S, we need to control also the execution of S’s children.

We start defining the aforementioned formulas for a given texture A:

ctr(A, t)
def
= !t.s.AP STOP−◦ stop-imm(A, t)&

!t.s.AP RUN−◦ decide(A, t)&

!t.s.AP IDLE−◦ ∀n,m.(!t.s.Abox(n,m)−◦ !(t+1).s.Abox(n,m))

where:
stop-imm(A, t)

def
= ∀n,m.(!t.s.Abox(n,m)−◦

n = −−◦ (!t.s.Abox(−,−)⊗ !(t+1).s.Abox(−,−))&

n 6= −−◦ (!t.s.Abox(n, t)⊗ !(t+1).s.Abox(n, t)⊗ !t.omsg(me(A))))

decide(A, t)
def
= (!t.s.Abox(−,−)−◦ str(A, t))&

∀n.(!t.s.Abox(n,−)−◦ stp(A, t)&

∀n,m.(!t.s.Abox(n,m)−◦
!t.s.Abox(n,m)⊗ !(t+1).s.Abox(n,m))

The predicate P STOP is added by the parent of A to signal that A must
stop immediately. As we shall see, this happens when the parent of A stops at
time-unit t. P RUN says that the parent of A is currently running and P IDLE

signals that the parent of A has already stopped or it has not started yet. Hence,
the formula ctr verifies first what was the decision of A’s parent and proceeds
accordingly: it stops immediately, it decides whether to start or to stop or it
simply copies the state to the next time-unit.

The formula stop-imm simple updates the stopping time of A: if A has not
already started, then the starting/stopping time will be “-”. Otherwise, the start-
ing time-remains the same and the stopping time is updated to t. Moreover, the
stopping message of A (me(A)) is added to the t.o context (!t.omsg(me(A))).

The formula decide checks whether A has not already started yet (box(−,−)).
In that case, A can start (str defined below). If in the current time-unit one can
deduce box(n,−) for some n, then A may stop (stp defined below). Finally, if
the stop and start time are already defined for A, the formula decide simply
copies that information to the next time-unit.



The formula controlling the start of A is:

str(A, t)
def
= condition−◦ start(A, t)&

default−◦ !(t+1).s.Abox(−,−)

start(A, t)
def
= !t.s.Abox(t,−)⊗ !(t+1).s.Abox(t,−)⊗ !t.omsg(ms(A))

The formula condition corresponds to the interpretation in SELL of the
starting condition of A, [[cs(A)]]t, where 4:

[[true]]t = 1
[[F ∧G]]t = [[F ]]t ⊗ [[G]]t
[[F ∨G]]t = [[F ]]t ⊕ [[G]]t
[[WaitFromStart(A, k, l)]]t = ∃n,m.(!t.s.Abox(n,m)⊗ n+ k ≤ t⊗ n+ l ≥ t)
[[WaitEvent(e)]]t = !t.ievt(e)

Definitions for the predicates WaitFromEnd, and EndScenario are similar.
The formula default corresponds to the condition when none of the starting
conditions can be satisfied. Such formula corresponds to [[cs(A)]]⊥t where:

[[true]]⊥t = 0
[[F ∧G]]t = [[F ]]⊥t ⊕ [[G]]⊥t
[[F ∨G]]t = [[F ]]⊥t ⊗ [[G]]⊥t
[[WaitFromStart(A, k, l)]]t = !t.s.Abox(−,−)⊕

∃n,m.(!t.s.Abox(n,m)⊗ (n+ k > t⊕ n+ l < t))

[[WaitEvent(e)]]t = !t.ievt⊥(e)

We note that the above definition of default requires that the environment
(defined below) provides either that an event happened (e.g., !t.sevt(mouse)) or
it did not happen (i.e., !t.sevt⊥(mouse)).

The formulas defining how the TO have to be stopped are defined similarly:

stp(A, t)
def
= condition−◦ stop(A, t)&

default−◦ !(t+1).s.Abox(−,−)

stop(A, t)
def
= ∀n,m.!t.s.Abox(n,m)−◦

!t.s.Abox(n, t)⊗ !(t+1).s.Abox(n, t)⊗ !t.omsg(me(A))

Encoding Structures. The encoding of a structure is similar to that of tex-
tures but it requires to take control of the execution of its children. For that, we
modify the above definitions of start(·) and stop(·) as follows:

start(A, t)
def
= !t.s.Abox(t,−)⊗ !(t+1).s.Abox(t,−)⊗ !t.omsg

⊗
p∈suc(A) !t.s.pP RUN

stop(A, t)
def
= ∀n,m.!t.s.Abox(n,m)−◦ !t.s.Abox(n, t)⊗ !(t+1).s.Abox(n, t)
⊗
⊗

p∈suc(A) !t.s.pP STOP

4 We abuse notation by using the same symbol [[·]]t for different encodings: inputs,
outputs, conditions, etc. However, from the context, it is easy to know the meaning
of such function.



Observe that we add the predicates P RUN and P STOP to all the successors
of A. Moreover, it can be the case that A cannot start in the current time-unit
because its starting conditions do not hold. In this case, the successors of A must
be notified that A is in an idle state:

str(A, t)
def
= condition−◦ start(A, t)&

default−◦ !(t+1).s.Abox(−,−)
⊗

p∈suc(A) !t.s.pP IDLE

Similarly, if A cannot stop in the current time-unit, the successors must be
notified that A is currently running:

stp(A, t)
def
= condition−◦ stop(A, t)&

default−◦ !(t+1).s.Abox(−,−)⊗
⊗

p∈suc(A) !t.s.pP RUN

Finally, if the parent of A is idle, A cannot perform any action and so its
successors:

ctr(A, t)
def
= !t.s.AP STOP−◦ stop-imm(A, t)&

!t.s.AP RUN−◦ decide(A, t)&

!t.s.AP IDLE−◦ ∀n,m.(!t.s.Abox(n,m)−◦ !(t+1).s.Abox(n,m))
⊗
⊗

p∈suc(A) !t.s.pP IDLE

Encoding of States. As we have shown, the state of the system is represented
in SELL by the predicate box(·). Then, a state S of a program P is encoded as:

[[S]]t =
⊗

p∈S !t.s.pbox(ts(p), te(p))⊗
⊗

p∈P\S !t.s.pbox(−,−)

Functions cs and ce are in Definition 1. Note that any p ∈ P \S corresponds
to a TO that has not already started.

Encoding the Environment. The encoding requires that, at any time, it is
possible to detect whether a given (external) event happened or not. Hence, the

most general environment can be defined as env
def
= el : TI(

⊗
m∈M !l(m⊕m⊥)).

Recall that t.i � TI (see Figure 4). The universal quantification on subexpo-
nentials “el : TI” says that the formula !l(m⊕m⊥) is available in any time-unit
(more precisely, in any subexponential of the form t.i). Here m⊕m⊥ means that
either m was detected or not.

Encoding the program. A ReactiveIS program is encoded as the formula

[[P ]] = !0+el : TP.!l(
⊗
p∈P

ctr(p, l))

Intuitively, the subexponential “0+” ( along with the universal quantification
“el : TP”) allows us to copy, as many times as needed, the definition of the TOs
in each time-unit.



Correctness of the Encoding
Let us recall some relevant concepts of SELL that will be important to

understand the adequacy result presented below. The details can be found in [10].
SELL connectives are separated into two classes, the negative ones: (,&,>,∀,e
and the positive ones: ⊗,⊕,∃,d, !, 1. The polarity of non-atomic formulas is
inherited from its outermost connective (e.g., F −◦G is a negative formula while
F ⊗G is a positive one) and positive bias is assigned to atomic formulas.

The focused proof system [2] of SELL [10] considers four kind of sequents:

(i) [K : Γ ], ∆ −→ R is an unfocused sequent. The meaning of the context [K : Γ ]
will be clear soon.

(ii) [K : Γ ]−F→ is a sequent focused on the right.

(iii) [K : Γ ]
F−→ G is a sequent focused on the left.

(iv) [K : Γ ], ∆ −→ [F ] is a sequent representing the end of the negative phase.

As a matter of example, consider the following proof rules for multiplicative
(⊗) and additive (&) conjunction, linear implication (−◦), additive disjunction
(⊕) and the first-order quantifiers (∀,∃):

Negative Phase

[K : Γ ], ∆, F,G −→ R
[K : Γ ], ∆, F ⊗G −→ R

⊗L
[K : Γ ], ∆, F −→ G

[K : Γ ], ∆ −→ F ( G
(R

[K : Γ ], ∆ −→ G[xe/x]

[K : Γ ], ∆ −→ ∀x.G ∀R

[K : Γ ], ∆ −→ F [K : Γ ], ∆ −→ G

[K : Γ ], ∆ −→ F &G
&R

[K : Γ ], ∆, F −→ R [K : Γ ], ∆,H −→ R
[K : Γ ], ∆, F ⊕H −→ R

⊕L

The proof rule ∃R is similar to ∀L and xe is assume to be fresh. First notice
that the negative connectives have invertible right rules, while the positive con-
nectives have invertible left rules. For instance, consider the rule ∀R: the choice
of the name used for the eigenvariable xe is not important for provability, as
long as it is fresh. Hence, in a negative phase of the proof, no backtracking on
the selection of inference rules is necessary. Moreover, without loosing provabil-
ity, we can eagerly introduce all the negative non-atomic formulas on the right
and all the positive non-atomic formulas on the left. Such part of the proof is
represented by sequents of the shape (i) above.

A positive phase begins by choosing a formula on which to focus, enabling
sequents of the forms (ii) or (iii). Let us introduce some of the proof rules that
belong to this phase:

Positive Phase

[K : Γ ]−Gi→
[K : Γ ]−G1⊕G2

→
⊕Ri

[K : Γ ]
Fi−→ G

[K : Γ ]
F1&F2−−−−→ G

&Li

[K : Γ ]
F [t/x]−−−−→ G

[K : Γ ]
∀x.F−−−→ G

∀L

The rule ⊕R belongs to the positive phase since we have to chose between G1

and G2. Similarly, in Rule ∀L, we need to decide on the term t. Note also that in
the above rules, the focusing is not lost and the proof must continue decomposing



the selected formula (for instance, in ⊕R, the focusing –on the right– persists on
Gi). This procedure continues until one is focused either on a negative formula
on the right or a positive formula on the left. This point marks the end of the
positive phase and another negative phase starts.

We can classify the formulas produced by our encoding as guards (G) and
programs (P ):

G ::= !s.A | G⊗G | G⊕G | ∃x.G
P ::= !s.A | P ⊗ P | P & P | G−◦ P | ∀x.P (1)

Guards will appear on the right hand side of the sequent while programs
will appear on the left hand side. This separation of formulas is important to
prove the adequacy result. The idea is that once we are focused on a formula
representing a TO (i.e., a P-formula), we have to completely decompose it in a
positive phase of the proof. In the end of this phase, what we observe is that the
state changed exactly as the operational rules dictate.

Theorem 3 (Adequacy). Let P be a ReactiveIS program. Then, 〈S, t〉 I,O
=⇒P

〈S′, t+ 1〉 iff the sequent [[P ]], [[S]]t, [[I]]t −→ [[S′]]t+1 ⊗ [[O]]t is provable in SELL.

Proof. We show that the introduction of any formula, following the focused
discipline, corresponds exactly to applying one of the operational rules. Consider
that we focus on a ctr(A, t) formula obtaining the derivation below:

Π

Γ ′′
G−→

Ψ
Γ ′′′−P→

Γ ′
G−◦P−−−−→

−◦L

Γ
ctr(A,t)−−−−−→ H

&L

The main connective in ctr is “&” and the focusing persists in one of the choices.
In this case, G = !t.s.AG′, where G′ can be one of the predicates P STOP, P RUN

or P IDLE. Since the subexponential t.s.A is unrelated to the others, the deriva-
tion Π must finish by proving G′ from the context Γ ′′′ that only contains facts
about A (due to the promotion rule !sR).

Derivation Ψ on the right hand side proceeds similarly. Here P can be a
P-formula (see Equation (1)) of the shape P & P , G −◦ P or ∀x.P . In all these
cases, we have negative connectives (on the left) that have to be introduced in
a positive phase. Hence, the focusing persists on P and we do not have other
choice that continuing decomposing this formula.

Consider the case where P is the formula str(A, t). We then observe

Π1

Γ ′−G1
→

Ψ1

Γ ′′
P1−→

Γ
G1−◦P1−−−−−→

Γ
str(A,t)−−−−−→

&L



Here G1 can be the formula condition or default. In any case, this formula
if a G-Formula (see Equation (1)). Therefore, the focusing persists and we end
up in a situation similar to Π above.

The formula P1 on the right hand side takes the form !sA1 ⊗ . . . ⊗ !sAn

where Ai is a predicate. Since “⊗” and !s on the left has to be introduced in
the negative phase, what we observe is that we lost focusing and, in a negative
phase, all the formulas of the shape msg(·) and box(·) are added into the context.
Thus, in a flip of the polarity, we observe that the state is modified exactly as
the operational rules dictate.


