
HAL Id: hal-01128955
https://hal.science/hal-01128955v1

Submitted on 10 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Propositional update operators based on formula/literal
dependence

Andreas Herzig, Jérôme Lang, Pierre Marquis

To cite this version:
Andreas Herzig, Jérôme Lang, Pierre Marquis. Propositional update operators based on for-
mula/literal dependence. ACM Transactions on Computational Logic, 2013, 14 (3), pp.1-31.
�10.1145/2499937.2499945�. �hal-01128955�

https://hal.science/hal-01128955v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12416

To link to this article : DOI :10.1145/2499937.2499945
URL : http://dx.doi.org/10.1145/2499937.2499945

To cite this version : Herzig, Andreas and Lang, Jerome and Marquis,
Pierre Propositional update operators based on formula/literal
dependence. (2013) ACM Transactions on Computational Logic, vol.
14 (n° 3). pp. 1-31. ISSN 1529-3785

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12416/
http://oatao.univ-toulouse.fr/12416/
http://dx.doi.org/10.1145/2499937.2499945
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Propositional Update Operators Based on Formula/Literal
Dependence

ANDREAS HERZIG, IRIT-CNRS, Toulouse

JEROME LANG, LAMSADE-CNRS, Paris

PIERRE MARQUIS, CRIL-CNRS, Lens

We present and study a general family of belief update operators in a propositional setting. Its operators
are based on formula/literal dependence, which is more fine-grained than the notion of formula/variable

dependence that was proposed in the literature: formula/variable dependence is a particular case of for-
mula/literal dependence. Our update operators are defined according to the “forget-then-conjoin” scheme:
updating a belief base by an input formula consists in first forgetting in the base every literal on which the
input formula has a negative influence, and then conjoining the resulting base with the input formula. The
operators of our family differ by the underlying notion of formula/literal dependence, which may be defined
syntactically or semantically, and which may or may not exploit further information like known persistent
literals and pre-set dependencies. We argue that this allows to handle the frame problem and the ramifica-
tion problem in a more appropriate way. We evaluate the update operators of our family w.r.t. two important
dimensions: the logical dimension, by checking the status of the Katsuno-Mendelzon postulates for update,
and the computational dimension, by identifying the complexity of a number of decision problems (including
model checking, consistency and inference), both in the general case and in some restricted cases, as well as
by studying compactability issues. It follows that several operators of our family are interesting alternatives
to previous belief update operators.

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Knowledge representation, update, computational complexity

1. INTRODUCTION

Belief update mainly focuses on determining how a belief state (typically represented
by a belief base) should evolve in order to take into account a new piece of information
reflecting an explicit evolution of the world, typically the effect of an agent’s action, or
an event the occurrence of which the agent is aware of. In other words, updating by
some piece of information µ roughly corresponds to projecting the consequences of the
action “make µ true.”

Authors’ addresses: A. Herzig, IRIT-CNRS/Université de Toulouse, 118 route de Narbonne - F-31062
Toulouse - France; J. Lang, LAMSADE-CNRS/Université Paris Dauphine, Place du Maréchal de Lattre de
Tassigny - F-75775 Paris - France; P. Marquis, CRIL-CNRS/Université d’Artois, rue Jean Souvraz - F-62307
Lens - France; email: marquis@cril.univ-artois.fr.

Many belief update operators in a propositional setting have been proposed in the
literature. In this setting, a belief base is a propositional formula (or a finite set of
such formulas that is interpreted conjunctively). The first works were mostly based
on principles of minimization of change. While this principle is attractive for many
belief change operators, including belief revision1, using it to define update operators
has been criticized in many places (see e.g., Herzig and Rifi [1999]), and it is now
more or less a common belief that an explicit minimization of change should not be
the core principle for belief update. A more suitable principle for building update
operators is the notion of dependence. The first dependence-based update operators
were proposed by Winslett [1990], Doherty et al. [1998, 2000], Herzig [1996], Herzig
and Rifi [1998, 1999]. In a nutshell, a belief base is updated by first forgetting
every piece of belief whose variables depend on those of the input formula, and then
conjoining (“expanding”) the resulting base with the input formula itself. For example
take the propositional belief base a ∧ b and the input formula ¬a. If we consider that
the propositional variable a depends on a and b does not, then forgetting a from a ∧ b
results in b, and expanding the latter with ¬a results in ¬a ∧ b. Another example
is the belief base a ∧ b and the input formula a ∨ b. If the propositional variable
a depends on a and b depends on b then forgetting a ∨ b from a ∧ b results in the
empty belief base ⊤, and expanding the latter with a ∨ b results in a ∨ b. Depending
on the notion of dependence under consideration, many operators following such a
“forget-then-conjoin” scheme can be defined.

However, some severe problems with these dependence-based operators were
pointed out by Herzig et al. [2001]. They stem from the fact that dependence is not di-
rected: as we shall explain below, in many cases this makes us forget too much. In this
article we show how dependence-based update operators can be generalized to take
into account the truth value of fluents (here, the propositional variables) on which the
update formula depends (and not only the variables themselves). This leads to a better
handling of the frame problem and is specifically important when persistent literals
are considered: literals that remain true once they become true. The idea is that in
order to update by µ one should forget the negations of all those literals µ depends on.
Let us take up the second above example where forgetting the variables a and b in a∧b
resulted in the trivial belief base ⊤. It is natural to consider that a (positively) depends
on the truth of a, but that ¬a does not (positively) depend on the truth of a. Therefore
in order to update by a ∨ b we should forget ¬a and ¬b from a ∧ b. As both a and b
“survive” the forgetting of ¬a and of ¬b, updating a ∧ b by a ∨ b should result in a ∧ b.

In order to overcome these problems we introduce a family of update operators that
is based on formula/literal dependence. We explore several possible definitions of de-
pendence functions: they may be defined syntactically or semantically, and they may
exploit further information such as knowledge about persistent literals and pre-set
dependencies. Different notions of formula/literal dependence will lead to different up-
date operators. We show that these belief update operators allow to grasp the effects
of actions in a way better than the previous dependence-based operators, while avoid-
ing a complexity shift. We also evaluate the operators with respect to their logical
and computational properties: as to the former, we check the status of the Katsuno-
Mendelzon (KM) postulates for update; as to the latter, we identify the complexity of a
number of decision problems (including model checking, consistency, and inference), as
well as compactability issues. We identify some operators from the family that provide
interesting trade-offs, compared to previous belief update operators.

1Note that however some authors question the suitability of change minimization even for belief revision;
see for instance [Delgrande et al. 2005].

The rest of the article is as follows. Some formal preliminaries are given in Sec-
tion 2. Our family of dependence-based update operators is presented in Section 3.
Logical properties are discussed in Section 4 and computational properties are studied
in Section 5. Dependence-based update is positioned with respect to action languages
in Section 6. Connections to related work are given in Section 7. Finally, Section 8
concludes the article.

2. FORMAL PRELIMINARIES

In this section, we recall the necessary background definitions from propositional logic
and complexity theory.

2.1. Propositional logic

We consider a propositional language FMLVar built up from a finite (but arbitrarily
large) set of propositional variables Var = {a, b, . . .}, the Boolean constants ⊤ and ⊥,
and the connectives ¬, ∧, ∨, ⇒. Propositional formulas are denoted by Greek letters,
typically α, β, µ, ϕ, ψ , etc. Var(ψ) denotes the set of propositional variables occurring
in formula ψ , and |ψ | denotes the size of ψ , i.e., the number of symbols used to
write it.

Interpretations over Var (or worlds) are denoted by ω, ω′, etc. We represent them as
(maximal consistent) sets or conjunctions of literals over Var. For instance, if Var =
{a, b, c}, then the world assigning variables a and c to true and variable b to false is
denoted by {a, ¬b, c}. Formulas are interpreted in the classical way. The set of models
of a formula ϕ is the set of interpretations ω such that ω |= ϕ; this set is denoted by
Mod(ϕ). |= denotes classical entailment and ≡ denotes logical equivalence.

A literal is a propositional variable (a positive literal) or the negation of a proposi-

tional variable (a negative literal). For every literal l, l is the complementary literal of

l, defined by l = ¬x when l = x ∈ Var is a positive literal, and l = x when l = ¬x (with

x ∈ Var) is a negative literal. For a set of literals L we note L = {l | l ∈ L}. LitVar is the
set of literals of the language, i.e., LitVar =

⋃

x∈Var{x, ¬x} = Var ∪ Var.

If ω is a world and L a consistent set of literals from LitVar, then (ω \ L) ∪ L is
the world that gives the same truth value as ω to all variables except the variables of
literals of L and such that every literal of L is true, that is, (ω \ L) ∪ L |= (

∧

L). For

instance, if ω = {a, ¬b, c, d} and L = {b, c, ¬d} then (ω \ L) ∪ L = {a, b, c, ¬d}.
The set of literals of a formula is inductively defined as follows:

Lit(⊤) = ∅

Lit(⊥) = ∅

Lit(x) = {x} for x ∈ Var

Lit(¬ϕ) = Lit(ϕ)

Lit(ϕ ∧ ψ) = Lit(ϕ) ∪ Lit(ψ)

Lit(ϕ ∨ ψ) = Lit(ϕ) ∪ Lit(ψ)

Lit(ϕ ⇒ ψ) = Lit(ϕ) ∪ Lit(ψ)

For instance, for ϕ = ¬((¬a ∧ b) ∨ (a ∧ c)) we have Lit(ϕ) = {a, ¬a, ¬b, ¬c}.
Equivalently, Lit(ϕ) is the set of literals occurring in the Negation Normal Form of

ϕ, noted NNF(ϕ), that is obtained by “pushing down” every occurrence of ¬ in ϕ (in-
cluding the implicit negations conveyed by ⇒), then removing double negations (over
variables). Formally, NNF(ϕ) is inductively defined as follows:

— if ϕ ∈ Var ∪ {⊤, ⊥}, then NNF(ϕ) = ϕ;

— if ϕ = α ∧ β then NNF(ϕ) = NNF(α) ∧ NNF(β);
— if ϕ = α ∨ β then NNF(ϕ) = NNF(α) ∨ NNF(β);
— if ϕ = α ⇒ β then NNF(ϕ) = ¬NNF(α) ∨ NNF(β);
— if ϕ = ¬α with α ∈ Var ∪ {⊤, ⊥} then NNF(ϕ) = ¬α;
— if ϕ = ¬(¬α) then NNF(ϕ) = NNF(α);
— if ϕ = ¬(α ∧ β) then NNF(ϕ) = NNF(¬α) ∨ NNF(¬β);
— if ϕ = ¬(α ∨ β) then NNF(ϕ) = NNF(¬α) ∧ NNF(¬β);
— if ϕ = ¬(α ⇒ β) then NNF(ϕ) = NNF(α) ∧ NNF(¬β).

When the morphology of the language is limited to the connectives ¬, ∧, ∨, ⇒, and
the Boolean constants—as it is the case here—, then Lit(ϕ) can be computed in time
linear in the size of ϕ.

The standard definition of uniform substitution stipulates that ϕ[x ← ψ] is the
formula obtained by uniformly replacing in ϕ every occurrence of propositional vari-
able x by the formula ψ . It will be convenient to extend this to literals; we identify
ϕ[¬x ← ψ] with ϕ[x ← ¬ψ]. For the example formula ϕ = ¬((¬a ∧ b) ∨ (a ∧ c)) we get
ϕ[¬a ← ⊤] = ¬((¬¬⊤ ∧ b) ∨ (¬⊤ ∧ c)).

2.2. Computational Complexity

We assume that the reader is familiar with some basic notions of computational com-
plexity, especially the complexity classes P, NP, and coNP, as well as with the basic
decision problems SAT and UNSAT (and their restrictions to 3CNF formulas) and with
the classes 1

p
k
, 6

p
k

and 5
p
k

of the polynomial hierarchy PH =
⋃

k≥0 1
p
k

=
⋃

k≥0 6
p
k

=
⋃

k≥0 5
p
k
; we refer the reader to Papadimitriou [1994] for the details.

Let us recall that a decision problem is said to be at the kth level of PH if and only if
it belongs to 1

p
k+1, and is either 6

p
k
-hard or 5

p
k
-hard.

It is well-known that if there exists i > 0 such that 6
p
i

= 5
p
i

then for every j > i,

we have 6
p
j

= 5
p
j

= 6
p
i
: PH is then said to collapse to level i. It is strongly believed

that PH does not collapse (to any level), that is, it is a truly infinite hierarchy: for every
integer k, PH 6= 6

p

k
.

An advice-taking Turing machine is a Turing machine that has associated with it a
special “advice oracle” A, which can be any function (which does not have to be com-
putable). On input s, a special “advice tape” is automatically loaded with A(|s|) and
from then on the computation proceeds as normal, based on the two inputs, s and A(|s|).

An advice-taking Turing machine uses polynomial advice if its advice oracle A satis-
fies |A(n)| ≤ p(n) for some fixed polynomial p and all non-negative integers n; finally,
P/poly is the class of all languages that can be decided in polynomial time by deter-
ministic Turing machines augmented by polynomial advice. It is known that if NP ⊆
P/poly, then PH collapses at the second level [Karp and Lipton 1980].

3. A GENERAL FAMILY OF DEPENDENCE-BASED UPDATE OPERATORS

Belief update operators [Katsuno and Mendelzon 1991] map a belief base ψ represent-
ing the initial beliefs of a given agent and an input formula µ reflecting the effect of
some action or event to a new belief base ψ ⋄ µ, which corresponds to the beliefs held
by the agent after the action or event took place. In this article we consider proposi-
tional belief bases, that we identify with formulas. We typically use ϕ, ψ , ψ ′, etc. for
belief bases and µ, µ′ etc. for input formulas. To define ψ ⋄ µ as the conjunction of the
input formula µ with ψ—called an expansion in the belief revision literature—would
not be a good idea because ψ ∧ µ is inconsistent as soon as the input formula µ con-
tradicts ψ . Similarly, belief revision operations [Alchourrón et al. 1985; Katsuno and
Mendelzon 1992] are not appropriate for updating belief bases; especially, the belief

revision postulate (R2) [Katsuno and Mendelzon 1992], stating that revision must re-
duce to expansion whenever µ is consistent with ψ , is not expected to hold. As a matter
of illustration, consider the well-known example ψ = d∨w where d means “the door is
open” and w means “the window is open.” If ψ is revised by the more reliable formula
µ = ¬d, it makes sense to assume after the revision step that “the door is closed and
the window is open” since no action occurred. However, this conclusion cannot reason-
ably be drawn if the change formula µ = ¬d reflects the effect of the action of closing
the door; indeed, assume that in the actual state of the world the door is open and
the window is closed (which is a model of ψ); for sure, opening the window is not an
expected effect of closing the door!

Katsuno and Mendelzon [1991] proposed a general semantics for update operations.
The most prominent feature of KM updates (distinguishing update from revision) is
that they are performed modelwise: Mod(ψ ⋄ µ) =

⋃

ω|=ψ Mod(ω ⋄ µ). (This is a conse-

quence of the KM postulate (U8).) The literature contains many proposals for update
operators. Several authors showed that there are good reasons for building an update
operator from a dependence function [Doherty et al. 1998; Herzig and Rifi 1999].

The dependence-based update of a belief base ψ by an input formula µ consists in
first forgetting in ψ all information “related” to µ (leaving unchanged the variables
that are not related to the update), and then expanding the result with µ. It remains
to define the notion of “being related to” and the operation of forgetting.

3.1. Formula/Variable Dependence

A formula/variable dependence function is modeled as a mapping Depv from FMLVar to
2Var. (The mapping has to be computable, although this is typically left implicit in the
definitions.)

Many choices for Depv are possible. Common examples of formula/variable depen-
dence functions are the following.

(1) Syntactical Dependence. Depv(µ) = Var(µ) is the set of propositional variables oc-
curring in µ.

(2) Semantical Dependence. Depv(µ) = RelVar(µ) ⊆ Var(µ) is the set of relevant vari-
ables of µ, defined by: x ∈ RelVar(µ) if and only if x occurs in every formula that is
logically equivalent to µ; or, equivalently, x ∈ RelVar(µ) if and only if µ[x ← ⊤] is
not equivalent to µ[x ← ⊥] [Doherty et al. 1998, 2000; Herzig and Rifi 1998, 1999;
Lang and Marquis 1998];

(3) Dependence Induced by Dependencies between Variables [Herzig and Rifi 1999].
Let δv be a primitive variable dependence function, i.e., a mapping from 2Var to
2Var such that for every X ⊆ Var we have X ⊆ δv(X). (When X is a singleton {x},
we write δv(x) instead of δv(X) in order to alleviate notation.) Often δv can by built
from a more basic reflexive relation rv on Var × Var: δv(X) =

⋃

x∈X{x′ | (x, x′) ∈ rv}.
We extend the mapping δv to formulas by stipulating that Varδv(ϕ) = δv(Var(ϕ)),
and RelVarδv(ϕ) = δv(RelVar(ϕ)). Depv(ϕ) can be defined as any of these two sets,
leading thus to two families of update operators.

Whatever the choice, given a dependence function Depv, the set of models of the
dependence-based update of a world ω by a formula µ w.r.t. Depv, denoted by ω ⋄Depv

µ,
is the set of all worlds ω′ such that ω′ |= µ, and such that ω and ω′ assign the same
truth value to every propositional variable x such that x 6∈ Depv(µ):

Mod(ω ⋄Depv
µ) = {ω′ | ω′ |= µ and Var(ω′ \ ω) ⊆ Depv(µ)}.2

2Let us recall that interpretations are viewed as sets of literals (and not sets of variables).

Fig. 1. Update operators based on formula/variable dependence.

Equivalently, ω′ ∈ Mod(ω ⋄Depv
µ) if and only if the following two conditions are met:

(1) ω′ |= µ;
(2) ω and ω′ agree on all propositional variables in Var \ Depv(µ).

Example 3.1. Let ω = {¬a, ¬b, c, d} and µ = (¬a∧b∧c)∨ ((b ⇒ c)∧ (c ⇒ b)), and let
the dependence function between variables δv be induced by rv = {(a, a), (a, b), (b, b),
(c, c), (c, d), (d, d)}. We have:

Var(µ) = {a, b, c};

RelVar(µ) = {b, c};

Varδv(µ) = {a, b, c, d};

RelVarδv(µ) = {b, c, d};

Mod(ω ⋄Var µ) = {{¬a, b, c, d}, {¬a, ¬b, ¬c, d}, {a, b, c, d}, {a, ¬b, ¬c, d}};

Mod(ω ⋄RelVar µ) = {{¬a, b, c, d}, {¬a, ¬b, ¬c, d}};

Mod(ω ⋄RelVarδv
µ) = {{¬a, b, c, d}, {¬a, ¬b, ¬c, d}, {¬a, b, c, ¬d}, {¬a, ¬b, ¬c, ¬d}}.

Finally, the dependence-based update of a belief base ψ ∈ FMLVar by the input for-
mula µ w.r.t. Depv is defined as follows:

Mod(ψ ⋄Depv
µ) =

⋃

ω|=ψ

Mod(ω ⋄Depv
µ).

Figure 1 sums up the various dependence functions Depv and the associated update
operators. In the last line the set P is some (fixed) subset of Var.

Interestingly, ⋄Depv
operators can be characterized through the notion of variable

forgetting [Lang et al. 2003a; Lin and Reiter 1994]. Indeed, let us define quantification
over propositional variables as ∃x.ψ = ψ[x ← ⊤] ∨ψ[x ← ⊥]; and let us define quan-
tification over a finite set of variables X = {x1, . . . , xn} ⊆ Var as ∃X.ψ = ∃x1 . . . ∃xn.ψ .
Then the following holds: ψ ⋄Depv

µ ≡ (∃Depv(µ).ψ) ∧ µ [Doherty et al. 1998].
Note that there exist other closely related belief update operators that are explicitly

based on a dependence function [Delgrande et al. 2005; Vo et al. 2006]; they will be
discussed in the related work section.

3.2. Formula/Literal Dependence

Unfortunately, forgetting everything about the variables involved in the update often
leads to forgetting too much. Let us consider the following scenario.

Example 3.2. Let us consider a mobile robot whose internal state is described by the
truth values given to a number of fluents, like powerOn, engineReady, batteryOK, etc.
Assume that we know at start that the robot satisfies ψ = powerOn ∧ engineReady ∧
¬batteryOK; if the action of making µ = (powerOn ∨ engineReady) ∧ batteryOK true

is performed, then under any formula/variable dependence function Depv such that
{powerOn, engineReady, batteryOK} ⊆ Depv(µ), we get ψ ⋄Depv

µ ≡ µ. We thus forgot
that initially power was on and the engine ready.

This is not what we expected: the input formula does not convey any evidence that
our belief that power is on and the engine is ready should be changed; intuitively, we
should not forget the initial information, because updating by µ has negative influence
neither on powerOn nor on engineReady. Hence, only negative occurrences of powerOn
and engineReady should be forgotten before expanding by the input formula, but not
positive occurrences.

Another problem with the previous update operators based on formula/variable de-
pendence is that they cannot handle persistent literals: literals that remain true once
they become true.

Example 3.3. Suppose now that an additional fluent engineDead is added to the de-
scription of the internal state of the robot, and suppose that that the engine cannot be
fixed. Assume that we know at start that ψ = powerOn ∧ engineReady ∧ engineDead.
When the world evolves so that µ = ¬powerOn ∨ ¬engineReady ∨ ¬engineDead holds,
then using any formula/variable dependence function Depv such that

{powerOn, engineReady, engineDead} ⊆ Depv(µ),

we obtain ψ ⋄Depv
µ ≡ µ. Once again, this is not what we expected. Although

¬engineDead has a negative influence on engineDead, engineDead should not be for-
gotten because it is a persistent fluent, while ¬engineDead is not.

In the last example the truth value of the fluent is essential: formula/variable de-
pendence is too coarse-grained to handle the problem. This calls for the following more
fine-grained notion of dependence.

Definition 3.4 (formula/literal dependence function). A formula/literal dependence

function is a computable mapping Dep : FMLVar → 2LitVar .

Intuitively, Dep(µ) is the set of literals that potentially become true when µ becomes
true. The other way round, when l is absent from Dep(µ) then we know that under no
circumstances an update by µ may make l true: if l is false before the update then it
will remain false.

Many meaningful functions Dep can be considered. Similarly to formula/variable
dependence functions, Dep(µ) can be basically defined as Lit(µ) or as RelLit(µ), where
the latter is defined as follows.

Definition 3.5 (formula/literal independence [Lang et al. 2003a]). Let ψ be a for-
mula from FMLVar. ψ is Lit-independent of x iff ψ[x ← ⊤] |= ψ , and ψ is Lit-
independent of ¬x iff ψ[x ← ⊥] |= ψ . Finally, for l ∈ LitVar, ψ is Lit-dependent on l
if and only if it is not Lit-independent of l. We denote by RelLit(ψ) the set of literals ψ
depends on.

Example 3.6. The formula ¬a∨ (a∧b) is Lit-dependent on ¬a, and Lit-independent
of a. The latter is the case because (¬a ∨ (a ∧ b))[a ← ⊤] = ¬⊤ ∨ (⊤ ∧ b) ≡ b, and
b |= ¬a ∨ (a ∧ b).

The formula ψ = (a∨b)∧(¬a∨c)∧(a∨b∨¬c) is Lit-dependent on a, ¬a, b and c; but
not on ¬c. The latter is the case because ψ[c ← ⊥] = (a ∨ b) ∧ (¬a ∨ ⊥) ∧ (a ∨ b ∨ ¬⊥),
which is equivalent to (a ∨ b) ∧ ¬a, and (a ∨ b) ∧ ¬a |= (a ∨ b) ∧ (¬a ∨ c) ∧ (a ∨ b ∨ ¬c).
We have RelLit(ψ) = {a, ¬a, b, c}.

An alternative, equivalent definition [Lang et al. 2003a] is: ψ is Lit-independent of l
if and only if there is an equivalent formula ϕ such that l 6∈ Lit(ϕ).

Here are some observations. First, RelLit(µ) is a subset of Lit(µ), while the converse
is false. Second, µ is Lit-independent of x if and only if µ[x ← ⊤] |= µ[x ← ⊥], and µ is
Lit-independent of ¬x if and only if µ[x ← ⊥] |= µ[x ← ⊤]. Third, x ∈ RelVar(µ) if and
only if ψ is Lit-dependent on x or on ¬x.

More sophisticated dependence functions can be designed by presupposing the exis-
tence of a primitive literal dependence function, i.e., a mapping δl : 2LitVar −→ 2LitVar ,
such that for every L ⊆ LitVar, L ⊆ δl(L). Some natural constraints may be imposed on
δl; for example, monotonicity: if L1 ⊆ L2 then δl(L1) ⊆ δl(L2). We can then define

Litδl
(µ) = δl(Lit(µ)),

RelLitδl
(µ) = δl(RelLit(µ)).

When l ∈ δl({l1, . . . , ln}) then the truth of l1,. . . , ln releases the truth of l. This turns
out to be particularly useful to solve the ramification problem: whenever a literal l is
caused by the truth of some set of literals L then it is natural to have l ∈ δl(L). This
can be ensured by defining Dep = Litδl

(resp. Dep = RelLitδl
), provided that L ⊆ Lit(µ)

(resp. L ⊆ RelLit(µ)) with δl monotone. The truth values of such derived fluents can
then be updated through the use of some integrity constraints (reflecting static laws),
which have to be conjoined with the input formula.

Example 3.7. Suppose now that an additional fluent readyToMove is added to the
description of the internal state of the robot. It is a derived fluent and its connections
with the previous three primitive fluents are given by the static law

ϕ = ((¬engineDead ∧ powerOn ∧ engineReady) ⇒ readyToMove) ∧

(readyToMove ⇒ (¬engineDead ∧ powerOn ∧ engineReady)).

Assume that initially

ψ = powerOn ∧ engineReady ∧ ¬engineDead ∧ readyToMove.

Assume also that

µ = ¬powerOn ∨ ¬engineReady ∨ engineDead.

Suppose Dep = Litδl
where δl is such that

¬readyToMove ∈ δl({¬powerOn, ¬engineReady, engineDead}).

If the world evolves so that µ holds then readyToMove is forgotten, as expected.

Using our formula/literal dependence functions, one can also easily take into account
persistent literals, i.e., literals remaining true whatever happens, such as engineDead
(contrarily to ¬engineDead). For example, a possible dependence function is Dep(µ) =

RelLit(µ) \ PersLit, where PersLit is a given set of persistent literals.

Example 3.8. Let ψ = powerOn ∧ engineReady ∧ engineDead and let µ =
¬powerOn ∨ ¬engineReady ∨ ¬engineDead. If PersLit = {engineDead}, then

Dep(µ) = RelLit(µ) \ PersLit = {¬powerOn, ¬engineReady},

and engineDead will not be forgotten in ψ .

3.3. Update Based on Formula/Literal Dependence

We are now ready to define our update operators based on formula/literal dependence:

Definition 3.9 (update based on formula/literal dependence). Let Dep be a formula/
literal dependence function. Let ϕ be a formula representing integrity constraints. The

set of models of the update based on formula/literal dependence ω ⋄
ϕ

Dep
µ of the world

ω by the formula µ w.r.t. Dep and ϕ is the set of all worlds ω′ such that ω′ |= µ ∧ ϕ and
ω′ \ ω ⊆ Dep(µ). In symbols:

Mod(ω ⋄
ϕ

Dep
µ) = {ω′ |= µ ∧ ϕ | ω′ \ ω ⊆ Dep(µ)}.

Last, if ψ is a formula from FMLVar, then

Mod(ψ ⋄
ϕ

Dep
µ) =

⋃

ω|=ψ

Mod(ω ⋄
ϕ

Dep
µ).

An equivalent formulation of Mod(ω ⋄
ϕ

Dep
µ) is:

Mod(ω ⋄
ϕ

Dep
µ) =

⋃

L⊆Dep(µ)

{ω′ |= µ ∧ ϕ | ω = (ω′ \ L) ∪ L}.

Example 3.10. Let ω = {powerOn, engineReady} and µ = powerOn ∨ engineReady.
Using any formula/literal dependence function Dep such that Dep(powerOn ∨
engineReady) neither contains ¬powerOn nor ¬engineReady, we get ω ⋄⊤

Dep
µ |=

powerOn ∧ engineReady.

The next result gives us a more practical way to compute ⋄
ϕ

Dep
. We first need to recall

the notion of literal forgetting.

Definition 3.11 (literal forgetting [Lang et al. 2003a]). Let ψ be a formula and let
L ⊆ LitVar. Then ∃lL.ψ is the formula inductively defined by:

∃l∅.ψ = ψ

∃l{l}.ψ = ψ[l ← ⊤] ∨(¬l ∧ ψ)

∃l({l} ∪ L).ψ = ∃lL.(∃l{l}.ψ)

∃lL.ψ is (up to logical equivalence) the logically strongest consequence of ψ that is
Lit-independent of L, i.e., it is Lit-independent of each l ∈ L (see Proposition 16 from
Lang et al. [2003a]).

On this ground, the following characterization of ψ ⋄
ϕ

Dep
µ follows.

PROPOSITION 3.12. Let Dep be a formula/literal dependence function. Let ϕ be a
formula representing integrity constraints. Let ψ and µ be two formulas. We have:

ψ ⋄
ϕ

Dep
µ ≡ µ ∧ ϕ ∧ ∃lDep(µ).ψ

PROOF. From Proposition 15 of Lang et al. [2003a], we get that

Mod(µ ∧ ϕ ∧ ∃lDep(µ).ψ) = {ω′ |= µ ∧ ϕ | (ω′ \ L) ∪ L |= ψ where L ⊆ Dep(µ)}

=
⋃

ω|=ψ {ω′ |= µ ∧ ϕ | ω = (ω′ \ L) ∪ L where L ⊆ Dep(µ)}

=
⋃

ω|=ψ {ω′ |= µ ∧ ϕ | ω = (ω′ \ L) ∪ L where L ⊆ Dep(µ)}

= Mod(ψ ⋄
ϕ

Dep
µ)

Example 3.13. Let ψ = (¬a ∨ ¬d) ∧ (a ∨ b) ∧ (a ∨ c ∨ d), µ = d and let Dep = RelLit
and ϕ = ⊤. We have Dep(µ) = {d} and ∃l{¬d}.ψ ≡ (a ∨ b) ∧ (a ∨ c ∨ d); hence ψ ⋄

ϕ

Dep
µ ≡

d ∧ (a ∨ b).

A direct consequence of Proposition 3.12 is that we also have ψ ⋄
ϕ

Dep
µ ≡

µ ∧ ϕ ∧ ∃l(Dep(µ) ∩ Lit(ψ)).ψ . Indeed, if l ∈ Dep(µ) and l 6∈ Lit(ψ), then ∃lDep(µ).ψ is

equivalent to ∃l(Dep(µ) \ {l}).ψ : forgetting literals not occurring in a formula does not
change anything.

Clearly enough, our family of operators contains all previous operators based on
formula/variable dependence.

PROPOSITION 3.14. Every update operator based on formula/variable dependence
is an update operator based on formula/literal dependence.

PROOF. Given that ∃{x}.ψ ≡ ∃l{x, ¬x}.ψ for every formula ψ and variable x (see
Proposition 20 from Lang et al. [2003a]), any operator ⋄Depv

based on formula/variable

dependence is the same as the update operator ⋄⊤
Dep

based on formula/literal depen-

dence, where Dep is defined by Dep(α) =
⋃

x∈Depv(α){x, ¬x} for any formula α.

It will be useful to consider two extreme cases of formula/literal dependence. Call
full the formula/literal dependence function Depf such that Depf (µ) = LitVar for ev-
ery formula µ; and call empty the formula/literal dependence function Depe such that
Depe(µ) = ∅ for every formula µ.

PROPOSITION 3.15. Let Depe be the empty formula/literal dependence function and
let Depf be the full formula/literal dependence function. Then

ψ ⋄⊤
Depe

µ = ψ ∧ µ

ψ ⋄⊤
Depf

µ =

{

µ if ψ is consistent

⊥ otherwise

PROOF. For the case of the empty dependence function we use that ∃l∅.ψ is equiva-
lent to ψ . For the case of the full dependence function, we use that ∃lLitVar.ψ ≡ ⊥ if ψ

is inconsistent and ∃lLitVar.ψ ≡ ⊤ otherwise.

In the literature, ⋄⊤
Depe

is called the expansion operator.

4. RATIONALITY POSTULATES

We now examine the status of the KM postulates. We do so both in the general case
and for specific formula/literal dependence functions.

Katsuno and Mendelzon [1991] proposed the following eight postulates for charac-
terizing rational update operators.

(U1) ψ ⋄ µ |= µ.
(U2) If ψ |= µ then ψ ⋄ µ ≡ ψ .
(U3) If ψ and µ are consistent then ψ ⋄ µ is consistent.
(U4) If ψ1 ≡ ψ2 and µ1 ≡ µ2 then ψ1 ⋄ µ1 ≡ ψ2 ⋄ µ2.
(U5) (ψ ⋄ µ1) ∧ µ2 |= ψ ⋄ (µ1 ∧ µ2).
(U6) If ψ ⋄ µ1 |= µ2 and ψ ⋄ µ2 |= µ1 then ψ ⋄ µ1 ≡ ψ ⋄ µ2.
(U7) If ψ is complete then (ψ ⋄ µ1) ∧ (ψ ⋄ µ2) |= ψ ⋄ (µ1 ∨ µ2).
(U8) (ψ1 ∨ ψ2) ⋄ µ is equivalent to (ψ1 ⋄ µ) ∨ (ψ2 ⋄ µ).

These postulates are designed for updates without integrity constraints. For this
reason, we assume in this section (and in this section only) that ϕ = ⊤. Note also that
is possible to extend such postulates in order to account for integrity constraints (see
Herzig and Rifi [1999] for such a contribution).

4.1. General Results

The relationships between the family of KM update operators and the family of up-
date operators based on formula/literal dependence are made precise by the following
propositions. First, Proposition 4.1 shows that the two families are disjoint because
no update operator ⋄⊤

Dep
based on formula/literal dependence satisfies both (U2) and

(U3). Furthermore, giving up any of those two postulates is enough to overcome this
impossibility:

PROPOSITION 4.1. No update operator ⋄⊤
Dep

based on formula/literal dependence is

a KM update operator. More precisely:

(1) No update operator ⋄⊤
Dep

based on formula/literal dependence satisfies both (U2)

and (U3).
(2) There exists an update operator based on formula/literal dependence that satisfies

all KM postulates but (U2).
(3) There exists an update operator based on formula/literal dependence that satisfies

all KM postulates but (U3).

PROOF.

(1) Let ⋄⊤
Dep

be an update operator based on formula/literal dependence. If ⋄⊤
Dep

satisfies

(U2), then for any formulas ψ and µ such that ψ |= µ holds, it must be the case that
ψ ⋄⊤

Dep
µ ≡ ψ . Equivalenty, if ψ |= µ holds, then we must have µ ∧ ∃lDep(µ).ψ ≡ ψ ,

which implies that ∃lDep(µ).ψ |= ¬µ ∨ ψ must be satisfied. Now, let Var = {a, b},
µ = a ∨ ¬b, and let us consider the following formulas:
(a) ψ1 = a ∧ b. Since ψ1 |= µ holds, we must have

∃lDep(a ∨ ¬b).(a ∧ b) |= ¬(a ∨ ¬b) ∨ (a ∧ b).

¬(a∨¬b)∨ (a∧b) is equivalent to b, hence this entailment can be the case only
if ¬b 6∈ Dep(a ∨ ¬b).

(b) ψ2 = ¬a ∧ ¬b. Since ψ2 |= µ holds, we must have

∃lDep(a ∨ ¬b).(¬a ∧ ¬b) |= ¬(a ∨ ¬b) ∨ (¬a ∧ ¬b).

¬(a∨¬b)∨ (¬a∧¬b) is equivalent to ¬a, hence this entailment can be the case
only if a 6∈ Dep(a ∨ ¬b).

(c) ψ3 = ¬a ∧ b. By definition, ψ3 ⋄⊤
Dep

µ is equivalent to

(a ∨ ¬b) ∧ ∃lDep(a ∨ ¬b).(¬a ∧ b).

From items (a) and (b) above, neither a nor ¬b belongs to Dep(a ∨ ¬b). As a
consequence, we have

∃lDep(a ∨ ¬b).(¬a ∧ b) ≡ ¬a ∧ b.

Accordingly, ψ3 ⋄⊤
Dep

µ is inconsistent. Since neither ψ3 nor µ is inconsistent,

this contradicts the fact that ⋄⊤
Dep

satisfies (U3).

(2) It is easy to check that the update operator based on full formula/literal depen-
dence (Depf (µ) = LitVar for every formula µ) satisfies all KM postulates but (U2).

(We use that ψ ⋄⊤
Depf

µ is equivalent to µ if ψ is consistent and is equivalent to ⊥

otherwise, cf. Proposition 3.15.)

(3) It is also easy to check that the update operator based on empty formula/literal de-
pendence (defined by Depe(µ) = ∅ for every formula µ) satisfies all KM postulates
but (U3). (We use that ψ ⋄⊤

Depe
µ equals ψ ∧ µ, cf. Proposition 3.15.)

Now, Proposition 4.2 makes precise the KM postulates that are offered by every
update operator based on formula/literal dependence.

PROPOSITION 4.2. Update operators ⋄⊤
Dep

based on formula/literal dependence sat-

isfy the two postulates (U1) and (U8). The postulates (U2), (U3), (U4)3, (U5), (U6)
and (U7) are not satisfied by update operators ⋄⊤

Dep
in the general case.

PROOF.

(U1) Obvious from the definition of update operators based on formula/literal depen-
dence.

(U2) Not satisfied by MPMA [Doherty et al. 1998].
(U3) Let ψ = a, µ = ¬a and let Dep be such that ¬a 6∈ Dep(µ) (e.g., Dep(µ) = ∅ for

every µ); then ψ and µ are consistent but ψ ⋄⊤
Dep

µ is not.

(U4) Let ψ1 = ψ2 = a, µ1 = ⊤, µ2 = a ∨ ¬a and Dep = Lit; we have ψ1 ≡ ψ2 and
µ1 ≡ µ2, but ψ1 ⋄⊤

Dep
µ1 ≡ a is not equivalent to ψ2 ⋄⊤

Dep
µ2 ≡ ⊤.

(U5) Not satisfied by MPMA [Doherty et al. 1998].
(U6) Not satisfied by MPMA [Doherty et al. 1998].
(U7) Not satisfied by MPMA [Doherty et al. 1998].
(U8) Obvious from the definition of update operators based on formula/literal

dependence.

Finally, while Proposition 4.1 shows that the KM update operators and the update
operators based on formula/literal dependence form two disjoint families, every opera-
tor from their union bounds in the same way the belief base ψ ⋄ µ resulting from the
update of ψ by µ. Furthermore, these bounds are reached for both families of operators.
Formally, we have the following.

PROPOSITION 4.3. Let ⋄ be a KM update operator or an update operator based on
formula/literal dependence, of the form ⋄⊤

Dep
. Then for every formulas ψ and µ we have:

ψ ∧ µ |= ψ ⋄ µ |= µ.

PROOF.

— If ⋄ is a KM update operator then it satisfies (U1), therefore ψ ⋄ µ |= µ. It remains
to show that ψ ∧ µ |= ψ ⋄ µ. Consider the instance (ψ ⋄ ⊤) ∧ µ |= ψ ⋄ (⊤ ∧ µ) of (U5).
By (U2), ψ ⋄ ⊤ ≡ ψ , and by (U4), ψ ⋄ (⊤ ∧ µ) ≡ ψ ⋄ µ. It follows from all this that
ψ ∧ µ |= ψ ⋄ µ.

— If ⋄ is an update operator based on formula/literal dependence, of the form ⋄⊤
Dep

,

then ψ ⋄ µ ≡ µ ∧ ∃lDep(µ).ψ . By definition of literal forgetting, ∃lDep(µ).ψ is a
logical consequence of ψ . Then the result follows trivially.

4.2. The Cases of Specific Dependence Functions

We now study some specific formula/literal dependence functions that are obtained
by imposing some requirements on Dep. Proposition 3.15 already characterized the
update operators that are based on empty and on full dependence functions.

3We note that logically equivalent bases ψ1 and ψ2 are however updated equivalently: if ψ1 ≡ ψ2 then
ψ1 ⋄

ϕ

Dep
µ ≡ ψ2 ⋄

ϕ

Dep
µ.

Definition 4.4. Let Dep be a formula/literal dependence function.

— Dep is standard iff RelLit(µ) ⊆ Dep(µ) for every µ.
— Dep is syntax-independent iff µ1 ≡ µ2 implies Dep(µ1) = Dep(µ2) for every µ1, µ2.
— Dep is monotone iff µ1 |= µ2 implies Dep(µ1) ⊇ Dep(µ2) for every µ1, µ2.
— Dep is antimonotone iff µ1 |= µ2 implies Dep(µ1) ⊆ Dep(µ2) for every µ1, µ2.
— Dep is confined iff Dep(µ) ⊆ Lit(µ) for every µ.
— Dep is constant iff Dep(µ1) = Dep(µ2) for every µ1, µ2.

The mappings Lit and RelLit are neither monotone nor antimonotone: to see the
former take µ1 = a and µ2 = a ∨ b; to see the latter take µ1 = a ∧ b and µ2 = a.
They are also not constant. RelLit is syntax-independent while Lit is not. Finally, both
mappings are standard and confined.

Clearly enough, since ⊥ |= µ and µ |= ⊤ for every formula µ, dependence functions
that are both monotone and antimonotone are constant (and therefore syntax-
independent). Furthermore, for the same reason, given that Lit(⊥) = Lit(⊤) = ∅,
there is a unique function that is both monotone and confined, or both antimonotone
and confined, viz. the empty dependence function leading to the expansion operator
(cf. Proposition 3.15. Moreover, there is exactly one dependence function that is both
standard and monotone, viz. the full dependence function (because µ |= µ ∨ l for
every l ∈ Lit), and there is exactly one dependence function that is both standard
and antimonotone, viz. the full dependence function (because µ ∧ l |= µ for every
l ∈ Lit).

These restrictions lead to operators satisfying more KM postulates as follows.

PROPOSITION 4.5. Let Dep be a formula/literal dependence function and let ⋄⊤
Dep

be the induced update operator.

(1) If Dep is standard then ⋄⊤
Dep

satisfies (U3).

(2) If Dep is syntax-independent then ⋄⊤
Dep

satisfies (U4).

(3) If Dep is monotone then ⋄⊤
Dep

satisfies (U5).

(4) If Dep is constant then ⋄⊤
Dep

satisfies (U6).

(5) If Dep is antimonotone then ⋄⊤
Dep

satisfies (U7).

Before proceeding to the proof of Proposition 4.5, we first state a lemma that will
be used in the proof of Proposition 4.5 and then used again in Section 5. It relates
Levesque’s notion of separability [1998] and the following notion of Lit-separability:

Definition 4.6 (Lit-separability). Two formulas α and β are said to be Lit-separable

if and only if there is no l ∈ LitVar such that l ∈ RelLit(α) and l ∈ RelLit(β).

Since ∃lDep(µ).ψ is Lit-independent of Dep(µ) (see Proposition 16 from Lang et al.
[2003a]), we have that if Dep is a standard function then µ and ∃lDep(µ).ψ are Lit-
separable. This implies that they are also separable in Levesque’s sense.

LEMMA 4.7. If α and β are Lit-separable formulas, then they are separable in
Levesque’s sense [1998], that is, for every clause γ , we have α ∧ β |= γ if and only if
α |= β or α |= γ .

PROOF. From Theorem 5 of Lang et al. [2003a], there exist α′ and β ′ such that α ≡ α′

and β ≡ β ′ and α′ and β ′ are Lit-simplified, that is, such that RelLit(α′) = Lit(α′) and

RelLit(β ′) = Lit(β ′). Since α ≡ α′ and β ≡ β ′, we have RelLit(α′) = RelLit(α) and
RelLit(β ′) = RelLit(β); hence, α′ and β ′ are two Lit-separable formulas and we have

for every literal l ∈ LitVar, if l ∈ Lit(α′) then l 6∈ Lit(β ′). We can assume w.l.o.g. that α′

and β ′ are CNF formulas, so that α′ ∧β ′ is also a CNF formula. Now, let l be any literal
occurring in α′ ∧ β ′ and let xl be the corresponding variable; we know that for every

literal l′, if l′ ∈ Lit(α′) then l′ 6∈ Lit(β ′) ; as a consequence, xl is pure in α′ ∧β ′ (i.e., l does
not occur in α′ ∧β ′) or xl occurs either in α or in β, but not in both. Subsequently, there
is no possible resolution step in α′ ∧ β ′ between a clause from α and a clause from β:
any resolvent γ of two clauses of α′ ∧ β ′ is such that the two clauses are in α or the two
clauses are in β. Assume that γ is the resolvent of two clauses of α (the other case is
similar); then we still have that every variable occurring in (α ∧ γ) ∧ β is pure or such
that it occurs either in α∧γ or in β, but not in both. A straightforward induction on the
length of resolution proofs is enough to conclude that every clause that can be derived
by (general) resolution from α ∧ β can be derived from α alone or from β alone. Since
(general) resolution is complete in consequence-finding, we conclude that every prime
implicate of α∧β is a prime implicate of α or a prime implicate of β (see [Marquis 2000]
for details). Finally, Corollary 3 of Lang et al. [2002] shows that α and β are separable
in Levesque’s sense if and only if every prime implicate of α ∧ β is a prime implicate of
α or a prime implicate of β, and this concludes the proof.

It is easy to check that Lit-separability alone is a sufficient condition for Levesque’s
separability. For instance, α = a∨b and β = ¬a∨¬b are separable in Levesque’s sense
but are not Lit-separable. Now we proceed to the proof of Proposition 4.5.

PROOF.

(1) This is a direct consequence of Proposition 4.7. If Dep is a standard function then
µ and ∃lDep(µ).ψ are Lit-separable, hence µ ∧ ∃lDep(µ).ψ |= ⊥ (where ⊥ is viewed
as the empty clause) if and only if µ |= ⊥ or ∃lDep(µ).ψ |= ⊥.

(2) Easy from the fact that ∃lDep(µ1).ψ1 ≡ ∃lDep(µ2).ψ2 when ψ1 ≡ ψ2 and Dep(µ1) =
Dep(µ2).

(3) The result easily comes from the fact that ∃lDep(µ).ψ |= ∃lDep(µ ∧ ϕ).ψ when Dep
is monotone.

(4) By definition, Dep is constant if and only if for any µ1, µ2 ∈ FMLVar, Dep(µ1) =

Dep(µ2) = P. Hence ψ ⋄⊤
Dep

µ1 ≡ µ1 ∧ ∃lP.ψ and ψ ⋄⊤
Dep

µ2 ≡ µ2 ∧ ∃lP.ψ . If µ1 ∧

∃lP.ψ |= µ2, then µ1 ∧ ∃lP.ψ |= µ2 ∧ ∃lP.ψ . Similarly, if µ2 ∧ ∃lP.ψ |= µ1, then
µ2 ∧ ∃lP.ψ |= µ1 ∧ ∃lP.ψ . Accordingly, if ψ ⋄⊤

Dep
µ1 |= µ2 and ψ ⋄⊤

Dep
µ2 |= µ1, then

we have ψ ⋄⊤
Dep

µ1 ≡ ψ ⋄⊤
Dep

µ2.

(5) Similarly, the result for (U7) comes from the fact that ∃lDep(µ).ψ |= ∃lDep(µ ∧ ϕ).ψ
when Dep is antimonotone.

COROLLARY 4.8. Let δl be a primitive literal dependence function.

— The update operator ⋄RelLitδl
satisfies (U1), (U3), (U4) and (U8).

— The update operator ⋄Litδl
satisfies (U1), (U3) and (U8).

Taking δl(L) = L for any L, we obtain, in particular, that ⋄RelLit satisfies (U1), (U3),
(U4) and (U8) and that ⋄Lit satisfies (U1), (U3) and (U8).

A further property of decomposability has been proposed in Hoffmann et al. [2009]:
formulas talking about disjoint sets of variables can be updated separately.4 Formally,
we have the following.

(D) if Var(ϕ1)∩Var(ϕ2) = ∅, Var(ϕ1)∩Var(µ2) = ∅, Var(µ1)∩Var(ϕ2) = ∅ and Var(µ1)∩
Var(µ2) = ∅, then (ϕ1 ∧ ϕ2) ⋄ (µ1 ∧ µ2) ≡ (ϕ1 ⋄ µ1) ∧ (ϕ2 ⋄ µ2).

We now say that a formula/literal dependence function Dep is decomposable if and
only if for any pair of consistent formulas µ1 and µ2, if Var(µ1) ∩ Var(µ2) = ∅, then
Dep(µ1 ∧ µ2) = Dep(µ1) ∪ Dep(µ2). This property is quite innocuous, and it is easy to
check that it is verified by all the basic dependence functions Var, RelVar, Lit, RelLit
and P.

PROPOSITION 4.9. If Dep is confined and decomposable, then ⋄Dep satisfies (D).

PROOF. Let Dep be confined and decomposable, and suppose ϕ1, ϕ2, µ1, µ2 satisfy
the conditions given in (D). By the definition of ⋄Dep, if at least one of µ1 and
µ2 is inconsistent then (ϕ1 ∧ ϕ2) ⋄Dep (µ1 ∧ µ2) is inconsistent and at least one of
ϕ1 ⋄ µ1 and ϕ2 ⋄ µ2 is inconsistent. Hence (D) is satisfied. Assume now that both
µ1 and µ2 are consistent. Because Dep is confined, we have Dep(µ1) ⊆ Lit(µ1) and
Dep(µ2) ⊆ Lit(µ2). Var(µ1) ∩ Var(µ2) = ∅ implies Lit(µ1) ∩ Lit(µ2) = ∅, therefore (1)
Dep(µ1) ∩ Dep(µ2) = ∅. Now, ∃lDep(µ1 ∧ µ2).(ϕ1 ∧ ϕ2) ≡ ∃lDep(µ1) ∪ Dep(µ2).(ϕ1 ∧ ϕ2)
because Dep is decomposable, which together with (1) and the definition of ∃l, leads to
∃lDep(µ1 ∧ µ2).(ϕ1 ∧ ϕ2) ≡ (∃lDep(µ1).ϕ1) ∧ (∃lDep(µ2).ϕ2). Therefore,

(ϕ1 ∧ ϕ2) ⋄ (µ1 ∧ µ2) ≡ (∃lDep(µ1).ϕ1) ∧ (∃lDep(µ2).ϕ2) ∧ (µ1 ∧ µ2)

≡ ((∃lDep(µ1).ϕ1) ∧ µ1) ∧ ((∃lDep(µ2).ϕ2) ∧ µ2)

≡ (ϕ1 ⋄Depv
µ1) ∧ (ϕ2 ⋄Depv

µ2)

Since the dependence functions Lit and RelLit are both confined and decomposable,
the corresponding update operators satisfy (D).

Here are now some general negative results.

PROPOSITION 4.10.

(1) No operator ⋄⊤
Dep

based on a standard formula/literal dependence function satisfies

(U2).
(2) No operator ⋄⊤

Dep
based on a standard and confined formula/literal dependence

function satisfies (U6).

PROOF.

(1) Let ψ = a ∧ b and µ = a ∨ ¬b. We have ψ |= µ. As Dep is standard, both a and ¬b

are contained in Dep(µ). Therefore the set of literals Dep(µ) to be forgotten in ψ
contains both ¬a and b. Hence ψ ⋄⊤

Dep
µ 6|= b.

(2) Let ψ = a ∧ b, µ1 = a ∨ ¬b and µ2 = a. We have RelLit(µ1) = Lit(µ1) = {a, ¬b}.
If Dep is standard and confined, then Dep(µ1) = {¬a, b} has to be forgotten in
ψ . Hence we have ψ ⋄⊤

Dep
µ1 ≡ a. Thus, ψ ⋄⊤

Dep
µ1 |= µ2. Furthermore, we have

4A weaker requirement is the following postulate that was introduced for belief revision by Parikh [1999]
and further studied by other authors [Bienvenu et al. 2008; Kourousias and Makinson 2007; Makinson
2007]:

(D′) if Var(ϕ1) ∩ Var(ϕ2) = ∅ and Var(µ) ⊆ Var(ϕ2) then (ϕ1 ∧ ϕ2) ⋄ µ ≡ ϕ1 ∧ (ϕ2 ⋄ µ).

RelLit(µ2) = Lit(µ2) = {a}. Dep(µ2) = {¬a} has to be forgotten in ψ . Hence, we
have ψ ⋄⊤

Dep
µ2 ≡ a ∧ b, which implies µ1. However, ψ ⋄⊤

Dep
µ2 6≡ ψ ⋄⊤

Dep
µ1,and the

conclusion follows.

Whether an update operator should satisfy (U2) or not depends on what update
is meant to represent. Viewing an update by µ as the action of making µ true, (U2)
should be satisfied whenever the action of making µ true should leave the world un-
changed as soon as µ is already true (see, for instance, Lang [2007]). There are many
situations where this should not be satisfied (see for instance in Herzig and Rifi [1999],
Example 39, Remark 40, and the discussion after Theorem 31, which argue why (U2)
should not be required in the general case). However, when (U2) is desirable, it is
always possible to enforce it without hampering the other desirable properties (see
[Delgrande et al. 2008]) just by defining the update operator ⋄′ associated with ⋄ by:

ϕ ⋄′ µ =

{

ϕ if ϕ |= µ

ϕ ⋄ µ otherwise.

Explaining why (U5), (U6), and (U7) are not satisfied in the general case is more
difficult, due to the technical nature of these postulates, whose role is to guarantee the
existence of a collection of faithful preorders on the minimization of which the operator
is defined. Therefore, it is not easy to go beyond the explanation that these postulates
are not satisfied in the general case because dependence-based operators are not based
on minimization.

5. COMPUTATIONAL ASPECTS

We consider now a number of complexity issues for update operators based on for-
mula/literal dependence. Some results hold for the whole family of operators, and
others for some subsets that are obtained by imposing restrictions on Dep. We also
consider some compactability issues.

5.1. The Model Checking Problem

We first investigate the complexity of the model checking problem from an updated
base. The model checking problem for ⋄Dep is as follows: given three formulas ϕ, ψ , µ

and a world ω, how difficult is it to determine whether ω |= ψ ⋄
ϕ

Dep
µ holds? Here and

in the next subsection we suppose that determining whether l ∈ Dep(µ) is in NP. This
is clearly the case for Dep = Lit and Dep = RelLit.

PROPOSITION 5.1. Let Dep be a formula/literal dependence function such that for
any l ∈ LitVar and µ ∈ FMLVar, determining whether l ∈ Dep(µ) is in NP. The model
checking problem for ⋄Dep is in NP. It is NP-complete when Dep is a standard function,
even in the restricted case when no integrity constraints are considered (i.e., when ϕ
equals ⊤).

PROOF. Membership. If determining whether l ∈ Dep(µ) is in NP, then determin-
ing whether any given set L ⊆ LitVar of literals is included in Dep(µ) is in NP as
well. Hence for every positive instance 〈L, µ〉 of this decision problem, there exists a
certificate c of size polynomial in the input size such that verifying that 〈L, µ〉 is a pos-
itive instance can be achieved in (deterministic) polynomial time when c is given. Let
V = Var(ψ) ∪ Var(ϕ) ∪ Var(µ). The problem can be solved in nondeterministic poly-
nomial time, thanks to the following algorithm: guess a world ω′ over V, a subset L

of V ∪ V and a string c (both of them being of polynomial size in the input size), then
check in polynomial time that L ⊆ Dep(µ) using c, and check that ω |= ψ , ω′ |= µ ∧ ϕ

and ω = (ω′ \ L) ∪ L.

Hardness. The reduction from SAT is as follows: to ψ ∈ FMLVar, we associate in
polynomial time the formulas ϕ = ⊤ and

µ =
(

∨

l∈Lit(ψ) | l is a positive literal
l ∨ y

)

∧
(

∨

l∈Lit(ψ) | l is a negative literal
l ∨ z

)

where y and z are fresh variables not occurring in ψ . Let ω =
∧

Var. By construction,

we have RelLit(ψ) ⊆ RelLit(µ). We have that ψ is consistent if and only if ω |= ψ ⋄
ϕ

Dep
µ

holds; indeed, ∃lRelLit(µ).ψ is valid if ψ is consistent, and ∃lRelLit(µ).ψ is inconsistent
otherwise.

There are special cases where NP-hardness does not hold. Suppose, for instance,
Dep is both monotone and antimonotone. Then Dep(µ) = ∅, and ψ ⋄

ϕ

Dep
µ = µ ∧ ϕ ∧

∃lDep(µ).ψ , which is equivalent to µ ∧ ϕ ∧ ψ—, and ω |= ψ ⋄
ϕ

Dep
µ iff ω |= µ ∧ ψ ∧ ϕ,

which is the model checking problem in propositional logic (which is well-known to be
decidable in deterministic polynomial time).

Moreover, it could be the case that hardness is due only to the fact that the knowl-
edge base ψ may be inconsistent. If the knowledge based is required to be consistent,
which is a reasonable assumption, then this hardness result no longer holds. Consider
for instance the full dependence function defined by Dep(µ) = LitVar for any µ. As we
have seen in Proposition 3.15, if ψ is consistent then ψ ⋄Dep µ ≡ µ and ψ ⋄Dep µ ≡ ⊥
otherwise. Note that Dep is standard. Clearly, if ψ is required to be consistent then
ψ ⋄Depv

µ ≡ µ and model checking is obviously polynomial in this case.

Tractable cases can be obtained by restricting the input so that ∃lDep(µ).ψ can
be computed in time polynomial in the input size. Such restrictions are discussed in
Section 5.4.

5.2. The Consistency Problem

We now investigate the complexity of the consistency problem for an updated base
when operators based on formula/literal dependence are used. The problem is as fol-
lows: given three formulas ϕ, ψ , µ how difficult is it to determine whether ψ ⋄

ϕ

Dep
µ is

consistent?

PROPOSITION 5.2. Let Dep be a formula/literal dependence function such that for
any l ∈ LitVar and µ ∈ FMLVar, determining whether l ∈ Dep(µ) is in NP. Given three
formulas ϕ, ψ , and µ, determining whether ψ ⋄

ϕ

Dep
µ is consistent is NP-complete, even

if ϕ is valid (no integrity constraints) and the input formula µ is an atom.

PROOF. Membership. It is close to the membership proof of Proposition 5.1. The
consistency problem can be solved in nondeterministic polynomial time, thanks to the
following algorithm: let V = Var(ψ) ∪ Var(µ) ∪ Var(ϕ); guess two worlds ω, ω′ over V,
a set of literals L of V ∪ V and a string c (both of them being of polynomial size if the
input size), then check in polynomial time that L ⊆ Dep(µ) using c, and check that
ω |= ψ , ω′ |= ϕ ∧ µ and ω′ = (ω′ \ L) ∪ L.

Hardness. The reduction from SAT is as follows: to ψ ∈ FMLVar, we associate
in polynomial time the formulas ϕ = ⊤ and µ = y where y is a fresh vari-
able not occurring in ψ . Then ψ ⋄

ϕ

Dep
µ ≡ y ∧ ϕ ∧ ∃lDep(µ).ψ is consistent iff

∃lDep(µ).ψ is consistent (the right-to-left direction holds just because y is fresh)
iff ψ is consistent. (Observe that for any L ⊆ LitVar, ∃lL.ψ is consistent iff ψ is
consistent.)

Once again, NP-hardness is due to the fact that ψ may be inconsistent. Indeed,
consider the update operator ⋄Dep that is induced by the full dependence function
(Depf (µ) = LitVar for every µ), which is both standard and constant. As we have seen
in Proposition 3.15, ψ ⋄Dep µ is equivalent to µ if ψ is consistent, and ⊥ otherwise.
Hence if ψ is consistent then ψ ⋄Depv

µ is equivalent to µ, which is always consistent
when µ is a variable.

5.3. The Inference Problem

In this section, we investigate the complexity of the inference problem (or query
entailment problem) from an updated base when operators based on formula/literal
dependence are used. The problem is as follows: given four formulas ϕ, ψ , µ and γ ,
how difficult is it to determine whether ψ ⋄

ϕ

Dep
µ |= γ holds? We first identify the com-

plexity in the general case, then focus on some specific cases obtained by imposing
further restrictions on some parts of the input.

Lang et al. [2003a] showed that determining whether ψ is Lit-dependent of l is an
NP-complete task. On this ground, one could suspect that the query entailment prob-
lem for operators based on RelLit is beyond coNP. That is not the case: under rea-
sonable assumptions on Dep, inference from an updated base when operators based
on formula/literal dependence are used remains in coNP (this result slightly extends
Theorem 15 from Liberatore [2000a], which focuses on the MPMA case).

PROPOSITION 5.3. Let Dep be a formula/literal dependence function such that for
any l ∈ LitVar and µ ∈ FMLVar, determining whether l ∈ Dep(µ) is in NP. Given four
formulas ϕ, ψ , µ and γ , determining whether ψ ⋄

ϕ

Dep
µ |= γ holds is coNP-complete.

Hardness is still the case when ϕ is valid (no integrity constraints) and the input for-
mula µ and the query γ are atoms.

PROOF. Membership. If determining whether l ∈ Dep(µ) is in NP, then determining
whether any given set L ⊆ LitVar of literals is included in Dep(µ) is in NP as well.
Hence for every positive instance 〈L, µ〉 of this decision problem there exists a certifi-
cate c of size polynomial in the input size such that verifying that 〈L, µ〉 is a positive
instance can be achieved in (deterministic) polynomial when c is given. Now, the com-
plementary problem to query entailment can be solved in nondeterministic polynomial
time, thanks to the following algorithm. Let V = Var(ϕ) ∪ Var(ψ) ∪ Var(µ) ∪ Var(γ);
guess two worlds ω and ω′ over V, a subset L of V ∪V and a string c (both of them being
of polynomial size if the input size), then check in polynomial time that L ⊆ Dep(µ)

using c, and check that ω |= ψ , ω′ |= ϕ ∧ µ ∧ ¬γ and ω = (ω′ \ L) ∪ L.

Hardness. The reduction from UNSAT is as follows: to ψ ∈ FMLVar we associate
in polynomial time the formulas ϕ = ⊤ and µ = y, γ = z where y and z are two
fresh variables not occurring in ψ . Whatever Dep is, ψ is inconsistent if and only if
ψ ⋄

ϕ

Dep
µ |= γ ; this is because for every L ⊆ LitVar, ∃lL.ψ is inconsistent if and only if ψ

is inconsistent.

Lemma 4.7 is a valuable property from a computational point of view when CNF
queries are considered since it shows that Lit-separability is a sufficient condition for
separability in Levesque’s sense. Indeed, thanks to Lemma 4.7, if there are no integrity
constraints (i.e., ϕ ≡ ⊤) and if the dependence function is standard then inference from
an updated base can be achieved by replacing one global entailment test by two simpler
entailment tests, and exponential savings may be achieved this way in practice.

Now, clausal entailment from ∃lDep(µ).ψ can be reduced in linear time to clausal
entailment from a classical formula; this is achieved without turning ∃lDep(µ).ψ first
into such a formula (by means of the definition of ∃l).

PROPOSITION 5.4. Let L ⊆ LitVar, ψ a formula and γ a non-tautological clause.
∃lL.ψ |= γ if and only if ψ |=

∨

l∈Lit(γ)\L l.

PROOF. (⇒) If ∃lL.ψ |= γ holds then since ∃lL.ψ is Lit-independent of every literal
of L, we have ∃lL.ψ |=

∨

l∈Lit(γ)\L l. Since ψ |= ∃lL.ψ also holds, we get that ψ |=
∨

l∈Lit(γ)\L l.

(⇐) Assume that ψ |=
∨

l∈Lit(γ)\L l. Since the clause
∨

l∈Lit(γ)\L l is Lit-independent

of every literal of L, Corollary 4 from Lang et al. [2003a] tells us that ψ |=
∨

l∈Lit(γ)\L l iff ∃lL.ψ |=
∨

l∈Lit(γ)\L l. Since
∨

l∈Lit(γ)\L l |= γ holds, we obtain the

expected conclusion.

Altogether, the two previous propositions give us some tractable restrictions for
clausal query entailment from an updated belief base. Let us say that a subset C of
FMLVar is a tractable fragment for clausal entailment if and only if there exists a poly-
time algorithm for deciding whether ψ |= γ holds for any formula ψ from C and any
CNF formula γ (see Darwiche and Marquis [2002]). Many such fragments exist in the
literature: the DNNF fragment (and its subsets DNF and OBDD<), the Horn CNF
fragment, the Krom fragment (conjunctions of binary clauses), the Blake fragment
(formulas in prime implicates form), etc. We have the following corollary to the two
previous propositions.

COROLLARY 5.5. Let Dep be a standard dependence function. Let µ be a CNF for-
mula from a tractable fragment for clausal entailment. Suppose also that determining
whether any given literal l belongs to Dep(µ) can be achieved in polynomial time. Let
ψ belong to a tractable fragment for clausal entailment. Then determining whether
ψ ⋄⊤

Dep
µ |= γ can be achieved in polynomial time for every CNF formula γ .

The conditions provided in this corollary hold for instance when Dep = RelLit, µ is
a CNF formula from a tractable fragment for clausal entailment, which is stable for
variable instantiation (see Proposition 11 in Lang et al. [2003a]), and ψ belongs to a
tractable fragment for clausal entailment. To make things more concrete, say that ψ
is a Horn CNF formula and µ is a Krom formula (a conjunction of binary clauses), or
vice-versa. It is interesting to observe that in such a case, clausal entailment from the
updated base ψ ⋄⊤

Dep
µ is in P, thus computationally easier than clausal entailment

from the corresponding expanded base ψ ∧ µ, under the assumption P 6= NP. Indeed,
determining whether ψ ∧ µ |= γ is coNP-complete in this situation – tractable classes
are known not to mix well.

5.4. Compactability Issues

We finally consider the compactability problem for updated bases when operators
based on formula/literal dependence are used. In a nutshell, the problem is as follows:
given three formulas ϕ, ψ , and µ, does there exist a propositional formula equiva-
lent to ψ ⋄

ϕ

Dep
µ whose size is polynomial in the input size? Stated otherwise, is the

propositional language FMLVar enriched with ⋄Dep (viewed as a connective) as suc-
cinct as FMLVar, or is it strictly more succinct? Clearly enough, the naive rewriting of

µ ∧ ϕ ∧ ∃lDep(µ).ψ into a propositional formula according to the definition of ∃l, does
not lead to a formula of size polynomial in the input size in the general case.

Formally, two versions of the compactability problem can be taken into account, de-
pending on which notion of equivalence we choose Cadoli et al. [1999].

— Logical compactability. ⋄Dep is logically compactable if and only if there exists a
polynomial p such that for every triple of propositional formulas ϕ, µ, ψ there exists
a propositional formula 6 such that:
(1) |6| ≤ p(|ϕ| + |µ| + |ψ |), and
(2) 6 is logically equivalent to ψ ⋄

ϕ

Dep
µ.

— Query compactability. ⋄Dep is query-compactable if and only if there exists a poly-
nomial p such that for every triple of propositional formulas ϕ, µ, ψ there exists a
propositional formula 6 such that:
(1) |6| ≤ p(|ϕ| + |µ| + |ψ |), and
(2) 6 is query-equivalent to ψ ⋄

ϕ

Dep
µ, i.e., 6 and ψ ⋄

ϕ

Dep
µ have the same logical

consequences over Var(ϕ) ∪ Var(µ) ∪ Var(ψ).

Let us first consider the query-compactability issue.

PROPOSITION 5.6. Let Dep be a formula/literal dependence function. Then ⋄Dep is
query-compactable.

PROOF. For any L ⊆ LitVar and any formula ψ , let ψ ′
L

be the formula obtained
by replacing in NNF(ψ) every occurrence of l ∈ L by an occurrence of l′ ∈ L′, where
symbols from L′ ⊆ LitVar are fresh, i.e., {x′ |x′ ∈ L′ or ¬x′ ∈ L′} ∩ Var(ψ) = ∅. (For
example, if ψ = a ∨ (¬a ∧ ¬b) and L = {a, ¬a, b} then ψ ′

L
= a′ ∨ (¬a′ ∧ ¬b).) Let us

consider the formula 6 = ϕ ∧ µ ∧ ψ ′
L

where L = Dep(µ) ∩ Lit(ψ). By construction,

this formula is of size polynomial in |ϕ| + |µ| + |ψ |. Let us show that ψ ⋄
ϕ

Dep
µ is query-

equivalent to 6. Let V = Var(ϕ)∪Var(µ)∪Var(ψ). We have to show that ∃V.(ψ⋄
ϕ

Dep
µ) ≡

∃V.6. The formula ∃V.(ψ ⋄
ϕ

Dep
µ) = ∃V.(µ ∧ ϕ ∧ ∃lDep(µ) ∩ Lit(ψ).ψ) is equivalent to

µ ∧ ϕ ∧ ∃lDep(µ) ∩ Lit(ψ).ψ since every variable from Var(µ ∧ ϕ ∧ ∃lDep(µ) ∩ Lit(ψ).ψ)

is in V. Now, since every variable from µ∧ϕ also is in V, we have that ∃V.(µ∧ϕ∧ψ ′
L
) is

equivalent to µ∧ϕ ∧∃V.ψ ′
L

, which is also equivalent to µ∧ϕ ∧∃lV ∪ V.ψ ′
L

. Since every

literal of Lit(ψ ′
L
) is in V ∪ V, except the literals from L′, ∃V.6 is equivalent to µ ∧ ϕ ∧

∃lL
′.ψ ′

L
. But ∃lL

′.ψ ′
L

is equivalent to ∃lL.ψ (quantified literals are ‘dummy literals’) and
the substitution metatheorem for propositional logic concludes the proof.

There is no such a general result for ⋄Dep operators w.r.t. logical compactability. In-
tuitively, some ⋄Dep operators are logically compactable because they lead to forget
no literal (except a preset number of them) or to forget every literal (except a pre-
set number of them); for instance, the update operators induced by Dep(µ) = ∅ and
Dep(µ) = LitVar for every µ are logically compactable. Some other operators are not
logically compactable. We have the following result, which slightly extends Theorem
10 from Liberatore and Schaerf [2004].

PROPOSITION 5.7. Let Dep be any standard and confined formula/literal depen-
dence function. Then ⋄Dep is not logically compactable unless the polynomial hierarchy
collapses.

PROOF. First of all, it is obvious that the (non-standard) third parameter ϕ (the
integrity constraints) of ⋄Dep operators has no influence at all on the logical

compactability issue of the operator: ⋄Dep is logically compactable if and only if the

standard (i.e., with two parameters) update operator ⋄⊤
Dep

is logically compactable. Ac-

cordingly, we now assume that ϕ = ⊤. Let 3CNFn be the set of all propositional CNF
formulas ψ , such that each clause of ψ contains at most 3 literals, and Var(ψ) contains
n elements. We take advantage of Theorem 2.3 from [Cadoli et al. 1999]. This theorem
says that if ⋄ is a belief change operator and if there exists a polynomial p such that
for every integer n > 0, there exists a pair of formulas ψn and µn such that

— |ψn| + |µn| ≤ p(n), and
— for every formula π ∈ 3CNFn, there exists a world ωπ over Var(ψn) ∪ Var(µn) that

can be computed from π in polynomial time and which is such that π is consistent if
and only if ωπ |= ψn ⋄ µn.

Then if ⋄ is query-compactable, then NP ⊆ P/poly. Let us consider the set Xn =
{x1, . . . , xn} of variables from Var. Let πmax

n be the conjunction of all clauses containing
at most three literals built up from Xn. πmax

n has a size polynomial in n since it con-

tains O(n3) clauses. Furthermore, viewing CNF formulas as sets of clauses, each π ∈
3CNFn is (up to a variable renaming) a subset of πmax

n . To every clause γi of πmax
n we

associate a new symbol ci not occurring in Xn. We now define ψn, µn and ωπ as follows:

— ψn = (
∧

γi∈πmax
n

(¬ci ∨γi))∨¬t where t is a new symbol (not in Xn and different of any

ci);
— µn = ((

∨

xi∈Xn
¬xi) ∨ y) ∧ ((

∨

xi∈Xn
xi) ∨ z) where y and z are two new symbols (not in

Xn and different of any ci);
— ωπ is such that for every x ∈ Var(ψn) ∪ Var(µn), ωπ (x) = 0 if x = ci and γi 6∈ π , and

ωπ (x) = 1 otherwise.

If π is consistent, then it has a model ω′ over Xn; let us extend ω′ to Var(ψn)∪Var(µn),
by imposing that x 6∈ ω′ if x = ci and γi 6∈ π , and x ∈ ω′ otherwise. By construction, we
have ω′ |= ψ . Now, let L = {xi ∈ Xn | xi ∈ ω′} ∪ {¬xi | xi ∈ Xn and xi 6∈ ω′}. We have
L ⊆ Xn ∪ Xn. Now, we also have Xn ∪ Xn ⊆ Dep(µ) since RelLit(µ) = Xn ∪ Xn ∪ {y, z}. As
a consequence, we get L ⊆ Dep(µ). Since ω′ = (ωπ \L)∪L, we get that ωπ |= ψn ⋄

ϕ

Dep
µn.

If π is inconsistent, then assume that ωπ |= ψn ⋄
ϕ

Dep
µn. Then there exists a world

ω′ over Var(ψn) ∪ Var(µn) and a subset L of Dep(µ) such that ω′ = (ωπ \ L) ∪ L. Since
ci 6∈ Dep(µ) for every i, we have ci ∈ ω′ iff ci ∈ ωπ . Since π is inconsistent, we get that
ω′ 6|=

∧

γi∈πmax
n

(¬ci ∨ γi). Therefore, we have t 6∈ ω′. But ¬t 6∈ Dep(µ), so we should also

have t 6∈ ωπ , contradiction.

Nevertheless, tractable cases can be achieved by restricting the input so that a for-
mula logically equivalent to ∃lDep(µ).ψ and of size polynomial in the input size can be
computed.

PROPOSITION 5.8. If ψ is a Blake formula or a DNNF formula, then ψ ⋄
ϕ

Dep
µ can

be turned into an equivalent propositional formula of polynomial size. Furthermore, if
Dep is a polytime function, then such a formula can be computed in polynomial time.

PROOF. Clearly enough, since Dep is a computable function, Dep(µ) can be com-
puted in finite time (resp. in polynomial time if Dep is a polytime function).

Blake. It is then enough to take advantage of Proposition 19 from Lang et al. [2003a]
showing that a prime implicate formula equivalent to ∃lDep(µ).ψ can be computed in

polynomial time as the conjunction of all prime implicates of ψ that does not contain
any literal from Dep(µ).

DNNF. It is necessary to generalize Theorem 9 from [Darwiche 2001] to literal for-
getting. Let us note DNNF(∃lL.ψ) where L ⊆ LitVar and ψ is a DNNF formula the
propositional formula defined by structural induction as follows:

— if ψ is a Boolean constant or a literal not belonging to L, then DNNF(∃lL.ψ) = ψ ;
— if ψ is a literal from L, then DNNF(∃lL.ψ) = ⊤;
— if ψ is a conjunction

∧n
i=1 αi, then DNNF(∃lL.ψ) =

∧n
i=1 DNNF(∃lL.αi);

— if ψ is a disjunction
∨n

i=1 αi, then DNNF(∃lL.ψ) =
∨n

i=1 DNNF(∃lL.αi).

Clearly enough, DNNF(∃lL.ψ) can be computed in linear time. It remains to show
that ∃l.ψ ≡ DNNF(∃lL.ψ). We do so by structural induction on ψ .

Base. If ψ is a Boolean constant or a literal not belonging to L, then DNNF(∃lL.ψ) =
ψ is equivalent to ∃lL.ψ since in such a case ψ is Lit-independent of L. If ψ is a literal
from L, then DNNF(∃lL.ψ) = ⊤ is equivalent to ∃lL.ψ (just consider the definition of
∃lL.ψ).

Inductive step. If ψ is a conjunction
∧n

i=1 αi, then

DNNF(∃lL.ψ) =

n
∧

i=1

DNNF(∃lL.αi).

By induction hypothesis each DNNF(∃lL.αi) is equivalent to the corresponding ∃lL.αi.
From Item 2. of Corollary 2 in Lang et al. [2003a] we know that for each i ∈ {1, . . . , n},
∃lL.

∧n
i=1 αi |= ∃lL.αi holds. Hence we have ∃lL.

∧n
i=1 αi |=

∧n
i=1(∃lL.αi). It remains to

show that
∧n

i=1(∃lL.αi) |= ∃lL.
∧n

i=1 αi. Let ω be a model of
∧n

i=1(∃lL.αi) on Var(ψ).
Then ω is a model of ∃lL.αi on Var(ψ) for each i ∈ {1, . . . , n}. By Proposition 15 from
Lang et al. [2003a], for each i ∈ 1 . . . n, there exists a subset Li of Var(αi) ∪ Var(αi)

and a model ωi of αi on Var(αi) such that ωi = (ω \ Li) ∪ Li. Now, since ψ =
∧n

i=1 αi

is a DNNF formula, the sets Var(αi) (i ∈ {1, . . . , n}) are pairwise disjoint. Hence the
world ω′ on Var(ψ) defined by: for all x ∈ Var, if x ∈ Var(αi) then x ∈ ω′ iff x ∈ ω, is a
model of ψ . Furthermore, the Li’s are also pairwise disjoint. Hence, we have ω′ = (ω \
⋃n

i=1 Li))∪
⋃n

i=1 Li). Since
⋃n

i=1 Li ⊆ L, we get that ω is a model of ∃lL.ψ and the result
follows. Finally, if ψ is a disjunction

∨n
i=1 αi, then DNNF(∃lL.ψ) =

∨n
i=1 DNNF(∃lL.αi)

is equivalent to ∃lL.ψ : this follows directly from Proposition 17 from Lang et al. [2003a]
and the induction assumptions stating that each DNNF(∃lL.αi) is equivalent to the
corresponding ∃lL.αi.

6. DEPENDENCE-BASED UPDATE AND ACTION PROGRESSION

It is well-known that belief update and action progression are highly related (see an
extended discussion in Lang [2007]). Especially, since belief update can be used as a
language for specifying action effects, it can be used for reasoning about action and
planning. We start by reviewing some recent works that go in this direction.

Liberatore [2000b] presents a framework for reasoning about actions, whose seman-
tics can be seen as a proper restriction of the one pointed out in Baral et al. [1997],
but which remains expressive enough to incorporate many update settings, including
Winslett’s PMA. In this framework, minimization of change is achieved through the
minimization of happens statements (a primitive allowing to declare that a given ac-
tion occurs at a given time point). Only deterministic actions are formalized in this

framework, making it inappropriate for modeling nondeterministic updates (like the
one happening when tossing a coin). This strongly contrasts with our approach.

Amir and Russell [2003] define a logical filtering operation that takes a belief state
represented compactly by a propositional formula and consider actions with condi-
tional effects of the form if α then a causes ϕ, where α and ϕ are propositional
formulas. This filtering operator corresponds to WSS [Winslett 1990] enriched with
conditional updates. Then they go further and address the practical computation of
this conditional update operator, depending on the syntax of the input belief base.
Most of the results of Amir and Russell [2003] can be easily generalized to our update
operators based on formula/literal dependence, thus completing nicely our results in
Section 5. A first-order extension of logical filtering has also been proposed by Shirazi
and Amir [2011]. In such a general setting, the update issue is much more difficult
(especially, progressing a belief state is known to be not first-order definable [Lin and
Reiter 1997]). In [Shirazi and Amir 2011], the authors present some restrictions on the
belief state representations and on the action representations enabling some tractable
algorithms for logical filtering to be designed.

Lang [2007] characterizes the class of feedback-free actions for which progression
corresponds to a belief update, and shows that two well-known forms of action regres-
sion correspond in a natural way to two forms of “reverse update”.

Now, let us investigate deeper the respective position of belief update and propo-
sitional action languages [Baral and Gelfond 2005; Giunchiglia and Lifschitz 1998;
Giunchiglia et al. 2004; McCain and Turner 1997]. Both frameworks are based on
propositional logic and aim at expressing compactly action effects and reasoning
about them. How do they compare in terms of expressivity? What is the position of
dependency-based update in this zoo of propositional action representation languages?

Two remarks come immediately to mind.

— “Update” actions are specific actions with only one effect – in other terms, updating
by α corresponds to progressing by the action “make α true” – and this effect α can be
any propositional formula; on the other hand, action languages consider only ‘literal’
effects of the form a causes l, where l is a literal.

— Action languages contain many constructs for “combining” action effects: conditional
effects (if γ then a causes l), concurrent actions, as well as static causal rules (for
ramifications). They can also express some forms of nondeterminism, using their
nonmonotonic semantics in a clever way, or by the release construct, which nonde-
terministically reassigns the truth value of a variable.

A first conclusion emerging from these observations is that the expressivity of belief
update comes from its handling of complex effects (expressed by arbitrary proposi-
tional formulas) while the expressivity of action languages comes from its ability to
combine action effects. On the latter point, it is not difficult to enrich belief update
so as to integrate these constructs; the second half of [Herzig et al. 2001] shows how
update operators can be extended so as to deal with more complex change formulas
(so-called “extended inputs” 8).

— Conditional effects. If γ then update ψ by α else update ψ by β, denoted by ψ ⋄ 8
with 8 = if γ then α else β.

— Nondeterminism. Update ψ by α or update ψ by β, denoted by ψ ⋄8 with 8 = α ∪β.
— Concurrency. Update ψ concurrently by α and by β, denoted by ψ ⋄8 with 8 = α || β.

An interesting feature of such extended updates is that they do not imply any com-
plexity shift with respect to the corresponding basic updates for the inference problem
(especially, when dependence-based updates operators are considered, the inference
problem remains coNP-complete).

We focus first on conditional and concurrent updates. If we consider the restric-
tion of ⋄Dep to the case when the input formula is a literal, then when Dep = RelLit,

we have Dep(l) = {l}, and therefore, ω ⋄Dep l = (ω \ {l}) ∪ {l}, i.e., ω ⋄Dep l is the
model obtained from ω by forcing l to be true, which gives the same truth value
as ω to all variables except Var(l). Consider now an update by the extended input
8 = (if C1 then l1) || . . . || (if C1 then ln), and let Ŵ+(l) =

∨

{Ci|li = l}. Then we have

∀x ∈ VAR, ω ⋄Dep 8 |= x iff ω |= (x ∧ ¬Ŵ+(¬x)) ∨ Ŵ+(x).

We recover here a well-known concept in the literature on reasoning about action:
a successor state axiom. This result shows how ⋄Dep can be positioned with respect
to propositional action languages: both conditional update and progression in action
languages coincide when conditional update is restricted to literal inputs (but allows
for conditional and concurrent updates), and actions languages are restricted to dy-
namic effects (no static causal effects).

We focus now on nondeterminism. We see from our discussion above that there are
two ways of expressing nondeterministic effects: either by using disjunctive effects
(make a∨b true) or by using nondeterministic effect trigerring (make a true or make b
true). This dichotomy in the expression of nondeterminism has been discussed first in
Brewka and Hertzberg [1993]. Some nondeterministic actions, such as tossing a coin,
can be expressed easily in both ways (release p, equivalent to a nondeterministic
update by p ∪ ¬p; and a dependency-based update by p ∨ ¬ p with Dep(p ∨ ¬p) =
{p, ¬p}). However, some actions are more succinctly expressed using one of these two
ways; for instance, making an equivalence true (“update by (p ⇒ q) ∧ (q ⇒ p)”) can be
expressed in action languages but in a less intuitive and less compact way (for instance,
by the four static causal rules p causes q; q causes p; ¬p causes ¬q; ¬q causes ¬p),
which demonstrates that allowing for complex effects gives much more flexibility than
allowing just literals.

Moreover, identifying the literals on which the direct effect of an action may have
a negative influence (including the negations of those on which it depends as in our
update operators) appears also as a key to discriminate a disjunctive effect from a
nondeterministic effect. Indeed, frame axioms should not be considered for literals
occurring in nondeterministic actions like “tossing a coin”: head ⋄Dep head ∪ ¬head is
expected to be equivalent to ⊤, which can be achieved only if head is released. Such a
distinction is salient in the completions of the generalized action theories proposed by
Lang et al. [2003b], which are based on the concept of causal explanation [Giunchiglia
et al. 2004; McCain and Turner 1997], just as many action languages proposed so far,
especially C [Giunchiglia and Lifschitz 1998].

7. RELATED WORK

Herzig and Rifi [1999] gave a comprehensive study of belief update, which exhaustively
surveyed all works on belief update up to that date. To our knowledge, no survey of this
kind has been published since then, and we believe that it is the right time to do so. We
now briefly review a number of papers about belief update, published after Herzig and
Rifi [1999] and, when this is relevant, discuss their connections to our dependence-
based operators.

7.1. Dependence-Based Update

We start by listing a series of works which address various forms of belief update
based on formula/variable dependence. Early works [Doherty et al. 1998; Herzig 1996;
Herzig and Rifi 1999; Winslett 1990] have been already discussed in Section 3 and in
[Herzig and Rifi 1999]. Since then, many works have studied, under various points of

view, belief update operators based on formula/variable or, more rarely, formula/literal
dependence. We review them below.

Vo et al. [2006] introduce a belief update operator where the syntax of the input
matters, but the syntax of the initial knowledge base (a propositional formula) does
not. More precisely, it consists in applying the following operations in sequence:

(1) rewrite the knowledge base ϕ to a set of clauses C;
(2) saturate C by resolution on the variables of Var(µ);
(3) eliminate from C the clauses containing variables from Var(µ);
(4) expand C by µ.

For instance, if ϕ = (p ∨ q) ∧ (¬p ∨ r) and µ = p then C = {p ∨ q, ¬p ∨ r}; after step
2 we have C = {p ∨ q, ¬p ∨ r, q ∨ r}; after step 3 we have C = {q ∨ r}; and finally, the
result of the update is equivalent to (q ∨ r) ∧ p. It appears that, although defined in
a different manner, this operator is identical to WSS; it provides thus an alternative,
syntactic, characterization of WSS.

Lang et al. [2001] extend dependence-based update operators to epistemic states,
allowing to express various degrees of beliefs in the initial base as well as action effects
with various degrees of plausibility. In this article, epistemic states are modeled as
ordinal conditional functions and represented as propositional stratified belief bases.
While the authors focus on formula/variable dependence functions, it would be easy to
extend their work to formula/literal dependence functions.

Madalińska-Bugaj and Łukaszewicz [2009] propose a first-order version of the
MPMA, where the knowledge base is a closed first-order formula and the input for-
mula is a Boolean combination of ground atoms. Allowing first-order knowledge bases
and input formulas gives much more expressivity to the language—and, on the other
hand, leads to the computational difficulties inherent to first-order logic. Clearly, since
dependence-based update generalizes the MPMA, we could build a general frame-
work for first-order dependence-based update, which would of course generalize the
approach given in Madalinska-Bugaj and Łukaszewicz [2009].

7.2. General Families of Update Operators

We now review some works that define general families of update operators which
include some dependence-based operators.

Delgrande et al. [2005] define Gricean update operators as follows. Given U ⊆ Var, a
U-world is defined as a partial interpretation (also viewed as a term) associating each
variable of U with a truth value. Given a formula µ, let ModRelVar(µ)(µ) be the set of

all RelVar(µ)-worlds implying µ. Let O = {¹ω| ω ∈ 2Var} be a collection of so-called
strongly centered partial preorders over the worlds (called faithful partial preorders
in [Katsuno and Mendelzon 1991]), that is, partial preorders such that ω ≺ω ω′ for all
ω and ω′ 6= ω. Then the Gricean update operator induced from O is defined by:

Mod(ϕ ⋄̂O µ) =
⋃

ω′∈Mod(ϕ)

⋃

σ∈ModRelVar(µ)(µ)

min
¹ω′

(Mod(σ)).

The very essence of Gricean updates is that after updating a consistent ϕ by a con-
sistent µ, what we know about RelVar(µ) is exactly µ [Delgrande et al. 2005, Theorem
4.11]. Let us call this key condition ”the Gricean property” (GR). Using propositional
quantification the Gricean property can be written more formally as:

(GR) ∃(Var\RelVar(µ)).(ϕ ⋄̂O µ) ≡ µ.

From this we can conclude that WSS↓ satisfies (GR) while WSS does not. In the
general case, update operators based on formula/literal dependence are not Gricean

either, since, for instance, updating a ∧ b by µ = a ∨ b using ⋄Dep with Dep = RelLit
leads to a formula equivalent to a ∧ b, which tells more about {a, b} than µ. The follow-
ing result characterizes those update operators based on formula/literal dependence
that satisfy the Gricean property:

PROPOSITION 7.1. ⋄Dep satisfies the Gricean property (GR) if and only if Dep satis-
fies the following property.

(DG) for every consistent formula µ, Dep(µ) contains both RelVar(µ) and RelVar(µ).

PROOF. Assume Dep satisfies (DG). Then for any consistent µ and ϕ,
RelVar(∃lDep(µ).ϕ) ∩ RelVar(µ) = ∅, therefore ϕ ⋄Dep µ ≡ ψ ∧ µ for some ψ such that
RelVar(ψ) ∩ RelVar(µ) = ∅, which implies that ⋄Dep satisfies the Gricean property.

Conversely, assume that ⋄Dep satisfies the Gricean property and let µ be a consistent
formula and l a literal such that Var(l) ∈ RelVar(µ) and l 6∈ Dep(µ). We have ¬l⋄Depµ =

(∃lDep(µ).¬l) ∧ µ ≡ ¬l ∧ µ. Because ⋄Dep satisfies the Gricean property we must have
∃Var \ RelVar(µ).(¬l ⋄Dep µ) ≡ µ. This, together with Var(l) ∈ RelVar(µ), implies that
¬l∧µ ≡ µ, hence µ |= ¬l. Therefore, any literal l such that Var(l) ∈ Var(µ) and µ 6|= ¬l
must be in Dep(µ). It remains to be shown that if Var(l) ∈ RelVar(µ) and µ |= ¬l then l
must be in Dep(µ) as well. Towards a contradiction, suppose it is not. Let ϕ = ¬l. Since
by assumption l 6∈ Dep(µ), we have ∃lDep(µ).ϕ ≡ ¬l, hence ϕ ⋄Dep µ = ¬l ∧ µ ≡ ⊥,
contradicting the assumption that ⋄Dep satisfies the Gricean property.

Delgrande et al. [2008] define a compositional update operator ⋄C whose most dis-
tinctive feature is that update distributes over disjunction, that is, ϕ ⋄C (µ1 ∨ µ2) ≡
(ϕ ⋄C µ1)∨ (ϕ ⋄C µ2). They also define a more general family of update operators, where
compositional update is preceded by a syntactic transformation µ∗ of the input for-
mula µ, giving rise to a family of generalized compositional update operators ⋄∗

C
; for

instance, µ∗ can be NNF(µ), or the conjunction of its prime implicates, or the disjunc-
tion of all conjunctions of literals corresponding to its models, or the disjunctions of
all conjunctions of literals corresponding to its models restricted to the set of variables
occurring in µ. In the latter case, ⋄∗

C
is shown to be equivalent to WSS. This shows that

the class of generalized compositional updates and the class of dependence-based up-
dates overlap. Characterizing their intersection precisely is an interesting open issue.

7.3. Update and Observations

Hunter and Delgrande [2011] propose a general framework for reasoning about ac-
tion and change, where ontic actions are expressed by updates while observations are
expressed by revisions. Especially, they define a new class of belief change operators,
called belief evolution operators. A belief evolution operator takes two arguments: a
set of states and an alternating sequence of actions and observations. Each belief evo-
lution operator is defined with respect to a fixed update operator and a fixed AGM
revision operator. The authors show that the interaction between update and revision
can be complex, and specify how an agent should consider the history of actions when
incorporating a new observation. In contrast, existing formalisms for reasoning about
epistemic action effects either ignore the interaction between revision and update or
they deal with it implicitly.

In the same vein, Shapiro et al. [2011] define a very expressive framework for rea-
soning about action and change, integrating revision and update, within the situation
calculus. Generalizing belief update so as to take observations into account was also
the key point of generalized update [Boutilier 1998]. Finally, belief extrapolation [Dupin
de Saint-Cyr and Lang 2011] focuses on reasoning about time-stamped observations
by minimizing change, but without any action progression component.

7.4. Belief Update Beyond Classical Logic

There have been also a few recent extensions of belief update beyond classical logic,
that we review briefly now.

Liu et al. [2006] consider the update problem in description logics. One of their main
results is that there are cases where, for a fixed logic used to express the knowledge
base, the result of an instance level evolution operation, i.e., when only the Abox
is modified, is not expressible in the language of the logic under consideration. In
particular, they show that this is the case for the description logic ALC. Contrastingly,
de Giacomo et al. [2006] show how Winslett’s PMA can be extended to the descrip-
tion logic DL-Lite in a way such that the updated base is still expressible in DL-Lite.
In de Giacomo et al. [2007], the authors propose to address the problem of limited
expressivity by resorting to a notion of maximal approximation of update and illus-
trate it by focusing on a restriction of the logic considered in the previous paper. Obvi-
ously enough, such expressiveness issues do not arise in the simple setting of classical
propositional logic that we consider in this article. However, compactability issues (i.e.,
the ability of representing the updated base as a propositional formula using a poly-
nomial amount of space) make sense for our update operators and we investigated
them.

Eiter et al. [2005, 2010] address the problem of updating action descriptions rep-
resented in a fragment of the action language C. The framework they design is quite
general: the updated action description can be required to include some causal laws
and to imply some given integrity constraints; moreover, a preference relation over ac-
tion descriptions is also taken into account. Their approach has flavors of both belief
revision and belief update.

Baral and Zhang [2005] consider the problem of updating a belief base expressed in
the language of epistemic logic S5. They introduce an update operator based on the
principle of minimal change and show that it satisfies the KM postulates (interpreted
under the context of S5). In this setting, forgetting µ in ϕ consists in updating the
latter with ¬Kµ ∧ ¬K¬µ, asserting that neither µ nor its negation is known to hold.

Zhang and Zhou [2009] is closer to our work: in that paper, the authors study a no-
tion of knowledge forgetting in S5 and consider, among other things, knowledge update
as a possible application of knowledge forgetting. Their notion of knowledge forgetting
is similar to the one at work in classical propositional logic (and different from the
one considered in Baral and Zhang [2005]); indeed, forgetting a set of propositional
variables in a formula ϕ amounts to computing the logically strongest consequence of
ϕ that is independent from the set (i.e., there exists a equivalent formula in which
no atom from the given set occurs). Zhang and Zhou define two update operators,
the second being the model-wise version of the first. A significant difference with our
dependence-based update operators is that the set of variables to be forgotten depends
not only on the change formula µ but also on the knowledge base ϕ itself. Roughly, the
models of the updated base are obtained by considering in all possible ways minimal
sets of atoms (w.r.t. ⊆) such that forgetting them in ϕ leads to a formula consistent with
µ. This is a way of implementing the principle of minimal change, and accordingly, the
corresponding update operator satisfies (U2).

Bienvenu et al. [2010] show how an S5 belief base can be progressed in polynomial
time when it has been first compiled into a specific DNF form and the action descrip-
tion (which can refer to an ontic action or to an epistemic action) has been normalized
as well. The notion of progression by an ontic action that is considered in their paper
corresponds to an update operator following the ”forget-then-conjoin” scheme that we
follow in the present article.

7.5. Other Related Works

Nayak et al. [2006] investigate an interesting relationship between literal forget-
ting and update: they show that Forbus’ update operator [Forbus 1989] and literal
forgetting are inter-definable. This establishes an interesting connection between
minimization-based and dependence-based approaches to belief update. Note that al-
though our work also talks about literal forgetting and belief update, the nature of
their work differs from ours, which aims at defining new update operators, based on
formula/literal dependence, that can be computed via literal forgetting.

Georgatos [2008] introduces a form of update based on the minimization of the
geodesic distance on a graph. The corresponding update operators correspond bijec-
tively to geodesic metrics. Since such operators are based on minimization of change
(and not on a “forget-then-conjoin” scheme), they are quite different from our update
operators. Especially, Georgatos’s operators satisfy (U2) while this is not the case for
our operators in general.

From a more applicative side, Hoffmann et al. [2009] use belief update for plan-
ning and web service composition and, following previous proposals in that direction,
show that applying a web service is essentially a belief update operation. The authors
introduce the decomposability postulate (D) that we considered previously (they call
it (IV)). As in our approach, some integrity constraints are considered in their work.
However, their update operator is based on change minimization, following Winslett’s
PMA.

8. CONCLUSION

In this article, we have proposed a new family of belief update operators that are based
on dependence functions associating to every change formula µ the set of literals
on which µ has a negative influence. We have shown that the family of KM update
operators and the family of update operators based on formula/literal dependence are
disjoint. We have identified the KM postulates our operators satisfy (and under which
conditions), and we have studied their computational properties: complexity of model
checking, satisfiability and inference, as well as compactability.

We have shown that update operators based on formula/literal dependence gener-
alize those based on formula/variable dependence as defined in [Doherty et al. 1998,
2000; Herzig 1996; Herzig and Rifi 1999]. We have also shown by means of examples
that natural definitions of formula/literal dependence such as Dep = RelLit induce
smaller change of the belief base than operators based on formula/variable depen-
dence; for example (a ∧ b) ⋄⊤

Dep
(a ∨ b) |= a ∧ b, while (a ∧ b) ⋄⊤

Depv
(a ∨ b) |= a ∨ b.

Interestingly, this is achieved without requiring a complexity shift w.r.t. operators
based on formula/variable dependence. In particular, the inference problem for update
operators based on formula/literal dependence is coNP-complete, just as the inference
problem for Winslett’s standard semantics (WSS), Hegner’s operator (which is iden-
tical to Doherty et al.’s MPMA operator and to Herzig and Rifi’s WSS↓), Herzig and
Rifi’s WSSδvand WSS↓δv . Observe also that the other update operators of the litera-
ture that are not dependence-based all have higher complexity than ours; for instance,
the inference problem for Winslett’s PMA operator, Forbus’ operator, Zhang and Foo’s
MCD operator (“minimal change with maximal disjunctive inclusion”) and Zhang and
Foo’s MCE operator (“minimal change with exceptions”, the update version of Weber’s
revision operator) is 5

p
2-complete [Eiter and Gottlob 1992; Liberatore 2000a].

As to the update postulates, Herzig and Rifi [1999] criticized the KM rationality
postulates for update; they show that (U1), (U3) and (U8) are uncontroversial, while
(U4) is desirable, (U7) is neutral and (U2), (U5), and (U6) are undesirable. Notably,
the most interesting of our update operators, those based on standard formula/literal

dependence functions, conform to the desiderata: they satisfy (U1), (U3), and (U8),
and those who are syntax-independent moreover satisfy (U4); none of them satisfies
(U2), and (U5) and (U6) are not always satisfied.

This article calls for some perspectives for further research. First of all, it would
be interesting to investigate other logical settings where update operators based on
the “forget-then-conjoin” scheme could be defined. A key property for it is the ability of
expressing in the language of the logic the result of forgetting some atoms in a formula.
Indeed, while this is feasible in many logical settings, it is not always possible (for
instance, this cannot be achieved in modal logic S4). On the other hand, in this article
we have supposed that dependence functions are given. In future work we plan to
investigate how they can be built automatically.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for some helpful comments.

REFERENCES

Alchourrón, C. E., Gärdenfors, P., and Makinson, D. 1985. On the logic of theory change: Partial meet con-
traction and revision functions. J. Symb. Logic 50, 2, 510–530.

Amir, E. and Russell, S. J. 2003. Logical filtering. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI’03). 75–82.

Baral, C. and Gelfond, M. 2005. Logic Programming and Reasoning about Actions. Elsevier, 389–428.

Baral, C. and Zhang, Y. 2005. Knowledge updates: Semantics and complexity issues. Artif. Intell. 164, 1–2,
209–243.

Baral, C., Gelfond, M., and Provetti, A. 1997. Representing actions: Laws, observations and hypotheses. J.
Logic Program. 31, 1–3, 201–243.

Bienvenu, M., Fargier, H., and Marquis, P. 2010. Knowledge compilation in the modal logic S5. In Proceed-
ings of the National Conference on Artificial Intelligence (AAAI’10). 261–266.

Bienvenu, M., Herzig, A., and Qi, G. 2008. Prime implicate-based belief revision operators. In Proceedings
of the European Conference on Artificial Intelligence (ECAI’08). 741–742.

Boutilier, C. 1998. A unified model of qualitative belief change: A dynamical systems perspective. Artif.
Intell. 98, 1–2, 281–316.

Brewka, G. and Hertzberg, J. 1993. How to do things with worlds: On formalizing actions and plans. J. Logic
Comput. 3, 5, 517–532.

Cadoli, M., Donini, F., Liberatore, P., and Schaerf, M. 1999. The size of a revised knowledge base. Artif.
Intell. 115, 1, 25–64.

Darwiche, A. 2001. Decomposable negation normal form. J. ACM 48, 4, 608–647.

Darwiche, A. and Marquis, P. 2002. A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264.

de Giacomo, G., Lenzerini, M., Poggi, A., and Rosati, R. 2006. On the update of description logic ontologies
at the instance level. In Proceedings of the National Conference on Artificial Intelligence (AAAI’06).

de Giacomo, G., Lenzerini, M., Poggi, A., and Rosati, R. 2007. On the approximation of instance level update
and erasure in description logics. In Proceedings of the National Conference on Artificial Intelligence
(AAAI’07). 403–408.

Delgrande, J., Nayak, A., and Pagnucco, M. 2005. Gricean belief change. Studia Logica 79, 97–113.

Delgrande, J., Jin, Y., and Pelletier, J. 2008. Compositional belief update. J. Artif. Intell. Res. 32, 757–791.

Doherty, P., Łukasziewicz, W., and Madalińska-Bugaj, E. 1998. The PMA and relativizing change for action
update. In Proceedings of the International Conference on Principles of Knowledge Representation and
Reasoning (KR’98). 258–269.

Doherty, P., Łukasziewicz, W., and Madalińska-Bugaj, E. 2000. The PMA and relativizing change for action
update. Fundamenta Informaticae 44, 1–2, 95–131.

Dupin de Saint-Cyr, F. and Lang, J. 2011. Belief extrapolation (or how to reason about observations and
unpredicted change). Artif. Intell. 175, 2, 760–790.

Eiter, T. and Gottlob, G. 1992. On the complexity of propositional knowledge base revision, updates, and
counterfactuals. Artif. Intell. 57, 2–3, 227–270.

Eiter, T., Erdem, E., Fink, M., and Senko, J. 2005. Updating action domain descriptions. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI’05). 418–423.

Eiter, T., Erdem, E., Fink, M., and Senko, J. 2010. Updating action domain descriptions. Artif. Intell. 174, 15,
1172–1221.

Forbus, K. D. 1989. Introducing actions into qualitative simulation. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI’89). 1273–1278.

Georgatos, K. 2008. Belief update using graphs. In Proceedings of the International Florida Artificial Intel-
ligence Research Society Conference (FLAIRS’08). 649–654.

Giunchiglia, E. and Lifschitz, V. 1998. An action language based on causal explanation: Preliminary report.
In Proceedings of the National Conference on Artificial Intelligence (AAAI’98). 623–630.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., and Turner, H. 2004. Nonmonotonic causal theories. Artif.
Intell. 153, 1–2, 49–104.

Herzig, A. 1996. The PMA revisited. In Proceedings of the International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’96). 40–50.

Herzig, A. and Rifi, O. 1998. Update operations: A review. In Proceedings of the European Conference on
Artificial Intelligence (ECAI’98). 13–17.

Herzig, A. and Rifi, O. 1999. Propositional belief update and minimal change. Artif. Intell. 115, 107–138.

Herzig, A., Lang, J., Marquis, P., and Polacsek, T. 2001. Updates, actions, and planning. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI’01). 119–124.

Hoffmann, J., Bertoli, P., Helmert, M., and Pistore, M. 2009. Message-based web service composition, in-
tegrity constraints, and planning under uncertainty: A new connection. J. Artif. Intell. Res. 35, 49–117.

Hunter, A. and Delgrande, J. 2011. Iterated belief change due to actions and observations. J. Artif. Intell.
Res. 40, 269–304.

Karp, R. M. and Lipton, R. J. 1980. Some connections between non-uniform and uniform complexity classes.
In Proceedings of the Annual ACM Symposium on Theory of Computing (STOC’80). 302–309.

Katsuno, H. and Mendelzon, A. 1991. On the difference between updating a knowledge base and revising it.
In Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning
(KR’91). 387–394.

Katsuno, H. and Mendelzon, A. 1992. Propositional knowledge base revision and minimal change. Artif.
Intell. 52, 263–294.

Kourousias, G. and Makinson, D. 2007. Parallel interpolation, splitting, and relevance in belief change. J.
Symb. Logic 72, 3, 994–1002.

Lang, J. 2007. Belief update revisited. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI’07). 2517–2522.

Lang, J. and Marquis, P. 1998. Two forms of dependence in propositional logic: Controllability and definabil-
ity. In Proceedings of the National Conference on Artificial Intelligence (AAAI’98). 268–273.

Lang, J., Marquis, P., and Williams, M.-A. 2001. Updating epistemic states. In Proceedings of the 14th Aus-
tralian Joint Conference on Artificial Intelligence (AI’01). 297–308.

Lang, J., Liberatore, P., and Marquis, P. 2002. Conditional independence in propositional logic. Artif. In-
tell. 141, 1/2, 79–121.

Lang, J., Liberatore, P., and Marquis, P. 2003a. Propositional independence: Formula-variable independence
and forgetting. J. Artif. Intell. Res. 18, 391–443.

Lang, J., Lin, F., and Marquis, P. 2003b. Causal theories of action: A computational core. In Proceedings of
the International Joint Conference Artificial Intelligence (IJCAI’03). 1073–1078.

Levesque, H. 1998. A completeness result for reasoning with incomplete first-order knowledge bases. In
Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning
(KR’98). 14–23.

Liberatore, P. 2000a. The complexity of belief update. Artif. Intell. 119, 141–190.

Liberatore, P. 2000b. A framework for belief update. In Proceedings of the European Conference on Logics in
Artificial Intelligence (JELIA’00). 361–375.

Liberatore, P. and Schaerf, M. 2004. The compactness of belief revision and update operators. Fundamenta
Informaticae 62, 3–4, 377–393.

Lin, F. and Reiter, R. 1994. How to progress a database (and why) I: Logical foundations. In Proceed-
ings of the International Conference on Principles of Knowledge Representation and Reasoning (KR’94).
425–436.

Lin, F. and Reiter, R. 1997. How to progress a database. Artif. Intell. 92, 1–2, 131–167.

Liu, H., Lutz, C., Milicic, M., and Wolter, F. 2006. Updating description logic A-boxes. In Proceedings of the
International Conference on Principles of Knowledge Representation and Reasoning (KR’06). 46–56.

Madalinska-Bugaj, E. and Łukaszewicz, W. 2009. First-order generalization of the MPMA belief update
operator. Fundamenta Informaticae 94, 49–61.

Makinson, D. 2007. Propositional relevance through letter-sharing: Review and contribution. In Formal
Models of Belief Change in Rational Agents. Dagstuhl Seminar Proceedings.

Marquis, P. 2000. Consequence finding algorithms. In Handbook on Defeasible Reasoning and Uncertainty
Management Systems, vol. 5, Kluwer Academic Publisher, Chapter 2, 41–145.

McCain, N. and Turner, H. 1997. Causal theories of action and change. In Proceedings of the National
Conference on Artificial Intelligence (AAAI’97). 460–465.

Nayak, A. C., Chen, Y., and Lin, F. 2006. Forgetting and knowledge update. In Proceedings of the 19th
Australian Joint Conference on Artificial Intelligence (AI’06). 131–140.

Papadimitriou, C. 1994. Computational Complexity. Addison–Wesley.

Parikh, R. 1999. Beliefs, belief revision, and splitting languages. In Logic, Language, and Computation,
vol. 2.

Shapiro, S., Pagnucco, M., Espérance, Y., and Levesque, H. J. 2011. Iterated belief change in the situation
calculus. Artif. Intell. 175, 1, 165–192.

Shirazi, A. and Amir, E. 2011. First-order logical filtering. Artif. Intell. 175, 1, 193–219.

Vo, Q., Nayak, A., and Foo, N. 2006. A syntax-based approach to reasoning about action and belief update.
J. Logic Comput. 16, 3, 315–338.

Winslett, M. 1990. Updating Logical Databases. Cambridge University Press.

Zhang, Y. and Zhou, Y. 2009. Knowledge forgetting: Properties and applications. Artif. Intell. 173, 16–17,
1525–1537.

