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A Burgers Equation and regularity results on the velocity field
of dynamic optimal transport

The aim of this first section is to give a sketchs of proof for Proposition 4.1 (Burgers equation
is satisfied by the velocity field v = vφ) and Proposition 6.2 (uniform control of the gradients of
fields v = vφ and vγ = vγφ) of our paper On the convergence of augmented Lagrangian method
for optimal transport between nonnegative densities [6].

With Proposition 6.2 , we can state important regularity results presented in sub-
section A.3 below in Corollary 1 and Corollary 2 (Remark 6.2 in the main paper): ∇t,xv ∈
Lp(0, 1;Lqloc(R

d)) for all 1 < p ≤ +∞ and 1 ≤ q < +∞ such that 1/p+ 1/q > 1, and especially
v ∈W 1,p

loc ([0, 1]× Rd) (i.e. ∀Ω ⊂ Rd, v ∈W 1,p((0, 1)× Ω) ) for all 1 ≤ p < 2.
We first recall Hypothesis Γ1.

Property (Γ1). φ and φ∗ are convex, continuous and achieve a minimum on Rd.

The statements of the two results we prove in this appendix are the following.

Proposition 1 (Proposition 4.1 in [6]). With the property (Γ1), v satisfies the Burger’s equation,
that is to say, in the distribution sense:

∂tv +
1

2
∇x|v|2 = 0, (A-1)

which is a generalized form of ∂tv + v · ∇xv = 0.

Proposition 2 (Proposition 6.2 in [6]). We assume that φ satisfies the property (Γ1). Let
R′ > R > 0 and a ∈ Rd such that φ(a) = inf

Rd
φ and let M = sup

x∈B(a,2(R+|a|))
|∂φ(x)|.

Then there exists an constant C > 0 – independent of φ, γ, a, R and R′, such that for all
t0 ∈ (0, 1) satisfying the condition t0 < min {1/2, (R′ −R)/(M + 2|a|)}, and by setting v0 = v,
we have the property:

∀γ ≥ 0, ∀t ∈ (0, t0],

∫
B(a,R)

|∇xvγ(t, x)| dx ≤ C

t0(1− t0)
Ld(B(a,R′)). (A-2)

Thus ∇xvγ ∈ L∞(0, t0;L1(B(a,R))), for all γ ≥ 0.
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In subsection A.1, we first consider an "ideal" framework, i.e. without breaks. For this
purpose, we assume that the potential φ is regular and satisfies the following property (Γ2).

Property (Γ2). φ satisfies (Γ1), is of class C1, and ∇xφ is Lipschitz (i.e. φ ∈ C1,1(Rd) ).

The propositions are first established under the assumption (Γ2) and then extended to the
general framework for φ satisfying the property (Γ1). To that end, a regularization of the potential
φ with Moreau envelope is considered in the subsection A.2. The final proofs (by compilation of
previous results) of Propositions 1 and 2 are stated in subsection A.3. In subsection A.4, we give
additional results concerning the regularity of the velocity field. These complementary results
are not directly necessary for the proofs of uniqueness of the main paper.

A.1 Regular case (Γ2)

We assume that φ satisfies the hypothesis (Γ2). In this "ideal" case (without breaks), we want
to show that the velocity field v satisfies the Burgers equation in the sense of distributions (A-1),
as well as the control of the gradient of the velocity field: ∇t,xv ∈ L∞loc

(
[0, 1), L1(Rd)

)
.

The operator pφ can be interpreted as a spatial "inverse" of the operator X(t, ·) = ∇x(φt) =
(1− t) id +t∇φ. It is indeed invertible when φ satisfies the hypothesis (Γ2). In other words, we
have

y = pφ(t, x) ⇔ x = (1− t)y + t∇φ(y). (A-3)

As a consequence, the velocity v can be defined from pφ by :

v(t, x) = ∇φ(pφ(t, x))− pφ(t, x) =
x− pφ(t, x)

t
, (A-4)

and can be continuously extended on [0, 1)× Rd (i.e. in t = 0): v(0, ·) = ∇φ− id.

Remark 1. We note that φt = (1/2)(1−t)|·|2 +tφ is of class C1, strictly convex and superlinear,
since φ is convex and | · |2 is strictly convex and superlinear. Thus, for all t ∈ (0, 1), X(t, ·) =
(1− t) id +t∇φ = ∇φt is bijective of inverse pφ(t, ·) = ∇x(φt)

∗.

Proposition 3. Under the property (Γ2), v satisfies the Burgers equation (A-1) in the sense of
distributions.

Sketch of the proof: If the potential φ is of class C1, then by differentiating the advection relation
∇xφ− id = ∂t∇xφt = v(t,∇xφt), we obtain (see Remark 2):

0 = ∂tt∇xφt = (∂tv + v · ∇xv)(∇xφt).

In order to prove the second regularity result ∇t,xv ∈ L∞loc
(
[0, 1), L1(Rd)

)
, we now present

intermediate results on the potential φ.

Proposition 4. We assume that φ satisfies the property (Γ2). Let R′ > R > 0 and a ∈ Rd
such that φ(a) = inf

Rd
φ. Then, for all for all t ∈ [0, t0], there exists t0 ∈ (0, 1) such that for all

t ∈ [0, t0], with

t0 < min

{
1

2
,
R′ −R
M + 2|a|

}
for M = sup

x∈B(a,2(R+|a|))
|∂φ(x)|, (A-5)

we have pφ(t, B(a,R)) ⊂ pφ(t0, B(a,R′)).
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Sketch of the proof: Let x ∈ B(a,R) and t, t0 ∈ [0, 1) such that t0 > 0 and t ∈ [0, t0]. We have
pφ(t, x) ∈ pφ(t0, B(a,R′)) if and only if there exists y ∈ B(a,R′) such that pφ(t0, y) = pφ(t, x).
According to the definition of pφ (by the equivalence (A-3)), for y ∈ Rd we have:

pφ(t0, y) = pφ(t, x) ⇔ y = (1− t0)pφ(t, x) + t0∇φ(pφ(t, x)). (A-6)

Let us take y = (1 − t0)pφ(t, x) + t0∇φ(pφ(t, x)) and look for a sufficient condition on t0 for
y ∈ B(a,R′). We have pφ(t, (1− t)a) = a and then |pφ(t, x)−a| ≤ (R+ |a|)/(1− t0). By taking
t0 ≤ 1/2, we thus have pφ(t, x) ∈ B(a, 2(R+ |a|)).

For all t ∈ [0, t0], for x ∈ B(a,R) and y = (1− t0)pφ(t, x) + t0∇φ(pφ(t, x)), we get

|y − a| ≤ (1− t0)|pφ(t, x)− a|+ t0|∇φ(pφ(t, x))− a| ≤ R+ t0 (M + 2|a|) .

If we assume t0 < min{1/2, (R′ − R)/(M + 2|a|)}, then for all t ∈ [0, t0] and x ∈ B(a,R),
y = (1− t0)pφ(t, x) + t0∇φ(pφ(t, x)) ∈ B(a,R′) i.e. pφ(t0, y) = pφ(t, x), and therefore we have
the inclusion pφ(t, B(a,R)) ⊂ pφ(t0, B(a,R′)).

Lemma 1. We assume that φ satisfies the property (Γ2). For every t ∈ [0, 1), pφ(t, ·) is differ-
entiable almost everywhere on Rd. Moreover, for almost every x ∈ Rd, ∇φ is differentiable in
pφ(t, x) and D2φ is such that:

∇x pφ(t, x) = (tD2φ(pφ(t, x)) + (1− t)I)−1 (A-7)

where I ∈Md(R) is the identity matrix.

Proof: Let t ∈ [0, 1). The operator pφ(t, ·) is Lipschitz and bijective, and from (A-3) its inverse is
pφ(t, ·)−1 = t∇φ+ (1− t) id = X(t, ·). Recall that by hypothesis ∇φ is assumed to be Lipschitz.

Rademacher’s Theorem (see for instance [3] p.81) states that if f : Rd −→ Rm is a locally
Lipschitz function, then f is Ln-almost everywhere Fréchet-differentiable (and its differential in
the sense of Fréchet coincides with its differential in the sense of distributions).

According to this last Theorem, ∇φ and pφ(t, ·) are differentiable almost everywhere on Rd
and their gradients coincide with their derivatives in the sense of distributions. Thus the set F of
points in Rd where ∇φ is not differentiable is of zero Lebesgue measure. Since ∇φ is assumed to
be lipschitz, then so does X(t, ·), which gives Ld(X(t, F )) = 0 ([3] p. 75). As X(t, F ) is the set of
points x ∈ Rd for which ∇φ is not differentiable in pφ(t, x), this means that ∇φ is differentiable
in pφ(t, x) for almost all x ∈ Rd. Hence pφ(t, ·) is differentiable at almost every x ∈ Rd, ∇φ is
differentiableat pφ(t, x) and I = (tD2φ(pφ(t, x)) + (1 − t)I)∇x pφ(t, x). The potential φ being
convex, D2φ(pφ(t, x)) is symmetric positive, and hence by coercivity, tD2φ(pφ(t, x)) + (1 − t)I
is symmetric positive definite and therefore invertible inM2(R), which concludes the proof.

Remark 2 (An useful example of the application of Rademacher’s Theorem). We know that v
is locally Lipschitz on (0, 1)×Rd. Thus, according to Rademacher’s Theorem, v is differentiable
almost everywhere on (0, 1)×Rd, and its differential corresponds to its derivative in the sense of
distributions. In particular, we have

v · ∇xv =
1

2
∇x|v|2, (A-8)

in the sense of Frechet (Ld+1-almost everywhere) and in the sense of distributions.

Remark 3 (On the contribution of property (Γ2) in the previous proof). Note that for every t ∈
[0, 1), the operator pφ(t, ·) is differentiable almost everywhere on Rd, and the operator ∇x pφ(t, ·)
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is thus well defined. This property is satisfied regardless of the regularity of φ, since the proximal
operator is always Lipschitz. The additional property brought here by the regularity C1 of φ is in
fact the bijectivity of the operator pφ(t, ·).

The fact that ∇φ is locally lipschitz on Rd is crucial to ensure that D2φ is well defined almost
everywhere. However, the fact that ∇φ is globally lipschitz on Rd ensures that pφ(t, ·) does not
send sets of Rd of positive measure to negligible sets (see [3] p. 75), such as sets where φ is not
twice differentiable. Such global regularity ensures that the operator D2φ(pφ(t, ·)) is well defined
almost everywhere. Then, the assumption of property (Γ2) allows us to consider ∇x pφ(t, ·) as a
function of pφ(t, ·) almost everywhere.

We now have all the elements to state the following proposition, which is one of the main
results of this subsection, concerning the control of the gradient of the velocity field v. This
result is namely required to control the solutions of the transport problem generated by the field
v in the uniqueness results of Section 6 of the main paper [6].

For convenience, we will use the norm | · |1 on Md(R), defined by |A|1 =
∑

i,j |aij |, instead
of the operator norm associated to the euclidean norm on Rd.

Proposition 5. We assume that φ satisfies the property (Γ2). Let R′ > R > 0 and a ∈ Rd such
that φ(a) = inf

Rd
φ. Then there exist constants C and C ′ (independent of φ, a, R and R′) such

that for all t0 ∈ (0, 1) satisfying the condition (A-5), we have the property:

∀t ∈ (0, t0],

∫
B(a,R)

|∇xv(t, x)| dx ≤ C
∫
B(a,R′)

|∇xv(t0, x)| dx ≤ C ′

t0(1− t0)
L2(B(a,R′)) (A-9)

so that ∇xv ∈ L∞([0, t0], L1(B(a,R))).

Sketch of proof: Let t ∈ (0, 1). Remember that for all x ∈ Rd, v(t, x) = ∇φ(pφ(t, x))− pφ(t, x).
Then, for almost all x ∈ Rd, v(t, ·) is differentiable on x and

∇xv(t, x) = ∇x pφ(t, x)(D2φ(pφ(t, x))− I) = (tD2φ(pφ(t, x)) + (1− t)I)−1(D2φ(pφ(t, x))− I).

(A-10)

Since, v(t, ·) is Lipschitz, |∇xv(t, ·)|1 ∈ L∞(Rd) ⊂ L1
loc(Rd). The functionX(t, ·) = t∇φ+(1−t) id

is Lipschitz and bijective (and pφ(t, ·) is its inverse), we can therefore apply the generalized
Change of Variable Theorem ([3] p. 117) and obtain:∫
B(a,R)
|∇xv(t, x)|1 dx =

∫
pφ(t,B(a,R))
|det(tD2φ(y) + (1− t)I)| × |(tD2φ(y) + (1− t)I)−1(D2φ(y)− I)|1 dy.

(A-11)

For every y ∈ Rd where ∇φ is differentiable, the matrix D2φ is symmetric positive and can
therefore be diagonalized in an orthonormal basis. We will consider λ1(y), · · · , λd(y) ≥ 0 the
eigenvalues associated with D2φ. From the equivalence between the | · |1 norm and the Frobenius
norm, we obtain the following relation:

C1

∫
B(a,R)

|∇xv(t, ·)|1dx ≤
d∑
j=1

∫
pφ(t,B(a,R))
|λj(y)− 1|

d∏
i=1
i 6=j

(tλi(y) + (1− t))dy ≤ C2

∫
B(a,R)

|∇xv(t, ·)|1 dx,

(A-12)

where the constants C1 and C2 only depend on the constants of equivalence between the | · |1
norm and the Frobenius norm, and are independent of t and R. Let us take t0 ∈ (0, 1) verifying
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the condition (A-5) of Proposition 4. Hence, we have pφ(t, B(a,R)) ⊂ pφ(t0, B(a,R′)). The
condition (A-5) also gives t0 ≤ 1/2, and so for any t ∈ (0, t0], we have 1− t ≤ 1 ≤ 2(1− t0). Since
λi(y) ≥ 0 (i = 1, · · · , d) for almost all y ∈ Rd, we have 0 ≤ tλi(y)+(1− t) ≤ 2(t0λi(y)+(1− t0)).
Thus, thanks to the inequality (A-12), we can conclude:∫

B(a,R)
|∇xv(t, x)|1 dx ≤

∫
B(a,R′)

|∇xv(t0, x)|1 dx, (A-13)

since
d∏
i=1
i 6=j

(tλi(y) + (1 − t)) ≤ 2d−1
d∏
i=1
i 6=j

(t0λi(y) + (1 − t0)). Finally, as already mentioned at

the beginning of this proof, there exists a constant c > 0 such that |∇xv(t0, ·)|1 is bounded by
c/t0(1− t0), which completes the proof of the Proposition.

This proof is useful for another lemma concerning the control of v. Gathering the different
results of this subsection concerning the control of the gradient of the field v, we can control the
solutions of the transport problem and thus obtain uniqueness results.

Lemma 2. We assume that φ satisfies the property (Γ2). Then there exists a constant C > 0
such that for all t ∈ (0, 1),

‖∇xv(t, ·)‖L∞(Rd) ≤
C

1− t

(∥∥D2φ
∥∥
L∞(Rd)

+ d
)

Proof: As in the previous proof, using a diagonalization of D2φ and the equivalence between | · |1
and Frobenius norms, as λi(y) ≥ 0, we obtain, for every y ∈ Rd where ∇φ is differentiable:

C1|(tD2φ(y) + (1− t)I)−1(D2φ(y)− I)|1 ≤
d∑
i=1

∣∣∣∣ λi(y)− 1

tλi(y) + (1− t)

∣∣∣∣
1

≤ 1

1− t

(
d+

d∑
i=1

λi(y)

)

≤ C2

1− t
(
|D2φ(y)|1 + d

)
.

(A-14)

We can then conclude by injecting the equation (A-10) into this last inequality.

A.2 General case (Γ1)

In the context of our optimal transport problem, we have proved at Proposition 3.2 of the main
paper [6] that we can assume that the potential φ satisfies the property (Γ1).

We are now able to extend the results of the previous subsection to potentials φ which satisfy
(Γ1), so that φ may have non-differentiability points involving breaks in the transport plan.
More precisely we can extend Propositions 3 and 5 to the case where φ only satisfies (Γ1) in order
to show Propositions 1 and 2. In particular we show that ∇xv is uniformly integrable in the
neighborhood of t = 0, and in Corollary 1 we argue symmetrically to show that it is the same in
the neighborhood of t = 1, and then on all [0, 1]. To that end we consider the regularization γφ
of φ with the Moreau envelope [2] defined for all x ∈ Rd and for all γ > 0 as

γφ(x) = inf
y∈Rd

1

2γ
|x− y|2 + φ(y) =

1

2γ
|x− Proxγφ(x)|2 + φ(Proxγφ(x)). (A-15)

For all γ > 0, we also define the velocity field vγ for all t ∈ (0, 1) and x ∈ Rd by

vγ(t, x) = vγφ(t, x) = ∇φ(pγφ(t, x))− pγφ(t, x) =
x− pγφ(t, x)

t
, (A-16)
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where pγφ(t, x) = Prox t
1−t

γφ

(
x

1− t

)
. We also recall that γφ is of class C1 and that for all x ∈ Rd,

∇(γφ)(x) =
x− Proxγφ(x)

γ
∈ ∂φ (Proxγφ(x)) . (A-17)

The potential γφ is then γ−1-Lipschitz.
We now show that if φ satisfies property (Γ1), then γφ satisfies property (Γ2) . The results

of subsection A.1 are then applied on φγ , that corresponds to transport plans without breaks.

Lemma 3. If φ satisfies property (Γ1), then γφ satisfies property (Γ2) for all γ > 0.

Sketch of the proof: As (γf)∗ = f∗ + γ
2 | · |

2, then if f∗ is in a Hölder space C1,1 and admits a
minimum on Rd, the same holds for (γf)∗. Notice on the other hand that the functions φ and γφ
have the same minima on Rd.

Lemma 4. We assume that φ satisfies property (Γ1), then (∇γφ)γ>0 is locally bounded, uniformly
with respect to γ > 0.

Proof: We can show that for every minimum a of φ on Rd and r > 0, we have the inclusion
∇(γφ)(B(a, r)) ⊂ ∂φ (B(a, r)). To that end, we use the relation ∇(γf) = γ−1(id−Proxγf ) =
Proxf∗/γ(·/γ) [2], and then, with definition of proximal operator (y = Proxf (x) ⇔ x − y ∈
∂f(y)), we have ∇(γf)(x) ∈ ∂f(Proxγf (x)) for all x ∈ Rd. Moreover, we have the inclusion
Proxγφ(B(a, r)) ⊂ B(a, r), due to the non-expansiveness of the operator Proxγφ and the fact that
a is a fixed point for these operators. The union of the subdifferentials of φ on B(a, r), denoted
by ∂φ (B(a, r)), is bounded in Rd, since the potential φ is convex and locally Lipschitz.

Then, by weak compactness of Sobolev spaces, we can conclude that for all x ∈ Rd, the set of
adherence values of the family (∇γφ(x))γ , when γ > 0 tends to 0 is included in ∂φ(x), and that
if φ is differentiable at x, then ∇γφ(x) converges to ∇φ(x) when γ > 0 tends to 0. The functions
∇γφ converge simply almost everywhere to ∇φ when γ tends to 0.

We recall that ‖vγ‖L∞((0,1)×ω) ≤ 5
(
max{Mγ ,M

∗
γ}+ sup(ω)

)
, with Mγ = ‖∇γφ‖L∞(ω) and

M∗γ = ‖∂(γφ)∗‖L∞(ω). According to Lemma 4, the constants Mγ are uniformly bounded with
respect to γ > 0. The same holds for the constants M∗γ with respect to γ ∈ (0, γ0] by noticing
that ∂ (γφ)∗ = ∂φ∗ + γ id (property of conjugation of an inf-convolution: (f�g)∗ = f∗ + g∗ [2]).
Therefore, (vγ)γ0≥γ>0 is uniformly bounded on (0, 1)×ω by a constant independent of γ ∈ (0, γ0].

We have the relation ∇x(φt)
∗ = (id−Prox(1−t)(tφ)∗)/(1− t) for all t ∈ (0, 1). In addition,

Prox(1−t)(tγφ)∗ = Prox(1−t)(tφ)∗+(1−t) γ
2t
| · |2 = Prox(1−t)(tφ)∗ (id−γ(1− t)[id +(1− t)vγ(t, ·)]) .

As we have pφ(t, ·) = ∇x(φt)
∗ and vφ(t, x) = [x−pφ(t, x)]/t and using the non-expansiveness of

the proximal operator, we get:

|vγ(t, ·)− v(t, ·)| = 1

t(1− t)
∣∣Prox(1−t)(tγφ)∗ −Prox(1−t)(tφ)∗

∣∣ ≤ γ

t
|id +(1− t)vγ(t, ·)| .

Since the fields vγ are uniformly bounded on (0, 1)× ω independently of γ ∈ (0, γ0], there exists
a constant M independent of γ ∈ (0, γ0], such that |v(t, ·) − vγ(t, ·)‖L∞(ω) ≤ M(γ/t) for all
γ ∈ (0, γ0] and all t ∈ (0, 1). As (vγ)γ0≥γ>0 is uniformly bounded on (0, 1)× ω, we have:

∀α ∈ [0, 1], ∀γ ∈ (0, γ0], ∀t ∈ (0, 1), ‖v(t, ·)− vγ(t, ·)‖L∞(ω) ≤ C
(γ
t

)α
. (A-18)

for all α ∈ [0, 1], and with C a constant independent of γ.
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A.3 Finalization of the proof of Propositions 1 and 2

We now have enough elements to prove Propositions 1 and 2.

Sketch of proof of Proposition 1: When φ satisfies property (Γ1), a transport plan may admit
"breaks". With Proposition 3 the Burgers equation is nevertheless satisfied by the vγ ’s. Ac-
cording to inequality (A-18), we can conclude that vγ converges to the field v in Lp((0, 1) × ω)
when γ goes to 0, for every 1 < p < +∞ and every bounded open set ω in Rd. From the weak
compactness of sobolev spaces, we get that vγ(t, ·) converges weakly in W 1,p(ω) to v(t, ·), for
all t ∈ (0, 1) , since ‖∇xvγ(t, ·)‖L∞(ω) ≤ c/t(1 − t). As the fields vγ are uniformly bounded on
(0, 1)× ω independently of γ ∈ (0, γ0], we can apply these properties of convergence in the weak
formulation of Burgers equation and conclude.

Sketch of proof of Proposition 2: As already mentioned in the proof of Lemma 4, we have the
inclusion ∇(γφ)(B(a, r)) ⊂ ∂φ (B(a, r)), and thus, by setting r = 2(R + |a|), we have Mγ =
supB(a,r) |∇γφ| ≤ M . Hence, a time t0 verifying the hypothesis of the statement (independent
of γ), also satisfies the hypothesis of Proposition 5 for all γ > 0. We can therefore apply this
last proposition for such a t0 for all vγ to obtain (A-2). For the case γ = 0 (i.e. v0 = v),
the weak convergence of vγ(t, ·) to v(t, ·) in W 1,p(ω) can be used to conclude, by weak lower
semi-continuity of the L1 norm on B(a, r).

A.4 An independent but notable regularity result

We now show that Proposition 2 can be generalized to∇t,xv ∈ L∞(0, 1;L1(Ω)) for every bounded
open set Ω of Rd. This property is not required in the proof of the results presented in the main
paper [6]. It nevertheless gives a new insight of the regularity and the control of the velocity
field of an isotropic optimal transport for the L2 distance.

Corollary 1 (Corollary 6.1 in [6]). Assume that φ satisfies the property (Γ1). Let Ω be a bounded
open set Then ∇t,xv ∈ L∞(0, 1;L1(Ω)) and there exists K > 0 such that for all t ∈ (0, 1),∫

Ω
|∇t,xv(t, x)| dx ≤ K. (A-19)

Sketch of the proof: We symmetrize the result of Proposition 2 (case γ = 0) respectively in the
neighborhood of t = 0 and t = 1, and apply the upper bound c/t(1− t) in the middle.

Corollary 2 (Remark 6.2 in [6]). We assume that φ satifies the property (Γ1). Let Ω be a
bounded open set. For all p, q ≥ 1 such that 1/p+ 1/q > 1, we have ∇t,xv ∈ Lp(0, 1;Lq(Ω)). In
particular v ∈W 1,p((0, 1)× Ω) for all 1 ≤ p < 2.

Sketch of the proof: We jointly use the result of Corollary 1 with the estimate c/t(1 − t). We
thus partially bound from above |∇xv(t0, ·)|1 in order to be able to apply Corollary 1. More
precisely, for all ω ⊂⊂ Ω:(∫

ω
|∇xv(t, x)|p dx

) q
p

≤ ca

ta(1− t)a

(∫
ω
|∇xv(t, x)| dx

) q
p

≤ C

ta(1− t)a
,

with a = q(p − 1)/p, and t 7→ C
ta(1−t)a is integrable on (0, 1). For the particular case W 1,p, it is

sufficient to take p = q < 2.
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Corollary 1 and Corollary 2 give the most consistent regularity that one can have for general
velocity field v. Indeed, according to Corollary 2, a velocity field v defined with respect to a
potential φ (verifying the property (Γ1)) for all t ∈ (0, 1) by

v(t, ·) = vφ(t, ·) =
id−pφ(t, ·)

t
=

1

t
(id−(tφ+ (1− t) id)∗) , (A-20)

is an element of W 1,p
loc ([0, 1] × Rd). Hence the restriction of v to any bounded open set Ω of Rd

is an element of W 1,p((0, 1) × Ω), for all p < 2. The question that arises naturally is whether
v = vφ could not be an element of H1

loc([0, 1] × Rd). In general, this is not the case (see for
instance Caffarelli’s counter-example on mass splitting).

B Convergence of Benamou-Brenier’s algorithm

This section is dedicated to the proof 8.2 in the main paper. We first recall general results on
non-expansive operators that will imply the weak and strong convergence of the algorithm. In
what follows, (H, 〈. , .〉) is an Hilbert space and M is an operator from H to H.

Definition 1 (Non-expansive Operator). The operator M is called non-expansive if and only
if it is 1-Lipschitz, and firmly non-expansive if and only if we have ‖Mx −My‖2 ≤ 〈x −
y, Mx −My〉, for all x, y ∈ H. The operator M is called quasi-firmly non-expansive on a
subset A of H, containing the set of fixed points of M, if and only if, for any fixed point x∗ of
M, we have for all x ∈ A: ‖x−Mx‖2 + ‖x− x∗‖2 ≥ ‖Mx− x∗‖2.

Theorem 1. Let M be a non-expansive operator on H, and quasi-firmly non-expansive on M(H)
(the image of H by M). Assume that the set Fix(M) of the fixed points of M is non-empty. Let
(xn)n be a sequence of elements of H satisfying for every n ∈ N the estimate: ‖M(xn)−xn+1‖ ≤
εn, where (εn)n is a non-negative real sequence satisfying

∑
n εn < +∞. Then (xn)n weakly

converges in H to a fixed point of M.

Theorem 2 (H. Bauschke [1]). Let M be a non-expansive operator over H and assume that the
set Fix(M) of the fixed points of M is non-empty. Let (λn)n≥0 be a sequence of parameters of
[0, 1), converging to 0, and satisfying:

∑
n λn = +∞ and

∑
n |λn+1 − λn| < +∞. Given a and

x0 in H, we define the sequence (xn) by the recurrence xn+1 = λna + (1 − λn)Mnxn (∀n ≥ 0),
where we have for all n ∈ N the estimate ‖Mnxn −Mxn‖ ≤ εn, with

∑
n εn < +∞. Then the

sequence (xn)n converges strongly to the L2 projection of a on the closed convex set Fix(M).

The sequence (εn)n represents the numerical errors inherent to the implementation of the
algorithm. They are here assumed to be highly controlled, which is not realistic in practice.

Theorem 1 can be shown using classical functional analysis tools (see [7]) such as the Opial’s
Lemma [8]. Notice that in Theorem 2, it is direct to prove that the set of fixed points of a
non-expansive operator is a closed convex set (see Lemma 2.3-7 of [5]). The detailed proofs of
these two theorems can be found in [5] (section 2.3 and its appendix B).

We are now able to apply the previous convergence results to the Benamou-Brenier algorithm.
To that end, it is sufficient to show that an iteration of the algorithm corresponds to the iteration
of a certain non-expansive operator. We consider the space H = L2(Q)d+1×L2(Q)d+1, provided
with the scalar product

〈(µ1, q1), (µ2, q2)〉H = 〈µ1, µ2〉L2 + r2〈q1, q2〉L2 ,

so that (H, 〈., .〉) is an Hilbert space. Let B : H → H be the operator which associate to (µ, q)
the product (µ′, q′) of the last two steps (B and C) of the algorithm Benamou-Brenier. Here
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ψ just acts as an auxiliary variable. Indeed, if (µ∗, q∗, ψ∗) is a saddle point of the Lagrangian
L(ψ, p, µ) = χP(q) + G(ψ) + 〈µ,∇t,xψ − q〉L2 , then (µ∗, q∗) = B(µ∗, q∗). Conversely if (µ∗, q∗)
is a fixed point of B then (µ∗, q∗, ψ∗) is a saddle point of the Lagrangian, where ψ∗ is the
unique element of S which satisfies q∗ = ∇ψ∗. The potential ψ is therefore only required for
computational purposes.

Proposition 6. Operator B is non-expansive on H and quasi-firmly non-expansive on B(H).

Proof: (µ1, q1) and (µ2, q2) being given, we obtain (µ′1, q
′
1) = B(µ1, q1) and (µ′2, q

′
2) = B(µ2, q2)

with the Benamou-Brenier iterations. For i = 1, 2, we look for:
• Step A : Find the unique ψ′i ∈ (H1/R)(Q) such that G(h)+〈µi,∇h〉L2 +r〈∇ψ′i−qi,∇h〉L2 = 0,
∀h ∈ (H1/R)(Q).
• Step B : Find the unique q′i such that 〈µi + r(∇ψ′i − q′i), p− q′i〉L2 ≤ 0, for all p ∈ P.
• Step C : Define µ′i by µ

′
i = µi + r(∇t,xψ′i − q′i).

Let us start by studying the non-expansiveness of B. Note that by injecting the equation of
step C into step A and step B (for i = 1 or i = 2), we obtain the two new equations:

G(h) + 〈µ′i,∇h〉L2 + r〈q′i − qi,∇h〉L2 = 0, ∀h ∈ H1(Q)/R, (B-21)
〈µ′i, p− q′i〉L2 ≤ 0, ∀p ∈ P. (B-22)

We then set µ(′) = µ
(′)
2 − µ

(′)
1 , q(′) = q

(′)
2 − q

(′)
1 and ψ

(′)
= ψ

(′)
2 − ψ

(′)
1 . By taking (B-21)i=2 −

(B-21)i=1 with h = ψ
′, and by summing (B-22)i=2 with p = q′1 and (B-22)i=1 with p = q′2, we

respectively obtain the two following relations:

〈µ′,∇ψ′〉+ r〈q′ − q,∇ψ′〉 = 0, (B-23)
〈µ′, q′〉 ≥ 0. (B-24)

Summing these two relations, we have 〈µ′,∇ψ′ − q′〉 + r〈q′ − q,∇ψ′〉 ≤ 0. Observing from
Step C that µ′ = µ+ r(∇ψ′ − q′), we then obtain

|µ|2 − |µ′|2 = 〈µ− µ′, µ+ µ′〉 = −r〈∇ψ′ − q′, 2(µ+ r(∇ψ′ − q′))− r(∇ψ′ − q′)〉

= −2r〈µ′,∇ψ′ − q′〉+ r2|∇ψ′ − q′|2 ≥ 2r2〈∇ψ′, q′ − q〉+ r2|∇ψ′ − q′|2.
(B-25)

Moreover, we have

〈∇ψ′, q′ − q〉 = 〈∇ψ′ − q + q, q′ − q〉 = 〈∇ψ′ − q, q′ − q〉 − |q′ − q|2 +
1

2

(
|q′|2 − |q|2 + |q′ − q|2

)
= 〈∇ψ′ − q′, q′ − q〉+

1

2

(
|q′|2 − |q|2 + |q′ − q|2

)
.

(B-26)

By re-injecting (B-26) in (B-25), we get:

|µ|2 − |µ′|2 ≥ r2
(

(|q′|2 − |q|2) +
(
|q′ − q|2 + 2〈∇ψ′ − q′, q′ − q〉+ |∇ψ′ − q′|2

))
≥ r2(|q′|2 − |q|2) + r2|∇ψ′ − q|2,

(B-27)

which leads to

r2|∇ψ′ − q|2 + (|µ′|2 + r2|q′|2) ≤ (|µ|2 + r2|q|2) (B-28)

r2|∇ψ′ − q|2 + ‖B(µ1, q1)−B(µ2, q2)‖H ≤ ‖(µ1, q1)− (µ2, q2)‖H , (B-29)
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so that the operator B is non-expansive.
We now demonstrate the quasi-firmly non-expansiveness ofB onB(H). Let (µ∗, q∗) be a fixed

point of B, thus included in B(H). Using equation (B-28) with (ψ, q, µ) = (ψ−ψ∗, q−q∗, µ−µ∗)
and (ψ

′
, q′, µ′) = (ψ′ − ψ∗, q′ − q∗, µ′ − µ∗), we obtain:

r2|∇(ψ′ − ψ∗)− (q − q∗)|2 + (|µ′ − µ∗|2 + r2|q′ − q∗|2) ≤ (|µ− µ∗|2 + r2|q − q∗|2). (B-30)

For the first term, we get

r2|∇(ψ′ − ψ∗)− (q − q∗)|2 = r2|∇ψ′ − q|2 = |(µ′ − µ) + r(q′ − q)|2

= |µ′ − µ|2 + 2r〈µ′ − µ, q′ − q〉+ r2|q′ − q|2,

with 〈µ′ − µ, q′ − q〉 ≥ 0, according to the relation (B-24). As in [4], we thus obtain:

|µ′ − µ|2 + r2|q′ − q|2 + (|µ′ − µ∗|2 + r2|q′ − q∗|2) ≤ (|µ− µ∗|2 + r2|q − q∗|2),

‖B(µ, q)− (µ, q)‖2H + ‖(µ′, q′)− (µ∗, q∗)‖2H ≤ ‖(µ, q)− (µ∗, q∗)‖2H

so that B is quasi-firmly non-expansive.
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