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ABSTRACT: New copolymers of polypyrrole and poly(3-carboxylic acid pyrrole) have been 

synthesized via diaphragmatic method using track-etched polycarbonate matrix. The presence 

of carboxylic acid enables the introduction of new functionalities such as sulfonate groups. 

The resulting copolymer membranes with tubules microstructure have been characterized 

through Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, Time-of-flight 

Secondary Ion mass Spectrometry and FTIR. By SEM it was observed that ion-track 

trajectories present characteristic of crossing. FTIR, XPS and ToF-SIMS proved the 

attachment of the Taurin molecule to the membrane. The thermal stability study shows that 

the polypyrrole copolymer membranes have an exceptional stability; decomposition was not 

observed up to 900°C. 

 



1. Introduction 

Polypyrrole, PPy, is insoluble and infusible which restricts its processability. To overcome 

these restrictions, Zhitariuk and co-workers
1
 proposed an original way of designing PPy 

microstructured membranes using track-etched polymer matrix
2
. These membranes proved to 

be an important device in the field of ultra-filtration and synthetic membranes
3
. In recent 

years, PPy/Nafion composites have been the subject of numerous fundamental studies and 

investigations for a wide range of applications
4,5,6

. The combination of both the electronic 

conductivity of the pyrrole with the high ionic conductivity of Nafion provides some 

applications for PPy-rich composites in batteries
4
, super capacitors, and fuel cells

5,6
. Nafion is 

a well-known membrane for Proton Exchange Membrane Fuel Cell (PEMFC). Nevertheless, 

its thermal capacity during engine cycles is limited and its mechanical property can be 

affected by the presence of solvents, water content and by cation substitutions
7
. Even in 

composite form, these drawbacks remain unsolved. If the ionic conductivity as well as the 

ion-exchange capacity of Nafion could be conferred to the polypyrrole these drawbacks could 

be overcome. PPy microstructured membranes from track-etched membranes would enhance 

ion-exchange capacity. In combining PPy microstructured membrane technology with 

chemical functionalisation, the result would lead to a membrane which suits all the criteria 

required for an improved PEMFC. 

The aim of this paper is thus to report on the synthesis of sulfonated PPy and PPy derivatives 

copolymers by oxidative polymerisation using track-etched templates.  In fact, a substantial 

effect on the ionic conductivity has already been observed upon the incorporation of SO3
-
 

groups in the PPy polymeric chain
8
.  

 

 



2. Experimental Section 

PC track-etched membranes (pore diameter = 1µm) were purchased from Waters. Pyrrole 

(Py) (Aldrich Chemicals) was distilled in vacuum and stored at ≤4°C in darkness prior to use. 

All the other reactants were used as received: Pyrrole 3-carboxylic acid (PyCOOH) (Acrôs), 

para-toluene sulfonic acid (p-TSA) (Aldrich), ferric chloride hexahydrate (FeCl3:6H2O), 

sodium hydroxide (NaOH), Taurin C2H7O3NS (Aldrich), ethyl-3-(3-dimethylamino-

propyl)carbodiimide C8H17N3.HCl (EDC) (Fluka-Aldrich). These solvents were analytical 

grade. Deionized water was used. 

Py and PyCOOH copolymerisation onto PC track-etched membranes (Waters) were 

performed using the diaphragmatic method described by Zhitariuk et al.
1,9

. The two-

compartment cell was separated by the PC track-etched membrane. One compartment was 

filled with 10 ml solution (EtOH:H2O) (50:50) of Py (0.15 N), PyCOOH (0.15 N) and p-TSA 

(0.1 N) as doping agent. The other one was filled with FeCl3 solution (0.9 N) as an oxidant. 

The initial and the modified membranes were weighed to determine the weight of the final 

copolymer on the matrix membranes. Dissolution of PC template membrane was then 

performed using NaOH 6N at 80°C for at least 2 hours.  The obtained dedoped black poly(Py-

co-PyCOOH) membranes were washed twice in fresh water and 1 hour in boiled water to 

remove any excess NaOH. The Poly(Py-co-PyCOOH) membranes were neutralized in acidic 

solution (1 N) for at least 2 hours before the Taurin immobilization. A coupling procedure 

was adopted and, after the last water washing, the clean membranes were allowed to react 

with EDC (10
-2

M) and Taurin (3.2.10
-2

 M) for 24 hours in aqueous medium. The final 

membranes were washed again in fresh water and dried gently at room temperature. 

 

Scanning Electron Microscopy (SEM). Scanning electron microscopy (SEM) was carried 

out with a Phillips apparatus equipped with a LaB6 tip, and coupled with a PGT-Princeton 



Gamma Tech. X-ray detector and a PRISM Digital spectrometer. The films and the cross-

sections were coated with Au using a sputtering device before the analysis. Charge 

compensation with a low-energy electron flood-gun was necessary. 

 

X-Ray Photo-electron Spectroscopy (XPS). X-ray photoelectron spectra were recorded on a 

HP5950A spectrometer using a monochromatic Al K X-ray source (1486.6 eV). The 

concentric hemispherical electron energy analyzer was equipped with a multichannel detector 

operating at a constant energy mode at an electron take-off angle of 51.5
o
. Charging effects 

were neutralized using a flood gun operated at 2 eV kinetic energy. A pass energy of 150 eV 

was used for both survey and core level scans. The resolution was between 0.8-1 eV. Binding 

energies were determined by reference to the C1S component due to aromatic carbons 

attributed as for poly(2-vinylpyridine) (P2VP) model
10

 at 285.4 eV. Linear baselines for 

background subtraction and Gaussian functions were used for peak fitting. Atomic 

percentages were determined from peak areas by using Scofield factors
11

 (C1S=1, F1S=4.43, 

O1S=2.93, N1S=1.8). 

 

Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The mass spectra of the 

samples were recorded on a ToF-SIMS IV (ION-TOF GmbH) spectrometer. The secondary 

ions were generated by a pulsed gallium ion beam and extracted with a 2 keV voltage. Typical 

analysis conditions for this work were a 25 keV pulsed Ga
+
 beam at a 45

o
 incidence and a 2 

pA pulsed current, rastered over a 130 m × 130 m area. The total ion fluency was kept 

below 3 × 10
-12

 ions/cm
2
 to ensure static conditions. The mass resolution (m/∆m) near mass 

29 was typically 8000. 

 



Infrared Spectroscopy Measurements (FTIR). FTIR spectra of polymer membrane powders 

were recorded on a Nicolet Magna-IR
TM

 750 spectrometer equipped with a DTGS detector as 

a KBr pellet. Experiments were carried out cumulating 32 scans at a resolution of 2 cm
-1

. 

 

Thermogravimetry. The thermograms TG were recorded in air atmosphere at a heating rate 

of 20K/min using a thermal analyzer (Perkin Elmer DS1410D/9928J/DAD012).  

 

2. Results and Discussion 

 

Polymerisation and copolymerisation kinetics onto track-etched matrix 

Elaborations of copolymer membranes were performed using the diaphragmatic method 

described by Zhitariuk et al. 
1,9

. Polycarbonate microporous membranes were used as 

templates. The kinetics of the Pyrrole polymerisation and the copolymerisation of  the pyrrole 

and pyrrole-3-carboxylic acid onto PC matrix (Figure 1) show a rapid weight gain over 5 hrs. 

An asymptotic variation leading to a conversion rate of 5 mol% after 24 hrs is then observed. 

This low conversion on the solid phase is due to the rapid diffusion of oxidant molecules and 

monomers through the PC matrix micropores resulting in a high conversion rate in the liquid 

phase. The available PC matrix area is also another parameter which limits the conversion. It 

is for this reason that we express the rate as a grafting rate Q (wt%) rather than a conversion 

rate. Q is defined as follows: 

100



PC

PCf

m

mm
Q        (1) 

where mf is the final membrane weight obtained after polymerisation, and mPC the initial PC 

matrix weight. 

As illustrated in Figure 1, a slight difference in polymerisation kinetic appears between the 

homopolymer PPy and the copolymer poly(Py-co-PyCOOH) at different temperatures. In 



fact, pyrrole is a very reactive monomer and is able to polymerize at low temperature (0°C).In 

contrast, pyrrole-3-carboxylic acid monomer needs a minimum of 50°C to polymerize 

properly. Nevertheless, when the copolymerisation occurs at 50°C, the polymerisation kinetic 

tends to be in the range of pyrrole homopolymerisation at 23°C. 

 

Permeation study: a way to follow pore filling 

To study our membranes, a simple cell with a free-standing membrane was used. Pressure 

was supplied by vacuum. Trans-membrane pressure (P) was 10
4
Pa. Ethanol permeation 

parameter Lm was calculated as follows: 

PS

J
L

m

m



.

       (2) 

where J - flow rate (m
3
/s) 

  Sm – area of membrane surface (m
2
) 

Generally, three parameters describe a membrane microstructure: pore diameter dP, pore 

length lP and porosity . They relate to macrocharacteristics of filtration by means of Hagen-

Poiseuille equation:         
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where  represents the dynamic viscosity (Pa.s). This equation determines a laminar flow of 

liquid in one tube or pore with diameter dP and length lP. If we consider n pores on the 

membrane surface Sm, equation 2 becomes: 
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where F represents the pore density. 



We performed multiple polymerisations of thirty minutes each. Between each 

polymerisation step, we permuted the monomer and oxidant compartments in order to get 

homogenous surfaces. Figure 2 displays the ethanol permeation values calculated from 

equation 4 between each polymerisation step of PPy and poly(Py-co-PyCOOH) membranes 

grafted onto PC matrix. When expressing the permeability in logarithm scale, a linear 

relationship is observed with the polymerisation time. Poly(Py-co-PyCOOH) copolymer 

presents an enhanced permeability in comparison to polypyrrole. Even if the polymerisation 

kinetics between the copolymer and the homopolymer are comparable at the studied 

temperatures (Figure 1), a difference of 5 wt% in grafting rate between the homopolymer and 

the copolymer remains after 30 mins of polymerisation. It suggests that copolymer deposition 

during pore filling is slightly less important than homopolymer deposition. This difference 

may also come from a difference of structure density between the copolymer and the 

homopolymer ascribable to the carboxylic acid substitution at 3 position of pyrrole ring in 

copolymer chains.  

The figure 3 displays the conversion of permeation data obtained in figure 2 into pore 

equivalent diameters dp from equation 5. It illustrates an easy way to determine pore 

diameters from permeation measurements and allows us to follow the polymer pore filling 

during polymerisation process. The exponential decay of pore diameter shows that the 

polymer coating thickness onto PC matrix template diminishes gradually and tends towards 

an asymptotic value when reaching nanopore diameters. Consequently, it becomes very 

improbable to obtain a PPy wire by diaphragmatic method. Different parameters coming from 

pore intern diameter nanoscale may govern that limit in polymer coating such as flow regime 

changes, polymer aromatic group electrostatic repulsions or molecular diffusion limited 

regime. 

 



Final membrane microstructure 

After the PC matrix dissolution under strongly basic conditions (NaOH 6N), SEM 

micrograph shows the final membrane structure (Figure 4a). From SEM pictures, we have 

observed a good correlation with equivalent pore diameter calculated previously from 

permeation measurements. In fact, the increase in the thickness of the pore wall after 

successive polymerisations can be easily followed (Figures 4b and 4c).  

Figure 5 illustrates a cross-section of poly(Py-co-PyCOOH) membrane after PC matrix 

removal. The ion-track trajectories are not always in one direction as is made evident by the 

presence of multiple crosses formed by ions tracks copolymers replica. Some irradiations 

were done at +45° and others at -45° leading to microtubules cross-sections of 90°. This 

irradiation strategy is used to limit tracks overlapping. It could also be interesting to use this 

radiation procedure to increase the final mechanical properties of this kind of membrane.  

 

Functionalization of microstructured membranes: compositional verification 

It is expected that the carboxylic acid groups of the copolymer membranes allow the anchor 

of Taurin molecules via common coupling reaction using water-soluble carbodiimide, EDC 

(scheme 1). The anchored Taurin molecules endow copolymer membranes with sulfonate 

functions. These sulfonate groups transfer protons and confer ion-exchange property to these 

new copolymer membranes. 

In order to prove if Taurin immobilization was achieved , chemical analyses were 

performed by XPS and ToF-SIMS. Figure 6 shows the negative ToF-SIMS spectrum recorded 

on the Taurin powder. This spectrum is characterized by a peak at m/z = 124 that is assigned 

to the Taurin molecular ion minus one hydrogen atom (C2H7NO3S
-
 or M - 1). Peaks appearing 

below m/z 124 give information about Taurin molecular fragmentation caused by ion impact 

during the ion emission process. The fragments at m/z = 97, m/z = 80, m/z = 64, m/z = 48 and 



m/z = 32 assigned to SO4H
-
, SO3

-
, SO2

-
, SO

-
 and S

-
 ions respectively, can be used to monitor 

the Taurin immobilization as the sulphur atom is not a native element of the Poly(Py-co-

PyCOOH) membrane. In fact, due to the use of the H2SO4 solution for neutralization of the 

Poly(Py-co-PyCOOH) membrane, traces of sulphur related fragments were found on the ToF-

SIMS  spectrum recorded on the membrane before the Taurin immobilization. However, on 

the spectrum recorded after the Taurin immobilization a low intensity peak related to the 

Taurin molecule appeared at m/z 124 (Figure 7) and the normalized intensity of the peaks 

related to the sulphur fragments increased; specifically marked was the increase of the 

sulfonate ion SO3
-
 ion by a factor of 4.3. These suggest the presence of Taurin immobilized 

on the membrane. The low intensity of the Taurin molecule related peak can be associated to 

the fact that this molecule is strongly bonded to the surface of the membrane and during the 

ion bombardment it is mainly fragmented. 

Figure 8 displays the comparison of the C1S XPS core level spectra recorded on Taurin 

substituted and non-substituted poly(Py-co-PyCOOH) membranes. Taurin substitution is 

evidenced by the peak width enlargement. Figure 9 (a) shows the C1S core level spectrum 

recorded on the non-substituted poly(Py-co-PyCOOH) membrane, and the results of its fitting 

analysis. To reproduce the experimental data, four Gaussian functions and a linear 

background were used. Aromatic carbons (1) are attributed as for poly(2-vinylpyridine) 

(P2VP) model
10

 at 285.4 eV. The shake up is fitted near 291 eV. The photoelectrons emitted 

from carbon atoms present in C-N PPy ring (2) and carboxylic acids (3) generated the 

Gaussians at 286.2 eV and 289 eV respectively. Figure 8 (b) displays the C1s core level 

spectrum recorded on Taurin substituted poly(Py-co-PyCOOH) membrane. To properly 

reproduce this data, apart from the four previously used Gaussians functions, two others were 

added to the fitting analysis.  The new Gaussians functions were generated by photoelectrons 



emitted from carbon atoms in C-S groups (5) at 285.8 eV and from carbon atoms in amide 

groups (4) at 288.2 eV.  

Comparing the results of the peak analysis, it was found that the area of the peak 

associated to carboxylic acid near 289 eV decreases from 11.2 % (theoretical value equates to 

11.1 %) to 5.7 % while the area of the C-N peak increases from 38.4 % up to 41.3 % and the 

area of the C=C peak decreases from 42.8 % to 27.3 %. The increase in the C-N peak area and 

the decrease of C=C peak area supports the assumption of Taurin immobilization. In fact, as 

shown on scheme 1, the chemical composition of the Taurin adds a C-N bond conferring a 

theoretical 1.45 % increase of C-N content (2) and globally the C=C contribution (1) 

decreases theoretically from 44 % in carbon content for poly(PPy-co-PPyCOOH) to 36 % for 

poly(PPy-co-CONH-Taurin).  Although a relatively good correlation, the variations observed 

from theoretical values show that the membranes surface chemical composition is slightly 

different from the simple scheme model. The remaining 5.7 % carboxylic acid moieties 

suggests: i) the presence of PPy oxidation residue
12

 and/or ii) a non-complete substitution 

which can be caused by a lack of accessibility of some carboxylic acid sites. 

Figure 10 displays FTIR spectra of poly(Py-co-PyCOOH) and poly(Py-co-

PyCONHTaurin). The bands at 1040 and 1107 cm
-1

 represent, respectively, the symmetric 

and asymmetric streching vibration of the sulfonated group. It is important to note that the 

peak at 1700 cm
-1

 in spectrum (a) which corresponds to C=O vibration of the carboxylic acid 

decreased after Taurin attachment in favour of amide I peak arising at 1640 cm
-1

 and amide II 

peak at 1569 cm
-1

. 

 

Microstructured membranes thermal stability 

Thermogravimetric analysis (TGA) can be used to assess the thermal stability of each 

polymer membrane. The TGA curves measured under flowing nitrogen are shown in figure 



11. The polypyrrole powder is obtained by oxidative polymerisation in solution under the 

same experimental conditions used for synthesis of PPy microstructured membranes. The 

TGA curve of the dedoped polypyrrole powder is similar to those obtained previously
13

 in N2. 

The TG of the polypyrrole powder shows only one major weight loss step at 475°C from 

derivative curve event. There is a small weight loss of 8% below 100°C corresponding to 

water content. When polypyrrole has been synthesized by diaphragmatic method and the 

resulting PPy microstructured membrane revealed by matrix dissolution, we observed 

unexpected thermal behaviour. In fact, under thermal treatment, PPy membranes behave 

completely differently from PPy in solution showing no decomposition event, even when 

heating up to 900°C (Figure 11). This exceptional thermal stability is also observed for 

copolymer membranes. It is not affected by Taurin modification.  

The lowest energy conformation of a polypyrrole chain is an arrangement in which the 

pyrrole rings in the chain are co-planar. An increased proportion of planar PPy segments 

induces a concomitant increase in conductivity 
14

. A helical coil conformation is also possible 

if the alternation of ring orientation is irregular. In our case, no organisation of PPy chains 

occurs during polymerisation in solution and a polymer coil is obtained randomly. Inversely, 

the pattern of PC matrix porous membranes forces PPy chains to organize themselves in the 

lowest energy conformation. Jinbo H. et al. 
15

 recently studied the ordered structure of the 

surface of PPy nanotubules by growing potentiostatically PPy nanotubules using alumina 

membranes. They reach the conclusion that the pyrrole ring lay parallel to the alumina 

template wall. Considering the research above, in this kind of oriented structure the polymer 

chains can align more tightly, which explains the reported conductivity enhancement. It also 

plays a role in material mechanical properties. Because the thermal stability depends on the 

conductivity behaviour and the mechanical properties, it is possible to link these 



considerations as a plausible explanation for the obtained TG results on PPy and PPy 

derivatives membranes. 

 

 

4. Conclusions 

Copolymers of polypyrrole and poly(3-carboxylic acid pyrrole), noted poly(Py-co-

PyCOOH), have been successfully synthesized via diaphragmatic method using track-etched 

PC matrix. Permeation data allowed us to follow equivalent pore diameter decrease with 

polymerisation time. Each pore diameter calculated from permeation data was confirmed by 

SEM. We could observe that polymer deposition layer on PC matrix was thicker in the case of 

homopolymer as compared to copolymer of pyrrole. This difference was ascribed to grafting 

rate variations and structural difference between the copolymer and the homopolymer. After 

PC matrix dissolution, poly(Py-co-PyCOOH) membranes with tubular microstructures were 

obtained. The tubules presented the characteristic of crossing ion tracks.  

The resulting membranes with tubular microstructure should exhibit an enhanced ion-

exchange capacity because of their great specific surface. In order to bring them the ion-

exchange capacity, sulfonated groups have been covalently binded by coupling reaction with 

carboxylic acid moieties present onto the copolymer backbone. Sulfonation by coupling 

reaction with Taurin was verified by XPS, ToF-SIMS and FTIR. It suggests that other 

functionalities can be introduced using this protocol on such copolymer microstructured 

membranes, opening a vast field of applications. 

The thermal stability of the membranes was also studied. It has shown no decomposition 

event up to 900°C, even after sulfonation by Taurin immobilization. Such a thermal stability 

on PPy derivatives has not yet been reported and it points out the great impact of the structure 

on the thermal behaviour. This is of great interest concerning PEMFC applications.  
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Scheme 1. Taurin immobilization onto poly(PPy-co-PPyCOOH) membrane 

 

Figure 1: Polymer mass variation onto PC matrix versus polymerisation time: PPy at 23°C 

(), poly(Py-co-PyCOOH) at 50°C () . 

Figure 2: Ethanol permeabilities of PPy () and poly(Py-co-PyCOOH) ()  membranes 

onto PC matrix at different polymerisation time 

Figure 3: Equivalent pore diameters of PPy () and poly(Py-co-PyCOOH) () membranes 

onto PC matrix versus polymerisation time 

Figure 4: PPy membranes after PC matrix dissolution a) one polymerisation step, b) three 

polymerisation steps, c) ten polymerisation steps 

Figure 5: SEM micrograph of a cross-section of poly(Py-co-PyCOOH) (50:50) membrane : 

Øtubes = 1µm; pore length = 18 µm; wall thickness = 240 nm 

Figure 6:  Typical Taurin low-mass negative ToF-SIMS spectrum  

Figure 7: Typical Taurin substituted poly(Py-co-PyCOOH) low-mass negative ToF-SIMS 

spectrum 

Figure 8: XPS C1S core level spectra of Taurin substituted (Δ) and non-substituted () 

poly(Py-co-PyCOOH) (50:50) –spectra were normalized at 30 scans- 

Figure 9: XPS  C1S core level spectrum of (a) poly(Py-co-PyCOOH) (50:50) -30 scans- and 

(b) Taurin substituted poly(Py-co-PyCOOH) (50:50) -50 scans- : () raw data; (
_
) fit result; 

(--) base line; () C=C P2VP equivalent; (Δ) C-S; (▲) =C-N; () amide; (▼) COOH; () 

shake up 

Figure 10: FTIR spectra in transmission mode of (a) poly(Py-co-PyCOOH) (50:50) [
__

] and 

(b) Taurin substituted poly(Py-co-PyCOOH) (50:50) [
__

]-32 scans- 

Figure 11: TGA curves of PPy powder (
_
 Δ 

_
), PPy membrane (

___
),Taurin substituted 

poly(Py-co-PyCOOH) (---), poly(Py-co-PyCOOH) (
_
.
_
.
_
) 
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