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Nonparametric Bayesian extraction of object
configurations in massive data

Céline Meillier, Florent Chatelain, Olivier Michel, Hacheme Ayasso

Abstract—This study presents an unsupervised method for
detection of configurations of objects based on a point process in
a nonparametric Bayesian framework. This is of interest as the
model presented here has a number of parameters that increases
with the number of objects detected. The marked point process
yields a natural sparse representation of the object configuration,
even in massive data fields. However, Bayesian methods can lead
to the evaluation of some densities that raise computational issues,
due to the huge number of detected objects. We have developed
an iterative update of these densities when changes in the object
configurations are made, which allows the computational cost
to be reduced. The performance of the proposed algorithm is
illustrated on synthetic data and very challenging quasi-real
hyperspectral data for young galaxy detection.

Index Terms—Detection, marked point process, Markov chain
Monte Carlo method, hyperspectral.

I. INTRODUCTION

Over the last several decades, different research applications
have used imaging devices that can produce massive data
fields to exploit spectral, time and three-dimensional features.
This includes hyperspectral imagers [1], [2], photo-activated
localization microscopy [3], and magnetic resonance force
microscopy [4]. In this paper, massive1 data fields refer to
three-dimensional data with two spatial dimensions, and a
third spectral, time or depth dimension. Hyperspectral imaging
exploits the fact that data are composed of several observations
of the same scene at different wavelengths. Automatic object
detection in massive data fields is a major issue that requires
new efficient approaches. Many different detection processing
techniques have been reported in the literature; see, e.g., [5]
and [6] for reviews of supervised techniques in a hyperspectral
context. All of these methods perform pixel-wise processing
that is based on a binary hypothesis test design, Bayes or
Neyman-Pearson quadratic classifiers, the generalized likeli-
hood ratio test, or adaptive matched filters. These detection
algorithms often need additional information about the targets
of interest. Thus, this requires a dictionary of representative
features, such as the spectra of the searched objects in hyper-
spectral applications. When the object features space is large,
as for the case of spectral objects with information for a few
unknown spectral bands, the size of this dictionary leads to
tremendous computational issues [7], and can result in the
detection of many false alarms.

The detection task in the present study is the following:
the objects are spatially extended, the number of objects is

1The term of massive data is subjective. This is used here in comparison
with usual hyperspectral data cubes which often contain at most a few
hundreds spectral bands. For our target application (MUSE) a typical size
for a data cube is 300× 300× 3600.

unknown, and so are their positions, and their geometrical,
spectral, and time features. Moreover, the intensity of the
faintest objects is of the order of magnitude of the background
noise, and can be several decades smaller than the brightest
objects. As most aforementioned techniques are based on
pixel-wise approaches, they can not easily tackle the case
of extended object detection that induces heavy correlation
between neighboring pixels. This motivates the use of object-
based processes for the analysis of our data. Therefore this
paper focuses on an unsupervised object detection approach
using marked point processes in a fully Bayesian framework.
A marked point process is a stochastic process where real-
izations are random configurations with any finite number
of objects. The use of marked point processes for object
detection was introduced by Baddeley et al. in [8]. An object
is modeled by a point, its position in the spatial domain, and
marks that can be geometrical, spectral or time features. These
processes yield a natural sparse representation of massive data,
which is decomposed into a set of sources, the objects to
be detected, and the background. Thus, such approaches have
been successfully pursued for applications like the fluorophore
detection in photo-activated localization microscopy imaging
[9], high resolution remote sensing [10], [11], and astrophysics
[12]. A known drawback of marked point process models
resides in their high sensitivity to some hyperparameters that
control the priors and the data energy of the process [13].
These latter are usually tuned heuristically to fit the data on
the application requirements. This difficulty can be overcome
by introducing noninformative priors with a level of hierarchy
within the Bayesian model. These hyperparameters are then
estimated jointly with the object configuration in an fully
Bayesian and automatic way. Such a strategy was successfully
adopted in some Bayesian approaches, e.g. for semi-supervised
unmixing of hyperspectral images [14], or for sparse image
reconstruction in magnetic resonance force microscopy [15].
The main advantage is that both the configuration and the
posterior are jointly estimated. Furthermore, the optimal solu-
tion is obtained by stochastic optimization, in the sense of the
maximum a-posteriori configuration.

The main motivation behind the proposed fully Bayesian
marked point process model is thus threefold. First, this
offers a nonparametric Bayesian framework [16], [17]: the
number of parameters does not depend directly on the size
of the processed massive data, but grows with the amount
of information in the data, i.e. the number of objects that are
observed. This induces a sparse representation of massive data
fields, and allows us to overcome computational issues due to
the size of the data. Second, the positions of the objects to be
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detected are not centered on the pixel grid, but are naturally
defined in the continuous spatial domain. This is of interest,
especially to detect the tiniest and faintest objects, or for super-
resolution purposes. Third, the fully Bayesian model leads to
a general and robust algorithm where the hyperparameters are
estimated in a fully data-driven way.

This present paper extends and gives extensive details on
the method summarized in [18]. All steps in the algorithm
are discussed and carefully introduced. Furthermore additional
experimental results are presented. The method presented here
allows the detection of configurations of objects of very
different sizes and with high intensity dynamics. This last point
is particularly important for the proposed detection framework
of this study. Moreover, the method is suitable for both single
images and three-dimensional images. An original recursive
approach is developed to update the Bayesian posterior dis-
tribution of both the model parameters and the object con-
figuration. If the reversible jump Markov chain Monte Carlo
(RJMCMC) algorithm [19] is well known in the literature, it is
significantly accelerated due to the recursive formula described
in this study. There is no theoretical criterion which ensures the
convergence of RJMCMC algorithms in the literature, but the
Bayesian framework used in this paper provides a set of tools
to assess the quality of the estimates through their variance
parameters or their conditional posterior distribution. The main
originality of this method lies in the processing of three-
dimensional data, either for modeling or for the estimation
and extraction of object configurations. Up to our knowledge
the majority of the methods dedicated to this kind of data work
on one or two dimensions and then merge the results.

This paper is organized as follows. The theoretical back-
ground on marked point process is given in section II. We
introduce a fully Bayesian framework and the choice of priors
in section III. Section IV presents a Gibbs sampler to generate
samples distributed according to their posterior distribution
and Metropolis-Hastings-Green moves on the objects of the
configuration. Simulation results and applications of our detec-
tion method to astrophysical hyperspectral data are presented
in sections V and VI.

II. BACKGROUND THEORY AND MODEL

We model observed data that are composed of a large
number of objects where the positions and geometrical char-
acteristics are a realization of a marked point process.

A. Marked point process

1) Point process: Let P = [0, P ] × [0, Q] be a compact
subset of R2, which represents the image domain. The quan-
tities P and Q are respectively the height and width of the
image. A configuration u of points in P is a finite unordered
set of points in P , u = {u1, ..., un(u)}, where n(u) is the
number of points in the configuration.

The space of all of the configurations with a finite number
of points in P can be expressed as:

Ω =
⋃

n(u)∈N

Ωn(u)

where Ωn(u) =
{
{u1, ..., un(u)};ui ∈ P ∀1 ≤ i ≤ n(u)

}
is

the set of the configuration with n(u) unordered points.
A point process of points in P is a probability model

on the infinite dimensional space Ω. This is a special case
of nonparametric Bayesian models [16], with its realizations
being random configurations of points in Ω.

2) Poisson point process: The Poisson point process is the
most famous example of point process. Basic properties and
definitions of Poisson point processes are reported in this
section (see [20] for a more detailed presentation). For this
process, the points are independently distributed: let u be a
random realization of a (nonmarked) Poisson point process,
A a Borel subset of P , and Nu(A) the number of points of
u that fall in A. Nu(A) is a random variable that follows a
discrete Poisson distribution, and for k nonintersecting Borel
sets A1, . . . , Ak, variables Nu(A1), ..., Nu(Ak) are indepen-
dent. The probability measure πν(.) associated with a Poisson
process is given by the following equation for every Borel set
B ⊂ Ω (this classical result is described in [20, chapter 3]):

πν(B) = e−ν(P)
+∞∑
n=0

πνn(B)

n!
(1)

with:

πνn(B) =

{
1[∅∈B], if n = 0,∫
P...
∫
P 1[{u1,...,un}∈Bn]ν(du1)...ν(dun), n ≥ 1

(2)

where 1[A] is the indicator function for A (1 if A is true, 0
otherwise), ν(·) is the intensity measure of the process, and
Bn is the subset of configurations in B with exactly n points.
Finally, the Poisson point process can be parameterized with
the intensity parameter β = ν(P), and with the normalized
intensity measure ν′(A) = ν(A)/ν(P) on P . In this case

πν′n(B) =
πνn(B)

βn
, for n ≥ 0, (3)

and this yields the following measure expression for every
B ⊂ Ω

πν(B) ≡ πβ(B) = e−β
+∞∑
n=0

βnπν′n(B)

n!
, (4)

where the intensity parameter β stands for the mean number
of points in the realizations of the Poisson process on P .

3) Density of a point process: The Poisson point process is
of special interest, as this allows the construction of a larger
class of family of point processes. These processes are defined
by their densities with respect to the probability measure of a
reference Poisson point process. This density is a nonnegative
function f(·) which is defined on the configuration space Ω,
such that

1 =

∫
Ω

f(u)πν(du). (5)

Equation (5) shows that the density f(·) of the process
expresses as the Radon-Nikodym derivative of its probability
measure with respect to the dominating reference Poisson
process measure πν . The probability measure of the resulting
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process is expressed as P (B) =
∫
B
f(u)πν(du) for every

Borel set B ⊂ Ω. For instance, the nonhomogeneous2 point
process with intensity parameter β given in Equation (4) can
be written as:

πβ(B) = e−β
+∞∑
n=0

βn

n!

∫
B

πν′n(du),

=

∫
B

e−ββn(u)
+∞∑
n=0

πν′n(du)

n!
,

=

∫
B

e1−ββn(u) πν′(du),

where the last line is derived from Equation (1), as by
construction ν′(P) = 1. Thus this admits a density:

f(u|β) = βn(u) exp (1− β), (6)

with respect to the normalized Poisson process πν′ . Note that,
in general, it is not possible to express analytically the integral
given in Equation (5). As a consequence, these processes are
characterized by an unnormalized density h(·) such that f(·) =
h(·)/c, defined up to the unknown normalizing constant c (also
known as the partition function within the Gibbs formalism).

4) Marked point process: A marked point process uM on
X = P ×M is a point process u in P , where some marks
belonging to the set M are associated with each point in P
(see [21] for more details). Finally in the marked Poisson point
process case, the density reduces to f(uM|β) = f(u|β)×fM
where fM is the marks density. By abuse of notations, the
object configuration uM will be denoted as u in the following.

5) Choice of the reference Poisson measure: It is possible
to inject some information on the object positions directly
into the reference measure. By considering a nonhomogeneous
Poisson point process as a reference measure, some positions
or regions with higher intensity ν(·) can be favored. In the
literature (see, e.g., the discussion in [22, p. 26]), this prior
information can be estimated from the data; e.g., by promoting
areas where the data matches the object to be detected. This
leads to an efficient empirical Bayes framework, where the
data are used to define both the density of the process and the
reference measure.

B. Observation model

For the sake of simplicity, we assume the simplest case
where object detection is carried out on a single P ×Q image,
at a given value λ ∈ [1, . . . ,Λ] along the third dimension. In
our specific case Λ is the number of hyperspectral bands and
λ indexes the elements of the stack. For now one P and Q
expressed the height and width of the image in a discretized
framework (number of pixels). Note that the same model can
be extended to all of the images when the data is a stack of
images.

Let yλ be the vectorized image. yλ is a M × 1 vector,
where M = P × Q is the number of pixels. The objects are
modeled by the configuration u of marked points, which is
assumed to be known in this section. Formally, the detection

2Nonhomogeneous point process means that the intensity varies spatially.

of the different sources from the observation yλ is addressed
by:

yλ = Xλwλ + 1mλ + εBg,λ, (7)

where mλ is the mean of the background intensity, 1 is a unit
M × 1 vector, εBg,λ is a spatially centered white Gaussian
noise M × 1 vector such that:

εBg,λ ∼ N (0, σ2
λIM ), (8)

where IM is the M × M identity matrix. The object con-
figuration u is represented by the M × n(u) matrix
Xλ =

[
x1,λ . . .xn(u),λ

]
in which each column xi,λ is the

`2-normalized vectorized image of a source ui convoled with
the impulse response of the optical device (abbreviated PSF for
point spread function). Both the positions of the point process,
the PSF and the intensity profile of a source are defined in the
continuous domain. The continuous response of a source ui
is then discretized on the data grid to obtain the normalized
response vector xi,λ. n(u) and wλ =

[
w1,λ, . . . , wn(u),λ

]T ∈
Rn(u) are respectively the number of objects detected and the
weights vector. wλ contains the intensities of each source of
the normalized regression matrix Xλ.

Note that although a single image (at λ) is considered, the
pixel value is obtained from the three-dimensional imaging
system. Consequently, the PSF of the imaging system is a
three-dimensional function. Let Hr,λ be this PSF centered at
(r, λ). As the noise that is considered in the observation model
is due to the electronic devices but not to the optical system,
the observation at position (r, λ) is a composition between
the source terms ui and the PSF expression and an additive
Gaussian noise :

yλ(r) =

n(u)∑
i=1

Hr,λ ◦ ui +mλ + εBg,λ(r), (9)

where ◦ is the Fredholm operator between the response of
the sources and the PSF defined for the pixel (r, λ). Note
that when the PSF is spectrally and spatially invariant, the
Fredholm operator reduces to a classical three-dimensional
convolution. Although the remainder of the paper focuses on
two-dimensional based approaches (relying on the assumption
that the observations are independent at different λ), the
three-dimensional PSF will turn out to be of great practical
importance for both the computation of the source responses
xi and the matched filter introduced in section VI-C.

C. Likelihood function

Based upon the assumption that the random noise fluctu-
ations are independent versus λ, considering a single image
makes sense in the overall model for the cube as a likelihood
factorizes. Consequently, the observation model given Equa-
tion (7) holds for all λ. Equations (7) and (8) lead to the
following likelihood for the λth image:

f(yλ|u,mλ, σ
2
λ) =

(
1

2πσ2
λ

)M
2

exp

(
−z

T
λzλ
2σ2

λ

)
, (10)

where zλ = yλ −Xλwλ − 1mλ.



4

We define the M ×Λ matrix Y = [y1, ...,yΛ] that contains
the Λ vectorized images, the 1×Λ vector m = [m1, ...,mΛ],
and the 1 × Λ vector σ2 =

[
σ2

1 , ..., σ
2
Λ

]
. Under the indepen-

dence assumption on the noise fluctuations versus λ, the global
likelihood is:

f(Y |u,m,σ2) =

Λ∏
λ=1

f(yλ|u,mλ, σ
2
λ).

III. PRIOR DISTRIBUTIONS

A. Priors on the reference measure

1) Intensity parameter: The reference measure given in
Equation (4) depends on the intensity parameter β. Indeed,
the number of objects n(u) in u is governed by a Poisson
distribution with mean β. The density of the reference process
with respect to the normalized Poisson point process measure
πν′ can be written as:

f(u|β) = βn(u)exp(−(β − 1)),

∝ βn(u)e−β . (11)

In the Bayesian paradigm, β is now considered as a random
variable. In general there is no prior information about this
intensity; a vague prior is chosen by considering a conjugate
Gamma G(a, b) distribution:

p(β) =
βa−1e−β/b

Γ(a)ba
, ∀β ∈ R+, (12)

where Γ(x) =
∫ +∞

0
tx−1e−tdt is the classical Gamma func-

tion. The hyperparameters are fixed to a = 1 and b = 103 to
obtain a sufficiently vague prior (with large variance). Using
the Bayes formula, the joint prior of u and β becomes:

f(u, β) = f(u|β)p(β) ∝ βn(u)+a−1 exp

(
−1 + b

b
β

)
. (13)

Equation (13) shows that the conditional posterior of β
given a configuration u is gamma distributed: β ∼
G (n(u) + a, b/(1 + b)). This parameter corresponds to a nui-
sance parameter in our model. Thus the density can be
marginalized by integrating out β. This yields:

f(u) ∝ Γ (n(u) + 1))qn(u)+1, (14)

where q = b/(b+ 1) defines the density of our reference pro-
cess with respect to the normalized Poisson process measure.

Note that the process defined by this density is a particular
case of a negative binomial point process defined in [23].
Actually the number of points in each compact set is governed
by a negative binomial distribution. Moreover, the choice of a
vague prior (12) ensures that the probability hyperparameter
q is close to one.

2) Geometrical marks: The positions of the objects are
completely defined by the realizations of the point process on
P . We are now interested in the description of the intrinsic
characteristics of these objects. In this study, we focus on
elliptical objects. A point (p, q) ∈ P corresponds to the center
of an object. This position is not aligned on the pixel grid,

but is defined in a continuous way (see section II-B). The
geometrical features of the elliptical objects are defined on:

M = [rmin, rmax]× [rmin, rmax]×
[
0,
π

2

]
, (15)

where the marks are:
• the length of semi-axes a and b (without differentiating

between major and minor axes);
• the orientation; i.e. the angle α between the horizontal

and first axis a.
An elliptical object ui is completely defined by
ui = ((pi, qi), ai, bi, αi), where (pi, qi) ∈ P is the
continuous position of ui in the data cube, ai > 0 and bi > 0
are the semi-axis lengths, and αi ∈ [0, π2 ] is the orientation.
An uniform prior is selected for all of these geometrical
features, yielding:
• a, b ∼ U(rmin, rmax),
• α ∼ U(0, π2 ).

Note that some additional marks related to the spatial intensity
profile can be added according to the application. Priors on
the marks related to the radiometry intensity of the objects
are detailed in section III-C.

B. Background parameter priors

Using a fully Bayesian model for the data aims at the
building of an automatic and robust method. A Bayesian
approach provides a complete framework for combining
data information, using the likelihood function, and external
knowledge for random model parameters θ sampled from a
prior π(θ). The parameters of the model Equation (7) are
θλ = (mλ, σ

2
λ,wλ). As no physical information on the mean,

variance or object intensities for a given data cube is available,
and to be more general and robust, we want to be the least
informative as possible. Among the priors basically used in
the literature, we will focus on noninformative priors. Jeffreys
noninformative priors are derived from Fisher information;
this minimizes prior influence to give more importance to the
data, in the sense that the resulting posterior is invariant under
reparameterization. This yields the following improper prior
for parameters (mλ, σ

2
λ):

p(mλ, σ
2
λ) =

1

σ2
λ

1]0,+∞[(σ
2
λ) (16)

There is no regularization on mλ, which will be estimated a-
posteriori. In this case, its maximum a-posteriori estimate is
equivalent to the maximum likelihood estimate. The mean of
the background intensity is chosen in R, since because of some
subtraction operations in the data reduction, background values
can be negative. This prior is said to be improper, because this
is not a proper density function, as it is not integrable. This
is not critical as long as the posterior density is well defined.

C. Object intensity prior

Two kinds of priors can be chosen for intensity vector w:
fully noninformative priors, or more constrained priors. In a
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previous study a Gaussian prior was investigated [12], and a
g-prior was introduced:

p(wλ|u, σ2
λ, g

2
λ) ∼ N

(
0, g2

λσ
2
λ

(
XT
λXλ

)−1
)

where the hyperparameter g2
λ represents the a-priori signal

to noise ratio (SNR) of the observed scene. As occurs in
the astrophysical application proposed in [12] and in section
IV here, the intensities of the galaxies to be detected vary
over a very large dynamical range. The g2

λ introduced in [12]
accounts for the SNR at given λ but turns out to penalize the
detection of the faintest objects.

In this paper, in the absence of physical information on
the data to be processed, an alternative solution is chosen,
which consists of using a Jeffreys noninformative prior on the
intensity wλ vector:

p(wλ|u) ∝ 1Rn(u)(wλ).

By using this prior, the regularization on the intensity is
completely removed.

Note that the positivity of the intensities is not explicitly
considered here. If the intensity is defined on R+, wλ would
be a posteriori distributed according to a positive truncated
Gaussian posterior distribution in the univariate case. However,
in the general case, wλ follows a multivariate truncated
Gaussian posterior distribution. It is a challenging problem
to compute the normalizing constant (which depends on the
background parameters) of such a distribution, as this will
be required when marginalizing out wλ in section IV-A.
Instead focusing on intensity positivity constraints at each λ,
the solution adopted here consists of a global criterion on
the intensity along the third axis (wavelength, depth, time...).
Simulations presented in sections V-B and VI-C use this
model.

D. Configuration prior

1) Overlapping ratio: To avoid multiple detections, a hard
core penalization is introduced to prevent objects overlapping.
Let r(ui, uj) be the overlapping ratio between the energy
distribution of two objects ui and uj :

r(ui, uj) =
1

Λ

∑
λ

〈xi,λ,xj,λ〉

where xi,λ is the `2-normalized response of the source ui, and
〈·, ·〉 denotes the Euclidean scalar product.

This ratio r(ui, uj) ∈ [0, 1] allows to build a hard core
penalization term that is characterized by the following density
with respect to the reference process:

h(u) =

{
0 if it exists i 6= j such that r(ui, uj) > t,

1 otherwise,
(17)

where the threshold t ∈ [0, 1]. Note that h(u) is a hard
core density which has to be included in the prior on the
configuration.

The scalar product appearing in r(ui, uj) is the natural
metric for measuring the collinearity of the columns of the

response matrixX . Using this measure allows us to control the
invertibility and the conditioning of XTX (see section IV-A).
This ensures the identifiability of the object configuration. The
parameter t which controls this collinearity is also physically
associated to the spatial resolution of the detection algorithm
discussed in the next paragraph.

2) Hyperparameter t: The ratio r measures the overlapping
between two objects. Thus t is a threshold above which two
objects will be considered as being unresolved or too similar
to correspond to an acceptable candidate configuration. It is
proposed here to set a value for t from physical considerations.
Due to the convolution by the PSF of the instrument, two point
sources are resolved if they meet the Rayleigh criterion, i.e. if
their distance is at least equal to the PSF’s full width at half
maximum.

This leads to set t = 0.4 for the MUSE PSF (Figure
1). For spatially extended sources this should include the
convolution by the profile of the extended sources. This leads
to set numerically t at a lower value for the largest objects
considered in our data cubes. Figure 2 shows the limiting case
of the largest object considered in our data cubes. The spatial
extension and the intensity profile associated to this case lead
to set numerically the threshold parameter t to 0.3 in order
to preserve the resolution criterion. This parameter t depends
on both the PSF and the physical modeling of the sources
(intensity profile and the maximal radius rmax).
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Fig. 1: Left: Response of two point sources located so as to
be in the limit case of the Rayleigh criterion The magenta
line indicates the section shown in the right panel. Right:
Longitudinal section of the intensity profile of the two point
sources (blue and green curves). The magenta curve is the
observation of the two overlapping responses of the point
sources. In this case, the overlapping ratio is equal to 0.4.

Note that if all of the objects have identical shapes and
intensity profiles, using the inner product is equivalent to use
the distance between objects up to a one-to-one transform.

3) Global prior density of the process: The density of
the process with respect to the normalized reference Poisson
process including h(u) now becomes

p(u) ∝ f(u)h(u), (18)

where f(u) is the point process density defined in Equation
(14).

Note that other penalization terms might also be introduced
to take into account the knowledge that we have about the
configuration of the objects to be detected.
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Fig. 2: Left: Response of two extended sources located so as
to be in the limit case of the Rayleigh criterion The magenta
line indicates the section shown in the right panel. Right:
Longitudinal section of the intensity profile of the two sources
(blue and green curves). The magenta curve is the observation
of the two overlapping responses of the extended sources. In
this case, the overlapping ratio is equal to 0.3.

IV. THE REVERSIBLE JUMP MARKOV CHAIN MONTE
CARLO ALGORITHM

During the last few decades, different sampling methods
based on marked point processes have been studied in the
literature. Monte Carlo by Markov chains (MCMC) methods
such as the Gibbs sampler [24] and the Metropolis-Hastings
method [25] and [26] were used for generating samples and
constructing a samples distribution that mimics the posterior
distribution of the parameters. But these approaches do not
deal with the problem of variable dimension. In our problem,
dimension is intrinsically the (unknown) number of objects.
For addressing this difficulty, Green proposed RJMCMC algo-
rithm [19], Descombes et al. [27], [28], developed stochastic
extensions, that will be reinvestigated here for their ability
to deal with multiple object detection. A major motivation
for adopting RJMCMC approaches lies in the possibility to
develop an original and fast recursive formula for updating
posterior densities for unit changes such as birth, death or
shape modification of an object. This part is, up to our knowl-
edge, original; it is described in the following paragraphs.

A. Posterior distribution

For a given λ and a configuration u, the conditional
posterior distribution can be calculated as:

p(wλ,mλ, σ
2
λ|u,yλ)

∝ p(yλ|wλ,mλ, σ
2
λ,u)p(wλ|u)p(mλ, σ

2
λ)

∝
(

1

2πσ2
λ

)M
2

× exp

(
− (yλ −Xλwλ − 1mλ)T (yλ −Xλwλ − 1mλ)

2σ2
λ

)
× 1

σ2
λ

1]0,+∞[(σ
2
λ)1R(wλ).

(19)

The conditional posterior distribution (19) given a con-
figuration u can be marginalized to reduce the number of
unknown parameters to sample at each iteration of the MCMC

algorithm. Developing the exponential term, straightforward
computations show that the conditional posterior distribution
of the intensity vector wλ given mλ, σ

2
λ,u,yλ is Gaussian,

with mean µλ and covariance matrix Σwλ :

µλ = (XT
λXλ)−1

[
XT
λ (yλ − 1mλ)

]
,

Σwλ = σ2
λ

(
XT
λXλ

)−1

.

In some applications, the intensity of a single object may be
a constant along the third axis, and for other applications the
third dimension is small (the number of λ is small). In these
cases, marginalization over w is not necessary, as it is possible
to efficiently propose each object intensity on the whole cube
according to a low dimensional multivariate Gaussian posterior
distribution.

However, in the general case, the dimension of intensity
vector per object ui is generally large and may contain up to
a few thousands values. This raises the curse of dimensionality
which is discriminant for the convergence of the Metropolis
sampler. In this work, dimension is drastically reduced by
considering wλ as nuisance parameters that can be integrated
out yielding the following marginalized posterior distribution:

p(m,σ2|Y ,u) ∝
Λ∏
λ=1

{( 1

σ2
λ

)M
2

e
− (yλ−1mλ)TWλ(yλ−1mλ)

2σ2
λ

× 1

σ2
λ

1]0,+∞[(σ
2
λ)
}
,

(20)

where W λ = I − Xλ(XT
λXλ)−1XT

λ is the orthogonal
projection matrix on the noise subspace. Conditioning of
the Gram matrix XTX is guaranteed by the choice of our
configuration prior (see section III-D).

The joint posterior distribution of both the configuration u
and the parameters (mλ, σ

2
λ) becomes:

p(u,m,σ2|Y ) ∝
Λ∏
λ=1

{
p(mλ, σ

2
λ|u,yλ)p(u)

}
∝

Λ∏
λ=1

{( 1

σ2
λ

)M
2

e
− (yλ−1mλ)TWλ(yλ−1mλ)

2σ2
λ

× 1

σ2
λ

1]0,+∞[(σ
2
λ)
}

× Γ (n(u) + 1)× qn(u)+1h(u).
(21)

Note that even if improper priors have been chosen in Equation
(16), the posterior densities of the background parameters are
well defined.

B. Gibbs parameters sampler

Given the marginalized posterior distribution (21), the con-
ditional posterior distribution can be deduced for each back-
ground parameter, given the other parameters. These posterior
distributions are well defined and can be easily sampled to
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generate Markov chains {m(t)
λ }t and {σ2

λ
(t)}t, 1 ≤ λ ≤ Λ,

where a Gibbs move is used. Let:

W λ = I −Xλ(XT
λXλ)−1XT

λ ,

δ2
λ = (1TW λ1)−1

m̃λ = δ2
λ1

TW λyλ,

ν = M − 1

s2
λ = ν−1δ2

λ

[
yTλW λyλ − δ2

λ(1TW λyλ)2
]
.

(22)

Using these notations, for λ = 1, . . . ,Λ, the conditional
posterior distribution of σ2

λ derived from Equation (20) is an
inverse-gamma distribution:

σ2
λ|(mλ,yλ,u) ∼ IG

(
M

2
,

1

2δ2
λ

(νs2
λ + (mλ − m̃λ)2)

)
(23)

Integrating out σ2
λ from the joint posterior distribution given

in (21), gives the marginal posterior distribution of mλ:

p(mλ|yλ,u) ∝
(
ν +

(
mλ − m̃λ

sλ

)2
)− ν+1

2

, (24)

which is a Student distribution with ν degrees of freedom; m̃λ

is a location parameter, and sλ is the scale parameter.
Thus, during a parameter update iteration, we begin to

sample a new value of mλ given by m(i)
λ for the ith iteration,

according to the Student distribution (24), and then we sample
σ2
λ

(i) according to IG
(
M
2 ,

1
2δ2λ

(νs2
λ + (m

(i)
λ − m̃λ)2)

)
.

C. Birth and death move

For a given configuration u, let pB(u) be the probability
to select the birth move, while pD(u) = 1 − pB(u) is the
probability to choose the reversible move, i.e. the death move
(basically, pB(u) = pD(u) = 1/2). Let pS(ui|u) be the
probability to propose to remove the object ui ∈ u during
a death move. When the object to be removed is uniformly
selected in the current configuration, then pS(ui|u) = 1/n(u).
All of the Λ slices of the data cube are now considered.

1) Birth proposal: For a birth move, a new object v is
drawn according to the reference Poisson process πν′ . There-
fore, to reduce the rejection rate of the proposal, the intensity
of this nonhomogeneous process should favor locations where
the objects are the most probable. Some examples of how
to construct such a measure of intensity are given in the
simulation section V-B.

Moreover, all of the locations in a close neighborhood of
a center that belongs to the current configuration can not be
proposed as a new object center. Indeed setting t (see section
III-D) in the hard core penalization density h(u) precludes
such a proposal.

2) Birth acceptance ratio: In the birth case, the proposed
configuration is v = u ∪ {v}, and the Metropolis-Hastings-
Green ratio obtained is:

r(u,v) =
pD(v)

pB(u)

p(v,m,σ2|Y )

p(u,m,σ2|Y )
pS(v|v). (25)

The geometrical and intensity marks are proposed according
to the uniform priors defined in paragraph III-A2. The spatial

response of an object is assumed to be the same for all the
wavelengths, then Xλ = X . This will allow to avoid many
calculations below. Actually, the recursive formula we propose
for the posterior updates is based upon Cholesky factorization
of XTX and depends on the PSF. A constant PSF over
Λ allows a considerable lowering of the computational cost
(many calculations steps may be performed only once for all
λ). Let C be the lower triangular matrix of the Cholesky
decomposition of the Gram matrix XTX for the current
configuration u:

XTX = CCT .

Let xn(v) be the column vector that supports the spatial
response of the new object v. Then X̃ =

[
X,xn(v)

]
is

the new configuration matrix, and C̃ is the lower triangular
matrix of the Cholesky decomposition of the Gram matrix
X̃
T
X̃ . In this case, the computation of the Cholesky matrix

and the different terms involved in the posterior density can
be performed jointly on all slices of the cube; see Appendix
A-A for details.

When pB(u) = pD(u) and pS(v|v) = 1
n(v) , with n(v) =

n(u) + 1, the birth ratio is expressed as:

r(u,v) =

Λ∏
λ=1

exp
{ (yλ−1mλ)T

(
X̃(C̃C̃T )−1X̃

T
)

(yλ−1mλ)

2σ2
λ

}
exp

{
(yλ−1mλ)T (X(CCT )−1XT )(yλ−1mλ)

2σ2
λ

} × q
(26)

According to the recursive update formula detailed in Ap-
pendix A-A, this ratio reduces to the following simple ex-
pression:

r(u,v) =

Λ∏
λ=1

exp
{a2

λ+1 − 2mλa1aλ+1 +m2
λa

2
1

2σ2
λ

}
× q,

(27)

where:
• a = 1

g

(
xn(u)+1 − vpTC−1XT

)
[1,y1, ...,yΛ], which

is a Λ + 1 line vector, and ai is its ith component.
• v = xTn(u)+1xn(u)+1,
• vp = C−1[XTxn(u)+1, v],
• g =

√
v − vpTvp,

Equation (27) emphasizes that few computations are re-
quired to perform a birth move. Note that this algorithm offers
a complexity in O(n(u)2) operations. This has to be compared
with the prohibitive O(n(u)3) complexity for a computation
of this acceptance ratio from scratch. Finally, this move is
accepted with probability α = min (1, r(u,v)).

3) Death acceptance ratio: In the death case, the object
ui ∈ u that is proposed to be removed is uniformly selected
with probability pS(ui|u) = 1/n(u). The proposed configu-
ration is v = u\{ui} and the Metropolis-Hastings-Green
ratio is:

r(u,v) =
pB(v)

pD(u)

p(v,m,σ2|Y )

p(u,m,σ2|Y )

1

pS(ui|u)
. (28)

For the death case, the detailed computations are given in
Appendix A-B. Evaluation of the Metropolis-Hastings-Green
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death ratio leads to the computation of the following simple
expression:

r(u,v) =

Λ∏
λ=1

exp
{−a2

λ+1 + 2mλa1aλ+1 −m2
λa

2
1

2σ2
λ

}
× 1

q
,

(29)

where the recursive algorithm to compute the (Λ + 1) line
vector a is given in Appendix A-B.

Finally, this move is accepted with probability
α = min (1, r(u,v)). If the death is accepted, the
pixel which contains the center of the deleted object can be
proposed again.

D. Moves on an object of the configuration

Simple moves on one detected object can be proposed, such
as translation, rotation, enlargement, reduction, or a combina-
tion of these four. One object ui of the current configuration is
chosen to be modified with a uniform probability pS(ui|u) =
1/n(u). This object is defined by ui = ((pi, qi), ai, bi, αi) and
it will be affected by geometrical transformations to become
the new one: v = ((p′, q′), a′, b′, α′), these new geometrical
features are chosen under the proposal of joint density p(v|ui).
The new configuration is the following v = u\ui ∪ v. The
Metropolis-Hastings-Green ratio obtained is:

r(u,v) =
pS(v|v)

pS(ui|u)

p(v,m,σ2|Y )

p(u,m,σ2|Y )

q(v)

q(ui)

p(ui|v)

p(v|ui)
, (30)

where q is the joint prior distribution on geometrical parame-
ters (p, q), a, b and θ. This kind of move can also be seen as
death of the existing object directly followed by birth of the
modified object; in practice this is how the algorithm computes
the Metropolis-Hastings-Green ratio.

E. Extraction of the object configuration

All of these moves are combined with the Gibbs steps
for background parameter sampling. In a previous work [12]
merge and split moves were implemented to improve the
mixing property of the RJMCMC algorithm. Instead in this
paper, a preprocessing step is proposed that aims to build a
data-driven proposition map of reduced size. While reducing
the computational cost, it also increases the probability of
proposing objects around local maxima of the output of a
three-dimensional matched filter (see sections V-B and VI-C)
This improves the relevance of the proposals of contiguous
objects. We observe empirically that split and merge moves
do not improve the detection performance even to detect two
objects that are close in the spatial domain.

Finally, the configuration that maximizes the posterior den-
sity is selected as an approximation of the maximum a-
posteriori estimator. For the different images used to vali-
date the algorithm, we observe in our simulations that the
number of objects in the maximum a-posteriori configuration
converges to a fixed number: for any new given iteration,
birth and death moves are (almost) always rejected. There
is no theoretical criterion which ensures the convergence
of RJMCMC algorithms in the literature. This is a known

drawbacks of these methods, then the following heuristics is
used in this paper: if all the birth and death moves are rejected
for more than 5000 iterations then we can stop the algorithm.

V. DETECTION ON A SINGLE SYNTHETIC IMAGE

In this section, the algorithm derived in the preceding parts
of the paper is applied and tested on a simulated data set
that matches the observation model and that mimics the PSF
of the Herschel3 instrument. Close to real world data are
processed in section VI (without guaranteeing the exactness
of the observation model).

A. Description

A 100× 100 synthetic image is simulated using the model
defined in Equation (7), with 30 elliptical objects of different
shapes placed in this image. Sérsic profiles are classically
used in the literature to fit galaxy intensities [29] and [30].
Such profiles are chosen with a Sérsic index of {0.5, 1, 2}
to set the intensity of these 30 objects. We use a 13 × 13
convolution kernel obtained by subsampling the PSF of the
Herschel instrument which is precisely estimated in [31] and
[32]. Figure 3 shows the Herschel subsampled PSF (left panel).
The background image of the two panels of Figure 5 shows
the noiseless image containing the 30 objects after convolution
with the PSF. This observation is then corrupted by an additive
spatially white Gaussian noise with parameters m = 0 and
σ2 = 1.6, this noisy image is displayed on Figure 3 (right
panel). The intensities of the objects are Gaussian distributed,
with a mean set at -4 dB and a standard deviation of 2 dB.
Four objects have a SNR above 5 dB, and two others under
-15 dB; these represent the extreme cases.
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Fig. 3: Left: PSF of the Herschel instrument. Right: noisy
image containing a configuration of 30 objects to be detected.

B. Proposition map and reference measure

To both enforce the detection capability and accelerate
the convergence of the sampler, we propose to use a basic
preprocessing to favor the most probable locations for the
object centers. This preprocessing consists of a matched filter
to the Herschel PSF. The matched filter maximizes the SNR in
the additive white Gaussian noise linear observation model (7)
for the small sources. As the matched filter statistics indicates
the most likely locations to detect positive sources, a threshold

3The Herschel provides single band data with a very well identified PSF.
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is chosen according to a given false alarm probability, denoted
as pFA. Furthermore, some classes Ci are created according to
these statistics. Typically, there are three classes: C3 contains
each pixel lower than the test statistics threshold, the other
ones are in C2; except for the local maxima, which are in C1.
A probability is associated with each class to favor the most
probable class, such that pC1 = 0.8, pC2 = 0.2, and pC3 = 0
as these last locations are not detectable.

This preprocessing defines the intensity of the refer-
ence nonhomogeneous Poisson point process measure. This
yields the following normalized intensity measure ν′(A) =∫
A
λ(x)dx for the reference process defined in Equations (2)

and (3). The continuous function λ(x) =
pCi
|Ci| is a stepwise

intensity function defined on P , with i the class of the nearest
pixel for the location x and |Ci| the number of pixels in Ci.
The object centers are proposed during birth moves according
to this intensity measure by drawing 1) the class indicator, 2)
a pixel uniformly selected in this class and 3) the continuous
position uniformly distributed over the pixel.

C. Results and comparisons

Our algorithm is compared with the well-known SExtractor
[33] algorithm. SExtractor is designed to detect sources in
astrophysical images. This uses a matched filter and a user-
defined threshold. In this sense, the method is comparable
to the preprocessing used to build a proposition map. Pixels
above the threshold are merged to form objects. Background
parameters are also estimated by classical methods (see [33]
for details about the SExtractor algorithm). Post-processing
can be applied by the SExtractor algorithm to filter out the
spurious detections that are often located in the wings of the
objects with shallow profiles. We chose to remove this step
from the SExtractor processing, to give it a chance to detect
objects located near the spatially extended galaxies in our data
cube.
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Fig. 4: Empirical true detection number versus false detection
number

Figure 4 shows the number of true detections versus the
number of false detections obtained from different runs of
SExtractor and of our method. For each run, the detection
threshold varies for both methods. A proposed object is
considered as a true detection if 50% of its energy is shared
with a real object and the proposed center is located less
than 1.5 pixel from a true center. The simulation results
reported in Figure 4 are obtained for a number of objects

and magnitudes chosen to mimic the expected features of the
MUSE data (much lower SNR than Herschel data). A lot
of objects to be detected has a low SNR. Figure 4 shows
that for a given number of false detections, our method
outperforms SExtractor for this scenario. Figure 5 shows the
best compromise between false alarms and detections for both
methods. Finally, SExtractor detects 17 objects, 3 multiple
detections located on real objects, and 23 false detections,
while our method detects 21 objects and 19 false detections.
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Fig. 5: Green ellipses represent well-detected objects, red ones
are false detections, and blue ones are multiple detections
located on a real object. Background image is the noiseless
image. Left: Results of the detection by marked point pro-
cess within the Bayesian framework (the overlap threshold
defined in Equation (17) is set to t = 0.3 to satisfy the
resolution criterion for the Herschel PSF). Right: Detection
with the SExtractor algorithm with the following setting:
DETECT THRESH = 0.4σ.

Some false detections jointly appear for both methods, most
probably related to some residual structure of the empirical
distribution of the noise. It will be difficult to avoid these false
detections. The SExtractor algorithm appears to better estimate
the shape and total flux of bright objects (SNR > 5dB),
although its performance decreases significantly at very low
SNR, with some faint objects detected as multiple objects
(Figure 5, blue ellipses). The shapes and positions of the
detected objects are better estimated by our method, and the
number of false alarms is lower than for SExtractor. This last
point is explained because our algorithm has two regularization
steps for objects: 1) the proposition map that limits the
errors on object positions; and 2) the acceptance-rejection
Metropolis-Hastings-Green ratio that allows the controlling
of the shape parameters and the estimated intensity profile
quality. Even if SExtractor presents the major advantage of
processing a single image within a few seconds, compared to
the few tens of minutes necessary for our method, SExtractor
cannot be used on three-dimensional data composed of a few
thousand images and requires many hand tuned parameters.
Note that the size of the objects appearing on the Figure 5
are barely comparable; the geometrical shape in our method
is based on a energy criterion whereas the pixel-wise detection
threshold defines the shape for SExtractor.
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VI. DETECTION ON ASTROPHYSICAL HYPERSPECTRAL
IMAGES

The proposed detection algorithm is now tested on quasi-
real astrophysical hyperspectral data provided by MUSE con-
sortium [34]. It contains very faint light sources and bright
objects, like nearby galaxies and stars in the field of obser-
vation. These data are constructed using the physical model
of the MUSE instrument and of the sources that should be
observed. Note that the exactness of the observation model is
not guaranteed in this case.

A. Quasi-real Multi Unit Spectroscopic Explorer data
The Multi Unit Spectroscopic Explorer project (MUSE)

aims to provide observations of the sky for astrophysicists,
especially for distant galaxies [35]. MUSE was recently in-
stalled (at the beginning of 2014) on the Very Large Telescope.
Some methods have been proposed for source detection in
MUSE data, such as [36] or [37]; these former methods for
the detection use approaches that are completely different
from the method presented here. The originality of the MUSE
instrument comes from its ability to produce two-dimensional
images of the sky for 3600 spectral bands of the visible and
near infrared range of the spectrum. The dimensions of the
hyperspectral data cube are finally 300 × 300 pixels × 3600
wavelengths (see appendix B for more details on MUSE).

The next results come from a quasi-real data cube simulated
by the MUSE consortium [34], [38]. This contains 18 typical
objects that might be observed by the MUSE instrument,
and that are generated according to some physical models
or extracted from a catalog of galaxies, some of which are
faint Lyman-alpha emitters (see appendix), which might not be
detectable because of the noise. This training cube is smaller
than future MUSE data (here 100× 100× 3600) and contains
18 objects.

We define the SNR of a source convolved with the PSF as:

SNR(ui) = 10 log10

( ‖Si‖22
trace (Σ)

)
,

where Si is the spectrum of the source ui, and Σ is the
covariance matrix of the observed spectrum at position cor-
responding to the object center. Note that an estimate of
the variance of each pixel is provided with the MUSE data.
Looking at the SNR given in Table I, all Lyman-alpha emitters
are objects with a negative SNR. The energy contained in the
single spectral line is averaged across the 3600 wavelengths.
For some objects the amplitude of the Lyman-alpha line is not
far from the noise amplitude, which explains the SNR values
lower than -30 dB for the whole spectrum. These objects are
difficult to detect without preprocessing the data to highlight
their presence. Moreover, we cannot explore the entire cube
due to computational issues, so prior knowledge of the objects
to be detected must be exploited to build a proposition map
of object positions. This proposition map should be the same
as the intensity of the reference measure.

B. Multi Unit Spectroscopic Explorer point spread function
The estimation of the MUSE PSF is defined in [39], and

this can be considered as separable into a spatial component

ID (x,y) SPECTRAL INTENSITY SNR
FEATURES (dB)

0 (80,80) C + L (908.3nm) bright 19.04
1 (20,50) C + L (906.8nm) bright 19.30
2 (75,10) C bright 25.31
3 (30,85) C bright 11.57
4 (50,80) C + L (759.1nm) bright 5.18
5 (74,57) C + L (870.7nm) faint -15.76
6 (50,50) Lyα (734.2nm) faint -33.56
7 (55,65) Lyα (870.3nm) faint -32.15
8 (82,40) Lyα (772.8nm) faint -10.15
9 (50,36) Lyα (531.8nm) bright -6.53
10 (10,85) Lyα (833.6nm) faint -38.33
11 (30,20) C bright 1.61
12 (22,20) Lyα (531.8nm) bright -9.80
13 (40,60) Lyα (508.7nm) faint -30.27
14 (90,62) Lyα (480.3nm) faint - 25.90
15 (92,65) Lyα (845.5nm) faint - 27.61
16 (70,14) Lyα (517.8nm) bright -15.16
17 (66,90) Lyα (585.7nm) faint -38.01

TABLE I: Object features in the quasi-real hyperspectral data
cube. All of these objects present different spectral features:
some have continuous spectrum (C), some can also have
spectral lines (L) and the others are Lyman-alpha emitters
(Lyα).

F , the field spread function, and a spectral component, the
line spread function L. Moreover, the field spread function
Fr,λ at position (r, λ) is considered as shift invariant in the
observation field, Fr,λ(z) = Fλ(r − z), and the line spread
function is spatially constant. Thus this can be approximated
by Lr,λ(µ) = Lλ(µ). Then Equation (9) can be rewritten:

yλ(r) =
∑
i

∑
z

∑
µ

Lµ(λ)Fµ(r − z)Si(z, µ) + εBg,λ(r),

(31)
where Si(z, µ) is the intensity of the object ui at position
(z, µ). We consider that Si can be decomposed by two
components, a spatial one and a spectral one:

Si(r, λ) = si(r)×A(λ).

The spatial profile si is considered constant over the λ axis,
only the amplitude A(λ) defines the presence of object ui
on the λth image. Then the contribution of one source at the
position (r, λ) becomes:

wi,λxi,λ(r) =
∑
µ

A(µ)Lµ(λ)
∑
z

si(z)Fµ(r − z).

For the computational strategy, the configuration model Xλ

is assumed to be constant for all of the wavelengths λ, this
leads to the following assumption:

xi(r) =
1

‖∑z si(z)F (r − z)‖
2

∑
z

si(z)F (r − z),

where:

F (r − z) =
1

Λ

Λ∑
λ=1

Fλ(z − r),

and xi is the ith column of the configuration matrix X . The
influence of the LSF is absorbed in the weight of the object at
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each λ. Spectral convolution is not explicitly considered; its
influence is included in the model of the object spectra:

wi,λ =

∥∥∥∥∥∑
z

si(z)F (r − z)
∥∥∥∥∥

2

∑
µ

A(µ)Lµ(λ). (32)

C. Object proposition

Most easy to detect and resolved objects are close to the
Earth, and they are not the target of the detection challenge,
they have a high SNR. As the detector aims to find faint
objects, such as the Lyman-alpha emitters of low spatial
extension and very compact spectrum, their response will be
close to the PSF of the instrument. Thus, the idea is to process
the data cube with a filter matched to the PSF cube, and a
statistic based on the maximum of the spectrum is used to
highlight the Lyman-alpha emitter characteristics. Let Y (r, :)
be the 1×Λ vector corresponding to the spectrum at pixel r.
To control the level of false alarms in the object detection
procedure, the following hypotheses are assumed for each
pixel spectrum Y (r, :) = [y1(r), . . . ,yΛ(r)]:{

H0 (absence of object) : Y (r, :) = ε(:)
H1 (presence of object) : Y (r, :) = α(r, :) + ε(:)

where ε is a 1 × Λ noise spectrum, ε(λ) ∼ N (mλ, σλ),
for each band λ, with mλ and σλ as the noise parameters
described in Equations (7) and (8). Let α(r, :) be the spectrum
observed at r. Thus the hyperspectral data cube is processed
with a filter matched to the PSF cube. This yields the following
binary test:

max
λ

(yfλ(r))
H0

≶
H1

η(pFA), (33)

where yfλ(r) =
∑
z

∑
µ Lµ(λ)Fµ(r − z)yµ(z) is the output

of the matched filter statistic, and η(pFA) is the threshold
corresponding to a given false alarm pFA. Note that, because
of the spectral correlation of yf (r, :), it is not possible to
obtain a tractable expression of η(pFA). However, this can
be easily approximated by Monte-Carlo simulations, with
the parameters mλ and σλ replaced by some pre-processing
estimates delivered with the MUSE data cube. This approach
is similar to the work presented in [40]. The convolution by
the line spread function induces an enlargement of a few
pixels (seven pixels in this case), and we observe a Lyman-
alpha spectral line of about 20 pixels wide. This observation
appears to be confirmed by the two atoms used in [40] to
do the detection on the same quasi-real MUSE data cube.
We finally use a symmetric spectral form of 11 bands wide
convolved with the line spread function, instead of the line
spread function alone, to build the spectral component of our
matched filter.

The proposition map and the intensity of the reference
nonhomogeneous Poisson measure are finally deduced from
the max-test statistics (33), as described in section V-B.

D. Results and comparison

In the literature, there are a few methods for detecting
sources in three-dimensional data, mainly in the field of

astrophysics. Recently, a review compared five methods aimed
at detecting point sources and spatially extended galaxies that
present either a continuous spectrum or spectral lines in three-
dimensional images [41]. The results of the comparison are
detailed in [41]. Here we selected the algorithm DUCHAMP
that was proposed by [42], on the basis of its performance, its
similarity with our algorithm, and its adaptability to our detec-
tion framework. DUCHAMP is based on a detection algorithm
that uses an adapted thresholding at each λ followed by an
aggregation algorithm that incorporates the spectral dimension.
The input parameters of the DUCHAMP software are set to
values that optimize its performance. Then we only varied the
threshold value, to be able to detect at different levels of false
alarms. Similarly we set the threshold at different values for
our test statistics of Equation (33). Figure 6 shows the number
of true detections versus the number of false alarms for the
two methods. Even if DUCHAMP is faster, our algorithm is
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Fig. 6: Empirical true detections number versus false alarms
number.

notably better in terms of the number of false alarms. To reach
the same level of detection as our method, i.e. 17 out of 18
objects, the number of false alarms for DUCHAMP exceeds
200.

Figure 7 presents the results obtained for 104 RJMCMC
iterations. The proposition map is the result of the maximum
test of Equation (33) for a false alarm probability of 2×10−2.
The performances obtained for object detection with these
data are similar to those obtained on the synthetic image
for the position of the center, and the mean absolute error
on the position is 0.5 pixel. The shape of some real objects
is not perfectly elliptic, and the algorithm proposes a lot of
geometrical moves to best fit the intensity profile and the
shape, although the results cannot be as good as those of the
synthetic image.

Setting pFA = 2×10−2, 16 out 18 objects are well detected.
The undetected objects actually have a very low SNR, and
they are probably below the detection limit for this kind of
data. Setting the pFA at the same value as [40] provides
results that are comparable to those obtained by the pixel-
wise constrained-likelihood-ratios-based method presented in
[40] that was designed for the detection of a single object.

Finally, the nonparametric Bayesian framework provides
the advantage of addressing directly the multiple detection
problem, and to re-estimate the background parameters m
and σ2 taking into account the objects already detected.
Future work should use these estimated values to update the
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Fig. 7: Detection results over the whole cube are presented,
with the background image as the maximum test result, and
where white pixels are under the threshold. Ellipses correspond
to the support of the Sérsic profile at a decreasing rate
of 63%, green ellipses are true detections, red ellipses are
false alarms, orange ellipses represent multiple detections
of extended objects, and blue circles are placed on missed
detections. Magnification of a sub-cube containing three very
faint Lyman-alpha objects is shown. The overlap threshold
defined in Equation (17) is t = 0.3.

proposition map by re-computing the test statistics of Equation
(33).

VII. CONCLUSION

This paper presents a detection algorithm for object con-
figurations in two-dimensional and three-dimensional images
corrupted by additive Gaussian noise. A marked point pro-
cess was used to model the configuration of objects in the
nonparametric hierarchical Bayesian formulation. Priors were
chosen as noninformative, especially for the object intensities,
to avoid penalization of the smallest and faintest objects. The
hyperparameter and nuisance parameters were integrated out
of the posterior distribution to obtain a well-defined posterior
distribution that can be used for sampling the configuration
and the noise parameters with a RJMCMC algorithm. A
map built on the test statistics result was used to define the
intensity of the reference point process and to propose the
object center positions. Future work will include an update of
the proposition map during the detection process, in order to
integrate the knowledge of objects already detected. To detect
objects where the intensities present a difference of several
magnitudes, great attention must be paid to the modeling
and to the choice of the statistics. Another point could be
discussed for improving the detection; here the detection
results are obtained by considering a constant approximation
of the PSF over all the wavelengths. This approximation makes
it possible to considerably reduce the complexity. However
in the case where the PSF presents high variability over
the wavelength, block approximations could be considered
to maintain acceptable computation time. The computational
issues remain the limitation of the method when the number
of objects to be detected is huge, and so future investigations
might be comparisons with variational Bayes approaches.
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APPENDIX A
FAST RECURSIVE UPDATE FOR BIRTH AND DEATH MOVES

In this section, we consider birth and death moves. In
both cases, we move to a configuration of n objects to a
configuration of n+1 objects for a birth, and n−1 objects for a
death. We denote here the current configuration M ×n matrix
by X , and the new one by X̃ . For the sake of simplicity,
the matrix X is assumed not to be dependent on λ, although
the extension to the dependent case is straightforward. The
Cholesky factorization of an n×n matrix has a complexity of
O(n3). This complexity is too important for large numbers
of objects, which is why a recursive update strategy with
complexity of O(n2) is derived in the RJMCMC algorithm
to evaluate the different quantities required for Metropolis-
Hastings-Green ratio computation. The recursive update of the
following matrices will be detailed in this section:
• C̃, which corresponds to the Cholesky decomposition of

the new matrix X̃
• C̃−1X̃

T
[1,y1, ...,yΛ], which is involved in the expres-

sion of the posterior for the new matrix X̃ (note that
all slices of the data cube are processed simultaneously
here).

A. Birth move

The birth move induces an increase of one column at the
end of the matrix:

X =


...

...
x1 · · · xn
...

...


which becomes:

X̃ =


...

...
...

x1 · · · xn xn+1

...
...

...

 ,

and

C̃C̃T = X̃
T
X̃ =

 CCT XTxn+1

xTn+1X xTn+1xn+1


Note that the computation of the vector xTn+1X and the
scalar xTn+1xn+1 is not expensive, due to the sparsity of
xn+1 and X , with the spatial support of the objects being
quite small. This is the same for the dot products of the X
columns with the data [1,y1, ...,yΛ].

Recursive update algorithm:
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1) v = xTn+1xn+1

2) vp = C−1[XTxn+1, v]
3) g =

√
v − vpTvp

4) C̃ =


0

C
...
0

vp g


5)

C̃−1X̃
T

[1,y1, ...,yΛ]

=

 C−1XT [1,y1, ...,yΛ]

1
g

(
xn+1 − vpTC−1XT

)
[1,y1, ...,yΛ]


Introducing a = 1

g

(
xn+1 − vTp C−1XT

)
[1,y1, ...,yΛ],

this gives:

[1,y1, ...,yΛ]T X̃(C̃C̃T )−1X̃
T

[1,y1, ...,yΛ]

= [1,y1, ...,yΛ]
T
X(CCT )−1XT [1,y1, ...,yΛ] + aTa

and the Metropolis-Hastings-Green ratio given in Equation
(25), which depends only on the last line of the matrix
C̃−1X̃

T
[1,y1, ...,yΛ], becomes:

r(u,v) =

Λ∏
λ=1

exp
{a2

λ+1 − 2mλa1aλ+1 +m2
λa

2
1

2σ2
λ

}
× q,

where ai is the ith component of the (Λ + 1) line vector a.

B. Death move

The death move induces a reduction of one column of the
matrix X:

X =


...

...
...

x1 · · · xj · · · xn
...

...
...


becomes:

X̃ =


...

...
...

...
x1 · · · xj−1 xj+1 · · · xn
...

...
...

...


Suppression of the jth line and the jth column in the
Gram matrix XTX leads to the necessity to update the
Cholesky decomposition matrix C using Givens rotations to
triangularize the n− 1× n− 1 matrix C̃. Let j ∈ {1, . . . , n}
be the index matrix X of the object to be removed.

Recursive update algorithm:
Matrices initialization:
• C tmp = C
• P tmp = C−1XT [1,y1, ...,yΛ]

for k = j + 1, ..., n

1) v1 = Ck,k−1

2) v2 = Ck,k

3) if |v2| > |v1| then swap v2 and v1 endif
4) Construction of the Givens transformation for triangu-

larization of the matrix C where the line indexed by j
must be removed:

• w = v2
v1

• q =
√

1 + w2

• c = sign(v1)
q

• s = w × c
• r = |v1| × q

5) Apply the Givens transformation:

• C tmp
k,k−1 = r

• C tmp
k,k = 0

• vl = [j, k + 1, k + 2, ..., n]
• w = C tmp

vl,k−1 × c+ C tmp
vl,k
× s

• C tmp
vl,k

= −C tmp
vl,k−1 × s+ C tmp

vl,k
× c

• C tmp
vl,k−1 = w

6) Update of the product with data:

• w = P tmp
k−1 × c+ P tmp

k × s
• P tmp

k = −P tmp
k−1 × s+ P tmp

k × c
• P tmp

k−1 = w

endfor
where P tmp

l for 1 ≤ l ≤ n denotes the lth line of the matrix
P tmp.

This algorithm includes the permutation of lines of the
matrix C−1XT [1,y1, ...,yΛ] to place the elements corre-
sponding to the object to remove in its last line, denoted as
a:

P tmp =

 C̃−1X̃
T

[1,y1, ...,yΛ]

a

 (34)

Moreover this preserves the triangular structure of the
Cholesky decomposition matrix.

As a consequence, the outputs of this algorithm are the
following updated matrices:

• a = P tmp
n , which is the last line of P tmp and corresponds

to the contribution of the object to be removed;
• C̃−1X̃

T
[1,y1, ...,yΛ] = P tmp

\n , which is the matrix P tmp

where the last line has been removed;
• C̃ = C tmp

\j,\n, which is the matrix C tmp where the jth line
and nth column have been removed.

Finally, this gives:

[1,y1,...,yΛ]T X̃(C̃C̃T )−1X̃
T

[1,y1, ...,yΛ]

= [1,y1, ...,yΛ]
T
X(CCT )−1XT [1,y1, ...,yΛ]− aTa

which leads to the following expression of the acceptance ratio
given in Equation (28):

r(u,v) =

Λ∏
λ=1

exp
{−a2

λ+1 + 2mλa1aλ+1 −m2
λa

2
1

2σ2
λ

}
× 1

q
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APPENDIX B
MUSE

One of the major scientific purposes of MUSE is the
detection of very distant galaxies, where the spectrum is
composed of one faint and narrow line, called a Lyman-alpha
line. Lyman-alpha emitters are expected to exhibit such sparse
and compact spectra, where the position of the spectral line
cannot be predicted because there is the redshift effect related
to the object velocity and distance. The detection challenge
arises as the position of the galaxy in the image and the
position of the Lyman-alpha line in the spectrum are not
known, and the amplitude of this line is very low compared
to the brightest objects. Figure 8 shows typical galaxy spectra
observed using the MUSE instrument.
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Fig. 8: Typical spectra of bright (magenta) and faint (blue) galaxies.
Noise spectrum in gray.
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