

The thermal regime of abandoned channels

Towards a water temperature model for the River Allier, France

Ana CASADO and Jean-Luc PEIRY

EGU General Assembly, 27 April to 02 May 2014, Vienna

GEOLAB UMR 6042 Université Blaise Pascal - CNRS

Agence de l'Eau Loire-Bretagne **Etablissement Public Loire**

Methods

River water temperature = heat energy / water volume

Drivers of water temperature

Atmospheric processes air/water surface heat exchange

Hydrological processes volume of water – mixing of water

Streambed processes water/stream bed heat exchange

How these processes drive water temperature in abandoned channels?

Results

Context

Conclusions

Methods

Results

Conclusions

1. Thermal regime classification

Hierarchical clustering of thermal regimes Shape (timing) & Magnitude (size) *(Hannah et al., 2000)*

2. Regime sensitivity assessment

Equitability Index \rightarrow regime stability Sensitivity Index \rightarrow regime sensitivity (Bower et al., 2004)

Casado *et al.*, 2013. Influence of dam-induced hydrological regulation on summer water temperature: Sauce Grande River, Argentina, *Ecohydrology*, 6:523-535.

S

Results

Conclusions

Methods

Context

Annual thermal regimes

3 classes of *regime shape* for all stations

Annual thermal regimes

3 classes of *regime magnitude* for all stations > **Class 1** = high magnitude and **Class 3** = low magnitude

- **Class 1** = air temperature regimes
- **Class 2** = river water temperature regimes
- **Class 3** = groundwater and channel water temperature regimes

Methods

Results

Diurnal thermal regimes

Complexity of *regime shape* classes among stations

4 classes of relative *regime magnitude* by station > **Class 1** = high magnitude and **Class 4** = low magnitude

Class frequency

Seasonality of regime shape classes

DOMINANT REGIME SHAPE CLASS PER SEASON

Channel water temperature - downstream section

Methods

Results

Diurnal thermal regimes

Complexity of *regime shape* classes among stations

4 classes of relative *regime magnitude* by station > **Class 1** = high magnitude and **Class 4** = low magnitude

Class frequency

Seasonality of regime magnitude classes

DOMINANT REGIME MAGNITUDE CLASS PER SEASON

Channel water temperature - downstream section

Climatic sensitivity of diurnal thermal regimes per season

Hydrologic sensitivity of diurnal thermal regimes per season

Conclusions Context Methods Results **Annual thermal regimes Multiple regression Regression models of** water temperature analysis Clear spatial differentiation Identify correlations that (monthly scale) (upstream section \neq downstream section) best explain variance in Inter-annual similarity water temperature data

Diurnal thermal regimes

Strong groundwater influence

Less clear spatial differentiation (upstream section ≈ downstream section)

Annual and inter-annual variability

Complex climatic and hydrologic influence

How to evaluate complexity?

1. Identify thresholds of climatic and hydrologic influence

2. Identify temporal and spatial variations in the strength of climatic and hydrologic influence

Influence of channel structure

Riparian vegetation, channel morphology, aquifer structure

How to model complexity?

Logistic regression? Fourier-based models?

(daily and hourly scales)

Thank you for your attention!

Questions?

Agence de l'Eau Loire-Bretagne **Etablissement Public Loire**