Propositional update operators based on formula/literal dependence
Résumé
We present and study a general family of belief update operators in a propositional setting. Its operators are based on formula/literal dependence, which is more fine-grained than the notion of formula/variable dependence that was proposed in the literature: formula/variable dependence is a particular case of formula/literal dependence. Our update operators are defined according to the "forget-then-conjoin" scheme: updating a belief base by an input formula consists in first forgetting in the base every literal on which the input formula has a negative influence, and then conjoining the resulting base with the input formula. The operators of our family differ by the underlying notion of formula/literal dependence, which may be defined syntactically or semantically, and which may or may not exploit further information like known persistent literals and pre-set dependencies. We argue that this allows to handle the frame problem and the ramification problem in a more appropriate way. We evaluate the update operators of our family w.r.t. two important dimensions: the logical dimension, by checking the status of the Katsuno-Mendelzon postulates for update, and the computational dimension, by identifying the complexity of a number of decision problems (including model checking, consistency and inference), both in the general case and in some restricted cases, as well as by studying compactability issues. It follows that several operators of our family are interesting alternatives to previous belief update operators.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...