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Abstract

The dynamical formulation of the optimal transport problem, introduced by J. D. Ben-
amou and Y. Brenier [4], corresponds to the time-space search of a density and a momentum
minimizing a transport energy between two densities. In order to solve this problem, an
algorithm has been proposed to estimate a saddle point of a Lagrangian. We study the con-
vergence of this algorithm in the most general case where initial and final densities vanish
on some areas of the transportation domain. Under these conditions, the main difficulty
of our study is the proof of existence of a saddle point and of uniqueness of the density-
momentum component, as it leads to deal with non-regular optimal transportation maps.
For these reasons, a detailed study of the properties of the velocity field associated to an
optimal transportation map in quadratic space is required.

1 Introduction

The optimal transport problem is generally formulated as follows: considering two sets of particles
or probability measures, find the allocation between those discrete or continuous objects while
minimizing a given cost. This is referred to as optimal transport or optimal allocation. Even
if these two denominations describe the same problem, they reflect two different approaches.
Indeed, while it was initially a problem of optimal displacement, the pioneer Gaspard Monge,
acknowledging the fact that the optimal trajectory from one point to another is a straight line,
reduced this problem to a simple allocation problem. The same holds for the formulation later
given by Leonid Kantorovitch: the problem has also been reduced to a single allocation problem
of the elements of a given resource to be transported. The trajectories are thus not involved in
the transport cost, which only reflects the price to pay to move a mass from one point to another.

The reduction of the optimal transport problem to an allocation problem first makes it easier
to tackle theoretically (see [20]). However, when it comes to describe more accurately the optimal
allocation map, this formulation is less efficient. Some approaches then choose to reintroduce
the notion of displacement: this is the case with the method we deal with in this paper.

The first attempt to link the optimal allocation and optimal displacement problems has been
proposed by R. J. McCann [23]. The continuous displacement between two measures ρ0 and ρ1

has been considered to determine a continuum of intermediate measures, so that the integral sum
of local optimal costs (i.e. the distance of Wasserstein step by step) is equal to the global optimal
allocation cost between ρ0 and ρ1. For infinitely close measures, there is indeed no difference
between optimal allocation and optimal displacement.
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Relying on this continuous interpolation between densities ρ0 and ρ1 by densities ρt, t ∈ [0; 1],
Y. Brenier and J.-D. Benamou introduced a continuous formulation of the optimal transport
problem [4], originating from fluid mechanics. This amounts to determine directly the evolution
of the density ρ = t 7→ ρt as well as the velocity field v which advects the density, associated
with the optimal map ∇φ (see (3)). Such a pair (ρ, v) therefore satisfies a continuity equation.

The optimal map ∇φ between ρ0 and ρ1 can be estimated without relying on the intermediate
densities ρt. Efficient second-order algorithms have for instance been proposed [5], using resolu-
tions of the time-continuous Monge-Ampere equation induced by [23]. These direct approaches
are nevertheless limited to non-vanishing densities defined on convex supports. We refer to the
book of Cuturi and Peyré [25] for an up-to-date contribution to the current state of research on
computational optimal transport.

As far as we know, the only numerical method handling the general case is based on the
dynamic fluid mechanic method introduced in [4]. The main interest of this dynamic approach is
to exploit the physical formulation of the optimal transport problem. Being expressed in terms
of fluid mechanics quantities, it makes the model very flexible, and allows generalizations to non
balanced problems [22, 9] which are relevant for practical applications. The introduction of new
physical constraints (anisotropy of the domain, free divergence or rigidity of the velocity field)
in the dynamic problem has been a subject of study in [18]. The problem is reformulated as the
minimization of a convex, proper, lower semi-continuous (l.s.c) energy and can be solved using
convex optimization tools [3, 24]. Before going any further, let us first introduce the dynamic
formulation of the optimal transport problem proposed by Benamou and Brenier.

2 Formulation of the problem and presentation of the algorithm

2.1 Monge-Kantorovich problem in Rd for a quadratic cost

We denote by | · | the Euclidean norm on Rd, for all d ∈ N, and consider two nonnegative densities
(ρ0, ρ1) on Rd (d ∈ N∗), with bounded supports and of same mass. The Monge-Kantorovich
problem consists in finding an optimal transport plan T between ρ0Ld and ρ1Ld that minimizes∫

Rd
d(x, T (x))2ρ0(x)dx, (1)

where d(x, y) is a distance on Ω. We write T#(ρ0Ld) the push-forward of ρ0Ld by a transport plan
T . Having T#(ρ0Ld) = ρ1Ld means that for any bounded subset A of Rd,

∫
A ρ0 =

∫
T−1(A) ρ1.

The quadratic Wasserstein distance W2(ρ0, ρ1) is defined by:

W2(ρ0, ρ1)2 = inf
T#(ρ0Ld)=ρ1Ld

∫
Ω
d(x, T (x))2ρ0(x)dx. (2)

In the Euclidean case, where d(x, y) = |x − y|, there exists a unique transport map T between
ρ0 and ρ1 that can be written as the gradient of a lower semi-continuous convex potential φ
(Brenier’s Theorem [28] p.66) i.e.

W2(ρ0, ρ1)2 =

∫
Rd
|∇φ(x)− x|2ρ0(x) dx = inf

T#(ρ0Ld)=ρ1Ld

∫
Rd
|T (x)− x|2ρ0(x) dx. (3)

In the dynamic formulation introduced by J. -D. Benamou and Y. Brenier in [4], this Monge
problem is reformulated as a minimization of a kinetic energy depending on a mass ρ and a
velocity field v, such that ρ is transported by v from ρ0 to ρ1. We now detail this new problem.
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2.2 Convex and augmented lagrangian formulation

Let ρ0, ρ1 ∈ L2(Rd) be two probability densities with bounded supports. The dynamic formula-
tion consists in increasing the dimension of the problem by adding a temporal variable t ∈ [0, 1].

Formally, we look for a couple (ρ, v), where ρ denotes a nonnegative density, and v a vector
field with values in Rd, both defined on (0, 1)× Ω, where Ω is a bounded open convex set of Rd
containing supp(ρ0) and supp(ρ1). This couple is required to satisfy the continuity equation,

∂tρ+ div(ρv) = 0 (4)

with no flux boundary conditions for ρv on ∂Ω× (0, 1), and with initial and final conditions for
ρ on Ω:

ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x). (5)

Among all couples (ρ ,v) checking these conditions, we look for a minimizer of the kinetic
energy E(ρ, v) = (1/2)

∫ 1
0

∫
Ω |v|

2ρ dx dt. As E is not convex and the constraint (4) is nonlinear,
the authors of [4] proposed as a new variable m = ρv instead of v, and consider the transport
cost:

K(ρ,m) =

∫ 1

0

∫
Ω

|m(t, x)|2

2ρ(t, x)
dx dt, (6)

with the corresponding continuity constraint:

∂tρ+ divxm = 0, (7)

that are subject to no flux boundary conditions on m and initial/final conditions (5). The
nonnegativity constraint on ρ turns to {ρ > 0 or (ρ,m) = (0, 0)} through the change of variable
m = ρv. By introducing a Lagrange multiplier ψ to handle the linear constraints (7) together
with boundary and initial/final conditions (5), we can write a saddle-point formulation of the
problem:

inf
(ρ,m)

sup
ψ

[∫
(0,1)×Ω

|m|2

ρ
−
∫

(0,1)×Ω
(∂tψρ−∇xψ ·m) +

∫
Ω

(ψ(0, ·)ρ0 − ψ(1, ·)ρ1)

]
. (8)

Another crucial idea in [4] is to encode the non-negativity constraint on ρ by introducing the
Legendre transform of (ρ,m) 7→ |m|2/(2ρ):

F (a, b) = sup
(ρ,m)

(
ρa+ 〈m, b〉 − |m|

2

2ρ

)
⇔ F (a, b) =

{
0 if a ≤ −|b|2/2
+∞ otherwise

with (a, b) ∈ R×Rd. Since the transport cost K is convex and l.s.c., it is equal to its biconjugate
by the Legendre transform. We therefore have |m|2/(2ρ) = sup(a,b) (ρa+m · b− F (a, b)). The
problem is thus partially linearized with respect to the variables (ρ,m), while the non-linear
part F reduces to the indicator function of a convex set. Considering sup-integral and inf-sup
inversions, and setting q = (a, b), µ = (ρ,m) and Q = (0, 1)×Ω, the saddle point problem (8) is
reformulated as inf(ψ,q) supµ L(ψ, p, µ) where

L(ψ, p, µ) = χP(q) +G(ψ) + 〈µ,∇t,xψ − q〉L2 (9)

with G(ψ) =
∫

Ω ψ(0, ·)ρ0 dx−
∫

Ω ψ(1, ·)ρ1 dx and χP = 0 if q ∈ P, χP(q) = +∞ otherwise, where
the paraboloid P is defined as

P = {(a, b) ∈ L2(Q)× L2(Q)d, a ≤ −|b|2/2}. (10)

The augmented Langrangian is finally given, for some parameter r > 0, by:

Lr(ψ, q, µ) = χP(q) +G(ψ) + 〈µ,∇t,xψ − q〉L2 +
r

2
‖∇t,xψ − q‖2L2 . (11)
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2.3 Benamou-Brenier algorithm

To solve the saddle point problem associated to (11), the authors of [4] have proposed an al-
gorithm based on a Uzawa method: the ADMM algorithm introduced by M. Fortin and R.
Glowinski in [13]. This consists in performing the following steps, starting from (ψn−1, qn−1, µn):

Step A: Find the unique ψn such that Lr(ψn, qn−1, µn) ≤ Lr(ψ, q
n−1, µn), ∀ψ, (12)

Step B: Find the unique qn = (an, bn) such that Lr(ψn, qn, µn) ≤ Lr(ψ
n, q, µn), ∀q, (13)

Step C: Update µn+1 = (ρn+1,mn+1) as µn+1 = µn + r(∇t,xψn − qn). (14)

More precisely, the algorithm breaks down as follows: Step A can be interpreted as a projection
on gradient fields. We look for the unique ψn ∈ H1(Q)/R such that:

∀h ∈ H1(Q), G(h) + 〈µn,∇t,xh〉+ r〈∇t,xψn − qn−1,∇t,xh〉 = 0.

This corresponds to find ψn solution of −r∆t,xψ
n = divt,x

(
µn − rqn−1

)
, with boundary condi-

tions r∂tψn(0, ·) = ρ0 − ρn(0, ·) + ran−1(0, ·) and r∂tψ
n(1, ·) = ρ1 − ρn(1, ·) + ran−1(1, ·), and

no flux boundary conditions on (0, 1)× ∂Ω. This is a kind of Helmholtz decomposition. Step B
is an L2 orthogonal projection on P: qn = PP ((1/r)µn +∇t,xψn). Step C uses the computed
gradient of step A to project onto the affine space of constraints (4) and (5).

2.4 Objectives and related existing works

The main object of this article is to propose a theoretical framework allowing to answer the three
following points: existence of saddle points, uniqueness of saddle points and convergence of the
considered algorithm. This study also leads to characterize rigorously some properties of the
velocity field associated to an optimal transport plan.

A first study of the Benamou-Brenier algorithm was carried out in [16] for periodic in space
boundary condition: Ω = Td, where Td denotes the torus in dimension d. The strongest as-
sumption in this work concerned the density ρ∗, solving the problem (6), that had to be larger
than a positive constant. This assumption implies in particular a regularity of the associated
transport plan. Under such conditions, the potential φ in (3) is indeed necessarily of class C1

with Lipschitz gradient. Caffarelli studied in [7] and [8] the regularity of an optimal transport
plan on a convex domain with respect to the regularity of the initial and final densities ρ0 and
ρ1, additionally assumed to be positive. A special case is ρ0 and ρ1 strictly positive on Td and
belonging to Cα,l(Td), for some l ∈ (0, 1), and α ∈ Nd. Cordero and Erausquin have shown in
[11] that in this case, the optimal transport potential φ is of class Cα,l+2 and, for any t ∈ [0, 1],
the density ρt also has a Cα,l regularity on Td and is bounded from below by a strictly positive
constant independent of t. Under the same assumptions, Guittet showed in [16] the existence of
a solution (ρ∗,m∗) for the dynamic formulation of optimal transportation; solution from which
was proven the existence of a saddle point (ψ∗, q∗, µ∗) for the Lagrangian L. However, there was
no uniqueness result for the density-momentum couple µ∗ = (ρ∗,m∗).

A convergence result of the Benamou-Brenier algorithm was also presented in [16]. Never-
theless, this did not explicitly give the strong or weak convergence of µn, the main component of
the triplet (ψn, qn, µn). Only the strong convergences in H1/R and L2 of the components ψn and
qn were addressed and the proof suffers from an unclear argument related to Cauchy sequences.

More recently, in parallel works to ours, Goldman and Otto [15] also addressed this regularity
question for initial and final densities with bounded support that could vanish. The authors
nevertheless assume they are smooth and bounded from below by a positive constant on their
support, making them generalized indicator functions.
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In this article, we consider a more general framework. The open set Ω will here be assumed
to be convex and bounded, with no flux boundary conditions on the momentum m, but more
importantly, the density ρ will not be assumed to be bounded from below by a strictly
positive constant. We will merely assume that the densities ρ0 and ρ1 are non-negative elements
of L2(Ω) and potentially without any required smoothness. We will show the existence of a
saddle point for the Lagrangian L, solution of the problem (6), as well as the uniqueness among
the set of saddle points (ψ∗, q∗, µ∗) of the Lagrangian L of µ∗ = (ρ∗,m∗), which shows that
the density corresponds to the McCann interpolation. The uniqueness result established in this
article only concerns the component µ, since, as we will see at the beginning of the section 6,
there is no uniqueness of the saddle points of L: in fact, the components ψ and q can
vary outside the support of ρ.

This study also leads us to a new characterization of a velocity field inherent to an optimal
transport in L2. We give sufficient assumptions on a velocity field v ∈ L∞loc([0, 1] × Rd) so that
a density transported by v is the McCann interpolation of an optimal (unique) transport (The-
orem 7.1). These hypotheses are then reduced to the usual characteristics of optimal isotropic
transport, in particular straight-line trajectories, constant speed and curl-free.

2.5 Organization of the paper

In section 3 we present the different challenges concerning the existence of the saddle points
for L, as well as the uniqueness properties. In section 4, we carry out a preliminary study of
the properties of the velocity field. It gives crucial materials for the following three sections, in
which we establish the existence of a saddle point (section 5), the uniqueness of the component
µ = (ρ,m) (section 6), and the characterization a minima of a velocity field which represents an
optimal transport (section 7). In section 8, we finally show the weak and strong convergence of
Benamou-Brenier algorithm towards a saddle point of the Lagrangian L.

3 Characterization of saddle points and main results

The main objective of this first part is to directly build a saddle point of L defined in (11). Let ρ0

and ρ1 be two probability densities (i.e. non-negative and of integral equal to 1) of L2(Rd) with
bounded supports, and Ω be a bounded convex open set of Rd. We assume that Ω is piecewise
of class C1 and such that supp(ρ0) ∪ supp(ρ1) ⊂ Ω. In the remaining of this paper, we denote
Q = (0, 1) × Ω. For all r > 0, we write Lspr (ρ0, ρ1,Ω) the set of saddle points of Lagrangian Lr
which are elements of S = H1(Q)/R × L2(Q)d+1 × L2(Q)d+1. In order to characterize saddle
points, we now define the set of properties (I) as follows.

Properties (I). A triplet (ψ, q, µ) ∈ S satisfies Properties (I) if and only if:

(I)1 ∀q′ ∈ P, 〈µ, q′ − q〉 ≤ 0,

(I)2 ∀h ∈ H1(Q), G(h) + 〈µ,∇t,xh〉 = 0,

(I)3 ∇t,xψ = q.

Proposition 3.1. A saddle point (ψ∗, q∗, µ∗) ∈ S of Lr satisfies Properties (I), for all r ≥ 0.

Sketch of the proof: We first check that for a triplet (ψ∗, q∗, µ∗) ∈ S satisfying the properties (I),
we have the relation Lr(ψ, q, µ

∗) ≥ Lr(ψ
∗, q∗, µ∗) ≥ Lr(ψ

∗, q∗, µ), for all (ψ, q, µ) ∈ S, which
characterizes a saddle point of Lr. Conversely, for a saddle point (ψ∗, q∗, µ∗) ∈ S of Lr, we can
check one by one Properties (I), first by fixing ψ = ψ∗ and q = q∗ for (I)3, then q = q∗ and
µ = µ∗ for (I)2, and finally µ = µ∗ and ψ = ψ∗ for (I)1.
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Notice that the saddle points of Lr are independent of r ≥ 0, and therefore the same than
L = L0.

Setting µ = (ρ,m) and q = (a, b) ∈ P, see (10), we can reinterpret (I)1 and (I)2. Property
(I)1 means that if µ(t, x) is nonzero then it is orthogonal to the paraboloid at point q(t, x),
i.e. co-linear to the vector (1, b(t, x)). Property (I)1 can thus be translated as follows: ρ ≥ 0,
m = ρb, ρ(a+|b|2/2) = 0. Next, (I)2 corresponds to the mass conservation equation satisfied
by ρ and b (i.e. ∂tρ+ divx(ρv) = 0, for v = b) for the initial and final densities ρ0 and ρ1.

We now recall that according to Brenier’s Theorem ([28] p. 66), there exists a convex potential
φ verifying ρ1Ld = ∇φ#(ρ0Ld). For the purpose of our study, we need to specify the properties
of the potential φ: we define the property (Γ1) on the potential φ as follows:

Property (Γ1). φ and φ∗ are convex, continuous and achieve a minimum on Rd.

Here φ∗ is the Legendre transform of φ. We recall that a convex and continuous function on
Rd is locally Lipschitz. We complete Brenier’s Theorem as follows.

Proposition 3.2. Let ρ0 be a probability density Lebesgue-measurable on Rd and ν1 a probability
measure on Rd. There exists a potential φ : Rd → R, satisfying the property (Γ1), such that
∇φ#

(
ρ0Ld

)
= ν1.

Sketch of the proof: One can first show that the optimal transport potential φ given by the
Brenier’s Theorem (convex, lower semicontinuous and gradient bounded almost everywhere on
supp(ρ0Ld)) is finite and with a bounded gradient on an open neighborhood of the support
of ρ0Ld. It is then possible to extend the restriction of φ to this neighborhood by φ, a finite
convex function on Rd continuous, supralinear and sub-quadratic. The supralinearity of φ implies
existence of a global minimum for the latter, and ensures that its Legendre transform φ

∗ is also
finite (and thus continuous) on Rd. As φ is sub-quadratic, it ensures the supralinearity of φ∗,
and therefore the existence of a global minimum.

Definition 3.1. Let ρ0 be a probability density Lebesgue-measurable on Rd and ν1 a probability
measure defined on the Lebesgue σ-algebra in Rd. We denote by Φ(ρ0Ld, ν1) the set of functions
φ : Rd → R satisfying the property (Γ1) such that ∇φ#

(
ρ0Ld

)
= ν1.

We can now define from φ the following quantities.

Definition 3.2. For all t ∈ (0, 1), introducing the potential φt = (1− t) |·|
2

2 + tφ, we define:

1. The characteristic displacement at time t,

Xφ(t, ·) = (1− t) id +t∇xφ = ∇xφt (15)

2. The associated velocity field v,

vφ(t, ·) =
id−∇x(φt)

∗

t
, (16)

where (φt)
∗ denotes the Legendre transform of the potential φt.

3. The density ρφ, defined as the union for t ∈ [0, 1] of the McCann interpolation densities ρtφ
between ρ0Ld and ρ1Ld [23]:

ρφ(t, ·)Ld = ρtφLd = Xφ(t, ·)#(ρ0Ld). (17)

In the following, when there is no ambiguity, we will write ρ, v and X instead of ρφ, vφ and
Xφ in order to lighten the notation.
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3.1 Reformulation of Properties (I)

In the following, we set µ = (ρ, ρv) and q = (−1
2 |v|

2, v). To construct a saddle point, µ and q
should satisfy properties (I). It is then sufficient to check that ρ and v defined in (17) and (16)
satisfy the following properties:

Definition 3.3. For n ∈ N, 1 ≤ p ≤ +∞, a measurable function f : Q −→ Rn, and a functional
space X, we write f ∈ X when each component of f is in X. We denote by W 1,∞

loc ([0, 1]×Ω) the
space of functions ψ ∈W 1,∞((0, 1)× ω), for all bounded open set ω ⊂ Ω.

Properties (II).

(II)1 The density ρ is an element of L2(Q).

(II)2 The velocity field v is an element of L∞loc(Q)d.

(II)3 The potential (ρ, v) satisfies the mass conservation equation in the distributions sense for
the initial and final conditions ρ0 and ρ1 and no flux conditions:

∀h ∈ C∞(Q),

∫
Q

(∂th+ v.∇h) ρ+

∫
Ω
h(0, x)ρ0(x)dx−

∫
Ω
h(1, x)ρ1(x)dx = 0 (18)

(II)4 There exists ψ ∈W 1,∞
loc ([0, 1]× Ω) such that v = ∇xψ.

(II)5 The velocity field v satisfies the Burgers equation in the sense of distributions:

∂tv +
1

2
∇x|v|2 = 0. (19)

Remark 3.1. These properties are stated in a general case : Ω is a convex open set of Rd (and
Q = (0, 1)×Ω), which is not necessarily bounded (see Section 7). However, until Section 6, Ω is
assumed to be bounded, in context of Benamou-Brenier’s Algorithm.

Properties (II)4 and (II)5 describe the features of an isotropic optimal transport for a quadratic
cost: (II)4 corresponds to a curl-free velocity field (without crossing trajectories) and (II)5 is in
line with the property of straight-line displacement.

To build a triplet (ψ, q, µ) satisfying properties (I), it is is sufficient that ρ and v satisfy
properties (II). However, having a triplet (ψ, q, µ) satisfying the properties (I) is not sufficient to
build a density-velocity field pair (ρ, v) checking properties (II), and such that µ = (ρ, ρv) and
q = (−1

2 |v|
2, v). Indeed, the component q may not belong to the boundary of the paraboloid

(a, b)→ a+ (1/2)|b|2 ≤ 0 outside the support of µ.
Properties (II)1 and (II)2 ensure that the saddle point is in the correct space S. Indeed, we

have[
q ∈ L∞(Q)d+1 ⇔ v ∈ L∞(Q)d

]
and

[
µ ∈ L2(Q)d+1 ⇔ ρ ∈ L2(Q) and ρv ∈ L2(Q)d

]
,

and, for the potential ψ, we have W 1,∞(Q) ⊂ H1(Q).
The properties (II)2 and (II)5 imply property (I)3. Indeed, having q deriving from a space-

time potential amounts to verifying, for a dimension d ≤ 2, that curlt,x(q) = 0 (recalling that
q = (−1

2 |v|
2, v)) in the sense of distributions (see [14] Theorem 2.9 p.31), so that{

∂tv + 1
2∇|v|

2 = 0,
curlx(v) = 0 ⇔ ∃ψ ∈ D′(Q), v = ∇xψ

7



From Definition of v in (16), we see that the velocity derives from a potential in space in
the sense of the distributions, namely:

v(t, ·) = ∇x
(

1

t

(
1

2
| · |2 − (φt)

∗
))

(20)

where the potential φ is an element of L1
loc(Q). This proves property (I)3, provided that the field

v is an element of L∞(Q)d and verifies the Burgers equation in the sense of distributions.
Even if the notion of rotational is less easy to cope with in dimension d > 2, it is always

possible to deduce property (I)3 from (II)2 and (II)5 (see [29]), whatever the dimension d is,
provided that we have v ∈ L∞(Q)d. Property (II)3 corresponds to (I)2. Indeed, we can easily
extend by a density argument the relation to h ∈ H1(Q) once it is established for h ∈ C∞(Q).
Finally remark that with the above results, Property (I)1 is verified by setting m = ρv.

Remark 3.2. We also notice that, according to (20), (II)2 implies (II)4. Indeed, we can deduce
from (II)2 that the potential ψ(t, ·) = 1

t

(
1
2 | · |

2 − (φt)
∗) is in L∞loc(Q), and then inW 1,∞

loc ([0, 1]×Ω).

3.2 Main results of existence, uniqueness and regularity

We now give our main results of existence and uniqueness on saddle points.

Theorem 3.1 (Existence of a saddle point). Let ρ0 and ρ1 be two probability densities of L2(Rd)
with bounded supports, and let Ω be a sufficiently smooth bounded convex open set of Rd such
that supp(ρ0) ∪ supp(ρ1) ⊂ Ω. Then, for all φ ∈ Φ(ρ0Ld, ρ1Ld) (Definition 3.1), for ρ = ρφ and
v = vφ (see (17) and (16) in Definition 3.2), and setting µ = (ρ, ρv) and q = (−(1/2)|v|2, v),
there exists ψ ∈W 1,∞

loc ([0, 1]×Ω) such that q = ∇t,xψ, and (ψ, q, µ) is a saddle point of Lagrangian
L (or at least its restriction on (0, 1)× Ω).
The density ρ is in C0

(
[0, 1], L2(Ω)

)
, and the velocity field v is locally Lipschitz on the space

(0, 1) × Rd, and satisfies properties (II)4 and (II)5. Moreover, v ∈ W 1,p((0, 1) × Ω) for all
1 ≤ p < 2, and ∇t,xv ∈ L∞(0, 1;L1(Ω)).

Having ∇t,xv ∈ L∞(0, 1;L1(Ω)) is a result in itself, and it is not directly used to characterize
an optimal transport velocity field in L2. Very close properties are nevertheless considered to
show the statements on the uniqueness of the component (ρ,m) of the saddle points of L.

Theorem 3.2 (Uniqueness of density and momentum). If the triplet (ψ∗, q∗, µ∗) is a saddle
point of L (the assumptions on ρ0, ρ1 and Ω being the same as in Theorem 3.1), then, for any
potential φ ∈ Φ(ρ0Ld, ρ1Ld), with ρ = ρφ and v = vφ, we have µ∗ = (ρ∗,m∗) = (ρ, ρv), and

ρ(t, ·)Ld = X(t, ·)#(ρ0Ld) ∈ C([0, 1], L2(Ω)), with X(t, ·) = ∇xφt = (1− t) id +t∇xφ.

In general, the set of saddle points (ψ, q, µ) of L is not reduced to a single element: only the
component µ = (ρ,m) is unique. In other words, the set of points (ψ, q, µ) of L shares the same
component µ and there is uniqueness of the density ρ and the velocity field v on the support of
ρ. The components q and ψ can vary outside the support of ρ. To prove these two results, we
now study the properties of a velocity field v defined as in (16), for φ satisfying property (Γ1).

4 First velocity field properties

In this section, we present properties on velocity fields associated to optimal transport maps and
namely show (II)2 and (II)5. These results constitute the basis of existence and uniqueness
results concerning the saddle points of L, as well as the generalized results of section 7.
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We recall that for a function f : Rn → R proper, l.s.c. and convex, the proximal operator
Proxf (x) of f at x ∈ Rn is the unique minimizer of f + 1

2 |x − ·|
2, so that y = Proxf (x) ⇔

x − y ∈ ∂f(y). The operators Proxf and id−Proxf are non-expansive (1-Lipschitz), and the
proximal operator off∗, the Legendre transform of f , satisfies Moreau’s identity Proxγf∗ =
id−γ Proxf/γ(·/γ). The γ-Moreau envelope γf is defined as the inf-convolution of f by 1/(2γ)|·|2.

4.1 Definition and first properties of the velocity field

From (16), the velocity field of an optimal transport can be written as a proximal operator p.
This makes easier to deal with the problems of "breaks" of the velocity field (which are not
necessarily discontinuities).

Let φ : Rd 7→ R satisfy property (Γ1), i.e. φ is convex and continuous at every point of
Rd, and admits in each of these points a non-empty and compact sub-differential. According
to the properties linking Legendre conjugation and inf-convolution, if t ∈ (0, 1), by setting
φt = (1 − t)| · |2/2 + tφ, then the Legendre conjugation (φt)

∗ is of class C1 on Rd, and for all
(t, x) ∈ [0, 1)× Rd we define the operator p by

p(t, x) = Prox t
1−tφ

(
x

1− t

)
=

id−Prox(1−t)(tφ)∗

1− t
= ∇x(φt)

∗. (21)

The velocity v = vφ introduced in (16) can be defined from p by v(t, x) = [x− p(t, x)]/t, for all
t ∈ (0, 1) and x ∈ Rd. When there is no ambiguity on φ, we use v to denote the velocity field v.
For all t ∈ [0, 1), p(t, ·) is 1/(1− t)-Lipschitz (non-expansiveness of operator Prox), and

∀x, y ∈ Rd, y = p(t, x) = ∇x(φt)
∗(x)⇔ x ∈ ∂x(φt)(y) = (1− t)y + t∂φ(y). (22)

From these definitions and using X as introduced in (15), we get:

y = p (t, (1− t)y + t∇φ(y)) = p(t,X(t, y)) i.e. ∇φ(y)− y = ∂tX(t, y) = v(t,X(t, y)). (23)

Given that X(t, ·) = ∇φt and p(t, ·) = ∇x(φt)
∗, then for any t ∈ (0, 1), and for all x ∈ Rd

such that φ Frechet-differentiable in x, we have (∇x(φt)
∗ ◦ ∇φt) (x) = x. Consequently, we

observe that p(t, ·) formally represents the inverse of the characteristic trace X(t, ·) = ∇x(φt).
It would really be the case if φ was of class C1 with a Lipschitz gradient. In the general case
(i.e. φ is not C1 and only checks property (Γ1)), p(t, ·) is nevertheless not injective on Rd. The
operator p(t, ·) thus repairs the "breaks" that can be generated by a transport plan. Indeed,
p(t, ·) re-concentrates the areas generated by diffusion (by the characteristic trajectories X(t, ·))
of the break points on these same points.

Next, we deduce that for any fixed t ∈ (0, 1), the velocity field v(t, ·) is Lipschitz on Rd. It is
also possible to define a Lipschitz constant that is only time dependent and does not depend on
φ.

Lemma 4.1. For all ∈ (0, 1), Lt = 2/(t(1− t)) is a Lipschitz constant for v(t, ·) on Rd (for the
Euclidean norm | · |), whatever φ is.

With Rademacher’s Theorem, the velocity field v is therefore continuous and Fréchet-differentiable
almost everywhere in space, and thus ‖∇xv(t, x)‖ is additionally uniformly bounded by
Lt = 2/(t(1− t)) for almost all x ∈ Rd, where ‖ · ‖ denotes the subordinate norm to | · |.

Remark 4.1. The "break" points of the transport plan correspond to the points where the poten-
tial φ is not differentiable. Although Rademacher’s Theorem ensures that the set of such points
is negligible, the diffusion of these breaks, and in particular the torsions/high variations of the
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velocity field at these points in t = 0 (or the re-connections at t = 1 for the points of irregularity
of φ∗) is not. Indeed, the torsions of the velocity field in the neighborhood of break points may
induce a loss of H1 regularity of the velocity field. Having a H1 regularity on the potential
φ would greatly simplify the study on the uniqueness of the saddle points of the Lagrangian L
presented in section 6. Unfortunately, such regularity can not be obtained in general.

4.2 Velocity field control

Lemma 4.2 (Property (II)2). For φ satisfying property (Γ1), the velocity field v = vφ (defined
from φ as in (16)) satisfies v ∈ L∞loc([0, 1]× Rd)d.

Sketch of the proof: We can show that v(t, ·) is uniformly bounded on any bounded open set
ω ⊂ Rd in the neighborhood of t = 0. Take for instance t ∈ (0, 1/2] and y ∈ ω, and let
x ∈ (1− t)y+ t∂φ(y). According to (22), we have p(t, x) = y, so v(t, x) = (x− y)/t ∈ ∂φ(y)− y.
Because of Lemma 4.1, for all t ∈ (0, 1), we have:

|v(t, y)− v(t, x)| ≤ |v(t, x)|+ 2

t(1− t)
|x− y| ≤ 4

∣∣∣∣x− yt
∣∣∣∣ = 4|v(t, x)|. (24)

We have |v(t, y)| ≤ 5|v(t, x)| ≤ 5 (supx∈ω |∂φ(x)|+ sup(ω)) < +∞. Indeed, with the property
(Γ1), φ and φ∗ are assumed to be finite and convex on Rd and therefore locally Lipschitz. The
same argument can be used in the neighborhood of t = 1 (using φ∗ in place of φ).

Moreover, since v(t, ·) = (id−∇x(φt)
∗)/t, we can prove (see for instance [29]) that there

exists ψ ∈W 1,∞
loc ([0, 1]× Ω) (which is not necessarily equal to | · |2/2− φ∗t ), such that v = ∇xψ.

As already stated, for every t ∈ (0, 1), v(t, ·) is continuous and Lipschitz on Rd with constant
2/t(1−t). The field v(t, ·) is therefore Lipschitz on Rd, for a Lipschitz constant independent of t on
any interval [α, β] ⊂ (0, 1). One can for instance consider the constantMα,β = sup[α,β] 2/t(1−t).
It is therefore possible to apply the Cauchy-Lipschitz Theorem on [α, β].

Then, for every x ∈ Rd and t ∈ (0, 1), the Cauchy problem: y′t,x = v(·, yt,x), with yt,x(t) = x,
admits a unique maximum solution over any interval (α, β), 0 < α < t < β < 1. We can
then prove that there exists a unique solution defined on (0, 1) and that it can be written
yt,x(s) = (s − t)v(t, x) + x for all s ∈ (0, 1). Indeed, such a solution satisfies yt,x(t) = x, and
y′t,x(s) = v(t, x) = v(s, (s − t)v(t, x) + x) = v(s, yt,x(s)). By using the properties (22) of the
operator p, we can show that, for all t, s ∈ (0, 1), and for all x ∈ Rd, we have

v(t, x) = v(s, (s− t)v(t, x) + x) (25)

This relation implies that v is a time-space locally Lipchitz function: we can bring back
any difference between two space-times values of v to a same time, and apply the space Lipchitz
property of v for fixed time. This property is also shown for example in [28].

Proposition 4.1 (Property (II)5). With the property (Γ1), v satisfies the Burgers’ equation (19),
that is to say, in the distribution sense:

∂tv +
1

2
∇x|v|2 = 0,

which is a generalized form of ∂tv + v · ∇xv = 0.

The proof is given Appendix A [19]. In the case where φ is sufficiently regular (case where
there is no "breaks" in the transport), then ∇xφt is invertible for t ∈ (0, 1), and we directly find
that 0 = ∂tt∇xφt = (∂tv + v · ∇xv)(∇xφt), since ∇xφ− id = ∂t∇xφt = v(t,∇xφt).
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5 Existence of a saddle point (Proof of Theorem 3.1)

In order to prove the existence of a saddle point for the Lagrangian L, we have built a couple
density-velocity field (ρ, v) satisfying conditions (II). The velocity field v = vφ, immediately
checks properties (II)2 (Lemma 4.2) and (II)5 (subsection 4.2). From (20) and (II)2, v verifies
(II)4 (see Remark 3.2).

We now have to build a density ρ = ρφ, verifying property (II)1, such that the pair (ρ, v)
satisfies the mass conservation of (II)3. The candidate density is naturally the one formed by
the set of intermediate measurements between ρ0Ld and ρ1Ld = (∇φ#ρ0Ld), which can be
assimilated to a series of "optimal micro-transports" along the time scale [0, 1] and correspond
to the interpolation of McCann (17), defined at each time t by the density ρt = ρφt of the measure

ρtLd = ρφt Ld = [(1− t) id +t∇φ]#(ρ0Ld) = ∇φt#(ρ0Ld). (26)

For all 1 < p < +∞, McCann also defines in [23] the "internal energy" of the space
(P2(Rd),Wp) as

Fp(µ) =


∫
Rd
|f(x)|p dLd(x) if µ = f.Ld ∈ P2(Rd),

+∞ otherwise,
(27)

where P2(Rd) is defined as the space of probability measures µ on Rd satisfying the condition∫
Rd |x|

2 dµ(x) < +∞ (any finite measure on Rd with compact support is an element of P2(Rd)).
This energies are convex along the geodesics of the space (P2(Rd),Wp), which are the inter-
polations of McCann. Thus, the function Λp : [0, 1] → [0, +∞], defined for all t ∈ [0, 1] as
Λp(t) = Fp(ρtLd), for t 7→ ρt defined in (26), is convex on [0, 1], and is moreover finite in t = 0
and t = 1, since ρ0, ρ1 ∈ Lp(Rd), and ρ0Ld, ρ1Ld ∈ P2(Rd). Hence it is finite and bounded on the
whole interval [0, 1]. Therefore, by definition of Λp, we have ρt ∈ Lp(Rd) for every t ∈ [0, 1] [1].
Moreover, t 7→ ‖ρt‖Lp(Rd) is bounded on [0, 1] by a constantM . We observe that t 7→ ρt is weakly
continuous in Lp(Rd) on [0, 1]. Indeed, t 7→ ρt dLd is continuous from [0, 1] to D′(Rd): it is then
sufficient to use the density of C0

c (Rd) in Lq(Rd), for q ∈ (1,+∞) such that 1/p+ 1/q = 1. Since
the function Λp is convex and finite on [0, 1], t 7→ Λ(t) = ‖ρt‖pLp(Rd)

is continuous on (0, 1) and
admits a right limit at t = 0 and a left limit at t = 1. Thus, the application t 7→ ρt is strongly
continuous from [0, 1] to Lp(Rd) [29]. Conversely, one can characterize the McCann interpolation
by the relation

∀h ∈ C0
c ([0, 1]× Rd),

∫
(0,1)×Rd

h ρ dx⊗ dt =

∫ 1

0

∫
Rd
h (t, t∇φ(x) + (1− t)x) ρ0(x) dx dt. (28)

Indeed, using Fubini’s Theorem, it can be shown that for any density ρ satisfying (28), there
exists a family of densities (ρt)t∈[0,1) of McCann’s interpolations measures between ρ0Ld and
ρ1Ld, such that t 7→ ρt ∈ C0

(
[0, 1), Lp(Rd)

)
and (t, x) 7→ ρt(x) be measurable, and such that

ρ(t, x) = ρt(x) for almost all (t, x) ∈ [0, 1)× Rd [17].
From Brenier’s Theorem ([28] p. 66), we have supp(ρ1) = ∇φ(supp(ρ0)). This property also

holds for potentials satisfying the property (Γ1) considered in Proposition 3.2. Thus, for Ω a
convex open set of Rd containing supp(ρ0) and supp(ρ1), we have the inclusion (t∇φ + (1 −
t) id)(supp(ρ0)) ⊂ Ω, for all t ∈ [0, 1].

Therefore, the candidate density ρ : (t, x) 7→ ρt(x), defined in (26), satisfies the condition
(II)1. The component µ = (ρ, ρv) is zero in the neighborhood of the space boundary, and thus
verifies the Neumann conditions implicitly included in the weak form of mass conservation (II)3.
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Finally, the definition immediately implies that for all h ∈ C∞(Q),∫ 1

0

∫
Rd

(∂th+ v · ∇xh) ρ dx dt =

∫ 1

0

∫
Rd

(∂th(t,X(t, ·)) + ∂tX(t, ·) · ∇xh(t,X(t, ·))) ρ0 dx dt

=

∫ 1

0

d

dt

∫
Rd
h(t,X(t, ·))ρ0 dx dt =

∫
Rd
h(1,∇xφ(x))ρ0(x) dx−

∫
Rd
h(0, x)ρ0(x) dx.

(29)

Since ρ1Ld = ∇φ#(ρ0Ld), we have
∫
Rd h(1,∇xφ)ρ0 dx =

∫
Rd h(1, ·)ρ1 dx. The integrals are

well defined as v ∈ L∞(Q). Then, the pair (ρ, v) satisfies the condition (II)3. Moreover, by
taking q ≤ 2 such that 1/p+ 1/q = 1, the weak relation of mass consevation extends to the test
functions h ∈W 1,q(Q). We can now prove the Theorem.

Proof of Theorem 3.1: Let us recall that an element (ψ, q, µ) of Lsp(ρ0, ρ1,Ω) must satisfy (ψ, q, µ) ∈
S, as well as the properties (I) and (II).

(I)1 From (II)1 and (II)2, we know that v ∈ L∞(Q)d and t 7→ ρ(t, ·) = X(t, ·)#ρ0 ∈ C0
(
[0, 1], L2(Ω)

)
.

Then µ = (ρ, ρv), q = (−(1/2)|v|2, v) ∈ L2(Q), and supp(µ) ⊂ supp(ρ) ⊂ [0, 1]× Ω. Spatial ho-
mogeneous Neumann conditions of µ are thus verified.

Moreover, by setting µ = (ρ, ρv) and q = (−(1/2)|v|2, v), the condition (I)1 is naturally
verified as for all q′ = (a, b) ∈ P = {(a, b), a ≤ −|b|2/2}, the paraboloid defined in (10), we have

〈µ, q′ − q〉 =

∫ 1

0

∫
Ω

(aρ+ b · vρ) dx dt−
∫ 1

0

∫
Ω

1

2
|v|2ρ dx dt

≤
∫ 1

0

∫
Ω

(
a+

1

2
|b|2 +

1

2
|v|2
)
ρ dx dt−

∫ 1

0

∫
Ω

1

2
|v|2ρ dx dt ≤ 0.

(I)2 The condition (I)2 results from the conservation of mass (II)3: satisfied by the pair (ρ, v).

(I)3 According to Proposition 4.1, v satisfies the Burgers equation (II)5 in the sense of distri-
butions. Moreover, from (II)4, we know that v derives from a spatial potential. It gives us the
existence of one ψ ∈W 1,∞(Q) such that q = ∇t,xψ. Property (I)3 is thus checked.

We finally obtain that the triplet (ψ, q, µ) is an element of

W 1,∞(Q)/R× L∞(Q)d+1 × L2(Q)d+1 ⊂ S.

From the property ψ ∈ W 1,∞(Q), the field v = ∇xψ then satisfies the properties (II)4 and
(II)5. The final regularity properties of vφ given in Theorem 3.1 come from three other results
proven in Appendix [19]): the velocity field v is locally Lipschitz on the space (0, 1) × Rd, the
property ∇t,xv ∈ L∞(0, 1;L1(Ω)), and its corollary v ∈W 1,p((0, 1)× Ω) for all 1 ≤ p < 2.

6 Uniqueness properties of saddle points

The uniqueness of the density ρ has been proven with the energetic formulation, via the unique-
ness of the geodesics in Wasserstein’s spaceW2 (see [27] Proposition 5.32). We nevertheless here
propose a proof based on the structure of the velocity field and its regularity properties. More
precisely, we use a DiPerna-Lions method [12], in which the insufficient regularity of the velocity
field (W 1,p, p < 2, rather than H1) is compensated by the specific structure of the velocity field
of an optimal transport. The regularity of the velocity field provides (a minima) the regularity
of the solution of the dual transport equation of the mass conservation equation.
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6.1 Uniqueness of the velocity field on the density support

We first study the uniqueness of the velocity field on the support of the different candidate
densities. We show that for any saddle points of L, denoted by (ψ∗, q∗, µ∗) = (ψ∗, q∗, (ρ∗,m∗)),
the densities ρ∗ are transported with the same velocity field v.

Lemma 6.1. We consider Ω a bounded convex open set of Rd, and ρ0, ρ1 ∈ L2(Rd) two densities
which supports are included in Ω. If the triplet (ψ∗, q∗, µ∗) is an element of Lsp(ρ0, ρ1,Ω) with
µ∗ = (ρ∗,m∗), then, for all φ ∈ Φ(ρ0Ld, ρ1Ld), we have m∗ = ρ∗v, with v = vφ defined in (16).

P

−→µ1

−→µ2

q1

q2

q3 −→µ3

Figure 1: Illustration of the characterization of the saddle points of L.

Sketch of the proof: Following Figure 1, we give a "schematic" proof of the uniqueness of the
velocity field on the union of supports of the candidate densities, which is based on the convexity
of the set of saddle points and the strict convexity of the paraboloid P defined in (10). For a
more rigorous proof we refer to [17] (chapter 4).

We recall that Q = (0, 1)×Ω. We assume (ψ1, q1, µ1) and (ψ2, q2, µ2) to be two saddle points
of L. The fields µ1 and µ2 are both orthogonal in the sense of the canonical scalar product of
L2 to the paraboloid P, respectively at points q1 and q2, which imply a pointwise orthogonality
almost everywhere. We will see in section 8, that the set of saddle points of L is convex so that
the λ[(ψ1, q1, µ1) + (1 − λ)(ψ2, q2, µ2)] is also a saddle point of L, for all λ ∈ [0, 1]. Then, for
almost all (t, x) ∈ Q and for all λ ∈ [0, 1], the vector [λµ1 + (1 − λ)µ2](t, x) is also orthogonal
to P at point [λq1 + (1 − λ)q2](t, x) which is strictly inside P if q1(t, x) 6= q2(t, x). Then we
have [λµ1 + (1 − λ)µ2](t, x) = 0 for all λ ∈ [0, 1], i.e. µ1(t, x) = µ2(t, x) = 0. Therefore, almost
everywhere, when (µ1(t, x), µ2(t, x)) 6= (0, 0), we have q1(t, x) = q2(t, x), and then µ1(t, x) and
µ2(t, x) are colinear. We can conclude if one of these two saddle points is the one we have
constructed above.

To sum up: for any fixed φ ∈ Φ(ρ0Ld, ρ1Ld) and for every saddle point (ψ∗, q∗, µ∗) of L, ρ∗

is associated with the same velocity field v with ∂tρ∗ + divx(ρ∗v) = 0 with the initial and final
conditions ρ∗(0, ·) = ρ0 and ρ∗(1, ·) = ρ1. In other words, for all h ∈ H1(Q), we have∫ 1

0

∫
Ω

(∂th(t, x) + v(t, x).∇xh(t, x)) ρ∗(t, x) dx dt+

∫
Ω
h(0, ·)ρ0 −

∫
Ω
h(1, ·)ρ1 = 0.

We now prove that there exists a unique ρ∗ which satisfies these conditions, that is to say
ρ∗(t, ·) = X(t, ·)#ρ0, with X = Xφ as defined in (15), for all φ ∈ Φ(ρ0Ld, ρ1Ld).
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6.2 Uniqueness of density in L2

As the velocity field v is unique on the union of the supports of the candidate densities, the
uniqueness of the density ρ implies the uniqueness of the momentum m = ρv. The next propo-
sition is the main ingredient to show the uniqueness of ρ.

Proposition 6.1. Let φ : Rd → R a convex potential satisfying property (Γ1), ρ0 ∈ L2(Rd) with a
bounded support, and consider a velocity field v = vφ defined from φ as (16). If ρ ∈ L2((0, 1)×Rd)
is a density with bounded support in [0, 1]× Rd, such that{

∂tρ+ divx(ρv) = 0,
ρ(0, ·) = ρ0

in the sense of distributions, i.e.

∀h ∈ C∞c ([0, 1)× Rd),
∫ 1

0

∫
Rd

(∂th+ v · ∇xh) ρ dx dt+

∫
Rd
h(0, ·)ρ0 dx = 0, (30)

then ρ(t, ·) = ρφ(t, ·) = (t∇φ + (1 − t) id)#ρ0 for almost all t ∈ [0, 1] (as defined in (17)). In
other words:

∀ϕ ∈ C0
c ((0, 1)× Rd),

∫ 1

0

∫
Rd
ϕρ dx dt =

∫ 1

0

∫
Rd
ϕ (t, t∇φ(x) + (1− t)x) ρ0(x) dx dt. (31)

Moreover t 7→ ρ(t, ·) ∈ C0
(
[0, 1), L2(Rd)

)
.

Proof: Let Ω be a bounded open set of Rd such that supp(ρ0) is included in Ω and supp(ρ) ⊂
[0, 1] × Ω, and let Q = (0, 1) × Ω. Let (ψ, q, µ) be a saddle point of L as defined in (11), and
let φ ∈ Φ(ρ0Ld, ρ1Ld) (thus checking Property (Γ1) on Rd). The triplet (ψ, q, µ) satisfies the
properties (I), which implies in particular the weak mass conservation G(h) + 〈µ,∇t,xh〉 = 0 for
all h ∈ H1(Q), as well as the linear relation between momentum and density: µ = (ρ,m) =
(ρ, ρv) ∈ L2(Q), with v = vφ defined in (16) and satisfying the properties (II)4 and (II)5 (see
subsection 3.2). From these properties, we deduce that for every h ∈ H1(Q):∫ 1

0

∫
Ω

(∂th+ v · ∇xh) ρ dx dt =

∫
Ω
h(1, ·)ρ1 dx−

∫
Ω
h(0, ·)ρ0 dx. (32)

Let ϕ ∈ C∞c
(
(0, 1)× Rd

)
such that supp(ϕ) ⊂ (0, 1) × Ω ⊂ Q. By solving the transport

problem in v and ϕ with a characteristics method, we consider the function h defined for any
(t, x) ∈ (0, 1)× Rd by:

h(t, x) = −
∫ 1

t
ϕ(s, (s− t)v(t, x) + x) ds, (33)

which satisfies
∂th + v · ∇xh = ϕ and ∇t,xh = t(∇t,xv)α+ β, (34)

with α ∈ L∞(Q)d, and β ∈ L∞loc(Q)d+1. We also have h(1, ·) = 0 and h(0, ·) = −
∫ 1

0 ϕ(t,X(t, ·)) dt
with X(t, ·) = t∇φ+ (1− t) id.

To solve the problem, it would be sufficient to take h in (32) as a test function. Unfortunately,
the velocity field only satisfies ∇t,xv ∈ L∞(0, 1;L1(Ω)) and v ∈W 1,p((0, 1)×Ω) for all 1 ≤ p < 2
(see Appendix A [19]), thus v = vφ ∈ H := ∩1≤p<2W

1,p(Q). The function h is thus an element
of H. Since we do not have a better integrability than L2 on ρ, we cannot extend the space
of test functions of (32) to a larger space than H1(Q) as H. The counter-example of Caffarelli
on the strict division of the mass show that, in general, the field v is not an element of H1(Q).
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We then choose to approximate h by regularizing the velocity field v associated to the trans-
port plan ∇φ with vγ = vγφ associated to the regularized transport plans ∇γφ, where γφ denotes
the γ-regularization of the potential φ by a Moreau’s envelope (see beginning of section 4). This
regularization has the property of erasing the breaks of the transport plan, which are responsible
for the fact that v does not have regularity H1 in the neighborhood of t = 0.

With a characteristics method, it is thus possible to construct some test functions hγ ∈
H1(Q), uniformly zero in the neighborhood of t = 1 (independently of γ), such that:

∂thγ + vγ · ∇xhγ = ϕ = ∂thγ + v · ∇xhγ + (vγ − v) · ∇xhγ ,

and such that hγ(0, ·) converges to −
∫ 1

0 ϕ[t, (1 − t) id +t∇xφ] dt in L2(Rd) when γ tends to 0.
By injecting such a function hγ in (32), one obtains∫ 1

0

∫
Rd
ϕρ dx dt =

∫ 1

0

∫
Rd
ϕ[t, (1− t)x+ t∇xφ(x)]ρ0(x) dx dt+Rγ(ϕ), with (35)

Rγ(ϕ) =

∫ 1

0

∫
Rd

(vγ − v) · ∇xhγρ dx dt−
∫
Rd

hγ(0, ·)ρ0 dx−
∫ 1

0

∫
Rd
ϕ[t, (1− t) id +t∇xφ]ρ0 dx dt.

(36)
In order to prove Proposition 6.1, it is therefore necessary to show that Rγ(ϕ) converges to 0
when γ tends to 0. This makes use of the results of the Appendix A [19].

The hγ are defined with respect to vγ by (33). We can then prove from (34) that we have,

|∇xhγ(t, x)| ≤ (|∇xvγ(t, x)|+ 1)‖∇xϕ‖L∞([0,1]×Rd), for almost all (t, x) ∈ (0, 1)× Rd. (37)

For more details, we refer to [17] (subsection 4.2.5), in which it is proven that hγ ∈ H1(Q).
The velocity field vγ can be extended by continuity in t = 0. It is the same for hγ , which is

continuous on [0, 1)× Ω, and for all x ∈ Rd, one has:

hγ(0, x) = −
∫ 1

0
ϕ(s, s vγ(0, x) + x) ds = −

∫ 1

0
ϕ(s, s∇γφ(x) + (1− s)x) ds, (38)

which coincides with the trace L2 of hγ in t = 0. We can show that ∇γφ(x) converges for almost
all x ∈ Ω to ∇φ(x) (see Lemma 4 in the Appendix A [19]), for all x where φ is differentiable.

In addition, for all (s, x) ∈ (0, 1)×Ω, the term ϕ(s, s∇γφ(x)+(1−s)x) is uniformly bounded
by ‖ϕ‖L∞ . Thus, by dominated convergence, we have

rγ(ϕ) =

∫
Ω
hγ(0, ·)ρ0 dx+

∫ 1

0

∫
Ω
ϕ(s, s∇φ(x) + (1− s)x)ρ0(x) dx ds −→

γ→0
0. (39)

Let tm ∈ (0, 1) such that supp(ϕ) ⊂ (0, tm)× Ω. From (37), we thus have

|Rγ(ϕ)| ≤ |rγ(ϕ)|+ ‖∇xϕ‖L∞
(∫ tm

0

∫
Ω
|v − vγ | · |∇xvγ | · |ρ| dx dt+

∫ tm

0

∫
Ω
|v − vγ | · |ρ| dx dt

)
.

We can prove that |v − vγ | is uniformly bounded and simply converges to 0 on (0, 1)× Ω when
γ tends to 0. Thus, since ρ ∈ L2((0, 1) × Ω), we conclude via dominated convergence that the
term

∫ tm
0

∫
Ω |v − vγ | · |ρ| dx dt converges to 0.

Finally, to complete the proof of Proposition 6.1, we have to show that
∫ tm

0

∫
Ω |v − vγ |·|∇xvγ |·

|ρ| dx dt converges to 0. This is the subject of the following Lemma 6.2, which proof will end the
one of the current Proposition 6.1.
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Lemma 6.2. Let φ : Rd → R be a convex potential verifying the property (Γ1). We consider
a velocity field v = vφ defined as in (16) and 0 < tm < 1. Let ρ ∈ L2((0, 1) × Rd), with
bounded support into [0, 1] × Rd. Let Ω a bounded open set of Rd such that supp(ρ0) ⊂ Ω and
supp(ρ) ⊂ [0, 1] × Ω. For any γ > 0, we define vγ = vγφ, where γφ is the Moreau envelope of φ
by the parameter γ (see beginning of section 4). Then we have the result of convergence:∫ tm

0

∫
Ω
|v − vγ | · |∇xvγ | · |ρ| dx dt −→

γ→0
0. (40)

Before giving a sketch of proof of the previous Lemma, let us state two results concerning
the control of the regularized velocity fields vγ . The first one is an important uniform regularity
result for the velocity field and its regularization.

Proposition 6.2. We assume that φ satisfies the property (Γ1). Let R′ > R > 0 and a ∈ Rd
such that φ(a) = inf

Rd
φ and let M = sup

x∈B(a,2(R+|a|))
|∂φ(x)|.

Then there exists a constant C > 0, independent of φ, γ, a, R and R′, such that for all
t0 ∈ (0, 1) satisfying the condition t0 < min {1/2, (R′ −R)/(M + 2|a|)}, and by setting v0 = v,
we have the property:

∀γ ≥ 0, ∀t ∈ (0, t0],

∫
B(a,R)

|∇xvγ(t, x)| dx ≤ C

t0(1− t0)
Ld(B(a,R′)). (41)

Thus ∇xvγ ∈ L∞(0, t0;L1(B(a,R))), for all γ ≥ 0.

The proof of this proposition is the main object of Appendix A [19].

Remark 6.1. Proposition 6.2 is an important result on the control of the velocity field of a
dynamical optimal transport: in particular, we have ∇t,xv ∈ Lp(0, 1;Lqloc(R

d)) for all 1 < p ≤
+∞ and 1 ≤ q < +∞ such that 1/p + 1/q > 1, especially ∇t,xv ∈ L∞(0, 1;L1(Ω)) and v ∈
W 1,p
loc ([0, 1]× Rd) for all 1 ≤ p < 2.

Corollary 6.1. Let φ satisfy the property (Γ1) and Ω ⊂ Rd be a bounded open set and 0 < tm < 1.
Then there exists a constant K > 0 such that for every γ > 0 and any t ∈ [0, tm], we have∫

Ω
|∇xvγ(t, x)| dx ≤ K. (42)

Proof: For t < t0, we apply Proposition 6.2; and for tm ≥ t > t0 we use the fact that the term
|∇xv(t0, ·)|1 is bounded by c/t(1− t), for c a constant depending only on the chosen norm.

Sketch of proof of Lemma 6.2: For any convex, l.s.c. proper funtion f , the operator id−Proxγf
is non-expansive and ∇(γf)(x) ∈ ∂f(Proxγf (x)). Moreover, there exists a constant C > 0 such
that for all t ∈ (0, 1),

‖∇xv(t, ·)‖L∞(Rd) ≤
C

1− t

(∥∥D2φ
∥∥
L∞(Rd)

+ d
)
.

Hence there exists a constant c, independent of γ, such that for every 1 ≥ γ > 0 and t ∈ (0, 1)

‖∇xvγ(t, ·)‖L∞(Rd) ≤
c

1− t
min

{
1

t
,

1

γ

}
. (43)

By partially bounding |∇xvγ |1 from above (i.e. we bound only aβ when a = aαaβ , 1 = α+β),
and applying Corollary 6.1, we can show that the convergence resut (40) is true for all p > 2
such that ρ ∈ Lp(Q), and that there exists a constant M such that:

∀γ ∈ (0, 1],

∫ tm

0

∫
Ω
|v − vγ | · |∇xvγ | · |ρ| dx dt ≤M‖ρ‖L2(Q). (44)

Therefore, by density of Lp(Q) in L2(Q), (40) is also true for p = 2.
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6.3 Proof of Theorem 3.2

To finish the proof of Theorem 3.2, we only have to show that a density ρ∗ associated to one of
the saddle points (ψ∗, q∗, µ∗) of L verifies the conditions of Proposition 6.1.

Proof. Let (ψ∗, q∗, µ∗) be a saddle point of L. According to Proposition 3.1, we have G(h) +
〈µ∗,∇t,xh〉 = 0, for all h ∈ H1(Q). Let φ ∈ Φ(ρ0Ld, ρ1Ld), thus verifying property (Γ1).
Following Lemma 6.1, by defining v = vφ on (0, 1)×Rd as in (16), we have m∗ = ρ∗v. Hence for
all h ∈ H1(Q): ∫

Q
(∂th+ v · ∇xh) ρ∗ dx dt+

∫
Ω
h(0, ·)ρ0 dx−

∫
Ω
h(1, ·)ρ1 dx = 0. (45)

Let ρ∗ ∈ L2((0, 1) × Rd) be the extension in 0 of ρ∗ on (0, 1) × Rd. Notice that for any test
function h ∈ H1

loc((0, 1)×Rd) we have h|Q ∈ H1(Q) and ∇t,xh|Q = (∇t,xh)|Q. Hence the relation
(45) can be extended from Q to the entire space (0, 1) × Rd. According to Proposition 6.1, we
thus have the equivalence ρ∗(t, ·) = ρφ(t, ·) = (t∇φ+ (1− t) id)#ρ0 for almost all t ∈ [0, 1], with
in addition t 7→ ρφ(t, ·) ∈ C0

(
[0, 1), L2(Rd)

)
.

7 Characterization of an optimal transport velocity field

We now present a generalization of our study on the uniqueness of the component density-
momentum µ that characterizes less formally an optimal transport velocity field. The result
means that the velocity field has to satisfy properties (II)4 and (II)5 and can be understood as
follows.

Any density of L2, with bounded support, and advected by a locally bounded divergence
free velocity field, whose trajectories are all straight lines (and in particular never intersect),
corresponds to an optimal transport, i.e. an interpolation of McCann, and is the only solu-
tion for such a displacement.

For a convex open set Ω of Rd, we define the space bL2
+((0, 1)×Ω) of densities ρ ∈ L2((0, 1)×Ω)

which are non-negative and with compact supports into [0, 1]× Ω.

Theorem 7.1. Let Q = (0, 1)×Ω, Ω being a convex open set of Rd not necessarily bounded.
Let v∗ be a velocity field on Ω satisfying properties (II)4 and (II)5 and ρ0 ∈ L2(Ω), with ρ0 ≥ 0
and supp(ρ0) bounded in Ω. Let ρ∗ ∈ bL2

+(Q) be a solution in the sense of distributions of{
∂tρ+ divx(ρv∗) = 0,
ρ(0, ·) = ρ0.

(46)

Then the density ρ∗ is the unique solution of problem (46) in the space bL2
+(Q) and we have

ρ∗ ∈ C0
(
[0, 1), L2(Ω)

)
. Moreover, there exists a unique non-negative Radon measure ν1 on

Ω, which support is bounded in
⋃
t∈[0,1] supp(ρ∗(t, ·)) and a convex function φ on Rd verifying

property (Γ1), such that ν1 = ∇φ#
(
ρ0 Ld

)
and

∀t ∈ [0, 1), (ρ∗(t, ·)Ld) = (ρ(t, ·)Ld) = (t∇φ+ (1− t) id) #(ρ0Ld), (47)

(with ρ = ρφ defined in (17)) which makes the link with McCann’s interpolation. The couple
(ρ∗, v∗) is then solution of {

∂tρ
∗ + divx(ρ∗v∗) = 0,

ρ∗(0, ·) = ρ0, ρ
∗(1, ·) = ν1,

(48)
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which gives in the weak sense

∀h ∈ C∞c ([0, 1]×Ω),

∫ 1

0

∫
Ω

(∂th+ v∗ · ∇xh) ρ∗ dx dt+

∫
Ω
h(0, ·)ρ0 dx−

∫
Ω
h(1, ·) dν1 = 0. (49)

Finally, for all (t, x) ∈ supp(ρ∗), we have v∗(t, x) = vφ(t, x), defined in (16). The field v∗ thus
satisfies the properties of the velocity field v on supp(ρ∗). In particular, v is locally Lipschitz on
(0, 1)×Rd and it satisfies ∇t,xv ∈ L∞(0, 1;L1

loc(Rd)) and v ∈W 1,p
loc ([0, 1]×Rd) for all 1 ≤ p < 2.

Sketch of the proof: The proof gathers elements from sections 5 and 6. It is technical, as the final
measure (46) is no longer a density measure, of type ρ1Ld, but simply a finite Radon measure
ν1. We only give the main steps of the proof and refer to [17] (section 4.3) for details.

The first step consists in proving the existence, in the sense of distributions, of the final
measure ν1, as defined in the statement of the Theorem. For this purpose we use classical
functional analysis tools such as the Riesz Representation Theorem [26]. We also show that the
weak formulation (49) is always valid for test functions taken from W 1,∞

c ([0, 1]× Ω).
Next we consider φ, an optimal transport potential between ρ0Lp, and ν1 satisfying property

(Γ1). We take a saddle point (µ, q, ψ), as done in section 5 and built in Theorem 3.1. As Brenier’s
Theorem only assumes density for the initial density ρ0Ld, Proposition 3.2 is still valid. This is
also the case for all inductions done while building the velocity field v = vφ. However, we can
not obtain ρ = ρφ ∈ L2(Q), since it requires ν1 = ρ1Ld with ρ1 ∈ L2(Ω). Hence, we can not
extend the test functions of the weak formulation of the mass conservation for the pair (ρ, v) to
the space H1

loc(Q), which only considers absolutely continuous initial measures. Extending test
functions to the space W 1,∞

loc (Q) is required as the potential ψ necessarily belongs to this space.
We then build a second saddle point from the pair (ρ∗, v∗), i.e. a triplet (µ∗, q∗, ψ∗), with

µ∗ = (ρ∗, ρ∗v∗), q∗ = (−(1/2)|v∗|2, v∗) and ∇t,xψ∗ = q∗. We can then, as well as for Lemma 6.1,
prove the uniqueness of the velocity field on the supports of ρ and ρ∗, i.e. ρ∗v∗ = ρ∗v. Although
our triplets (µ, q, ψ) and (µ∗, q∗, ψ∗) are not necessarily in L2, and we can no longer speak of
"projections" and "orthogonality" as in the schematic proof of Lemma 6.1, the reasoning remains
globally the same and we reach the same conclusion (Lemma 4.3-14 of [17]). Thus, according to
Proposition 6.1, the density ρ∗ verifies the relation (47), with t 7→ ρ∗(t, ·) ∈ C0

(
[0, 1), L2(Ω)

)
.

Now, let us show that ρ∗ is the only solution with bounded support of the problem (46) in
the space bL2

+(Q). Assume there exists two solutions ρ1, ρ2 of (46) in bL2
+(Q). Then the density

ρ = (ρ1 + ρ2)/2 is still a solution in bL2
+(Q). Therefore, there would exist a convex function

φ of Rd satisfying property (Γ1), such that, by defining vφ as in (16), we have ρ v∗ = ρ vφ, i.e.
(ρ1 + ρ2) v∗ = (ρ1 + ρ2) vφ. The field v∗ is then almost everywhere equal to the field vφ on
supp(ρ1) ∪ supp(ρ2), thus ρ1 v∗ = ρ1 vφ and ρ2 v∗ = ρ2 vφ. Therefore, ρ1 and ρ2 both solves
problem (46), by replacing v∗ with vφ. According to Proposition 6.1, we thus have ρ1 = ρ2 :

t 7→ ρφ =
(
t∇φ+ (1− t) id

)
#ρ0 in L2((0, 1)× Rd)), and then in L2(Q).

8 Convergence of the algorithm

The convergence of Benamou-Brenier algorithm to a saddle point of the Lagrangian L is shown.

Proposition 8.1. (ψ, q, µ) is a saddle point of the Lagrangian L defined in (9) if and only if it
is a fixed point of the Benamou-Brenier algorithm (12)-(14).

Proof: Let (ψ, q, µ) be a saddle point of L defined in (9). We denote by (ψ′, q′, µ′) the new triplet
obtained after one iteration of the algorithm. Let us show that (ψ′, q′, µ′) = (ψ, q, µ) in S. From
property (I)2 of (I), and taking h = ψ

′ − ψ, we obtain ‖∇t,x(ψ
′ − ψ)‖2 = 0 in step A (12).
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According to the Poincaré inequality, we get ψ′ = ψ in H1((0, 1) × Ω)/R. In step B (13), we
look for the unique q′ verifying 〈µ+∇ψ′− q′, p− q′〉 ≤ 0, for all p ∈ P. From Properties (I)1 and
(I)3 which characterize a saddle point, we get ψ = ψ′. Having q′ = q is a good candidate for q′

and therefore the only one. Finally, ∇t,xψ′ = ∇t,xψ = q = q′ and we get µ′ = µ in step C (14).
Finally, let (ψ, q, µ) be a fixed point of the algorithm. Let us show that it is a saddle point

of L. Step C gives immediately ∇t,xψ = q, and consequently step B gives 〈µ, p − q〉 ≤ 0 for all
p ∈ P. From step A, we have G(h)+ 〈µ,∇t,xh〉 = 0 for all h ∈ H1(Q). Since the three properties
(I) are verified, (ψ, q, µ) is a saddle point of L from Proposition 3.1.

It is now possible, according to Proposition 8.1, to reformulate the problem of convergence
of the algorithm (12)-(14) to a saddle point of the Lagrangian L, as a problem of convergence
to a fixed point of an operator that concatenates the 3 steps of the Benamou-Brenier algorithm.
For this purpose, we rely on fixed points of non-expansive operators. This strategy can indeed
be used to show the convergence, weak or strong, of proximal splitting algorithms [21, 10, 3, 6].

We consider the space H = L2(Q)d+1 × L2(Q)d+1, provided with the scalar product

〈(µ1, q1), (µ2, q2)〉H = 〈µ1, µ2〉L2 + r2〈q1, q2〉L2 ,

so that (H, 〈., .〉) is an Hilbert space. Let B : H → H be the operator which associate to (µ, q)
the product (µ′, q′) of steps B (13) and C (14) of Benamou-Brenier’s algorithm. Here ψ just acts
as an auxiliary variable. Indeed, if (µ∗, q∗, ψ∗) is a saddle point of the Lagrangian L defined in
(9), then (µ∗, q∗) = B(µ∗, q∗). Conversely if (µ∗, q∗) is a fixed point of B then (µ∗, q∗, ψ∗) is a
saddle point of the Lagrangian, where ψ∗ is the unique element of S which satisfies q∗ = ∇ψ∗.

We then have the following result, demonstrated in Appendix B [19].

Proposition 8.2. Operator B is non-expansive on H and quasi-firmly non-expansive on B(H).

As B is non-expansive, the Benamou-Brenier algorithm weakly converges in L2 to a fixed
point of B (i.e. a saddle point of L) whose existence is shown by Theorem 3.1. From the quasi-
firmly non-expansiveness, we can also define a relaxed version of the algorithm with strong-L2

convergence. We refer to Appendix B [19] and the results of H. Bauschke in [2] for more details.
Notice that Proposition 8.2 also justifies the convexity (and closure) of the set of saddle

points of L. The set of fixed points of a non-expansive operator is indeed a closed convex set. The
operator B immediately gives us this convexity for the components µ and q. The characteristic
(I)3 of the properties (I) as well as the linearity of the gradient operator ∇t,x transfer this
convexity to the component ψ, and therefore to the set of saddle points of L.

9 Conclusion and perspectives

The starting point of our work is the study of the Lagrangian augmented algorithm of Benamou-
Brenier [4]. We show in the section 8 the convergence of this algorithm to a saddle point of the
Lagrangian L, which models the dynamic formulation of the optimal transport problem.

The convergence of the algorithm is conditioned by the existence of a saddle point for the
Lagrangian L. In sections 4 and 5, we thus tackle the problem of existence of such saddle
points. In section 6, we show the uniqueness of the couple density/ momentum. Our proof is
based on the properties of regularity and the dynamic structure of the velocity field, whereas
previous methods such as [1] or [27] use the energetic formulation and geodesic displacements in
Wasserstein’s spaces. Our study has been carried out in the most general conditions, especially
in cases where the initial and final densities ρ0 and ρ1 vanish on some subset of the transport
domain, which generally involve non-regular optimal transport plans. As far as we know, this is
the first convergence proof of the Benamou-Brenier algorithm for vanishing densities in L2.
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We also present in Proposition 6.2 new results on the regularity and the control of a velocity
field associated to an optimal transport. In Theorem 7.1, we finally exhibit the minimal properties
that a velocity field has to satisfy in order to be associated to an optimal transport in L2.

In forthcoming works, we would like to analyze the convergence properties of dynamic optimal
transport algorithms: stopping or distance criterias with respect to the solution, theoretical
information on the speed of convergence, etc... Another perspective concerns the extension of
our existence and uniqueness results in L2 to generalized dynamic optimal transport settings,
especially non-isotropic domains (see [18]) or Riemannian manifolds.
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