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In this appendix, we study in detail the notion of pushforward measure, more precisely the
properties useful to our study which follows in the framework of the optimal transport and the
interpolation of McCann. The aims of this appendix is to give a proof for Propositions 2.1 and
2.2, which ones are respectively state in the associate main paper [2] under the numbers 5.1 and
5.2.

Before beginning our study, we shall begin by recalling the statements of some classical theorems
of the Measure Theory (section 1). The main part of this document, where are stated and proved
Propositions 2.1 and 2.2, follows in the section 2.

1 Elements of Measure Theory

1.1 Some useful properties of sub-gradients of Lipschitzian functions

Lemma 1.1. Let f : Rd → R a L-Lipschitz function on an open set ω. Then

sup
x∈ω
|∂f(x)|

(
= sup

x∈ω
sup

y∈∂f(x)
|y|

)
≤ L.

We recall that if f is convex, and differentiable at a point x, we have ∂f(x) = {∇f(x)}.

Lemma 1.2. Let f : Rd → R be a proper lower semicontinuous convex function, and let (xk)k
and (ξk)k be two sequences of Rd which converge in Rd respectively to x and ξ, and such that

∀k ∈ N, ξk ∈ ∂f(xk).

Then ∂f(x) is non-empty and ξ ∈ ∂f(x).

1.2 Elements of Measure Theory

Lemma 1.3 ([1]). Let f be a Lipschitz function Rd. Then, for all A ⊂ Rd,

Ln(A) = 0 ⇒ L(f(A)) = 0

where L is the measure of Lebesgue on R.
∗Institute of Engineering Univ. Grenoble Alpes
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For all subset A ⊂ Rd, we define, for all x ∈ Rd, the function 1A by 1A(x) = 1 if x ∈ A, and
1A(x) = 0 otherwise.

Theorem 1.1 (Urysohn’s theorem, restricted to Rd, [3] and [4]). 1. Let V be an open set of
Rd, and K be a compact set of Rd such that K ⊂ V . Then, there exists f ∈ C∞c (Rd) such
that:

1K ≤ f ≤ 1V .

2. Let V be an open set Rd, and K be a compact set of Rd such that K ⊂ V . Then there
exists an open set U with compact closure, such that

K ⊂ U ⊂ U ⊂ V.

We will write that a measure µ (positive or not) verifies the properties (I) if it satisfies the
following properties:

Properties (I). Let Ω be an open set of Rd, and µ be a measure on the tribe of Lebesgue of Ω.

1. µ(K) < +∞ for all compact set K ⊂ Ω.

2. For all Lebesgue-measurable set E of Ω, we have

µ(E) = inf{µ(V ), E ⊂ V, V open}.

3. For all open set E and for all Lebesgue-measurable E of Ω such that µ(E) < +∞,

µ(E) = sup{µ(K), K ⊂ E, K compact}.

Theorem 1.2 (Riesz Representation Theorem [3]). Let Ω an open set of Rd, and let Λ a positive
linear form on Cc(Ω). Then we can build a positive measure µ1 on the tribe of Lebesgue of Ω
which represents Λ, i.e.

∀f ∈ Cc(Ω), Λ(f) =

∫
Ω
f dµ. (1-1)

This measure is defined as follows:

1. For all V open set of Ω, µ(V ) = sup{Λ(f), f ∈ Cc(Ω), f ≤ 1V }.

2. For all Lebesgue-measurable set E of Ω, µ(E) = inf{µ(V ), E ⊂ V, V ouvert}.

This measure µ satisfies the properties (I).

Theorem 1.3 ([3]). Let (X,A) and (Y,B) two measurables spaces (i.e. A and B are respectively
some σ-algebras on X and Y ). We associate X × Y with the σ-algebra A× B (i.e. the smallest
σ-algebra containing all the sets of the form A×B, with A ∈ A and B ∈ B).
For all E ∈ A× B, we define for all x ∈ X and y ∈ Y the sets

Ex = {y ∈ Y, (x, y) ∈ E} et Ey = {x ∈ X, (x, y) ∈ E}.

Then for all x ∈ X and y ∈ Y , Ex ∈ B and Ey ∈ A.
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Theorem 1.4 ([3]). Let (X,A, µ) and (Y,B, ν) two σ-finished measured spaces (countable coun-
cils of finite measure subsets). Let Q ∈ A×B (defined in Theorem 1.3). We define for all x ∈ X
and any y ∈ Y ,

Φ(x) = ν(Qx), and Ψ(y) = µ(Qy).

Then the function Φ is measurable relative to A and the function Ψ is measurable relative to B.
Furthermore ∫

X
Φ dµ =

∫
Y

Ψ dν. (1-2)

This last Theorem is a special case of the Fubini Theorem which follows (but in fact goes into
its proof). We will very often use the Fubini Theorem (most of the time implicitly) in the case
of a classical and unambiguous inversion of integrals. On the other hand, we will explicitly use
this Theorem in the more complex cases where classical notions of measurement theory can lead
to ambiguities.

Theorem 1.5 (Fubini’s Theorem [3]). Let (X,A, µ) and (Y,B, ν) two σ-finished measured spaces.
Let f a function with real values defined on X × Y , and measurable relative to A× B.

• For all x ∈ X, we define on Y the function y 7→ fx(y) = f(x, y).

• For all y ∈ Y , we define on X the function x 7→ fy(x) = f(x, y).

The following assertions are satisfied:

1. For all x ∈ X, fx is measurable relative to B and, for all x ∈ X, fy is measurable relative
to A.

2. If 0 ≤ f ≤ +∞, then, by defining for all x ∈ X and y ∈ Y ,

Φ(x) =

∫
Y
fx dν, and Ψ(y) =

∫
X
fy dµ, (1-3)

the function Φ is measurable relative to A and the function Ψ is measurable relative to B.
Moreover, ∫

X
Φ dµ =

∫
X×Y

f (dµ⊗ dν) =

∫
Y

Ψ dν. (1-4)

3. If f is a function with complex values and if we have∫
X

Φ∗ dµ < +∞ with Φ∗(x) =

∫
Y
|fx| dν for all x ∈ X,

or else ∫
Y

Ψ∗ dν < +∞ with Ψ∗(y) =

∫
X
|fy| dµ for all y ∈ Y,

then f ∈ L1(µ⊗ ν).

4. If f ∈ L1(µ⊗ν), then fx ∈ L1(ν) for almost all x ∈ X and fy ∈ L1(µ) for almost all y ∈ Y .
Moreover, if we define Φ and Ψ as in relations (1-3) (defined here only for, respectively,
almost all x ∈ X and almost all y ∈ Y ), then Φ and Ψ belong respectively to L1(µ) and
L1(ν). Moreover, the relation (1-4) is always satisfied by Φ and Ψ.

3



Theorem 1.6 (Radon-Nikodym Theorem [3]). Let Ω be an open set of Rd and A be a σ-algebra
on Ω. Let µ and λ be two measures on A, such that µ is a bounded positive measure and λ any
measure (positive or complex). If λ is absolutely continuous with respect to µ (denoted λ � µ)
then there exists a unique h ∈ L1(µ) such that λ = h · µ on A, i.e.

∀E ∈ A, λ(E) =

∫
E
h dµ.

Theorem 1.7 (Radon-Nikodym Theorem, specific variant, [3] and [1]). Let λ be a positive
measure on the tribe of Lebesgue, finite on every compact subset of Rd, and absolutely continuous
with respect to the Lebesgue measure Ld. Then we introduce the function Dλ of Rd in R, denoted
"upper derivative" of λ with respect to Ld, and defined by

∀x ∈ Rd, (Dλ)(x) = lim sup
r→0

fr(x), with fr(x) =
1

Vd(B1)rd
λ (B(x, r)) , r > 0,

where B(x, r) denotes the open ball with center x and radius r, and Vd(B1) the unit ball volume
in dimensions d. We have the following properties:

1. For Ld-almost all x ∈ Rd, the family (fr(x))r>0 converges when r tends to 0 (and we have
lim

r→0, r>0
fr(x) = (Dλ)(x)). We then write that λ is differentiable in x with respect to Ld.

2. Dλ is Lebesgue-measurable on Rd and Dλ ∈ L1(Rd).

3. For all Lebesgue-measurable set E,

λ(E) =

∫
E

(Dλ)(x) dLd(x).

Proposition 1.1 ([3]). Let Ω be an open set Rd, and let µ be a measure on a σ-algebra A of Ω.
Then there exists a measurable function f such that |f(x)| = 1 for all x ∈ Ω, and such that

dµ = h d|µ|, (1-5)

where |µ| refers to the total variation of the measure µ.

Theorem 1.8 (Generalized Riesz Representation Theorem [3]). Let Ω be an open set of Rd, and
let T be a continuous linear form on C(Ω). Then, there exists a unique measure defined on the
tribe of Lebesgue (not necessarily positive), satisfying the properties (I), and which represents T ,
i.e.

∀f ∈ C(Ω), T (f) =

∫
Ω
f dµ, (1-6)

with ‖T‖ = |µ|(Ω).

Theorem 1.9 (Lusin Theorem [3]). Let Ω be an open set of Rd, and let µ be a positive measure
satisfying the properties (I).
Let A ⊂ Ω be a measurable set such that µ(A) < +∞, and let f be a measurable function on Ω
(for the tribe of Lebesgue ) which vanishes outside of A. So, for all ε > 0, there exits g ∈ Cc(Ω)
such that

µ ({x, f(x) 6= g(x)}) < ε, and sup
x∈Ω
|g(x)| ≤ sup

x∈Ω
|f(x)|. (1-7)
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Corollary 1.1 ([3]). With the assumptions of Theorem 1.9, if in addition there exists a constant
M > 0 such that |f | ≤ M , then there exists a sequence (gn)n ∈ Cc(Ω)N, with |gn| ≤ M for all
n ∈ N, such that

f(x) = lim
n→+∞

gn(x), µ− a.e.

Corollary 1.2. With the assumptions of Theorem 1.9, if in addition f ∈ L1
loc(Ω, µ), then

∀g ∈ Cc(Ω),

∫
Ω
f g dµ = 0 =⇒ f = 0, µ− a.e.

2 The pushforward measure

Let us begin by defining more precisely the notion of measurement push (Proposition 2.1 below).
For this we will need the following two Lemmas 2.1 and 2.2.

Lemma 2.1. Let V be an open set Rd. There exists a sequence (Kn)n∈N of open sets in Rd such
that for all n ∈ N, Kn ⊂ Kn+1, and

V =
⋃
n∈N

Kn.

Proof: Let us first assume that V is bounded. Its adherence V is therefore a compact subset of
Rd. Thus, according to the Borel-Lebesgue property, for every n ∈ N, there exists kn ∈ N and
xn0 , .., x

n
kn
∈ V such that

V ⊂
⋃

i=0..kn

B

(
xni ,

1

n+ 1

)
, (2-8)

where B(x, r) denotes the closed ball with center x and radius r. For all n ∈ N, we define

An =

{
i ∈ J0, knK, B

(
xni ,

1

n+ 1

)
⊂ V

}
and Kn =

⋃
i∈An

B

(
xni ,

1

n+ 1

)
⊂ V,

Kn being a compact set because An is finite. Let us show that V is the union of Kn. First of
all, it is clear that ⋃

n∈N
Kn ⊂ V.

Let x ∈ V and r > 0 such that B(x, r) ⊂ V (B(x, r) is an open ball with center x and radius
r), and let n ∈ N be such that 1/(n + 1) < r/2. According to (2-8), there exists xni such that
x ∈ B (xni , 1/(n+ 1)). Therefore, for all y ∈ B (xni , 1/(n+ 1)), we have

|x− y| ≤ |x− xni |+ |xni − y| ≤
1

n+ 1
+

1

n+ 1
< r,

then
B

(
xni ,

1

n+ 1

)
⊂ B(x, r) ⊂ V,

so that i ∈ An and B (xni , 1/(n+ 1)) ⊂ Kn. It follows that x ∈ Kn, and we can thus conclude
that

V ⊂
⋃
n∈N

Kn.

Finally, if we no longer suppose that V is bounded, we can always use the fact that V can
be written as a countable union of bounded open sets (for example, the union of B(0, n) ∩ V ).
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Therefore, as a countable union of compact countable union, V is the union of a countable family
(Kn)n∈N of compact sets of Rd.
With the possible need to define for all n ∈ N,

K ′n =

n⋃
j=0

Kj ,

we can consider that this family is increasing in the sense of inclusion.

Lemma 2.2. Let K be a compact set of Rd. There exists a sequence (Vn)n∈N of open sets in Rd
such that for all n ∈ N, Vn+1 ⊂ Vn, and

K =
⋂
n∈N

Vn.

Moreover, there exists a bounded open set V ′ of Rd such that for all n ∈ N, Vn ⊂ V ′.

Proof: By the Borel-Lebesgue property, for all n ∈ N, there exists kn ∈ N et xn0 , .., xnkn ∈ K such
that

K ⊂
⋃

i=0..kn

B

(
xni ,

1

n+ 1

)
, (2-9)

where B(x, r) denotes the open ball with center x and radius r. We thus define, for all n ∈ N

Vn =
⋃

i=0..kn

B

(
xni ,

1

n+ 1

)
.

It is clear that
K ⊂

⋂
n∈N

Vn.

Let x ∈
⋂
n∈N

Vn. For all n ∈ N, there exits in ∈ J0, knK such that x ∈ B
(
xnin ,

1

n+ 1

)
.

The sequence (xnin)n∈N (elements of K) then converges towards x, and therefore x ∈ K. Thus⋂
n∈N

Vn ⊂ K.

With the possible need to define for all n ∈ N

V ′n =

n⋂
j=0

Vj ,

we can consider that the family (Vn)n∈N is decreasing in the sense of inclusion.
It will further be noted that for any n ∈ N, we have Vn ⊂ V ′, V ′ being the open bounded set
defined by

V ′ =
⋃
x∈K

B(x, 1).

Proposition 2.1. We associate Rd with the tribe of Lebesgue. Let µ be a positive measure σ-
finite on the tribe of Lebesgue, and let T : Rd → Rd measurable. It is assumed that one of the
following two hypotheses is satisfied:
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1. The measure µ is finite,

2. The application T is coercive with respect to µ, i.e. T−1(A) is bounded µ-almost everywhere
for any bounded Lebesgue-measurable set A in Rd.

Then there exists a positive measure on the Lebesgue tribe ν on Rd, satisfying the properties (I),
such that

∀f ∈ C0
c (Rd),

∫
Rd

f dν =

∫
Rd

f(Tx) dµ. (2-10)

Moreover, for every Lebesgue-measurable set A ⊂ Rd, we have ν(A) = µ
(
T−1(A)

)
.

We then say that ν is the pushforward of µ by the operator T , denoted as

ν = T#µ.

Proof: The existence of a positive measure on the tribe of Lebesgue ν on Ω, satisfying the
properties (I), and relation (2-10) comes from the application of Theorem 1.2 to the positive
linear form on C0

c (Rd) defined by

f 7→
∫
Rd

f dν =

∫
Rd

f(Tx) dµ.

This linear form is well defined if one of the two hypotheses of the statement is verified (µ is
finite or T is coercive).
The less trivial part of this proof will therefore concern the last point of the statement. We
shall first show the property for the bounded open sets and the compact sets of Rd, and then
generalize it to all Lebesgue-measurable sets.

1. Let V an bounded open set of Rd. According to Lemma 2.1, there exists a sequence
(Kn)n∈N of compact sets, increasig in the meaning of inclusion, such that V is the union
of the Kn. For all n ∈ N, Theorem 1.1 gives us the existence of fn ∈ C0

c (Ω) such that
1Kn ≤ fn ≤ 1V . The sequences of indicator functions (1Kn)n simply converges towards
1V , the same holds for the sequence (fn)n, and then for the sequence (fn ◦ T )n towards
1V ◦ T .
According to the first points of the properties (I), we have ν(V ) ≤ ν(V ) < +∞. Let V ′

be an open bounded set Rd such that V ⊂ V ′. According to Theorem 1.1, there exists a
function g ∈ C0

c (Ω) such that 1V ≤ g ≤ 1V ′ . Hence we have

fn ◦ T ≤ 1V ◦ T ≤ 1V ◦ T ≤ g ◦ T

for all n ∈ N, and ∫
Rd

g(Tx) dµ =

∫
Rd

g dν ≤ ν(V ′) < +∞.

Thus by dominated convergence, we have

ν(V ) =

∫
Rd

1V dν = lim
n→+∞

∫
Rd

fn dν = lim
n→+∞

∫
Rd

fn(Tx) dµ

=

∫
Rd

1V (Tx) dµ = µ
(
T−1(V )

)
.

(2-11)
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2. Let K be a compact set of Rd. We argue like above: Lemma 2.2 gives us the existence of
a sequence (Vn)n∈N of openings, decreasing in the sense of inclusion, such that K is the
intersection of the Vn and of a bounded open set V ′ such that for every n ∈ N, we have
Vn ⊂ V ′. Moreover, for any n ∈ N, Theorem 1.1 gives us the existence of a fn ∈ C0

c (Ω)
such that 1K ≤ fn ≤ 1Vn ≤ 1V ′ . The sequence of (1Vn)n converges simply towards 1K ,
and then the sequence (fn)n converges to the same limit. Therefore, the sequence (fn ◦T )n
converges simply towards 1K ◦ T , with the upper bound fn ◦ T ≤ 1V ′ ◦ T , with according
to the previous point∫

Rd

1V ′(Tx) dµ =

∫
Rd

1V ′ dν ≤ ν(V ′) ≤ ν(V ′) < +∞.

We can then deduce by dominated convergence that ν(K) = µ
(
T−1(K)

)
.

3. Let A be a bounded Lebesgue-measurable set of Rd. The measure ν satisfies the properties
(I), thus especially by the points 2 and 3:

ν(A) = inf{ν(V ), A ⊂ V, V bounded open set}

and
ν(A) = sup{ν(K), K ⊂ A, K compact set}. (2-12)

Notice that we can consider that we minimize on bounded open sets since A is assumed to
be bounded. For all compact set K and all open set V such that K ⊂ A ⊂ V , we have

ν(K) = µ
(
T−1(K)

)
≤ µ

(
T−1(A)

)
≤ µ

(
T−1(V )

)
= ν(V ),

so that

ν(A) = sup{ν(K), K ⊂ A, K compact set}
= sup{µ

(
T−1(K)

)
, K ⊂ A, K compact set} ≤ µ

(
T−1(A)

)
≤ inf{µ

(
T−1(V )

)
, A ⊂ V, V bounded open set}

= inf{ν(V ), A ⊂ V, V bounded open set} = ν(A)

(2-13)

and ν(A) = µ
(
T−1(A)

)
. Finally, considering that A is any Lebesgue-measurable set, it can

be written as a countable union (An)n of bounded Lebesgue-measurable sets (for example
the union of the An = B(0, n) ∩A). Thus

ν(A) = lim
n→+∞

ν

(
n⋃
k=0

Ak

)
= lim

n→+∞
µ

(
T−1

(
n⋃
k=0

Ak

))
= lim

n→+∞
µ

(
n⋃
k=0

T−1 (Ak)

)

= µ

(⋃
k∈N

T−1 (Ak)

)
= µ

(
T−1

(⋃
k∈N

Ak

))
= µ

(
T−1(A)

)
.

(2-14)

Let us now turn to McCann’s interpolation: Proposition 2.2 below. We recall that the McCann’s
interpolations measures µt, between a measure µ and the measure T#µ, are definded for all
t ∈ [0, 1] by µt = [(1− t) id +tT ]#µ.
As we have shown in our main paper [2], we can consider that φ satisfy the property (Γ1), that
is to say φ and φ∗ are convex, continuous and achieve a minimum on Rd.
As we will often treat about the interpolated functions of the transport potential φ, we first need
to state the following small Lemma:
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Lemma 2.3. Let φ : Rd → R satisfying the property (Γ1). Then, for all t ∈ [0, 1], the interpolated
function tφ+ (1− t)| · |2/2 also satisfies the property (Γ1).

Proof: This is a direct consequence of the fact that (tφ + (1 − t)| · |2/2)∗ = 1−t(tφ) for all
t ∈ [0, 1).

We recall the definition and the properties of the operator p (see [2]):

Definition 2.1 (Operator p). Let φ : Rd 7→ R satisfying the property (Γ1) (especially φ is
convex and continuous at every point of Rd, and admiting in each of these point a non-empty
and compact sub-differential). The operator p is defined as

pφ : [0, 1)× Rd → Rd

(t, x) 7−→ Prox t
1−t

φ

(
x

1−t

)
pφ satisfies the following properties:

1. for all t ∈ [0, 1), pφ(t, ·) is 1/(1− t)-Lipschitz,

2. if t ∈ (0, 1), by setting φt = (1− t)| · |2/2 + tφ, then (φt)
∗ is of class C1 on Rd and we have:

pφ(t, ·) = ∇x(φt)
∗, (2-15)

3. for all t ∈ [0, 1), pφ(t, ·) is surjective on Rd and for all x, y ∈ Rd,

y = pφ(t, x) ⇔ x ∈ (1− t)y + t∂φ(y). (2-16)

4. for all t ∈ (0, 1) and x ∈ Rd, the velocity v introduced in [2] can be defined from pφ by:

vφ(t, x) =
x− pφ(t, x)

t
. (2-17)

Before coming to Proposition 2.2, let us state the necessary following Lemma. For f and g two
measurable functions, we will often denote f = T#g instead of fLd = T#(gLd).

Lemma 2.4. Let φ : Rd → R satisfying the property (Γ1), and p definded per φ according to
Definition 2.1, that is to say:

p(t, ·) = pφ(t, ·) = Prox t
1−t

φ

(
x

1− t

)
= ∇x(φt)

∗

where (φt)
∗ refers to the Legendre transform of φt = (1− t)| · |2/2 + tφ.

For all r > 0, the function
G : (t, x, y) 7→ 1

p(t,B(x,r))(y)

is Lebesgue-measurable on [0, 1)× Rd × Rd.

Proof: Let r > 0. Let us first note that G = 1F with

F =
{

(t, x, y) ∈ [0, 1)× Rd × Rd, y ∈ p
(
t, B(x, r)

)}
.

Thus, to prove that G is Lebesgue-measurable, it is sufficient to show that F is an element of
the Lebesgue tribe. We will prove more precisely that F is a closed set into [0, 1) × Rd × Rd.
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Let (tn, xn, yn)n a sequence of elements of F converging to (t∗, x∗, y∗) ∈ [0, 1)×Rd ×Rd. Let us
show that (t∗, x∗, y∗) ∈ F . For all n ∈ N,

(tn, xn, yn) ∈ F ⇔ yn ∈ p
(
tn, B(xn, r)

)
⇒ ∃zn ∈ B(xn, r), yn = p(tn, zn)

⇔ ∃zn ∈ B(xn, r), zn ∈ tn∂φ(yn) + (1− tn)yn

⇔ ∃zn ∈ B(xn, r), ∃ξn ∈ ∂φ(yn), zn = tnξn + (1− tn)yn.

(2-18)

We therefore consider the sequences (zn)n and (ξn)n as defined in the relation (2-18). The
sequence (yn)n is convergent, therefore bounded. Let ω be a bounded open containing all the yn
for n ∈ N. Potential φ satisfies the property (Γ1), so in particular φ is locally Lipschitz on Rd,
so it is Lipschitz on ω. According to Lemma 1.1, ∂φ(ω) is bounded in Rd: the sequence (ξn)n
is therefore bounded in Rd, so it is the same for the sequence (zn)n. With the possible need to
have to extract a subsequence, we can then consider that (ξn)n and (zn)n converge in Rd. We
write ξ∗ and z∗ their respective limits. According to Lemma 1.2, we have ξ∗ ∈ ∂φ(y∗), and then

z∗ = t∗ξ∗ + (1− t∗)y∗ ∈ t∗∂φ(y∗) + (1− t∗)y∗ ⇒ y∗ = p(t∗, z∗).

Moreover, for all n ∈ N, we have ‖xn − zn‖ ≤ r. At the limit, we then have ‖x∗ − z∗‖ ≤ r, i.e.
z∗ ∈ B(x∗, r). Thus, y∗ ∈ p

(
t∗, B(x∗, r)

)
, i.e. (t∗, x∗, y∗) ∈ F .

Proposition 2.2. Let ρ0 ∈ L1(Rd, dLd) with compact support, such that ρ0 ≥ 0 and φ : Rd → R
verify the Property (Γ1). Let ρ0 ∈ L1(Rd) be a compact support, such that ρ0 ≥ 0, and φ : Rd → R
satisfying the property (Γ1). Then, for all t ∈ [0, 1) there exists a positive measure νt on the
Lebesgue of Rd, with bounded support in (t∇φ + (1 − t) id) (supp(ρ0)), satisfying the properties
(I), and such that νt = (t∇φ+ (1− t) id)#(ρ0Ld), i.e.

∀f ∈ C0
c (Rd),

∫
Rd

f dνt =

∫
Rd

f(t∇φ(x) + (1− t)x)ρ0(x) dLd(x). (2-19)

Moreover, there exists ρt ∈ L1(Rd) such that νt = ρtLd (νt � Ld). It is also possible, for any
t ∈ [0, 1), to choose a representative of ρt in such a way that (t, x) 7→ ρt(x) is measurable on
[0, 1)× Rd.

Finally, the following properties are satisfied:

1. For all h ∈ L∞loc(Rd,Ld) and t ∈ [0, 1), we have

• h ◦ (t∇φ+ (1− t) id) ∈ L∞loc(Rd,Ld),

•
∫
Rd

h dνt =

∫
Rd

h(x)ρt(x) dLd(x) =

∫
Rd

h(t∇φ(x) + (1− t)x)ρ0(x) dLd(x).

2. For all h ∈ L∞loc([0, 1)× Rd,Ld+1), we have

• (t, x) 7→ h (t, t∇φ(x) + (1− t)x) ∈ L∞loc([0, 1]× Rd),

•
∫ 1

0

∫
Rd

h(t, x)ρt(x) dLd(x) dL(t) =

∫ 1

0

∫
Rd

h (t, t∇φ(x) + (1− t)x) ρ0(x) dLd(x) dL(t).
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3. For all h ∈ C0
c ([0, 1) × Rd), t 7→

∫
Rd h(t, ·) dνt =

∫
Rd h ρt dLd is continuous on [0, 1), in

other words t 7→ νt is continuous from [0, 1) to D′(Rd).

Proof: For all t ∈ [0, 1), we apply Proposition 2.1 for µ = ρ0Ld and T = t∇φ+ (1− t) id. Here,
since ρ0 ∈ L1(Rd, dLd), ρ0Ld is a finite measure. Proposition 2.1 therefore gives the existence for
t ∈ [0, 1) of a positive measure νt on the tribe of Lebesgue of Rd as in Theorem 1.2, satisfying
the properties (I), and the relation (2-19):

∀f ∈ C0
c (Rd),

∫
Rd

f dνt =

∫
Rd

f(t∇φ(x) + (1− t)x)ρ0(x) dLd(x).

Thus, for all t ∈ [0, 1) and for all f ∈ C0
c (Rd) such that:

supp(f) ⊂ Rd\(t∇φ+ (1− t) id) (supp(ρ0)) ,

we have ∫
Rd

f dνt =

∫
Rd

f(t∇φ(x) + (1− t)x)ρ0(x) dLd(x) = 0.

Then supp(νt) ⊂ (t∇φ + (1 − t) id) (supp(ρ0)) and, supp(ρ0) being bounded, it is the same for
(t∇φ+ (1− t) id) (supp(ρ0)) according to Lemma 1.1.
Moreover, for all Lebesgue-measurable set A from Rd, we have

νt(A) =
(
ρ0Ld

)(
(t∇φ+ (1− t) id))−1 (A)

)
=
(
ρ0Ld

)
(p(t, A)) =

∫
p(t,A)

ρ0 dLd(x) (2-20)

Indeed, recall that for every x ∈ Rd where φ is differentiable, we have from Definition 2.1,

x = p(t, y) ⇔ y = (1− t)x+ t∇φ(x).

For all t ∈ [0, 1), p(t, ·) is Lipschitz (according to Definition 2.1), therefore, according to Lemma
1.3, if Ld(A) = 0, then Ld(p(t, A)) = 0 and νt(A) =

∫
p(t,A) ρ0 dLd(x) = 0. The measure νt is

therefore absolutely continuous with respect to the Lebesgue measure Ld.

For any t ∈ [0, 1) and all x ∈ Rd, we define

ρt(x) = (Dνt)(x) = lim sup
r→0

1

Vd(B1)rd
νt (B(x, r)) , r > 0, (2-21)

as described in Theorem 1.7. Here, according to (2-20), for all r > 0 and (t, x) ∈ [0, 1)× Rd,

νt (B(x, r)) =

∫
p(t,B(x,r))

ρ0 dLd =

∫
Rd

1p(t,B(x,r))(y)ρ0(y) dLd(y).

Note that for all (t, x) ∈ [0, 1)× Rd,

Ld(p (t, B(x, r))) ≤ Ld
(
p
(
t, B(x, r)

))
≤ Ld(p (t, B(x, r))) + Ld (p (t, S(x, r))) ,

with S(x, r) = B(x, r)\B(x, r). We have Ld (S(x, r)) = 0, and p(t, ·) is Lipschitz on Rd, then
according to Lemma 1.3, Ld (p (t, S(x, r))) = 0. Thus

Ld(p (t, B(x, r))) = Ld
(
p
(
t, B(x, r)

))
, and then 1p(t,B(x,r))(y) = 1

p(t,B(x,r))(y)
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for Ld-almost all y ∈ Rd. Hence we have

νt (B(x, r)) =

∫
Rd

1p(t,B(x,r))(y)ρ0(y) dLd(y) =

∫
Rd

1
p(t,B(x,r))(y)ρ0(y) dLd(y).

According to Lemma 2.4, the function (t, x, y) 7→ 1
p(t,B(x,r))(y) is Lebesgue-measurable on

[0, 1)× Rd × Rd. According to Theorem 1.5, the function

(t, x) 7→ νt (B(x, r)) =

∫
Rd

1
p(t,B(x,r))(y)ρ0(y) dLd(y)

is then measurable on [0, 1) × Rd. Therefore, the function (t, x) 7→ ρt(x) is measurable on
[0, 1) × Rd: it is a simple limit-sup of a countable sequence of measurable functions. Finally,
according to Fubini Theorem 1.5, for all t ∈ [0, 1) the function x 7→ ρt(x) is measurable on Rd
and, according to Theorem 1.7, νt = ρtLd, i.e.

∀t ∈ [0, 1), νt(E) =

∫
E
ρt(x)dLd(x),

for all Lebesgue-mesurable E subset of Rd. Furthermore, we have∫
[0,1)×Rd

ρt(x)(dx⊗ dt) =

∫ 1

0

∫
Rd

ρt(x) dx dt =

∫ 1

0
νt(Rd) dt =

∫
Rd

ρ0dLd < +∞.

Indeed, according to Definition 2.1, for all t ∈ [0, 1), p(t, ·) is surjective from Rd onto Rd. Then
from (2-20):

νt(Rd) =

∫
p(t,Rd)

ρ0dLd =

∫
Rd

ρ0dLd.

Thus (t, x) 7→ ρt(x) ∈ L1([0, 1) × Rd). The uniqueness of such a function (t, x) 7→ ρt(x) comes
from Corollary 1.2.

To conclude the proof of Proposition 2.2, we finally have to verify the three properties defined
in the statement.

1. Let h ∈ L∞loc(Rd,Ld),

• Let V be a bounded open set of Rd and t ∈ [0, 1). The image set (t∇φ+(1− t) id)(V )
is always bounded according to Lemma 1.1, since φ verifies the property (Γ1). There
exists therefore a constant M > 0 such that, by defining

A = {y ∈ (t∇φ+ (1− t) id)(V ), |h(y)| > M},

we have Ld(A) = 0. For all x ∈ V such that φ is differentiable in x (remind that the
set of points for which it is not the case is a zero measure set),

|h(t∇φ(x) + (1− t)x)| > M ⇔ t∇φ(x) + (1− t)x ∈ A ⇔ x ∈ p(t, A).

Here Ld(p(t, A)) = 0 (according to Lemma 1.3, since p(t, ·) is Lipschitz on Rd). Then,
for any Ld-almost all (t, x) ∈ V , whence h ◦ (t∇φ+ (1− t) id) ∈ L∞loc(Rd,Ld).
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• Let V be a bounded open set into Rd and let t ∈ [0, 1). The density ρ0 is assumed
to have a compact support, therefore, if we additionally assume that supp(ρ0) ⊂ V ,
according to Corollary 1.1, there exists a sequence (hn)n ∈ Cc(Rd)N with |hn| ≤ M
for all n ∈ N, converging Ld-almost everywhere to h · 1(t∇φ+(1−t) id)(V ).
The set B of the points of (t∇φ+ (1− t) id)(V ) such that the sequence (hn(x))n does
not converge to h(x) or which is not bounded in Euclidean norm by M is therefore a
zero measure set for Ld.
We now consider the set of points x of V where φ is differentiable, and such that the
sequence (hn(t∇φ(x) + (1− t)x))n does not converge to h(t∇φ(x) + (1 − t)x) or is
not bounded in Euclidean norm by M . By reasoning as in the previous point, we
can show that this last set is included in p(t, B), which is a zero measure set for Ld,
according to Lemma 1.3: indeed, p(t, ·) is Lipschitz on Rd. From the relation (2-19),
we have for all n ∈ N,∫

Rd

hn dνt =

∫
Rd

hn(x)ρt(x) dLd(x) =

∫
Rd

hn(t∇φ(x) + (1− t)x)ρ0(x) dLd(x).

By dominated convergence, we obtain∫
Rd

h dνt =

∫
Rd

h(x)ρt(x) dLd(x) =

∫
Rd

h(t∇φ(x) + (1− t)x)ρ0(x) dLd(x),

which holds for all h ∈ L∞loc(Rd,Ld) et t ∈ (0, 1).

2. Let h ∈ L∞loc([0, 1)× Rd,Ld+1),

• We assume that is V a bounded open set in [0, 1)× Rd.
As before, we can deduce that (t 7→ (t, t∇φ+ (1− t) id))(V ) is bounded. There exists
therefore a constant M > 0 such that, by defining

A = {(t, y) ∈ (t 7→ (t, (t, t∇φ+ (1− t) id))(V ), |h(t, y)| > M} ,

we have Ld+1(A) = 0. For any t ∈ [0, 1], we define the set At by

At = {x ∈ Rd, (t, x) ∈ A}.

It is a Lebesgue-measurable set of Rd according to Theorem 1.3 (note that we have
1A(t, x) = 1At(x) for all (t, x) ∈ [0, 1] × Rd). For all (t, x) ∈ V such that φ is
differentiable in x (let us recall that the set of points for which this is not the case is
a zero measure set),

|h(t, t∇φ(x) + (1− t)x)| > M ⇔ (t, t∇φ(x) + (1− t)x) ∈ A
⇔ x ∈ p(t, At)

⇔ (t, x) ∈ B = {(t′, x′) ∈ V, x′ ∈ p(t′, At′)}.

With the same definition, we can also define Bt = {x ∈ Rd, (t, x) ∈ B} = p(t, At) for
all t ∈ [0, 1), which is also a Lebesgue-measurable set. Finally, according to Fubini
Theorem, t 7→ Ld(At) and t 7→ Ld(Bt) are measurable.
If Ld+1(A) = 0, then

0 = Ld+1(A) =

∫ 1

0

∫
Rd

1A(t, x) dLd(x) dt =

∫ 1

0

∫
Rd

1At(x) dLd(x) dt

=

∫ 1

0
Ld(At) dt.

(2-22)
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Thus Ld(At) = 0 for almost all t ∈ [0, 1]. For all t ∈ [0, 1), p(t, ·) is Lipschitz:
therefore, from Lemma 1.3, if Ld(At) = 0, we have Ld(p(t, At)) = 0.
Thus, Ld(Bt) = Ld(p(t, At)) = 0 for almost all t ∈ [0, 1]. Consequently, according to
Fubini Theorem,

Ld+1(B) =

∫ 1

0
Ld(Bt) dt = 0, (2-23)

so that |h(t, t∇φ(x) + (1− t)x)| ≤M for Ld+1-almost all (t, x) ∈ V . We can therefore
conclude that (t, x) 7→ h (t, t∇φ(x) + (1− t)x) ∈ L∞loc([0, 1)× Rd,Ld+1).

• For the second point of the property 2, we reason as in the second point of the property
1, via Lusin Theorem (the property being valid for h ∈ C0

c ([0, 1)× Rd)).

3. By continuity under integral sign, it is clear that for all h ∈ C0
c ([0, 1)× Rd), the function

t 7→
∫
Rd

h(t, ·) dνt =

∫
Rd

h (t, t∇φ(x) + (1− t)x) ρ0(x) dLd(x)

is continuous on [0, 1).
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