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Abstract

The dynamical formulation of the optimal transport problem, introduced by J. D. Ben-
amou and Y. Brenier, corresponds to the time-space search of a density and a momentum
minimizing a transport energy between two densities. In order to solve this problem, an
algorithm has been proposed to estimate a saddle point of a Lagrangian. We will study
the convergence of this algorithm to a saddle point of the Lagrangian, in the most general
conditions, particularly in cases where initial and final densities cancel on some areas of the
transportation domain. The principal difficulty of our study will consist in the proof, under
these conditions, of the existence of a saddle point, and especially in the uniqueness of the
density-momentum component. Indeed, these conditions imply to have to deal with non-
regular optimal transportation maps. For these reasons, a detailed study of the properties of
the velocity field associated to an optimal transportation map in quadratic space is required.

1 Introduction

The optimal transport problem is generally formulated as follows: considering two sets of particles
or probability measures, find the assignment between those discrete or continuous objects while
minimizing a given cost. This is referred to as optimal transport or optimal assignment. Even
if these two denominations describe the same problem, they reflect two different approaches.
Indeed, while it was initially a problem of optimal displacement, the pioneer Gaspard Monge,
acknowledging the fact that the optimal trajectory from one point to another was a straight
line, reduced this problem to a simple assignment problem. The same holds for the formulation
given later by Leonid Kantorovitch. : his problem was also reduced to a single assignment
(or allocation) problem of the elements of a given resource to be transported. As such, the
trajectories are not involved in the transport cost, which only reflects the price to pay to move
a mass from one point to another.

The reduction of the optimal transport problem to an assignment problem first makes it
easier to tackle theoretically (see [16]). However, when it comes to describe more accurately
the optimal assignment plan, this formulation is less efficient. Some approaches then choose to
reintroduce the notion of displacement: this will be the case of the method that we will deal
with here.

The first attempt to link the optimal assignment and optimal displacement problems was
proposed by R. J. McCann [18]. The continuous displacements between two measures was
considered to determine a continuum of intermediate measures between two measures µ and ν,
so that the integral sum of local optimal costs (ie the distance of Wasserstein step by step) is
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equal to the global optimal allocation cost between µ and ν. The idea is that for infinitely close
measures, there is no difference between optimal assignment and optimal displacement.

Relying on this continuous interpolation idea between the densities ρ0 and ρ1 by densities ρt
of constant mass, second-order algorithms have been proposed to solve the problem efficiently
[4]. This type of approach is nevertheless limited to non-vanishing densities. As far as we know,
the only numerical method handling the general case is based on the work of Y. Brenier and
J.-D. Benamou. They introduced a continuous formulation, originating from fluid mechanics,
of the optimal transport problem [3]. This amounts to determine directly the evolution of the
density ρ = t 7→ ρt as well as the velocity field v which advects this density, corresponding to
the optimal map ∇φ. Such a pair (ρ, v) therefore verifies a continuity equation.

One of the main interest of this dynamic formulation is its expression in terms of fluid
mechanics quantities. It makes the model very flexible, and allows generalizations to other
physical constraints [17, 8] which are relevant for practical applications. The introduction of
these physical constraints (anisotropy of the domain, constraints of free divergence or rigidity on
the velocity field) in the dynamic problem have been a subject of study in [15].

The main interest advanced by the authors of [3] was the ability to introduce an algorithm
exploiting this physical formulation of the optimal transport problem. For this purpose, they
introduced the impulsion m = ρv and reduced the problem to the search for an optimal µ =
(ρ∗,m∗) rather than (ρ∗, v∗). The objective is therefore to find the optimal velocity field v∗

on the support of the density ρ∗ (the velocity field v can indeed vary outside the support of ρ
without modifying the value of the travel energy K). Such a formulation makes it possible to
convexify the transport energy and to linearize the mass conservation equation. The problem
then becomes the following: minimizing a convex, proper, lower semicontinuous energy.

The authors of [3] also reformulates this convex dynamic problem as the search for a sad-
dle point (ψ, q, µ) of a Lagrangian L, and then address this new problem with an augmented
Lagrangian algorithm (more precisely ADMM) such as developed in [11]. This algorithm has
been used since 1999 and works well in practice, although a number of theoretical questions
remain unanswered: the existence of solutions in the context of this new dynamic formulation,
the existence of a saddle point for L, the convergence (weak or strong) of the algorithm, and the
possible uniqueness of a solution, in the general setting of possibly vanishing densities.

Before going further, let us first introduce the dynamic formulation of the optimal transport
problem proposed by Benamou and Brenier in [3].

2 Formulation of the problem and presentation of the algorithm

2.1 The problem of Monge-Kantorovich in Rd for a quadratic cost

We denote by | · | the Euclidean norm on Rd, for all d ∈ N, and consider two nonnegative
densities (ρ0, ρ1) on Rd (d ∈ N∗), with bounded supports and of the same mass. The problem
of Monge-Kantorovich consists in finding an optimal transport plan T between ρ0Ld and ρ1Ld
that minimizes ∫

Rd
d(x, T (x))2ρ0(x)dx, (2-1)

where d(x, y) is a distance on Ω. We write T#(ρ0Ld) = ρ1Ld the push forward by T of ρ0Ld
on ρ1Ld, i.e. such that for any bounded subset A of Rd,

∫
A ρ0 =

∫
T−1(A) ρ1. The quadratic

Wasserstein distance W2(ρ0, ρ1) is defined by:

W2(ρ0, ρ1)2 = inf
T#(ρ0Ld)=ρ1Ld

∫
Ω
d(x, T (x))2ρ0(x)dx. (2-2)
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In the Euclidean case (where d(x, y) = |x− y|), there exists a unique transport map T between
ρ0 and ρ1 that can be written as the gradient of a lower semi-continuous (l.s.c.) convex function
φ (Brenier’s Theorem [20] p.66) i.e.

W2(ρ0, ρ1)2 =

∫
Rd
|∇φ(x)− x|2ρ0(x) dx = inf

T#(ρ0Ld)=ρ1Ld

∫
Rd
|T (x)− x|2ρ0(x) dx. (2-3)

This problem, in the dynamic formulation of the Monge problem introduced by J. -D. Ben-
amou and Y. Brenier [3], can be reformulated as a minimization problem of a kinetic energy K,
depending on a mass ρ and a velocity field v, such that ρ is transported from ρ0 to ρ1, by v.

Let us begin by detailing this new optimization problem in a framework that will be con-
venient for its resolution by the augmented Lagrangian algorithm, and which will be the main
object of our study.

2.2 Convex and augmented lagrangian formulation

We propose to study the following problem: let ρ0, ρ1 ∈ L2(Rd) be two probability densities
with bounded supports. The dynamic optimal transport formulation consists in increasing the
dimension of the problem by adding a temporal variable t ∈ [0, 1]. Formally, we look for a couple
(ρ, v), where ρ denotes a nonnegative density, and v a vector field with values in Rd, both defined
on ]0, 1[×Ω, where Ω is a bounded open convex set of Rd containing supp(ρ0) and supp(ρ1). This
couple is required to satisfy the continuity equation,

∂tρ+ div(ρv) = 0 (2-4)

with homogeneous Neumann boundary conditions on ρv, and with initial and final conditions on
ρ:

ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x). (2-5)

Among all such couples (ρ ,v), we look for a minimizer of K(ρ, v) = (1/2)
∫ 1

0

∫
Ω |v|

2ρ dx dt.
As K is not convex, and the constraint (2-4) is nonlinear, the authors of [3] proposed as a

new variable m = ρv instead of v, and consider the transport cost:

K̃(ρ,m) =

∫ 1

0

∫
Ω

|m(t, x)|2

2ρ(t, x)
dx dt, (2-6)

with the corresponding continuity constraint:

∂tρ+ divxm = 0; (2-7)

that are subject to homogeneous Neumann boundary conditions on m and initial / final con-
ditions (2-5). The nonnegativity constraint on ρ turns to {ρ > 0 or (ρ,m) = (0, 0)} through
the change of variable m = ρv. By introducing a Lagrange multiplier ψ to handle the linear
constraints (2-7) and (2-5), we can write a saddle-point formulation of the problem:

inf
(ρ,m)

sup
ψ

[∫
]0,1[×Ω

|m|2

ρ
−
∫

]0,1[×Ω
(∂tψρ−∇xψ ·m) +

∫
Ω

(ψ(0, ·)ρ0 − ψ(1, ·)ρ1)

]
. (2-8)

Another crucial idea in [3] is to encode the non-negativity constraint on ρ by introducing the
Legendre transform of (ρ,m) 7→ |m|2/(2ρ):

F (q) = F (a, b) = sup
(ρ,m)

(
ρa+ 〈m, b〉 − |m|

2

2ρ

)
⇔ F (q) =

{
0 if q ∈ P
+∞ otherwise
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with q = (a, b) ∈ R × Rd and P = {(a, b) ∈ R × Rd, a ≤ −|b|2/2}. Since the transport cost K̃
is now convex and l.s.c., it is equal to its biconjugate by the Legendre transform. We therefore
have |m|2/(2ρ) = sup(a,b) (ρa+m · b− F (a, b)). The problem is thus partially linearized with
respect to the variables (ρ,m): the non-linear part (i.e. F ) reduces to the indicator function of
P, which will be implemented as a projection on that convex subset.

By some manipulations as sup-integral or inf-sup inversions, and by setting q = (a, b) and
µ = (ρ,m), the saddle point problem (2-8) is reformulated as inf(ψ,q) supµ L(ψ, p, µ) where

L(ψ, p, µ) = F (q) +G(ψ) + 〈µ,∇t,xψ − q〉L2 (2-9)

with G(ψ) =
∫

Ω ψ(0, ·)ρ0 dx −
∫

Ω ψ(1, ·)ρ1 dx and F = χP̃ (meaning F (q) = 0 if q ∈ P̃ and
F (q) = +∞ otherwize), where P̃ = {(ã, b̃) ∈ L2(Q) × L2(Q)d, ã ≤ −|̃b|2/2}. In the following
we will write P in place P̃. The augmented Langrangian formulation is finally given, for some
parameter r > 0, by:

Lr(ψ, q, µ) = F (q) +G(ψ) + 〈µ,∇t,xψ − q〉L2 +
r

2
‖∇t,xψ − q‖2L2 . (2-10)

2.3 Benamou-Brenier algorithm

To solve the saddle point problem associated to (2-10), the authors of [3] have proposed an
algorithm based on a Uzawa method: the ALG2 algortihm introduced by M. Fortin and R.
Glowinski in [11]. This consists in performing the following steps, starting from (ψn−1, qn−1, µn):

1. Step A: Find the unique ψn such that Lr(ψn, qn−1, µn) ≤ Lr(ψ, q
n−1, µn), ∀ψ.

2. Step B: Find the unique qn = (an, bn) such that Lr(ψn, qn, µn) ≤ Lr(ψ
n, q, µn), ∀q.

3. Step C: Update (ρn+1,mn+1), setting µn+1 = µn + r(∇t,xψn − qn),

More precisely, the algorithm breaks down as follows: Step A can be interpreted as a projection
on gradient fields. We look for the unique ψn ∈ H1(Q)/R such that:

∀h ∈ H1(Q), G(h) + 〈µn,∇t,xh〉+ r〈∇t,xψn − qn−1,∇t,xh〉 = 0.

Formally, this corresponds to find ψn solution of −r∆t,xψ
n = divt,x

(
µn − rqn−1

)
, with as initial

and final conditions:

r∂tψ
n(0, ·) = ρ0 − ρn(0, ·) + ran−1(0, ·), and r∂tψ

n(1, ·) = ρ1 − ρn(1, ·) + ran−1(1, ·),

and homogeneous Neumann boundary conditions on (0, 1)× ∂Ω. This operation corresponds to
a kind of Helmoltz decomposition.

Step B is an L2 orthogonal projection on P: qn = PP ((1/r)µn +∇t,xψn), that can be done
pointwise.

Step C uses the computed gradient of step A to implement a projection on the affine space
of constraints (2-4) and (2-5): µn+1 = µn + r(∇t,xψn − qn).

Remark 2.1. We chose to take the same parameter r > 0 for the Uzawa step C to ensure
the positivity constraint of ρn and cancellation of mn when ρn vanishes. Indeed step B can be
rewritten as ∀q′ ∈ P 〈µn+1, q′ − qn〉 ≤ 0, which means that µn+1 = (ρn+1,mn+1) is orthogonal
to the paraboloid P at qn. We deduce by the strict convexity of P, that for all (t, x) ∈]0, 1[×Ω,
ρn(t, x) > 0 or (ρn(t, x),mn(t, x)) = 0.
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2.4 Objectives and related existing works

The main object of this article is to propose a theoretical framework allowing to answer the three
following points: existence of saddle points, uniqueness of saddle points and convergence of the
considered algorithm. The proposed study will also be the opportunity to characterize rigorously
some properties of the velocity field associated to an optimal transport plan.

A first study of the Benamou-Brenier algorithm was carried out in [13] for periodic in space
boundary condition: Ω = Td, where Td denotes the torus in dimension d, i.e. Td = Rd/Zd.
The strongest assumption of this study is that the density ρ∗, solving the problem (2-6), has
to be larger than a positive constant. This assumption imply in particular a regularity of the
associated transport plan (discontinuity free). Indeed, under such conditions, the potential φ
must be of class C1 and with Lipschitz gradient. Caffarelli studied in [6] and [7] the regularity
of an optimal transport plan on a convex domain with respect to the regularity of the initial and
final densities ρ0 and ρ1, additionally assumed to be positive. A special case mentioned in [13]
is ρ0 and ρ1 strictly positive on Td and belonging to Cα,l(Td), for some l ∈]0.1[, and α ∈ Nd.
Following the work of Cordero-Erausqui in [9], these conditions imply that the optimal transport
potential φ is of class Cα,l+2 and, for any t ∈ [0, 1], the density ρ̃t also has a Cα,l regularity on
Td and is bounded from below by a strictly positive constant independent of t.

Under the above assumptions, the author of [13] first shows the existence of a solution (ρ∗,m∗)
for the dynamic formulation of optimal transportation; solution from which is proven the exis-
tence of a saddle point (ψ∗, q∗, µ∗) for the Lagrangian L. However, there is no uniqueness result
for the density-momentum couple µ∗ = (ρ∗,m∗).

A convergence result of the Benamou-Brenier algorithm is also presented in [13]. Nevertheless,
this does not explicitly give the strong or weak convergence of the main component of the triplet
(ψn, qn, µn). Indeed, considering the problem (2-6), the component of interest is the density-
momentum component µn = (ρn,mn). Moreover, only the strong convergences in H1/R and L2

of the components ψn and qn are shown and the proof seems incomplete (see section 9).
In this article, we consider a more general framework. The open set Ω will here be assumed

to be convex and bounded, with homogeneous Neumann boundary conditions on the momentum
m, but more importantly, the density ρ̃ will not be assumed to be minored by a strictly
positive regular constant. We will simply assume that the densities ρ0 and ρ1 are non-negative
elements of L2(Ω) (thus potentially non-regular) in the neighborhood of ∂Ω. We will show the
existence of a saddle point for the Lagrangian L, solution of the problem (2-6), as well as the
uniqueness among the set of saddle points (ψ∗, q∗, µ∗) of the Lagrangian L of µ∗ = (ρ∗,m∗),
which shows that the density corresponds to the McCann interpolation. The uniqueness result
established in this article only concerns the component µ, since, as we will see at the beginning
of the section 6, there is no uniqueness of the saddle points of L: in fact, the components
ψ and q can vary outside the support of ρ.

These first two points (existence and uniqueness) will be established in parallel with a pre-
liminary study on the regularity of the velocity field v associated to an optimal transport.
We underline important new regularity results presented in Theorem 8.2 and Corollary 8.2:
∇t,xv ∈ Lp((0, 1), Lqloc(R

d)) for all 1 < p ≤ +∞ and 1 ≤ q < +∞ such that 1/p + 1/q > 1, and
especially v ∈W 1,p

loc ([0, 1]× Rd) (i.e. ∀Ω ⊂ Rd, v ∈W 1,p((0, 1)× Ω) ) for all 1 ≤ p < 2.
This study will also lead us to characterize accurately a velocity field inherent to an optimal

transport in L2. More precisely, we will determine sufficient assumptions on a velocity field
v ∈ L∞loc([0, 1]×Rd) so that a density transported by v is the McCann interpolation of an optimal
(unique) transport (Theorem 7.1). These hypotheses will be reduced to the usual characteristics
of optimal isotropic transport, in particular straight-line trajectories, at constant speed, and
without crossing. Finally, we will study the convergence of the Benamou-Brenier algorithm.
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2.5 Organization of the paper

Our study will be structured as follows. In section 3 we will start by developing the different
challenges of our problem concerning the existence of the saddle points for L, as well as the
uniqueness properties. We will give a detailed statement of the various properties characterizing
a saddle point. These properties will be exploited one by one in the continuation of our study
in order to characterize the couple density-velocity field (ρ, v).

In section 4, we will carry out a preliminary study of the properties of the velocity field. It
will give crucial materials for the following three sections, in which we will establish the existence
of a saddle point (section 5), the uniqueness of the component µ = (ρ,m) (section 6), and finally
characterize a minima a velocity field which represents an optimal transport (section 7).

In order to simplify the reading of this paper, some results on velocity fields used in sections
5, 6 and 7 will be latter proven in the section 8, which also contains the statements and proofs
of the new and independent regularity results of Theorem 8.2 and Corollary 8.2.

Finally, in section 9, we will establish the weak and strong convergence of the Benamou-
Brenier algorithm towards a saddle point of the Lagrangian L, which can be interpreted as the
search for a fixed point of a non-expansive operator.

3 Existence of a saddle point

The main objective of this first part is to directly build a saddle point of L defined in (2-10). Let
us therefore define the framework rigorously: let ρ0 and ρ1 be two probability densities (i.e. non-
negative and of integral equal to 1) of L2(Rd) with bounded supports, and Ω be a bounded convex
open set of Rd. We assume that Ω is piecewise of class C1 and such that supp(ρ0)∪supp(ρ1) ⊂ Ω.
In the remaining of this paper, we denote Q = (0, 1)×Ω. For all r > 0, we write Lpsr (ρ0, ρ1,Ω) the
set of Lagrangian saddle points Lr which are elements of Sg = H1(Q)/R×L2(Q)d+1×L2(Q)d+1.
Let us define the following three properties for a triplet (ψ, q, µ) ∈ Sg of Lr:

Properties (I). (ψ, q, µ) ∈ Sg verifies:

(P1) ∀q′ ∈ P̃, 〈µ, q′ − q〉 ≤ 0,

(P2) ∀h ∈ H1(Q), G(h) + 〈µ,∇t,xh〉 = 0,

(P3) ∇t,xψ = q.

where the paraboloid P̃ is defined by

P̃ =

{
(a, b) ∈ L2(Q)× L2(Q)d, a+

|b|2

2
≤ 0

}
, (3-11)

and the linear operator G by G(h) =

∫
h(0, ·)ρ0 dx−

∫
h(1, ·)ρ1 dx, for all h ∈ H1(Q).

Proposition 3.1. A saddle point (ψ∗, q∗, µ∗) ∈ Sg of Lr is characterized by the properties (I),
for all r ≥ 0.

Sketch of the proof: We first check that for a triplet (ψ∗, q∗, µ∗) ∈ Sg satisfying the properties
(I), we have the relation Lr(ψ, q, µ

∗) ≥ Lr(ψ
∗, q∗, µ∗) ≥ Lr(ψ

∗, q∗, µ), for all (ψ, q, µ) ∈ Sg,
which characterizes a saddle point of Lr. Conversely, for a saddle point (ψ∗, q∗, µ∗) ∈ Sg of L,
one verifies one by one the properties (I), first by fixing ψ = ψ∗ and q = q∗ (P3), then fixing
q = q∗ and µ = µ∗(P2), and finally by fixing µ = µ∗ and ψ = ψ∗ (P1).

Since the saddle points of the Lagrangian Lr are independent of r ≥ 0, we will only consider
the Lagrangian L.
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By setting µ = (ρ,m) and q = (a, b) (with a + |b|2
2 ≤ 0), we can reinterpret the properties

(P1) and (P2). (P1) means that if µ(t, x) is nonzero then it is orthogonal to the paraboloid at
the point q(t, x), i.e. co-linear to the vector (1, b(t, x)). The property (P1) can be translated as
follows: ρ ≥ 0, m = ρb, ρ(a + |b|2/2) = 0. Next, (P2) corresponds to the mass conservation
equation verified by ρ and b (i.e. ∂tρ + divx(ρv) = 0, taking v = b) for the initial and final
densities ρ0 and ρ1.

We now recall that according to Brenier’s theorem [20] (p. 66), there exists a convex potential
φ verifying ρ1Ld = ∇φ#(ρ0Ld) from which we define the following quantities:

Definition 3.1. For all t ∈]0, 1[, we define:

1. The characteristic displacement at the instant t,

X(t, ·) = (1− t) id +t∇xφ = ∇xφt with φt = (1− t) | · |
2

2
+ tφ, (3-12)

2. The associated velocity field v,

v(t, ·) =
id−∇x(φt)

∗

t
with φt = (1− t) | · |

2

2
+ tφ, (3-13)

where (φt)
∗ = (φt)

∗ denotes the Legendre transform of the potential φt.

3. The density ρ, defined as the union for t ∈ [0, 1] of the McCann interpolation densities ρt
between ρ0Ld and ρ1Ld [18]:

ρ(t, ·)Ld = ρtLd = X(t, ·)#(ρ0Ld). (3-14)

Let us also define the (Γ1) property on the potential φ:

Hypothesis (Γ1). φ and φ∗ are convex, continuous and achieve a minimum on Rd.

Here φ∗ always represents the Legendre transform of φ and we recall that a convex and
continuous function on Rd is locally Lipschitz. For the purpose of our study, we complete the
Brenier Theorem ([20] p. 66) as follows:

Proposition 3.2. Let ρ0 be a probability density Lebesgue-measurable on Rd and µ1 a probability
measure on Rd. There exists a potential φ : Rd → R, satisfying the property (Γ1), such as
∇φ#

(
ρ0Ld

)
= µ1.

Sketch of the proof: One can first show that the optimal transport potential φ given by the
Brenier’s Theorem (convex, lower semicontinuous and gradient bounded almost everywhere on
supp(ρ0Ld)) is finite and of bounded gradient on an open neighborhood of the support of ρ0Ld. It
is then possible to extend the restriction of φ to this neighborhood by φ, a finite convex function
on Rd continuous, supralinear and sub-quadratic. The supralinearity of φ implies the existence
of a global minimum for the latter, and ensures that its Legendre transform φ

∗ will also be finite
(and thus continuous) on Rd. The sub-quadratic character of φ ensures the supralinearity of φ∗,
and therefore the existence of a global minimum.

We can now define the following set:

Definition 3.2. Let ρ0 be a probability density Lebesgue-measurable on Rd and µ1 a probability
measure defined on the tribe of Lebesgue in Rd. We denote by Φ(ρ0Ld, µ1) the set of functions
φ : Rd → R satisfying the property (Γ1) such that ∇φ#

(
ρ0Ld

)
= µ1.
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3.1 Reformulation of the Properties (I)

Let us give an idea of the approach we will follow. We set µ = (ρ, ρv) and q = (−1
2 |v|

2, v). To
construct a saddle point, µ and q should satisfy the properties (I). It will be sufficent to verify
that with ρ and v defined like in (3-14) and (3-13) satisfy the following properties:

Properties (I′).

(P1’) The density ρ is an element of ρ ∈ L2(Q).

(P2’) The velocity field v is an element of L∞(Q)d.

(P3’) The velocity field v satisfies the Burgers equation in the sense of the distributions:

∂tv +
1

2
∇x|v|2 = 0.

(P4’) The potential (ρ, v) satisfies the mass conservation equation in the distributions sense for the
initial and final conditions ρ0 and ρ1 and the homogeneous Neumann boundary conditions:∫

Q
(∂th+ v.∇h) ρ+

∫
Ω
h(0, x)ρ0(x)dx−

∫
Ω
h(1, x)ρ1(x)dx = 0 (3-15)

We will see that ρ and v satisfying the properties (I′) is sufficient to build a triplet (ψ, q, µ)
satisfying properties (I). However, having a triplet (ψ, q, µ) satisfying the properties (I) is not
sufficient to build a density-velocity field pair (ρ, v) satisfying properties (I′), and such that
µ = (ρ, ρv) and q = (−1

2 |v|
2, v). Indeed, the component q may not belong to the boundary of

the paraboloid (a, b)→ a+ (1/2)|b|2 ≤ 0 outside the support of µ.
The properties (P1’) and (P2’), respectively established in Lemma 5.1 and 4.2, ensure that

the saddle point is in the correct space, i.e. in Sg. Indeed, we have q ∈ L2(Q)d+1 ⇔ v ∈
L4(Q)d ⊂ L∞(Q)d, µ ∈ L2(Q)d+1 ⇔ ρ ∈ L2(Q) and ρv ∈ L2(Q)d, and, for the potential ψ, we
have W 1,∞(Q) ⊂ H1(Q).

The properties (P2’) and (P3’) involve the property (P3). Indeed, having q deriving from a
space-time potential amounts to verifying, for a dimension d ≤ 2, that curlt,x(q) = 0 (recalling
that q = (−1

2 |v|
2, v)) in the sense of distributions (see [12] Theorem 2.9 p.31), so that{

∂tv + 1
2∇|v|

2 = 0,
curlx(v) = 0 ⇔ ∃ψ ∈ D′(Q), v = ∇xψ

From the definition of v in (3-13), we see that the velocity derives from a potential in space
in the sense of the distributions, namely:

v(t, ·) = ∇x
(

1

t

(
1

2
| · |2 − (φt)

∗
))

(3-16)

where the potential φ is an element of L1
loc(Q). According to the Lemma 4.1, this proves the

property (P3), provided that the field v is an element of L∞(Q)d and verifies the Burgers equation
∂tv + 1

2∇x|v|
2 = 0 in the sense of distributions.

Even if the notion of rotational is less easy to cope with in dimension d > 2, the Lemma 4.1
allows us to state the property (P3) from (P2’) and (P3’), whatever the dimension d is, provided
that we have v ∈ L∞(Q)d.

Notice that the property (P4’) translates the property (P2) of (I). Indeed, we can easily
extend by a density argument the relation to h ∈ H1(Q) once it is established for h ∈ C∞(Q).
Finally remark that with the above results, the Property (P1) is verified by setting m = ρv.
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3.2 Main results of existence, uniqueness and regularity

Let Ω a convex open set of Rd. We say that v satisfies properties (II) on Ω if and only if:

Properties (II).

1. There exists ψ ∈ W 1,∞
loc ([0, 1] × Ω) (i.e. ψ ∈ W 1,∞((0, 1) × ω), for all bounded open set

ω ⊂ Ω) such that v = ∇xψ.

2. The velocity field v satisfies the Burgers equation in the sense of the distributions, namely
the relation

∂tv +
1

2
∇x|v|2 = 0. (3-17)

According to the Lemma 4.1 that will be stated below, the properties (II) are equivalent to
the following ones:

1. v ∈ L∞loc([0, 1]× Ω)d i.e. v ∈ L∞((0, 1)× ω)d, for all bounded open set ω ⊂ Ω,

2. ∂tv + 1
2∇x|v|

2 = 0 (in the sense of distributions),

3. there exists ψ ∈ L1
loc((0, 1)× Ω), such that v = ∇xψ,

which correspond to the properties (P2’) and (P3’).
The properties (II) contain the characteristics of an isotropic optimal transport for a quadratic

cost: the first point (i.e. v = ∇xψ) corresponds to the property of non crossing trajectories
(recalling that in dimension less than 3 this property is equivalent to a rotational free velocity
field v); and the second point (the Burgers equation) is in line with the property of straight-line
displacement.

At the end of section 7, we will give a framework in which we can rigorously characterize an
optimal transport-type mass displacement from these properties alone. The principal results of
existence and uniqueness we show are the followings.

Theorem 3.1 (Existence of a saddle point). Let ρ0 and ρ1 two probability densities of L2(Rd)
with bounded supports, and let Ω a sufficiently smooth bounded open set of Rd such that supp(ρ0)∪
supp(ρ1) ⊂ Ω. For all φ ∈ Φ(ρ0Ld, ρ1Ld) (see relation 3.2), there is a non-negative density
ρφ ∈ C0

(
[0, 1], L2(Ω)

)
, such that for all [0, 1]× Rd, we have

ρφ(t, ·)Ld = Xφ(t, ·)#(ρ0Ld), avec Xφ(t, ·) = ∇xφt = (1− t) id +t∇xφ,

and a velocity field vφ, defined by

vφ(t, x) =
x− pφ(t, x)

t
, (3-18)

Then, setting µφ = (ρφ, ρφvφ) and qφ = (−(1/2)|vφ|2, vφ), there exists ψφ ∈ W 1,∞
loc ([0, 1] × Ω)

such that qφ = ∇t,xψφ and such that (ψφ, qφ, µφ) (or at least its restriction on ]0, 1[×Ω) is a
saddle point Lagrangian L. In addition, vφ is locally Lipschitz on the space ]0, 1[×Rd, satisfies
the properties (II) and ∇t,xv ∈ L∞((0, 1), L1(Ω)), with v ∈W 1,p((0, 1)× Ω) for all 1 ≤ p < 2.

As we will see in section 7, the fact that v satisfies the properties (II) is sufficient to char-
acterize an optimal transport in L2. On the other hand, the fact that v verifies ∇t,xv ∈
L∞((0, 1), L1(Ω)) is a result: this property, although interesting in itself, will not be directly
used to characterize an optimal transport velocity field in L2. However, very close properties will
be considered to show the different statements on the uniqueness of the component (ρ,m) of the
saddle points of L, and the results related to the characterization of an optimal transport-type
velocity field.
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Theorem 3.2 (Unicity of density and momentum). If (ψ∗, q∗, µ∗) is a saddle point of L (the
assumptions on ρ0, ρ1 and Ω being the same as in the Theorem 3.1), then for any potential
φ ∈ Φ(ρ0Ld, ρ1Ld), we have µ∗ = (ρ∗,m∗) = (ρφ, ρφvφ), with the velocity field vφ defined with
respect to φ as in (3-18), and

ρφ(t, ·)Ld = Xφ(t, ·)#(ρ0Ld) ∈ C([0, 1], L2(Ω)), with Xφ(t, ·) = ∇xφt = (1− t) id +t∇xφ.

In general, the set of saddle points (ψ, q, µ) of L is not reduced to a single element: only the
component µ = (ρ,m) is unique. In other words, the set of points (ψ, q, µ) of L share the same
component µ, i.e. there is uniqueness of the density ρ and the velocity field v on the support
of ρ. The components q and ψ can indeed vary outside the support of ρ. For more details, see
sub-section 4.2.1 of [14].

To prove these two results, we will have to study in details some properties of a velocity field
vφ defined as in (3-18), for φ satisfying the property (Γ1).

4 First velocity field properties

In this section, we define a velocity field associated to an optimal transport map using Brenier’s
Theorem, and give associated properties about it. The results stated in this section will constitute
the basis of the existence and uniqueness results concerning the saddle points of L, as well as the
generalized results of the section 7. Let us begin by introducing the notion of infimal convolution,
or inf-convolution:

Definition 4.1 (inf-convolution ([2] chapter 12)). Let f and g be two functions from Rd to
]−∞,+∞]. The inf-convolution of f and g, denoted by f�g, is defined by

f�g : Rd →]−∞,+∞] : x 7−→ inf
y∈Rd
{f(x− y) + g(y)}. (4-19)

In the remaining of our paper, we will need the following property, in conjunction with the
Legendre transform ([2] chapter 13): for all functions f and g from Rd to ] − ∞,+∞], we
have

(f�g)∗ = f∗ + g∗. (4-20)

We also recall the definition of the proximal operator:

Definition 4.2 (The proximal operator ([2] chapter 12)). Let f be a function of Rn (n ∈ N∗)
in R proper, l.s.c. and convex, and let x ∈ Rn. The proximal operator of f in x, denoted by
Proxf (x) is the unique minimizer of f + 1

2 |x− ·|
2 in Rn. In other words:

Proxf (x) = argmin
y∈Rn

(
f(y) +

1

2
|y − x|2

)
. (4-21)

The proximal operator can be characterized by the following relation:

y = Proxf (x) ⇔ x− y ∈ ∂f(y). (4-22)

The operators Proxf and id−Proxf are non-expansive (1-Lipschitz). Let us recall the identity
of Moreau (linking the proximal operator of f with that of its Legendre transform f∗):

Proxγf∗ = id−γ Proxf/γ(·/γ) (4-23)

We have here defined the operator on Rn, but it can be defined on more general spaces (Hilbert
spaces for example), with the same properties. Let us finally define the Moreau envelope:
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Definition 4.3 (Moreau envelope ([2] chapter 12)). Let f : Rd −→] − ∞, +∞] convex, l.s.c.
proper and let γ > 0. The Moreau envelope of f with parameter γ is defined by:

γf = f�

(
1

2γ
| · |2

)
. (4-24)

By definition of the proximal operator, we can also characterize γf , for all x ∈ Rd and γ > 0, by:

γf(x) = f(Proxγf(x)) +
1

2γ
|x− Proxγf (x)|2 (4-25)

where γf is convex and Fréchet-differentiable on Rd. Using (4-23), its gradient reads:

∇(γf) = γ−1(id−Proxγf ) = Proxf∗/γ(·/γ). (4-26)

The mapping ∇(γf) is γ−1-Lipschitz. Moreover, for every x ∈ Rd, from (4-26) and (4-22), we
have

∇(γf)(x) ∈ ∂f(Proxγf (x)). (4-27)

4.1 Definition and first properties of the velocity field

Thanks to the Definition 4.3, the velocity field (3-13) of an optimal transport can be written
as a proximal operator p. This will allow us to deal more easily with the problems of "breaks"
of the velocity field (which are not necessarily discontinuities). An interesting property of this
proximal opertor is that it realizes a bijection in the regular areas of the velocity, while being
able to close the potential "breaks" of the velocity.

Definition 4.4 (Operator p). Let φ : Rd 7→ R satisfying the property (Γ1) (especially φ is
convex and continuous at every point of Rd, and admiting in each of these point a non-empty
and compact sub-differential). The operator p is defined as

pφ : [0, 1[×Rd → Rd

(t, x) 7−→ Prox t
1−tφ

(
x

1−t

)
pφ satisfies the following properties:

1. for all t ∈ [0, 1[, pφ(t, ·) is 1/(1− t)-Lipschitz,

2. if t ∈]0, 1[, by setting φt = (1− t)| · |2/2 + tφ, then (φt)
∗ is of class C1 on Rd and we have:

pφ(t, ·) = ∇x(φt)
∗, (4-28)

3. for all t ∈ [0, 1[, pφ(t, ·) is surjective on Rd and for all x, y ∈ Rd,

y = pφ(t, x) ⇔ x ∈ (1− t)y + t∂φ(y). (4-29)

4. for all t ∈]0, 1[ and x ∈ Rd, the velocity v introduced in (3-13) can be defined from pφ by:

vφ(t, x) =
x− pφ(t, x)

t
. (4-30)

Remark 4.1. When there is no ambiguity on φ, we will use v to denote the velocity field vφ.
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Proof: The first point simply results from the non-expansiveness of the proximal operator (
Definition 4.2). The second point can be established by observing that the Legendre transform
(φt)

∗ of φt can be written in the form of a Moreau envelope. Indeed, through the property (4-20)
of the inf-convolution we have (φt)

∗ = 1−t(tφ)∗. Using relation (4-26), we can then deduce that
for all t ∈]0, 1[, (φt)

∗ is of class C1 on Rd, and

∇x(φt)
∗ =

id−Prox(1−t)(tφ)∗

1− t
= Prox t

1−tφ

(
·

1− t

)
= pφ(t, ·). (4-31)

The third point is immediately deduced from the characterization (4-22) of the proximal operator.
Finally, the fourth point comes by combining relations (4-28) and (3-13).

We now recall that the field of trajectories X, defined for all t ∈ ]0, 1[ in (3-12), is X(t, ·) =
∇x(φt) = (1− t) id +t∇φ. We thus observe that pφ(t, ·) formally represents the reciprocal of the
characteristic traces X(t, ·) = ∇x(φt). It would have been really the case if φ had been of class
C1 with a Lipschitz gradient. But in the general case (i.e. with φ not C1 and only verifying the
property (Γ1)), pφ(t, ·) is not injective on Rd. The operator pφ(t, ·) thus repairs the "breaks"
that can be generated by a transport plan. Indeed, pφ(t, ·) re-concentrates the areas generated
by diffusion (by the characteristic trajectories X(t, ·)) of the break points on these same points.
Thus pφ(t, ·) can be bijective only in the case where there are no "breaks" in the transport plan.

Next, we can deduce from (4-30) and the first property of Definition 4.4, that for t ∈]0, 1[
fixed, the velocity field vφ(t, ·) is lipschitz on Rd. It is also possible to define a Lipschitz constant
that is only time dependent so that it does not depend on φ. The Lipschitz constant

Lt = 2/t(1− t) (4-32)

is for instance always valid on Rd (for the Euclidean norm | · |), whatever φ is. The field of
velocity vφ is therefore continuous and Fréchet-differentiable almost everywhere in space (by
Rademacher’s Theorem 8.1), and thus ‖∇xvφ(t, x)‖ is additionally uniformly bounded by
Lt = 2/t(1− t) for almost all x ∈ Rd, where ‖ · ‖ denotes the subordinate norm to | · |.

Using the reformulation of vφ in the definition 4.4, we finally deduce the following property
on the velocity field.

Proposition 4.1. We assume that φ satisfies the property (Γ1). For every t ∈]0, 1[, and for
every y ∈ Rd such that φ is a Fréchet-differentiable in y (for almost all y ∈ Rd), we have :

∇φ(y)− y = ∂tX(t, y) = vφ(t,X(t, y)), (4-33)

with X(t, ·) = ∇φt = ∇[(1− t) id +t∇φ].

Proof: Let us take y ∈ Rd such that φ is differentiable at y (i.e. ∂φ(y) = {∇φ(y)}). Note that
according to (4-29), we have y = pφ (t, (1− t)y + t∇φ(y)) = pφ(t,X(t, y)). The equation (4-33)
can be deduced immediately from (4-30).

The above proposition can also be reformulated as follows: given that X(t, ·) = ∇φt and
pφ(t, ·) = ∇x(φt)

∗(from 4-28), then for any t ∈]0, 1[, and for all x ∈ Rd such that φ Frechet-
differentiable in x, we have (∇x(φt)

∗ ◦ ∇φt) (x) = x.

Remark 4.2. The" break" points of the transport plan correspond to the points where the poten-
tial φ is not differentiable. Although Theorem 8.1 ensures that the set of such points is negligible,
the diffusion of these breaks, and in particular the torsion of the velocity field at these points in
t = 0 (or t = 1 if we consider the points of irregularity of φ∗) is not. Indeed, the torsions of
the velocity field in the neighborhood of break points may induce a loss of H1 regularity of
the velocity field at these points. Notice that a H1 regularity of the potential φ would have
greatly simplified the study discussed in section 6 on the uniqueness of the saddle points of the
Lagrangian L. Unfortunately, such regularity can not be obtained in general.
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4.2 Velocity field control

In this subsection, we show some properties of the velocity field v defined in (4-30). In particular,
we demonstrate that v is in the space L∞loc([0, 1]×Rd)d (Proposition 4.2), and therefore satisfies
the property (P2’).

Lemma 4.1. Let us consider a field of velocity v ∈ L∞(Q)d (property (P2’)), satisfying the prop-
erty (P3’) (the Burgers equation in the sense of distributions) for which there exists a potential
ψ ∈ L1

loc(Q), such that v = ∇xψ.
Then there exists a potential ψ? ∈ W 1,∞(Q), satisfying in the sense of distributions the

Hamilton-Jacobi equation ∂tψ?+ (1/2)|∇xψ?|2 = 0 and for which, by setting q = (−(1/2)|v|2, v),
we have q = ∇t,xψ?.

Proof: In the sense of distributions, we have

∂tv +
1

2
∇x|v|2 = 0 ⇔ ∂t(∇xψ) +

1

2
∇x|v|2 = 0, ⇔ ∇x

(
∂tψ +

1

2
|v|2
)

= 0. (4-34)

There exists a distribution T depending only on t ∈]0, 1[, such that ∂tψ+ 1
2 |v|

2 = T (see Theorem
2.16 in [21]). We set ψ? = ψ − G, where G is a primitive distribution of T on ]0, 1[ (and only
depends on t). We then verify, in the sense of the distributions, that∇xψ? = ∇xψ = v ∈ L∞(Q)d,
and ∂tψ

? = −(1/2)|v|2 ∈ L∞(Q). We recall that the open set Ω is assumed to be regular, so
that ∇t,xψ? ∈ L∞(Q)d+1. We then have ψ? ∈W 1,∞(Q) (see Lemma 4.1-11 of [14]).

Proposition 4.2 (Property (P2’)). We assume that φ satisfies the property (Γ1). Let a ve-
locity field v be defined with respect to φ as in (4-30). We then have v ∈ L∞loc([0, 1] × Rd)d.
More precisely, for any bounded open set ω ⊂ Rd, if we define M = supx∈ω |∂φ(x)| and M∗ =
supx∈ω |∂φ∗(x)|, we have

sup
(t,x)∈]0,1[×ω

|v(t, x)| ≤ 5 (max{M,M∗}+ sup(ω)) . (4-35)

Moreover, there exists ψ ∈W 1,∞
loc ([0, 1]× Ω), such that v = ∇xψ.

Sketch of the proof: We show that v(t, ·) is uniformly bounded on ω in the neighborhood of t = 0.
Take for example t ∈]0, 1/2] and y ∈ ω, and let x ∈ (1 − t)y + t∂φ(y). According to (4-29), we
have pφ(t, x) = y, so v(t, x) = (x− y)/t ∈ ∂φ(y)− y.

We have already seen in (4-32) that for the Euclidean norm | · |, v(t, ·) is 2/t(1− t)-Lipschitz
in space on Rd for t ∈]0; 1[, so

|v(t, y)− v(t, x)| ≤ 2

t(1− t)
|x− y| ≤ 4

∣∣∣∣x− yt
∣∣∣∣ = 4|v(t, x)|. (4-36)

We have |v(t, y)| ≤ 5|v(t, x)| ≤ 5 (M + sup(ω)) (by (4-36)) for all t ∈]0, 1/2] and all y ∈ ω,
with M = supx∈ω|∂φ(x)|. The same argument can be used in the neighborhood of t = 1 on
[1/2, 1[. For the second point, we recall that according to the last point of Definition 4.4, we
have v(t, ·) = (id−∇x(φt)

∗)/t, with φt = (1 − t)| · |2/2 + tφ. Then v = ∇xψ′ in the sense of
distributions, with ψ′(t, x) = (1/t)

(
| · |2/2− (φt)

∗), for all t ∈]0, 1[ and for all x ∈ Rd. We thus
deduce that v ∈ L∞([0, 1]× Rd)d. The existence of a potential ψ ∈ W 1,∞

loc ([0, 1]× Rd) such that
v = ∇xψ can be obtained by applying Lemma 4.1.

In this case, M and M∗ are finite. Indeed, as φ is assumed to satisfy the property (Γ1), φ
and φ∗ are assumed to be finite and convex on Rd and therefore locally Lipschitz, in particular
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Lipschitz on ω. Thus, ∂φ and ∂φ∗ are uniformly bounded on ω. Note also that if φ verifies the
property (Γ1), then, as (φ∗)∗ = φ, φ∗ also satisfies this property.

The difficulty in the proof of the latter proposition comes from the fact that the interpolated
transport plans ∇φt are not necessarily invertible (i.e. φ is not necessarily of class C1 with
Lipschitz gradient): otherwise the field v would have been extendable by continuity in t = 0 and
t = 1 (see Proposition 8.1) and the result obvious. However, in the general case, a transport can
induce a change in topology between the supports of the initial and final masses, that is to say
admitting "breaks" and therefore points of non-regularity for the potential φ.

With respect to the initial saddle point problem, we have q =
(
−(1/2)|v|2, v

)
∈ L∞(Q)d+1 ⊂

L2(Q)d+1. As already stated in (4-32), for every t ∈]0, 1[, v(t, ·) is continuous and Lipschitz on
Rd (by providing Rd with Euclidean norm, one can take 2/t(1 − t) as the Lipschitz constant).
The field v(t, ·) is therefore Lipschitz on Rd, for a Lipschitz constant independent of t on any
interval [α, β] ⊂]0, 1[. One can for instance consider the constant Mα,β = sup[α,β] 2/t(1− t). It
is therefore possible to apply the Cauchy-Lipschitz Theorem on [α, β]. Then, for every x ∈ Rd
and t ∈]0, 1[, the Cauchy problem {

y′t,x = v(·, yt,x)

yt,x(t) = x,
(4-37)

admits a unique maximum solution over any interval ]α, β[, 0 < α < t < β < 1. We can
then easily prove that there exists a unique solution defined on ]0, 1[ and that it can be written
yt,x(s) = (s − t)v(t, x) + x for all s ∈]0, 1[. Indeed, such a solution satisfies yt,x(t) = x, and
y′t,x(s) = v(t, x) = v(s, (s− t)v(t, x) + x) = v(s, yt,x(s)), as stated in the next Proposition 4.3.

Proposition 4.3. We assume that φ satisfies the property (Γ1). Then for all t, s ∈]0, 1[, and for
all x ∈ Rd,

v(t, x) = v(s, (s− t)v(t, x) + x).

Sketch of the proof: It can be shown using the properties (4-29) and (4-30) of the operator p.

In the above proof, the hypothesis (Γ1) is only used for the conditions on φ, not φ∗., so that
φ admits a non-empty and compact sub-differential at all points of Rd.

It should also be noticed that the problem of Cauchy:{
y′ = v(·, y)
y(t) = X(t, x) = (1− t)x+ t∇φ(x),

(4-38)

has y(s) = (s−t)v(t,X(t, x))+X(t, x) = X(s, x) as unique solution on ]0, 1[. It is now important
to show that the field v is locally Lipschitz on ]0, 1[×Rd, i.e. in time-space (and not just in
space).

Proposition 4.4. We suppose that φ satisfies the property (Γ1). Then v is locally Lipschitz on
the space ]0, 1[×Rd.
Sketch of the proof: For all (t1, x1), (t2, x2) ∈ [α, β]×Rd, we have, according to Proposition 4.3,
the relation v(t1, x1) = v (t2, (t2 − t1)v(t1, x1) + x1). We can then conclude by the Lipschitz
property (in space) of the field v(t, ·) (we can deal with a same time t2), with the Lipschitz
constant 2/t(1− t) for the Euclidean norm (see (4-32)).

We finally state the following proposition, proved in section 8, that ensures property (P3’).

Proposition 4.5 (Property (P3’)). With the property (Γ1), v satisfies the Burger’s equation
(3-17), that is to say, in the distribution sense:

∂tv +
1

2
∇x|v|2 = 0,

which is a generalized form of ∂tv + v · ∇xv = 0.

14



5 Existence

In order to prove the existence of a saddle point for the Lagrangian L, we have have built a couple
density-velocity field (ρ, v) satisfying conditions (I′). The velocity field v = vφ, defined in (4-30),
immediately satisfies the properties (P2’) and (P3’), according respectively from Proposition 4.2
and Proposition 4.5. We now have to build a density ρ = ρφ, satisfying the property (P1’) (i.e.
ρ ∈ L2(Q)), and such that the couple (ρφ, vφ) satisfies the mass conservation in condition (P4’)
The candidate densityis naturally the density (3-14) of the McCann interpolation between ρ0Ld
and ρ1Ld. Let us first define more accurately the notion of "measure push forward".

Properties (C). Let Ω be an open set of Rd, and let ν be a measure on the Lebesgue tribe
of Ω. We said that ν satisfies the properties (C) if and only if ν(K) < +∞ for any compact
K ⊂ Ω; ν(E) = inf{ν(V ), E ⊂ V, V open set} for every Lebesgue-measurable set E of Ω;
ν(E) = sup{ν(K), K ⊂ E, K compact} for any E open set and for any Lebesgue-measurable
set E of Ω such that ν(E) < +∞.

Proposition 5.1. Let µ be a σ-finite positive measure on Rd, and T : Rd → Rd measurable. We
assume that the measure µ is finite. Then there exists a positive measure ν on Rd, satisfying the
properties (C), such that

∀f ∈ C0
c (Rd),

∫
Rd
f dν =

∫
Rd
f(Tx) dµ. (5-39)

Moreover, for every Lebesgue-measurable set A ⊂ Rd, we have ν(A) = µ
(
T−1(A)

)
. We then say

that ν is the pushforward of µ by the operator T , denoted ν = T#µ.

The equation ν(A) = µ
(
T−1(A)

)
translates the fact that ν conserves the mass measured

by µ: ν gives to any displaced, deformed, contracted or dilated area by the operator T the same
mass than given by µ before applying the operator. The notion of push-forward thus translates a
property of mass conservative transport. This is partly at the origin of the idea of a dynamic
formulation of the optimal transport problem. As stated in the introduction, this dynamic
formulation implies that we replace the "optimal conservative assignment" approach with that
of an "optimal conservative displacement", where we study the evolution of a density ρ between
ρ0 and ρ1 on a time scale [0, 1]. The natural candidate density that we consider is therefore
the one formed by the set of intermediate measurements between ρ0Ld and ρ1Ld = (∇φ#ρ0Ld),
which can be assimilated to a series of "optimal micro-transports" along the time scale [0, 1].
It corresponds to the interpolation density of McCann (3-14), defined at each instant t by the
density ρt = ρφt of the measure

ρtLd = ρφt Ld = [(1− t) id +t∇φ]#(ρ0Ld) = ∇φt#(ρ0Ld). (5-40)

The following proposition ensures that it is possible to choose the representatives of each of these
densities ρt so that the density (t, x) 7→ ρt(x) is measurable and such that the weak formulation
of the push forward measure (5-39) remains valid for test functions which are only measurable.
Indeed, the test functions involved in the weak formulation of the Benamou-Brenier algorithm
are of type Lp.

Proposition 5.2. Let ρ0 ∈ L1(Rd) be a compact support, such that ρ0 ≥ 0, and φ : Rd → R
satisfying the (Γ1) property. Then, for all t ∈ [0, 1[ there exists a positive measure νt on Rd, with
bounded support in (t∇φ+ (1− t) id) (supp(ρ0)), satisfying the properties in the Proposition 5.1,
and such that νt = (t∇φ+ (1− t) id)#(ρ0Ld), i.e.

∀f ∈ C0
c (Rd),

∫
Rd
f dνt =

∫
Rd
f(t∇φ(x) + (1− t)x)ρ0(x) dLd(x) (5-41)
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Moreover, there exists ρt ∈ L1(Rd) such that νt = ρtLd (νt � Ld). It is also possible, for any
t ∈ [0, 1[, to choose a representative of ρt in such a way that (t, x) 7→ ρt(x) is measurable on
[0, 1[×Rd.

Finally, the following properties are satisfied:

1. For all h ∈ L∞loc(Rd) and t ∈ [0, 1[, we have h ◦ (t∇φ+ (1− t) id) ∈ L∞loc(Rd), and∫
Rd
h dνt =

∫
Rd
h(x)ρt(x) dLd(x) =

∫
Rd
h(t∇φ(x) + (1− t)x)ρ0(x) dLd(x).

2. For all h ∈ L∞loc([0, 1[×Rd), the function (t, x) 7→ h (t, t∇φ(x) + (1− t)x) is in the space
L∞loc([0, 1]× Rd), and∫ 1

0

∫
Rd
h(t, x)ρt(x) dLd(x) dL(t) =

∫ 1

0

∫
Rd
h (t, t∇φ(x) + (1− t)x) ρ0(x) dLd(x) dL(t).

3. For all h ∈ C0
c ([0, 1[×Rd), t 7→

∫
Rd h(t, ·) dνt =

∫
Rd h ρt dL

d is continuous on [0, 1[, in other
words t 7→ νt is continuous from [0, 1[ to D′(Rd).

We do not present the technical proofs of the last two propositions, which are useless to the
understanding of our purpose. We instead refer to the Appendix F of [14].

These statements are nevertheless important. Indeed, a property true "almost everywhere"
for a measurable function, such as for instance the a.e.-boundness of a L∞ function, does not
necessarily still hold true when we compose this function on the right with another one. In
our situation, we have to ensure that the image of a negligible set by t∇φ + (1 − t) id remains
negligible. Similarly, the fact that for every t ∈ [0, 1[, there exists a measurable spatial density
ρt for Ld for a measure νt does not necessarily ensure the possibility to choose for each t a
representative ρ̃t of ρt such that the spatio-temporal density (t, x) 7→ ρ̃t(x) is measurable for
Ld+1. These propositions therefore justify the use of theorems such as Fubini.

Coming back to the problem of existence of a saddle point, we have to prove the property
(P1’), which state that our candidate density, the McCann interpolation density between ρ0Ld
and ρ1Ld, is an element of L2(Q).

Lemma 5.1 (Property (P1’)). Let 1 < p < +∞. Let Ω an open set of Rd, and ρ0, ρ1 ∈ Lp(Ω) two
densities of Ω with bounded support, et let φ : Rd → R convex such that ρ1 Ld = (∇φ) #(ρ0 Ld).
Let t 7→ ρt be the McCann interpolation between ρ0 and ρ1, defined in (5-40), which existence
and space-time mesurability is justified in Proposition 5.2. Then we have strong continuity
t 7→ ρt ∈ C0 ([0, 1], Lp(Ω)).

Proof: For all 1 < p < +∞, we introduce the functional Fp : P2(Rd) → [0, +∞] defined for all
µ ∈ P2(Rd) as

Fp(µ) =


∫
Rd
|f(x)|p dLd(x) if µ = f.Ld ∈ P2(Rd),

+∞ else,
(5-42)

where P2(Rd) is defined as the space of probability measures µ on Rd satisfying
∫
Rd |x|

2 dµ(x) <
+∞. Such a functional has been classified in [18] under the term "internal energy" of the space
(P2(Rd),W2). It is "geodesically convex" on the space (P2(Rd),W2), in other words it is convex
along the geodesics of this space, which are the interpolations of McCann. Thus, the function
Λp : [0, 1] → [0, +∞], defined for all t ∈ [0, 1] by Λp(t) = Fp(ρtLd), for t 7→ ρt defined in
(5-40), is convex on [0, 1], and is moreover finite in t = 0 and t = 1, since ρ0, ρ1 ∈ Lp(Ω), and
ρ0, ρ1 ∈ Pp(Rd)). Hence it is finite and bounded on the whole interval [0, 1]. It is therefore clear,
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by definition of Λp, that ρt ∈ Lp(Ω) for every t ∈ [0, 1]. Moreover, t 7→ ‖ρt‖Lp(Ω) is bounded on
[0, 1] by a constant M . From the Proposition 5.2, we thus see that t 7→ ρt is weakly continuous
by [0, 1] in Lp(Ω). It is then sufficient to use the density of C0

c (Ω) in Lq(Ω), for q ∈]1,+∞[ such
that 1/p + 1/q = 1. Since the function Λp is convex and finite on [0, 1], t 7→ Λ(t) = ‖ρt‖pLp(Ω)

is continuous on ]0, 1[ and admits a right limit in t = 0 and a left limit in t = 1. Thus, for any
t0 ∈]0, 1[, we have lim ‖ρt‖pLp(Ω) = ‖ρt0‖

p
Lp(Ω), and, with respect to the right limit of Λ in t = 0

and its left limit in t = 1, we have

lim
t→0+

Λ(t) = lim
t→0+

‖ρt‖pLp(Ω) ≤ Λ(0) = ‖ρ0‖pLp(Ω), and lim
t→1−

Λ(t) = lim
t→1−

‖ρt‖pLp(Ω) ≤ Λ(1) = ‖ρ1‖pLp(Ω).

For all t0 ∈ [0, 1], we thus have lim supt→t0 ‖ρt‖Lp(Ω) ≤ ‖ρt0‖Lp(Ω). Using Proposition 3.30 in
[21], we can conclude that the application t 7→ ρt is strongly continuous from [0, 1] to Lp(Ω).

Conversely, one can rigorously characterize the McCann interpolation by the relation

∀ϕ ∈ C0
c ([0, 1]× Ω),

∫
(0,1)×Rd

h ρ dx⊗ dt =

∫ 1

0

∫
Rd
h (t, t∇φ(x) + (1− t)x) ρ0(x) dx dt. (5-43)

Indeed, using Fubini’s Theorem and Lemma 5.1 (for extreme bounds tmin = 0 and tmax < 1), it
can be shown that for any density ρ verifying (5-43), there exists a family of density (ρt)t∈[0,1[ as
defined in Proposition 5.2, such that t 7→ ρt ∈ C0

(
[0, 1[, Lp(Rd)

)
and such that ρ(t, x) = ρt(x)

for almost all (t, x) ∈ [0, 1[×Rd (see Lemma 4.1-5 of [14]).

Remark 5.1. By Brenier’s Theorem ([20] p. 66), we have supp(ρ1) = ∇φ(supp(ρ0)). This
property also holds for the potentials satisfying the property (Γ1) considered in Proposition 3.2.
Thus, for Ω a convex open set of Rd containing supp(ρ0) and supp(ρ1), we have the inclusion
(t∇φ + (1 − t) id)(supp(ρ0)) ⊂ Ω, for all t ∈ [0, 1]. The weak formulation of the McCann
interpolation (5-43) clearly shows that if a test function h has its support disjoint of Q, then∫ 1

0

∫
Rd hρ dx dt = 0: the support of ρ : (t, x) 7→ ρt(x) is therefore included in the set [0, 1]×Ω ⊂ Q.

We have proved that the candidate density ρ : (t, x) 7→ ρt(x), defined in (5-40), satisfies the
condition (P1’). The above paragraph now ensures that the component µ = (ρ, ρv) is zero in
the neighborhood of the space boundary, and thus verifies the Neumann conditions implicitly
included in the weak form of mass conservation (P4’). The following proposition aims to prove
that the pair (ρ, v) satisfies the condition (P4’).

Proposition 5.3 (Property (P4’)). Let Ω be a convex open set of Rd. Let ρ0 be a probability
density and µ1 a probability measure such that supp(ρ0), supp(µ1) ⊂ Ω, and such that there exists
φ : Rd 7→ R satisfying the property (Γ1), with µ1 = ∇φ#(ρ0Ld). Let ρ : (t, x) 7→ ρt(x) and v as
defined in (5-40) and (4-30). Then (ρ, v) satisfies the mass conservation relation (3-15):

∀h ∈ C∞(Q),

∫
Q

(∂th+ v · ∇xh) ρ dx dt+

∫
Ω
h(0, ·)ρ0 dx−

∫
Ω
h(1, ·) dµ1 = 0. (5-44)

Proof: The remark 5.1, that is the inclusion supp(ρ) ⊂ [0, 1]×Ω, permits us to conclude for the
homogeneous Neumann boundary conditions, i.e. to extend the space of test functions C∞c (Q)
to the space C∞(Q). We recall that by the Proposition 4.1, for all t ∈]0, 1[, and for almost all
x ∈ Rd, ∂tX(t, x) = v(t,X(t, x)), therefore for all h ∈ C∞(Q),∫ 1

0

∫
Rd

(∂th+ v · ∇xh) ρ dx dt =

∫ 1

0

∫
Rd

(∂th(t,X(t, ·)) + ∂tX(t, ·) · ∇xh(t,X(t, ·))) ρ0 dx dt

=

∫ 1

0

d

dt

∫
Rd
h(t,X(t, ·))ρ0 dx dt =

∫
Rd
h(1,∇xφ(x))ρ0(x) dx−

∫
Rd
h(0, x)ρ0(x) dx.

(5-45)
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Since µ1 = ∇φ#(ρ0Ld), we have
∫
Rd h(1,∇xφ)ρ0 dx =

∫
Ω h(1, ·) dµ1. The integrals are well

defined as v ∈ L∞(Q) from Proposition 4.2.

Corollary 5.1. Under the hypotheses of Proposition 5.3, we choose µ1 � Ld, i.e. µ1 = ρ1Ld,
and we assume that ρ0, ρ1 ∈ Lp(Rd) for p ≥ 2 (we then have ρ ∈ Lp((0, 1) × Rd), according to
the Lemma 5.1).

Then, by taking q ≤ 2 such that 1/p + 1/q = 1, the weak relation (5-44) extends to the test
functions h ∈W 1,q(Q).

Proof: By density of C∞(Q) is dense in W 1,q(Q).

Since all the conditions (I′) are now satisfied, we are able to show that they imply conditions
(I) and thus prove the Theorem 3.1 establishing the existence of a saddle point for the
Lagrangian L.

Proof of the Theorem 3.1: Let us remember that an element (ψ, q, µ) of Lps(ρ0, ρ1,Ω) must sat-
isfy (ψ, q, µ) ∈ Sg, as well as the properties (I) and (II).

(P1) First, by the Proposition 4.2 (P2’), we know that vφ ∈ L∞(Q)d and, by the Lemma
5.1 (P1’), that t 7→ ρφ(t, ·) = Xφ(t, ·)#ρ0 ∈ C0

(
[0, 1], L2(Ω)

)
. Then µφ = (ρφ, ρφvφ), qφ =

(−(1/2)|vφ|2, vφ) ∈ L2(Q), and supp(µφ) ⊂ supp(ρφ) ⊂ [0, 1] × Ω. The homogeneous Neumann
conditions on the space edges of µ are thus verified.

Moreover, by setting µφ = (ρφ, ρφvφ) and qφ = (−(1/2)|vφ|2, vφ), the condition (P1) is
naturally verified. Indeed, for all q′ = (a, b) ∈ P (the paraboloid defined in (3-11)), we have

〈µφ, q′ − qφ〉 =

∫ 1

0

∫
Ω

(aρφ + b · vφρ) dx dt−
∫ 1

0

∫
Ω

1

2
|vφ|2ρφ dx dt

≤
∫ 1

0

∫
Ω

(
a+

1

2
|b|2 +

1

2
|vφ|2

)
ρφ dx dt−

∫ 1

0

∫
Ω

1

2
|vφ|2ρφ dx dt ≤ 0.

(P2) The condition (P2) results from Proposition 5.3 (P4’).

(P3) According to Proposition 4.5, vφ satisfies the Burgers equation (P3’) in the sense of
distributions. Moreover, by (3-16), we know that vφ derives from a spatial potential. Hence, vφ
verifies the condition of the Lemma 4.1, which gives us the existence of one ψφ ∈W 1,∞(Q) such
that qφ = ∇t,xψφ (P3).

Finally, from above, we obtain that the triplet (ψφ, qφ, µφ) is an element of W 1,∞(Q)/R ×
L∞(Q)d+1 × L2(Q)d+1 ⊂ Sg.

From the property ψφ ∈W 1,∞(Q) such that qφ = ∇t,xψφ, we have in particular vφ = ∇xψφ:
the field vφ then satisfies the properties (II). The final regularity properties of vφ given in
Theorem 3.1 come from three other results. Proposition 4.4 states that the velocity field vφ
is locally Lipschitz on the space ]0, 1[×Rd. The property ∇t,xv ∈ L∞((0, 1), L1(Ω)), and its
corollary v ∈W 1,p((0, 1)× Ω) for all 1 ≤ p < 2, are shown in the subsection 8.4.

6 Uniqueness

6.1 Uniqueness of the velocity field on the density support

We start by studying the problem of the uniqueness of the velocity field on the support of the
different candidate densities. More precisely, we show that for all the saddle points of L, denoted
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by (ψ∗, q∗, µ∗) = (ψ∗, q∗, (ρ∗,m∗)), the densities ρ∗ are transported with the same velocity field
v.

Lemma 6.1. We consider Ω a bounded convex open set of Rd, and ρ0, ρ1 ∈ L2(Rd) two densities
which supports are included in Ω. If (ψ∗, q∗, µ∗) is an element of Lps(ρ0, ρ1,Ω) such that µ∗ =
(ρ∗,m∗), then, for all φ ∈ Φ(ρ0Ld, ρ1Ld), we have m∗ = ρ∗vφ, with vφ defined in (4-30).

Sketch of the proof: We will give a "schematic" proof of the uniqueness of the velocity field on
the union of supports of the candidate densities, which is based on the convexity of the set of
saddle points and the strict convexity of the paraboloid P = {(a, b) ∈ R × Rd, a + |b|2/2 ≤ 0}.
For a more rigorous proof we refer to [14] (chapter 4).

We assume (ψ1, q1, µ1) and (ψ2, q2, µ2) to be two saddle points of L. The fields µ1 and µ2

are both orthogonal (in the sense of the canonical scalar product of L2) to the hyperparaboloid
defined by P̃ = {(ã, b̃) ∈ L2(Q) × L2(Q)d, ã + |̃b|2/2 ≤ 0} respectively at points q1 and q2.
We will see later in subsection 9.2, that the set of saddle points of L is convex so that the
(1/2)[(ψ1, q1, µ1) + (ψ2, q2, µ2)] is also a saddle point of L. The vector (1/2)(µ1 + µ2) is also
orthogonal to P̃ at point (1/2)(q1 + q2).

Let (t0, x0) ∈ [0, 1] × Ω be a point such that the vectors µ1(t0, x0), µ2(t0, x0) as well as
the vector (1/2)(µ1 + µ2)(t0, x0) are all orthogonal to the paraboloid P respectively at points
q1(t0, x0), q2(t0, x0) and (1/2)(q1 + q2)(t0, x0) and such that µ1(t0, x0) 6= 0 or µ2(t0, x0) 6= 0.
From the orthogonality of vectors µ1(t0, x0) and µ2(t0, x0) at the paraboloid P, then (1/2)(µ1 +
µ2)(t0, x0) 6= 0.

If we have q1(t0, x0) 6= q2(t0, x0), the point (1/2)(q1+q2)(t0, x0) is strictly inside the paraboloid
P, because of its strict convexity. The vector (1/2)(µ1+µ2)(t0, x0) is then necessarily zero, which
contradicts the above assumption.

P

−→µ1

−→µ2

q1

q2

q3
−→µ3
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We thus have q1(t0, x0) = q2(t0, x0). The vectors µ1(t0, x0) and µ2(t0, x0) are therefore both
orthogonal to the paraboloid P at the same point q1(t0, x0) and also proportional to the vector
(1, b1(t0, x0)).

We then have µk(t0, x0) = (ρk(t0, x0),mk(t0, x0)) = (ρk(t0, x0), ρk(t0, x0)b1(t0, x0)), for k =
1, 2, and so for Ld-almost all (t0, x0) ∈ supp(µ1)∪ supp(µ2). The fields µ1 and µ2 therefore share
the same velocity field (i.e. the field b1) on supp(µ1) ∪ supp(µ2).

To sum up: for any fixed φ ∈ Φ(ρ0Ld, ρ1Ld) and for every saddle point (ψ∗, q∗, µ∗) of L, ρ∗ is
associated with the same velocity field vφ with ∂tρ∗+ divx(ρ∗vφ) = 0 (because m∗ = ρ∗vφ), with
the initial and final conditions ρ∗(0, ·) = ρ0 and ρ∗(1, ·) = ρ1. In other words, for all h ∈ H1(Q),
we have∫ 1

0

∫
Ω

(∂th(t, x) + vφ(t, x).∇xh(t, x)) ρ∗(t, x) dx dt+

∫
Ω
h(0, ·)ρ0 −

∫
Ω
h(1, ·)ρ1 = 0.

We now prove that there exists a unique ρ∗ which satisfies these conditions, i.e. ρ∗(t, ·) =
Xφ(t, ·)#ρ0, for all φ ∈ Φ(ρ0Ld, ρ1Ld). We will use the method of the characteristics, based on
the Proposition 4.3.

6.2 Uniqueness of density in L2

In the previous subsection, we have shown that the velocity field v corresponding to the dis-
placement of the densities is unique on the union of the supports of the candidate densities, and
can be written in the explicit form (4-30). Hence, the uniqueness of the density ρ will imply the
uniqueness of the momentum m = ρv. The next proposition is the main ingredient to show the
uniqueness of the density.

Proposition 6.1. Let φ : Rd → R a convex potential satisfying the property (Γ1), ρ0 ∈ L2(Rd)
with a bounded support, and consider a velocity field v = vφ defined from φ as in (4-30). If
ρ ∈ L2((0, 1)× Rd) is a density with bounded support in [0, 1]× Rd, such that{

∂tρ+ divx(ρv) = 0,
ρ(0, ·) = ρ0

(in the distributions sense), i.e.

∀h ∈ C∞c ([0, 1[×Rd),
∫ 1

0

∫
Rd

(∂th+ v · ∇xh) ρ dx dt+

∫
Rd
h(0, ·)ρ0 dx = 0. (6-46)

then ρ(t, ·) = ρφ(t, ·) = (t∇φ+ (1− t) id)#ρ0 for almost all t ∈ [0, 1]. In other words:

∀ϕ ∈ C0
c ((0, 1)× Rd),

∫ 1

0

∫
Rd
ϕρ dx dt =

∫ 1

0

∫
Rd
ϕ (t, t∇φ(x) + (1− t)x) ρ0(x) dx dt. (6-47)

Moreover t 7→ ρ(t, ·) ∈ C0
(
[0, 1[, L2(Rd)

)
.

Proof: Let us begin by explaining our proof. Let Ω a bounded open set of Rd such that supp(ρ0) ⊂
Ω and supp(ρ) ⊂ [0, 1] × Ω, and let Q = (0, 1) × Ω. Let (ψ, q, µ) be a saddle point of L
as defined in (2-10), and let φ ∈ Φ(ρ0Ld, ρ1Ld) (thus satisfying the property (Γ1) on Rd). The
triplet (ψ, q, µ) satisfies the properties (I), which implies in particular the weak mass conservation
G(h) + 〈µ,∇t,xh〉 = 0 for all h ∈ H1(Q), as well as the linear relation between momentum and
density: µ = (ρ,m) = (ρ, ρv) ∈ L2(Q), with v defined as in (4-30) (see Lemma 6.1) and satisfying

20



the properties (II) (see the last subsection). From these properties, we deduce that for every
h ∈ H1(Q): ∫ 1

0

∫
Ω

(∂th+ v · ∇xh) ρ dx dt =

∫
Ω
h(1, ·)ρ1 dx−

∫
Ω
h(0, ·)ρ0 dx. (6-48)

Let ϕ ∈ C∞c
(
(0, 1)× Rd

)
such that supp(ϕ) ⊂]0, 1[×Ω ⊂ Q. By solving the transport

problem in v and ϕ with a characteristics method, we consider the function
∼
h defined for any

(t, x) ∈]0, 1[×Rd by:
∼
h(t, x) = −

∫ 1

t
ϕ(s, (s− t)v(t, x) + x) ds, (6-49)

which satisfies

∂t
∼
h+ v · ∇x

∼
h = ϕ and ∇t,x

∼
h = t(∇t,xv)α+ β, (6-50)

with α ∈ L∞(Q)d, and β ∈ L∞loc(Q)d+1 (since ∇t,xv is of size d× (d+ 1)). Moreover, we have

∼
h(1, ·) = 0, and

∼
h(0, ·) = −

∫ 1

0
ϕ(t,X(t, ·)) dt, with X(t, ·) = t∇φ+ (1− t) id (6-51)

To solve our problem, it would be sufficient to introduce
∼
h in (6-48), as a test function.

Unfortunately, as we will see in the subsection 8.4, the velocity field also satisfies the properties
∇t,xv ∈ L∞((0, 1), L1(Ω)) and v ∈ W 1,p((0, 1) × Ω) for all 1 ≤ p < 2, whence v = vφ ∈ H :=⋂
1≤p<2

W 1,p(Q). The function
∼
h is therefore also an element of H. Since we does not have a better

integrability than L2 on ρ, we cannot extend the space of test functions of (6-48) to a
largest space than H1(Q) as H.

The counter-example of Caffarelli: the strict division of the mass, show us that, in general,
the field v is not an element of H1(Q).

Remark 6.1. As we have already mentioned above, this default of H1 regularity is partly due
to the possible "breaks" in the continuous transport scheme in t = 0 (or conversely to possible
connections in t = 1). Such breaks correspond to the points of non-differentiability of the potential
φ and the connections in t = 1 are linked to the non-differentiability points of the Legendre
transform φ∗ of the potential φ. However, because of the symmetry of the problem, we will not
need to deal with the connection problems in t = 1.

Thus, we will cannot use directly the funtion
∼
h as a test function in (6-48). We then choose

to approach
∼
h by approximating the velocity field v (associated to the transport plan ∇φ) with

velocity fields vγ = vγφ associated to the regularized transport plans ∇γφ, where γφ denotes the
γ-regularization by a Moreau envelope of the potential φ (see Definition 4.3). This regularization
has the property of erasing the breaks of the transport plan, which are responsible for the fact
that v does not have regularity H1 in the neighborhood of t = 0. The neighborhood of t = 1 is
not an issue, since

∼
h is uniformly zero on this neighborhood by construction.

In summary, by a characteristics method, it is possible to construct some functions
∼
hγ ∈

H1(Q), uniformly zero in the neighborhood of t = 1 (independently of γ), such that:

∂t
∼
hγ + vγ · ∇x

∼
hγ = ϕ = ∂t

∼
hγ + v · ∇x

∼
hγ + (vγ − v) · ∇x

∼
hγ ,
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and such that
∼
hγ(0, ·) converges to −

∫ 1
0 ϕ[t, (1 − t) id +t∇xφ] dt in L2(Rd) when γ tends to 0.

By injecting such a function
∼
hγ in (6-48), one obtains∫ 1

0

∫
Rd
ϕρ dx dt =

∫ 1

0

∫
Rd
ϕ[t, (1− t)x+ t∇xφ(x)]ρ0(x) dx dt+Rγ(ϕ), with (6-52)

Rγ(ϕ) =

∫ 1

0

∫
Rd

(vγ − v) · ∇x
∼
hγρ dx dt−

∫
Rd

∼
hγ(0, ·)ρ0 dx−

∫ 1

0

∫
Rd
ϕ[t, (1− t) id +t∇xφ]ρ0 dx dt.

(6-53)
In order to prove the Proposition 6.1, it is therefore necessary to show that Rγ(ϕ) converges to
0 when γ tends to 0. This will make use of the results of the subsection 6.3.

The
∼
hγ are defined with respect to vγ by (6-49). We can then prove by (6-50) that we have,∣∣∣∣∇x∼hγ(t, x)

∣∣∣∣ ≤ (|∇xvγ(t, x)|+ 1)‖∇xϕ‖L∞([0,1]×Rd), for almost all (t, x) ∈]0, 1[×Rd. (6-54)

For more details, we refer to [14] (subsection 4.2.5), in which it is proven that
∼
hγ ∈ H1(Q).

From Lemma 8.3, the potential γφ verifies the property (Γ2) and according to (8-78), vγ is

extended by continuity in t = 0. It is the same for
∼
hγ , which is thus continuous on [0, 1[×Ω, and

for all x ∈ Rd, one has:

∼
hγ(0, x) = −

∫ 1

0
ϕ(s, s vγ(0, x) + x) ds = −

∫ 1

0
ϕ(s, s∇γφ(x) + (1− s)x) ds (6-55)

(which coincides with the trace L2 of
∼
hγ in t = 0). According to the Lemma 8.4, ∇γφ(x)

converges for almost all x ∈ Ω to ∇φ(x) (for all x where φ is differentiable). Moreover, the
term ϕ(s, s∇γφ(x) + (1− s)x) is uniformly bounded by ‖ϕ‖L∞ for all (s, x) ∈]0, 1[×Ω. Thus, by
dominated convergence, we have

rγ(ϕ) =

∫
Ω

∼
hγ(0, ·)ρ0 dx+

∫ 1

0

∫
Ω
ϕ(s, s∇φ(x) + (1− s)x)ρ0(x) dx ds −→

γ→0
0. (6-56)

Let tm ∈]0, 1[ such that supp(ϕ) ⊂]0, tm[×Ω. From (6-54), we thus have

|Rγ(ϕ)| ≤ |rγ(ϕ)|+ ‖∇xϕ‖L∞
(∫ tm

0

∫
Ω
|v − vγ | · |∇xvγ | · |ρ| dx dt+

∫ tm

0

∫
Ω
|v − vγ | · |ρ| dx dt

)
.

(6-57)
Proposition 8.5 (see the subsection 8) tells us that |v − vγ | is uniformly bounded and simply
converges to 0 on ]0, 1[×Ω when γ tends to 0. Thus, since ρ ∈ L2((0, 1) × Ω), we conclude via
dominated convergence that the term

∫ tm
0

∫
Ω |v − vγ | · |ρ| dx dt converges to 0.

Finally, to complete the proof of Proposition 6.1, we have to show that
∫ tm

0

∫
Ω |v − vγ |·|∇xvγ |·

|ρ| dx dt converges to 0, which is the subject of the following Lemma 6.2. Therefore the proof of
Proposition will be complete after the proof of Lemma 6.2.

Lemma 6.2. Let φ : Rd → R be a convex potential verifying the property (Γ1). We consider a
velocity field v = vφ defined with respect to φ as in (4-30), and 0 < tm < 1. Let ρ ∈ L2((0, 1)×Rd),
with bounded support into [0, 1] × Rd. Let Ω a bounded open set of Rd such that supp(ρ0) ⊂ Ω
and supp(ρ) ⊂ [0, 1]× Ω (and let Q = (0, 1)× Ω). For any γ > 0, we define vγ = vγφ, where γφ
is the Moreau envelope of φ by the parameter γ (see Definition 4.3). Then we have the result of
convergence: ∫ tm

0

∫
Ω
|v − vγ | · |∇xvγ | · |ρ| dx dt −→

γ→0
0. (6-58)
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6.3 Some results for the proof of Lemma 6.2

The three results of this subsection concern the control of the regularized velocity fields vγ . The
first one is an important uniform regularity result for the velocity field and its regularization.

Proposition 6.2. We assume that φ satisfies the property (Γ1). Let R′ > R > 0 and a ∈ Rd
such that φ(a) = inf

Rd
φ and let M = sup

x∈B(a,2(R+|a|))
|∂φ(x)|.

Then there exists an constant C > 0 – independent of φ, γ, a, R and R′, such that for all
t0 ∈]0, 1[ satisfying the condition t0 < min {1/2, (R′ −R)/(M + 2|a|)}, and by setting v0 = v,
we have the property:

∀γ ≥ 0, ∀t ∈]0, t0],

∫
B(a,R)

|∇xvγ(t, x)|1 dx ≤
C

t0(1− t0)
Ld(B(a,R′)). (6-59)

Thus ∇xvγ ∈ L∞(0, t0;L1(B(a,R))), for all γ ≥ 0.

This proposition will be shown in the subsection 8.3. Nevertheless, we prove immediately the
two following results.

Corollary 6.1 (Corollary of the Proposition 6.2). We suppose that φ satisfies the property (Γ1).
Let Ω ⊂ Rd be a bounded open set and 0 < tm < 1. Then there exists a constant K > 0 such
that for every γ > 0 and any t ∈ [0, tm], we have∫

Ω
|∇xvγ(t, x)|1 dx ≤ K. (6-60)

Proof: For t < t0, we apply the Proposition 6.2; and for tm ≥ t > t0 we use the fact that the term
|∇xv(t0, ·)|1 is bounded by c/t(1− t), for c a constant depending only of the chosen norm.

Lemma 6.3. Let φ : Rd → R convex verifying the property (Γ1). Then there exists a constant
c, independent of γ, such that for every 1 ≥ γ > 0, and t ∈]0, 1[,

‖∇xvγ(t, ·)‖L∞(Rd) ≤
c

γ(1− t)
.

Proof: The relation (4-26) of the Definition 4.3, as well as the non-expansiveness of the operator
id−Proxγf (Definition 4.2), assert that there exists a constant C0, independent of γ, such that∥∥D2(γφ)

∥∥
L∞(Rd)

≤ C0/γ. We then conclude by the Lemma 8.2.

6.4 Proofs of Lemma 6.2 and Theorem 3.2

We will begin by proving the Lemma 6.2 in the more restrictive case where ρ ∈ Lp(Q), with
p > 2. We formulate it in the following lemma:

Lemma 6.4. Under the same assumptions as the Lemma 6.2 and if in addition there exists
p > 2 such that ρ ∈ Lp(Q), we have the following convergence result:∫ tm

0

∫
Ω
|v − vγ | · |∇xvγ | · |ρ| dx dt −→

γ→0
0. (6-61)

We will then be able to prove the lemma 6.2 by density of
⋂

1≤p<2
Lp(Q) in L2(Q). For this,

we will also need the following lemma:
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Lemma 6.5. Under the same assumptions as the Lemma 6.2, we have the following result:

∀γ ∈]0, 1],

∫ tm

0

∫
Ω
|v − vγ | · |∇xvγ | · |ρ| dx dt ≤M‖ρ‖L2(Q), (6-62)

with M a constant.

Proof of Lemma 6.4: Assuming that ρ ∈ Lp(Q), with p > 2. By taking 1 < q < 2 such that
1/p+ 1/q = 1, note that:

|∇xv(t, x)| = |∇xv(t, x)|
1
p

+ 1
q ≤

(
c

t(1− t)

) 1
p

|∇xv(t, x)|
1
q . (6-63)

For all 0 < α < 1, we then have:∫ tm

0

∫
Rd
|v − vγ | · |∇xvγ | · |ρ| dx dt ≤ C

∫ tm

0

(γ
t

)α( c

t(1− t)

) 1
p
∫

Ω
|∇xvγ |

1
q · |ρ| dx dt

≤ C
(

c

1− tm

) 1
p

γα
∫ 1

0

1

tα+1/p

(∫
Ω
|∇xvγ | dx

) 1
q

·
(∫

Ω
|ρ|p dx

) 1
p

dt

≤ C
(

c

1− tm

) 1
p

K
1
q γα

(∫ 1

0

1

tqα+q/p
dt

) 1
q

‖ρ‖Lp(Q).

(6-64)

Now, we have q < 2, and it follows that by fixing 0 < α < 1 small enough, we can then have
q(α+ 1) < 2 ⇔ qα+ q/p = qα+ q − 1 < 1: the term 1/tqα+q/p is thus integrable on (0, 1), and
we then obtain the result of convergence (6-58).

Proof of Lemma 6.5: We will proceed to a Chasles division in time of type∫ tm

0

∫
Ω
F (t, x) dx dt =

∫ γ

0

∫
Ω
F (t, x) dx dt︸ ︷︷ ︸
T1

+

∫ tm

γ

∫
Ω
F (t, x) dx dt︸ ︷︷ ︸
T2

,

with F = |v − vγ |·|∇xvγ |·|ρ|. Recall that for t ∈]0, 1[, the fields vγ(t, ·) and v(t, ·) are c/(t(1−t))-
Lipschitz sur Rd, with c independent of φ and γ. With Lemma 6.3, we have ‖∇xvγ(t, ·)‖L∞(Rd) ≤
c/(1− t) min{1/γ, 1/t}. In the first term T1, we will thus have t ≤ γ, and we will use the bound
|∇xvγ | ≤

√
c |∇xvγ |1/2 /(

√
γ
√

1− t). In the second one T2, we will have t ≥ γ, and we will write
|∇xvγ | ≤

√
c |∇xvγ |1/2 /(

√
t
√

1− t). We will use the Corollaries 8.1 and 6.1, with keeping the
same notations for the constants and parameters involved in these utterances (the parameter α
and the constants C and K).

For the term T1, we choose α = 0. We have:∫ γ

0

∫
Rd
|v − vγ | · |∇xvγ | · |ρ| dx dt ≤

C
√
c

√
γ

∫ γ

0

1√
1− t

∫
Ω
|∇xvγ(t, ·)|

1
2 · |ρ(t, ·)| dx dt

≤ C
√
c√

1− tm
√
γ

∫ γ

0

(∫
Ω
|∇xvγ(t, ·)| dx

) 1
2

·
(∫

Ω
|ρ|2 dx

) 1
2

dt

≤ C
√
Kc√

1− tm
√
γ

∫ γ

0

(∫
Ω
|ρ|2 dx

) 1
2

dt ≤ M

2
√
γ
· √γ‖ρ‖L2(Q) =

M

2
‖ρ‖L2(Q),

(6-65)

24



with M = (2C
√
Kc)/

√
1− tm. For the term T2, we choose α = 1/2. We then have:∫ tm

γ

∫
Rd
|v − vγ | · |∇xvγ | · |ρ| dx dt ≤ C

√
c
√
γ

∫ tm

γ

1

t
√

1− t

∫
Ω
|∇xvγ |

1
2 · |ρ| dx dt

≤ C
√
c√

1− tm
√
γ

∫ tm

γ

1

t

(∫
Ω
|∇xvγ(t, ·)| dx

) 1
2

·
(∫

Ω
|ρ|2 dx

) 1
2

dt

≤ C
√
Kc√

1− tm
√
γ

(∫ tm

γ

1

t2
dt

) 1
2

· ‖ρ‖L2(Q) ≤
M

2

√
γ

√
1

γ
− 1

tm
· ‖ρ‖L2(Q) ≤

M

2
‖ρ‖L2(Q),

(6-66)

Thus, by summing (6-65) and (6-66), we obtain the inequality (6-62).

Proof of Lemma 6.2: The intersection of the spaces Lp(Q), for all p > 2, is dense into L2(Q).
Indeed, if ρ ∈ L2(Q), then for all 0 < λ < 1, we have 2/λ > 2 and |ρ|λ ∈ L2/λ(Q). Moreover, it
is easy to show, by dominated convergence, that the family (|ρ|λ)λ∈]0,1[ converges to |ρ| in L2(Q)
when λ goes to 1.

Let ε > 0. For all γ > 0 and all 0 < λ < 1, we have the upper estimate:∫ tm

0

∫
Rd
|v − vγ | · |∇xvγ | · |ρ| dx dt ≤

∫ tm

0

∫
Rd
|v − vγ | · |∇xvγ | ·

∣∣∣|ρ| − |ρ|λ∣∣∣ dx dt
+

∫ tm

0

∫
Rd
|v − vγ | · |∇xvγ | · |ρ|λ dx dt.

(6-67)

By fixing λ ∈]0, 1[, such that
∥∥|ρ| − |ρ|λ∥∥

L2(Q)
≤ ε/M , we thus have by Lemma 6.5:

∀γ ∈]0, 1],

∫ tm

0

∫
Rd
|v − vγ | · |∇xvγ | ·

∣∣∣|ρ| − |ρ|λ∣∣∣ dx dt ≤M ∥∥∥|ρ| − |ρ|λ∥∥∥
L2(Q)

≤ ε. (6-68)

By injecting the last inequality into (6-67), and from Lemma 6.4, we can then set a rank γ0 > 0
such that for any 0 < γ ≤ γ0,∫ tm

0

∫
Rd
|v − vγ | · |∇xvγ | · |ρ| dx dt ≤ ε+

∫ tm

0

∫
Rd
|v − vγ | · |∇xvγ | · |ρ|λ dx dt ≤ 2ε. (6-69)

To finish to prove the Theorem 3.2 which deals with the uniqueness of the component µ =
(ρ,m) shared by the saddle points of L, we only have to show that a density ρ∗ associated with
one of these saddle points (ψ∗, q∗, µ∗) verifies the conditions of application of the Proposition
6.1.

Proof of Theorem 3.2: Let (ψ∗, q∗, µ∗) an element of Lps(ρ0, ρ1,Ω) (i.e. a saddle point). Ac-
cording to the Proposition 3.1, we have G(h) + 〈µ∗,∇t,xh〉 = 0, for all h ∈ H1(Q). Let
φ ∈ Φ(ρ0Ld, ρ1Ld) (thus verifying the property (Γ1)). According to the Lemma 6.1, by defining
vφ on ]0, 1[×Rd as in (4-30), we have m∗ = ρ∗vφ. In other words, for all h ∈ H1(Q):∫

Q
(∂th+ vφ · ∇xh) ρ∗ dx dt+

∫
Ω
h(0, ·)ρ0 dx−

∫
Ω
h(1, ·)ρ1 dx = 0. (6-70)

Let ρ∗ ∈ L2((0, 1) × Rd) be the extension in 0 of ρ∗ on (0, 1) × Rd. Noting that for all h ∈
H1
loc((0, 1) × Rd), we have hQ ∈ H1(Q) and ∇t,xhQ = (∇t,xh)|Q, the relation (6-70) can be

extended from Q to the entire space (0, 1)× Rd.
Thus, according to the Proposition 6.1, we have the equivalence ρ∗(t, ·) = ρφ(t, ·) = (t∇φ +

(1− t) id)#ρ0 for almost all t ∈ [0, 1], with in addition t 7→ ρφ(t, ·) ∈ C0
(
[0, 1[, L2(Rd)

)
.
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7 Characterization of an optimal transport velocity field

In this section, we present a generalization of our study about the uniqueness of the component
density-momentum µ: we want to use this study to try to characterize less formally an optimal
transport velocity field. The result will be roughly the following:

Any density of L2, with bounded support, and advected by a locally bounded velocity
field, which the trajectories are all straight lines that never intersect, corresponds to
an optimal transport (an interpolation of McCann) and is the only solution for such a
displacement.

These properties that the velocity field have to satisfy correspond to the properties (II).

For a convex open set Ω of Rd, we define the space bL2
+((0, 1)×Ω) of densities ρ ∈ L2((0, 1)×Ω)

which are non-negative and with compact supports into [0, 1]× Ω.

Theorem 7.1. Let Ω be a convex open set of Rd, not necessarily bounded, and let Q = (0, 1)×Ω.
Let v∗ be a velocity field on Ω satisfying the properties (II), and let ρ0 ∈ L2(Ω), with ρ0 ≥ 0 and
such that supp(ρ0) is bounded in Ω. Let ρ∗ ∈ bL2

+(Q) be a density solution, in the sense of the
distributions, of {

∂tρ+ divx(ρv∗) = 0,
ρ(0, ·) = ρ0,

(7-71)

Then the density ρ∗ is the unique solution of the system (7-71) in the space bL2
+(Q), and

ρ∗ ∈ C0
(
[0, 1[, L2(Ω)

)
. Moreover, there exists a unique non-negative measure ν1 on Ω, which

support is bounded in supp(ρ0)∪[
⋃
t∈[0,1] supp(ρ∗(t, ·))] and that satisfies the properties (C). There

also exists a convex function φ on Rd verifying the property (Γ1), such as: ν1 = ∇φ#
(
ρ0 Ld

)
,

and (link with McCann interpolation)

∀t ∈ [0, 1[, (ρ∗(t, ·)Ld) = (ρφ(t, ·)Ld) = (t∇φ+ (1− t) id) #(ρ0Ld). (7-72)

The couple (ρ∗, v∗) is then solution of{
∂tρ
∗ + divx(ρ∗v∗) = 0,

ρ∗(0, ·) = ρ0, ρ
∗(1, ·) = ν1.

(7-73)

which , reformulated in the weak sense, gives

∀h ∈ C∞c ([0, 1]×Ω),

∫ 1

0

∫
Ω

(∂th+ v∗ · ∇xh) ρ∗ dx dt+

∫
Ω
h(0, ·)ρ0 dx−

∫
Ω
h(1, ·) dν1 = 0. (7-74)

Finally, for all (t, x) ∈ supp(ρ∗), we have v∗(t, x) = vφ(t, x) (still defined by (4-30)). The field
v∗ therefore satitisfies the properties of the velocity field vφ on supp(ρ∗). In particular, the field
vφ is locally Lipschitz on the space (0, 1) × Rd and it satisfies ∇t,xv ∈ L∞(0, 1;L1

loc(Rd)) and
v ∈W 1,p

loc ([0, 1]× Rd) for all 1 ≤ p < 2.

Sketch of the proof: The proof gathers elements from sections 5 and 6. It is more technical, since
the final measure (7-71) is no longer a density measure, of type ρ1Ld, but simply a finite measure
ν1 satisfying the properties (C). We here only give the main steps of the proof and refer to [14]
(section 4.3) for all the details.

The first step is simply to prove the existence, in the sense of the distributions, of the final
measure ν1, as defined in the statement of Theorem 7.1. For this purpose we use classical
functional analysis tools [14] (in particular the Riesz [19] representation theorem). We also show
that the weak formulation (7-74) is always valid for test functions taken from W 1,∞

c ([0, 1]× Ω).

26



Then we consider φ, an optimal transport potential between ρ0Lp, and ν1 satisfying the
property (Γ1). We consider "a saddle point", i.e. a triplet (µφ, qφ, ψφ), as done in section 5 and
built in Theorem 3.1 and Lemma 4.1. As Brenier’s Theorem only assumes density for the initial
density ρ0Ld, Proposition 3.2 is still valid. This is also the case all inductions we have done while
building the velocity field vφ. However, we can not obtain ρφ ∈ L2(Q) via Lemma 5.1, since it
requires ν1 = ρ1Ld with ρ1 ∈ L2(Ω). Hence, we can not extend the test functions of the weak
formulation of the mass conservation for the pair (ρφ, vφ) to the space H1

loc(Q), as in Proposition
5.3, which only considers absolutely continuous initial measures. Extending these test functions
to the space W 1,∞

loc (Q) is required since the potential ψφ necessarily belongs to this space.
We then construct a second saddle point from the pair (ρ∗, v∗), that is to say a triplet

(µ∗, q∗, ψ∗), with µ∗ = (ρ∗, ρ∗v∗), q∗ = (−(1/2)|v∗|2, v∗) and ∇t,xψ∗ = q∗ (Lemma 4.1). We can
then, as well as for the Lemma 6.1, prove the uniqueness of the velocity field on the supports of
ρφ and ρ∗, i.e. ρ∗v∗ = ρ∗vφ. Although our triplets (µφ, qφ, ψφ) and (µ∗, q∗, ψ∗) are not necessarily
in L2, and we can no longer speak of "projections" and "orthogonality" in the schematic proof of
Lemma 6.1, the reasoning remains globally the same and we reach the same conclusion (Lemma
4.3-14 of [14]). Thus, according to the Proposition 6.1, the density ρ∗ verifies the relation (7-72),
with t 7→ ρ∗(t, ·) ∈ C0

(
[0, 1[, L2(Ω)

)
.

Now, let us show that ρ∗ is the only solution with bounded support of the system (7-71)
in the space bL2

+(Q). Assume there exist two solutions ρ1, ρ2 of (7-71) in bL2
+(Q). Then ρ =

(ρ1 + ρ2)/2 is still a solution in bL2
+(Q). Therefore, there would exist a convex function φ of

Rd satisfying the property (Γ1), such that, by defining vφ as in (4-30), we have ρ v∗ = ρ vφ,
i.e. (ρ1 + ρ2) v∗ = (ρ1 + ρ2) vφ. The field v∗ is then almost everywhere equal to the field
vφ on supp(ρ1) ∪ supp(ρ2), thus ρ1 v∗ = ρ1 vφ and ρ2 v∗ = ρ2 vφ. Therefore, ρ1 and ρ2 both
satisfy the system (7-71), by replacing v∗ by vφ. According to the Proposition 6.1, we thus have
ρ1 = ρ2 : t 7→ ρφ =

(
t∇φ+ (1− t) id

)
#ρ0 in L2((0, 1)× Rd)) (and then in L2(Q)).

8 Results of regularity of the velocity field and Burgers Equation

The aim of this section is to prove Proposition 4.5 (Burgers equation satsified by the velocity
field v = vφ) and Proposition 6.2 (uniform control of the gradients of fields v = vφ and vγ = vγφ).

In subsection 8.1, we first consider an "ideal" framework, i.e. without breaks. For this
purpose, we assume that the potential φ is regular and satisfies the following property (Γ2).

Hypothesis (Γ2). φ satisfies (Γ1), is of class C1, and ∇xφ is Lipschitz (i.e. φ ∈ C1,1(Rd) ).

We recall that φ fulfills the property (Γ1) if and only if φ and φ∗ are convex, continuous and
admit a minimum on Rd.

Once the propositions will be established under the assumption (Γ2), we will consider the
general framework of the optimal transport for φ satisfying the property (Γ1). To that end, a
regularization of the potential φ with Moreau envelope will be considered in the subsection 8.2.

The final proofs (by compilation of previous results) of the Propositions 4.5 and 6.2 will be
stated in the subsection 8.3.

To finish, in the subsection 8.4, we will state additional results concerning the regularity of
the velocity field, already mentioned in the proof of the Proposition 6.1 (for exemple the fact that
the velocity field vφ is in all space W 1,p(Q) for all p < 2), but which are not directly necessary
for the proofs of uniqueness that we have treated.

In what follows, we will often require the Rademacher Theorem on the differentiability of
locally Lipschitz functions.
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Theorem 8.1 (The Rademacher Theorem ([10] p.81)). Let f : Rd −→ Rm be a locally Lipschitz
function. Then f is Ln-almost everywhere Fréchet-differentiable (and its differential in the sense
of Fréchet coincides with its differential in the sense of distributions).

Let us give a useful example of the application of Rademacher Theorem.

Example 8.1. Proposition 4.4 is valid under the property (Γ1), and therefore also under (Γ2).
We know that v is locally Lipschitz on ]0, 1[×Rd. Thus, according to Rademacher’s Theorem 8.1,
v is almost everywhere differentiable on ]0, 1[×Rd, and its differential corresponds to its derivative
in the sense of distributions. In particular, we have

v · ∇xv =
1

2
∇x|v|2, (8-75)

in the sense Ld+1-almost everywhere, in the sense of distributions.

8.1 Regular case (Γ2)

In this subsection, we will assume that φ satisfies the hypothesis (Γ2). In this "ideal" case
(without breaks), we want to show that the velocity field v satisfies the Burgers equation in
the sense of distributions (3-17), as well as the control of the gradient of the velocity field:
∇t,xv ∈ L∞loc

(
[0, 1[, L1(Rd)

)
The operator pφ (definition 4.4) can be interpreted as a spatial "inverse" of the operator

X(t, ·) = ∇x(φt) = (1− t) id +t∇φ. This is a rough interpretation since, apart from the assump-
tion (Γ2), X(t, ·) is generally not invertible.

Proposition 8.1. Under the property (Γ2), pφ satisfies the following properties, for all t ∈ [0, 1[

1. pφ(t, ·) is bijective on Rd and for all x, y ∈ Rd,

y = pφ(t, x) ⇔ x = (1− t)y + t∇φ(y). (8-76)

2. pφ(0, ·) = id.

3. the velocity v defined (3-13) can be defined from pφ by :

v(t, x) = ∇φ(pφ(t, x))− pφ(t, x) =
x− pφ(t, x)

t
, (8-77)

for all (t, x) ∈]0, 1[×Rd,

4. v can be continuously extended on [0, 1[×Rd (i.e. in t = 0) and for all x ∈ Rd,

v(0, x) = ∇φ(x)− x (8-78)

Proof:

– The potential φ is assumed to be of class C1. It is therefore differentiable at every point
x ∈ Rd, and by convexity we have ∂φ(x) = {∇φ(x)}.

– We immediately deduce the second (taking t = 0) and third points with

x = (1− t)pφ(t, x) + t∇φ(pφ(t, x)) ⇔ ∇φ(pφ(t, x))− pφ(t, x) =
x− pφ(t, x)

t
= v(t, x).

(8-79)
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– Let x ∈ Rd and a (tn, xn)n ∈ QN converging to (0, x). For a a minimum of φ, we have
pφ(t, (1− t)a) = a for all t ∈ [0, 1[, since pφ is Lipschitz. By estimating the distance from
pφ to a, we can show that the sequence

(
pφ(tn, xn)

)
n
is bounded. From the continuity of

∇φ, we also get that the sequence
(
∇φ(pφ(tn, xn))

)
n
is bounded. Then, the right hand

side of the equivalence (8-79) can be used to show that
(
pφ(tn, xn)

)
n
converges to x (by

continuity of pφ at (0, x)). The left term of the equivalence allows us to conclude.

Remark 8.1. We note that φt = (1/2)(1 − t)| · |2 + tφ is of class C1, strictly convex and
superlinear, since φ is convex and | · |2 is strictly convex and superlinear. Thus, for all t ∈]0, 1[,
X(t, ·) = (1− t) id +t∇φ = ∇φt is bijective of inverse pφ(t, ·) = ∇x(φt)

∗.

Proposition 8.2. Under the property (Γ2), v satisfies (3-17), namely:

∂tv +
1

2
∇x|v|2 = 0

in the sense of distributions.

Sketch of the proof: If φ is on class C1, then by differentiating the advection relation ∇xφ− id =
∂t∇xφt = v(t,∇xφt), we obtain (see example 8.1): 0 = ∂tt∇xφt = (∂tv+ v · ∇xv)(∇xφt) (recall :
φt = (1− t)| · |2/2 + tφ).

In order to prove the second regularity result ∇t,xv ∈ L∞loc
(
[0, 1[, L1(Rd)

)
, we now present

intermediate results on the potential φ.

Proposition 8.3. We assume that φ satisfies the property (Γ2). Let R′ > R > 0 and a ∈ Rd
such that φ(a) = inf

Rd
φ. Then there exists t0 ∈]0, 1[ such that for all t ∈ [0, t0],

pφ(t, B(a,R)) ⊂ pφ(t0, B(a,R′)). (8-80)

Moreover, a sufficient condition to have property (8-80) is:

t0 < min

{
1

2
,
R′ −R
M + 2|a|

}
with M = sup

x∈B(a,2(R+|a|))
|∂φ(x)|. (8-81)

Sketch of the proof: Let x ∈ B(a,R) and t, t0 ∈ [0, 1[ such that t0 > 0 and t ∈ [0, t0]. pφ(t, x) ∈
pφ(t0, B(a,R′)) if and only if there exists y ∈ B(a,R′) such that pφ(t0, y) = pφ(t, x). According
to the definition of pφ (by the equivalence (8-76)), for y ∈ Rd we have:

pφ(t0, y) = pφ(t, x) ⇔ y = (1− t0)pφ(t, x) + t0∇φ(pφ(t, x)). (8-82)

Let us take y = (1 − t0)pφ(t, x) + t0∇φ(pφ(t, x)) and look for a sufficient condition on t0 for
y ∈ B(a,R′). From relation (4-22), we recall that pφ(t, (1− t)a) = a and therefore that for every
x ∈ B(a,R):

|pφ(t, x)− a| = |pφ(t, x)− pφ(t, (1− t)a)| ≤ 1

1− t
|x− (1− t)a| ≤ 1

1− t0
(R+ |a|).

By taking t0 ≤ 1/2, we thus have pφ(t, x) ∈ B(a, 2(R + |a|)). Now, under the property (Γ2), φ
is of class C1 on Rd and therefore locally Lipschitz, and thus Lipschitz on B(a, 2(R + |a|)). We
can therefore take

M = sup
x∈B(a,2(R+|a|))

|∂φ(x)| < +∞.
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For all t ∈ [0, t0], for x ∈ B(a,R) and y = (1− t0)pφ(t, x) + t0∇φ(pφ(t, x)), we get

|y − a| ≤ (1− t0)|pφ(t, x)− a|+ t0|∇φ(pφ(t, x))− a|
≤ (1− t0)|pφ(t, x)− pφ(t, (1− t)a)|+ t0

(
|∇φ(pφ(t, x))|+ |a|

)
≤ 1− t0

1− t
|x− (1− t)a|+ t0 (M + |a|) ≤ |x− a|+ t|a|+ t0 (M + |a|)

≤ R+ t0 (M + 2|a|) .

If we assume t0 < min{1/2, (R′ − R)/(M + 2|a|)}, then for all t ∈ [0, t0] and x ∈ B(a,R),
y = (1− t0)pφ(t, x)+ t0∇φ(pφ(t, x)) ∈ B(a,R′) i.e. pφ(t0, y) = pφ(t, x), and so pφ(t, B(a,R)) ⊂
pφ(t0, B(a,R′)).

Lemma 8.1. We assume that φ satisfies the property (Γ2). For every t ∈ [0, 1[, pφ(t, ·) is
differentiable almost everywhere on Rd. Moreover, for almost every x ∈ Rd, ∇φ is differentiable
in pφ(t, x) and D2φ is such that:

∇x pφ(t, x) = (tD2φ(pφ(t, x)) + (1− t)I)−1 (8-83)

where I ∈Md(R) is the identity matrix.

Proof: Let t ∈ [0, 1[. The operator pφ(t, ·) is Lipschitz and bijective, and from (8-76) its inverse is
pφ(t, ·)−1 = t∇φ+ (1− t) id = X(t, ·). Recall that by hypothesis ∇φ is assumed to be Lipschitz.
According to the Rademacher Theorem 8.1, ∇φ and pφ(t, ·) are differentiable almost everywhere
on Rd and their gradients coincide with their derivatives in the sense of distributions. Thus the
set F of points in Rd where ∇φ is not differentiable is of zero Lebesgue measure. Since ∇φ
is assumed to be lipschitz, then so does X(t, ·), which gives Ld(X(t, F )) = 0 ([10] p. 75). As
X(t, F ) is the set of points x ∈ Rd for which ∇φ is not differentiable in pφ(t, x), this means that
∇φ is differentiable in pφ(t, x) for almost all x ∈ Rd. Hence pφ(t, ·) is differentiable at almost
every x ∈ Rd, ∇φ is differentiableat pφ(t, x) and I = (tD2φ(pφ(t, x)) + (1 − t)I)∇x pφ(t, x).
The potential φ being convex, D2φ(pφ(t, x)) is symmetric positive, and hence by coercivity,
tD2φ(pφ(t, x)) + (1− t)I is symmetric positive definite and therefore invertible inM2(R), which
concludes the proof.

Remark 8.2 (On the contribution of property (Γ2) in the previous proof). Note that for every t ∈
[0, 1[, the operator pφ(t, ·) is differentiable almost everywhere on Rd, and the operator ∇x pφ(t, ·)
is thus well defined. This property is satisfied regardless of the regularity of φ, since the proximal
operator is always Lipschitz. The additional property brought here by the regularity C1 of φ is in
fact the bijectivity of the operator pφ(t, ·).

The fact that ∇φ is locally lipschitz on Rd is crucial to ensure that D2φ is well defined almost
everywhere. However, the fact that ∇φ is globally lipschitz on Rd ensures that pφ(t, ·) does not
send sets of Rd of positive measure to negligible sets (see [10] p. 75), such as sets where φ is not
twice differentiable. Such global regularity ensures that the operator D2φ(pφ(t, ·)) is well defined
almost everywhere.

The assumption of the property (Γ2) allows then us to consider ∇x pφ(t, ·) as a function of
pφ(t, ·) almost everywhere.

We now have all the elements to state the following proposition, which is one of the main
results of this section, concerning the control of the gradient of the velocity field v. This result
is namely required to control the solutions of the transport problem generated by the field v in
the uniqueness results of section 6.
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For convenience, we will use the norm | · |1 onMd(R), defined by |A|1 =
∑
i,j
|aij |, instead of

the operator norm associated to the euclidean norm on Rd.

Proposition 8.4. We assume that φ satisfies the property (Γ2). Let R′ > R > 0 and a ∈ Rd
such that φ(a) = inf

Rd
φ. Then there exist constants C and C ′ (independent of φ, a, R and R′)

such that for all t0 ∈]0, 1[ satisfying the condition (8-81), we have the property:

∀t ∈]0, t0],

∫
B(a,R)

|∇xv(t, x)|1 dx ≤ C
∫
B(a,R′)

|∇xv(t0, x)|1 dx ≤
C ′

t0(1− t0)
L2(B(a,R′)) (8-84)

so that ∇xv ∈ L∞([0, t0], L1(B(a,R))).

Proof: Let t ∈]0, 1[. Remember that for all x ∈ Rd, v(t, x) = ∇φ(pφ(t, x))− pφ(t, x). According
to Lemma 8.1, for almost all x ∈ Rd, v(t, ·) is differentiable on x and

∇xv(t, x) = ∇x pφ(t, x)(D2φ(pφ(t, x))− I)

= (tD2φ(pφ(t, x)) + (1− t)I)−1(D2φ(pφ(t, x))− I).
(8-85)

Since, by (4-32), v(t, ·) is Lipschitz with constant 2/t(1− t) for euclidean norm | · |, it implies that
|∇xv(t, ·)|1 is bounded by c/t(1−t), where c a constant depending on the considered norm. Thus
|∇xv(t, ·)|1 ∈ L∞(Rd) ⊂ L1

loc(Rd). Since the function X(t, ·) = t∇φ+ (1− t) id is Lipschitz and
bijective (and pφ(t, ·) is its inverse), we therefore can apply the generalized change of variable
theorem ([10] p. 117) and obtain:∫

B(a,R)
|∇xv(t, x)|1 dx =

∫
pφ(t,B(a,R))

| det(tD2φ(y) + (1− t)I)|

× |(tD2φ(y) + (1− t)I)−1(D2φ(y)− I)|1 dy.
(8-86)

For every y ∈ Rd where ∇φ is differentiable, the matrix D2φ is symmetric positive and can
therefore be diagonalized in an orthonormal basis. We will consider λ1(y), · · · , λd(y) ≥ 0 the
eigenvalues associated with D2φ. From the equivalence between the | · |1 norm and the Frobenius
norm, we obtain the following relation:

C1|(tD2φ(y)+(1− t)I)−1(D2φ(y)− I)|1 ≤
d∑
i=1

∣∣∣∣ λi(y)− 1

tλi(y) + (1− t)

∣∣∣∣
1

≤ C2|(tD2φ(y) + (1− t)I)−1(D2φ(y)− I)|1,

(8-87)

where the constants C1 and C2 only depend on the constants of equivalence between the | · |1
norm and the Frobenius norm. Moreover, by invariance of the determinant through similarity
transformations, we get for all t ∈ [0, 1[ and almost all y ∈ Rd:

det(tD2φ(y) + (1− t)I) = (tλ1(y) + (1− t)) · · · (tλd(y) + (1− t)). (8-88)

By injecting (8-87) and (8-88) into (8-86), we obtain, for every t ∈]0, 1[, and every R > 0:

C1

∫
B(a,R)

|∇xv(t, x)|1 dx ≤
d∑
j=1

∫
pφ(t,B(a,R))

|λj(y)− 1|
d∏
i=1
i 6=j

(tλi(y) + (1− t))

≤ C2

∫
B(a,R)

|∇xv(t, x)|1 dx.

(8-89)

31



The constants C1 and C2 are independent of t and R. Let us take t0 ∈]0, 1[ verifying the condition
(8-81) of Proposition 8.3. Hence, we have pφ(t, B(a,R)) ⊂ pφ(t0, B(a,R′)). The condition (8-81)
also gives t0 ≤ 1/2, and so for any t ∈]0, t0], we have 1 − t ≤ 1 ≤ 2(1 − t0). Since λi(y) ≥ 0
(i = 1, · · · , d) for almost all y ∈ Rd, we have 0 ≤ tλi(y) + (1− t) ≤ 2(t0λi(y) + (1− t0)). Thus,
thanks to the inequality (8-89), we can conclude:∫

B(a,R)
|∇xv(t, x)|1 dx ≤

1

C1

d∑
j=1

∫
pφ(t,B(a,R))

|λj(y)− 1|
d∏
i=1
i 6=j

(tλi(y) + (1− t))

≤ 2d−1

C1

d∑
j=1

∫
pφ(t0,B(a,R′))

|λj(y)− 1|
d∏
i=1
i 6=j

(t0λi(y) + (1− t0))

≤ 2d−1C2

C1

∫
B(a,R′)

|∇xv(t0, x)|1 dx.

(8-90)

Finally, as already mentioned at the beginning of this proof, there exists a constant c > 0 such
that |∇xv(t0, ·)|1 is bounded by c/t0(1− t0), which completes the proof of the Proposition.

The proof of this proposition will be useful for another lemma concerning the control of v.
Gathering the different results of this section concerning the control of the gradient of the field
v , will allow us to control the solutions of the transport problem and thus obtain uniqueness
results.

Lemma 8.2. We assume that φ satisfies the property (Γ2). Then there exists a constant C > 0
such that for all t ∈]0, 1[,

‖∇xv(t, ·)‖L∞(Rd) ≤
C

1− t

(∥∥D2φ
∥∥
L∞(Rd)

+ d
)

Proof: By taking the inequality (8-87) and the equivalence between | · |1 and Frobenius norms,
as λi(y) ≥ 0, we obtain, for every y ∈ Rd where ∇φ is differentiable:

C1|(tD2φ(y) + (1− t)I)−1(D2φ(y)− I)|1 ≤
d∑
i=1

∣∣∣∣ λi(y)− 1

tλi(y) + (1− t)

∣∣∣∣
1

≤ 1

1− t

(
d+

d∑
i=1

λi(y)

)

≤ C2

1− t
(
|D2φ(y)|1 + d

)
.

(8-91)

We can then conclude by injecting the equation (8-85) into this last inequality.

8.2 General case (Γ1)

In the context of our optimal transport problem, we have proved at Proposition 3.2 that we can
assume that the potential φ satisfies the property (Γ1).

We are now able to extend the results of the previous subsection to potentials φ which satisfy
(Γ1), so that φ may have non-differentiability points causing breaks in the transport plan.
More precisely we are know able to extend the Proposition 8.2 to the case where φ only satisfies
(Γ1) (which is Proposition 4.5), and also to extend the Proposition 8.4 (which is included in the
proof of Proposition 6.2). In particular we will show that ∇xv is uniformly integrable in the
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neighborhood of t = 0, and in Theorem 8.2 we will argue symmetrically to show that it is the
same in the neighborhood of t = 1, and then on all [0, 1].

To that end we consider the regularization γφ of φ with the Moreau envelope defined for all
x ∈ Rd and for all γ > 0 as

γφ(x) = inf
y∈Rd

1

2γ
|x− y|2 + φ(y) =

1

2γ
|x− Proxγφ(x)|2 + φ(Proxγφ(x)). (8-92)

For all γ > 0, we also define the velocity field vγ for all t ∈]0, 1[ and x ∈ Rd by

vγ(t, x) = vγφ(t, x) = ∇φ(pγφ(t, x))− pγφ(t, x) =
x− pγφ(t, x)

t
, (8-93)

where
pγφ(t, x) = Prox t

1−t
γφ

(
x

1− t

)
.

We also recall that γφ is of class C1 and that for all x ∈ Rd,

∇(γφ)(x) =
x− Proxγφ(x)

γ
∈ ∂φ (Proxγφ(x)) (by (4-22)). (8-94)

The potential γφ is then γ−1-Lipschitz.

We now show that if φ satisfies the property (Γ1), then γφ satisfies the (Γ2) property. The
results of the subsection 8.1 will then be applied on φγ , that corresponds to transport plans
without breaks.

Lemma 8.3. If φ satisfies the (Γ1) property, then γφ statifies the property (Γ2) for all γ > 0

Sketch of the proof: As (γf)∗ = f∗ + γ
2 | · |

2, then if f∗ is in a Hölder space C1,1 and admits a
minimum on Rd, the same holds for (γf)∗. Notice on the other hand that the functions φ and γφ
have the same minima on Rd.

Lemma 8.4. We suppose that φ satisfies the property (Γ1), then

1. the family (∇γφ)γ>0 is locally bounded, uniformly with respect to γ > 0.

2. for all x ∈ Rd, the set of adherence values of the family (∇γφ(x))γ, when γ > 0 tends to 0
is included in ∂φ(x).

3. if φ is differentiable in x, then ∇γφ(x) converges to ∇φ(x) when γ > 0 tends to 0. The
functions ∇γφ converge simply almost everywhere to ∇φ when γ tends to 0.

Proof: 1. We can show that for every minimum a of φ on Rd and r > 0, we have∇(γφ)(B(a, r)) ⊂
∂φ (B(a, r)). To that end, it is sufficient to consider the relation (4-27) and the inclusion
Proxγφ(B(a, r)) ⊂ B(a, r), coming from the non-expansiveness of the operator Proxγφ and
the fact that a is a fixed point for these operators (see (4-22)). The union of the subdiffer-
entials of φ on B(a, r), denoted by ∂φ (B(a, r)), is bounded in Rd, since the potential φ is
convex and locally Lipschitz.

2. This can be obtained by applying the definition of the subdifferential to any sequence
[∇γnφ(x)]n converging in Rd (γn → 0).
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3. With the first point, we know that the family (∇γφ(x))γ>0 is bounded in Rd, for all x ∈ Rd.
Hence, if φ is differentiable in x, we can extract a subsequence converging to ∇φ(x) from
any subsequence of [∇γnφ(x)]n (with γn → 0). The last point can thus be proved by
contradiction.

Proposition 8.5. We assume that φ satisfies the property (Γ1). The family (vγ)γ>0 (with vγ =
vγφ) satisfies the following convergence properties:

1. For every bounded open set ω in Rd and any γ0 > 0, (vγ)γ0≥γ>0 is uniformly bounded on
]0, 1[×ω by a constant independent of γ ∈]0, γ0].

2. For every bounded open set ω in Rd and any γ0 > 0, there exists a constant M independent
of γ ∈]0, γ0], such that

∀γ ∈]0, γ0], ∀t ∈]0, 1[, ‖v(t, ·)− vγ(t, ·)‖L∞(ω) ≤M
γ

t
. (8-95)

We can deduce from (8-95) that vγ pointwise converges to v on ]0, 1[×Rd when γ goes to 0.

3. For every 1 < p < +∞ and every bounded open set ω in Rd, vγ converges to v in Lp((0, 1)×
ω) when γ goes to 0.

4. For every 1 < p < +∞, any bounded open set ω in Rd and for all t ∈]0, 1[, vγ(t, ·) converges
weakly in W 1,p(ω) to v(t, ·) when γ goes to 0.

Sketch of the proof:

1. According to Proposition 4.2, we have ‖vγ‖L∞(]0,1[×ω) ≤ 5
(
max{Mγ ,M

∗
γ}+ sup(ω)

)
, with

Mγ = ‖∇γφ‖L∞(ω) and M∗γ = ‖∂(γφ)∗‖L∞(ω). According to Lemma 8.4, the constants Mγ

are uniformly bounded with respect to γ > 0. The same holds for the constants M∗γ with
respect to γ ∈]0, γ0] by noticing, according to the Property (4-20) of inf-convolution, that
∂ (γφ)∗ = ∂φ∗ + γ id.

2. From relation (4-31), we have the relation ∇x(φt)
∗ = (id−Prox(1−t)(tφ)∗)/(1 − t) for all

t ∈]0, 1[. In addition, by applying twice the fundamental relation of the proximal operator
(4-22) and the property (4-20), we have

Prox(1−t)(tγφ)∗ = Prox(1−t)(tφ)∗+(1−t) γ
2t
| · |2 = Prox(1−t)(tφ)∗ (id−γ(1− t)[id +(1− t)vγ(t, ·)]) .

Thus, according to (4-28) and (4-30), and by non-expansiveness of the proximal operator:

|vγ(t, ·)− v(t, ·)| = 1

t(1− t)
∣∣Prox(1−t)(tγφ)∗ −Prox(1−t)(tφ)∗

∣∣ ≤ γ

t
|id +(1− t)vγ(t, ·)| .

Since the fields vγ are uniformly bounded on ]0, 1[×ω independently of γ ∈]0, γ0] we thus
get the relation (8-95).

3. This property is immediately deduced from the two previous ones by dominated conver-
gence.

4. We also use dominated convergence to prove that vγ(t, ·) converges to v(t, ·) in Lp(ω) as
γ goes to 0. Note that the first two properties are valid on all ]0, 1[×Rd and not only
almost everywhere. Thus, in the sense of the distributions, any subsequence of (vγ(t, ·))γ
which weakly converges in W 1,p(ω) admits v(t, ·) as limit. Since vγ(t, ·) and v(t, ·) are
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c/t(1 − t)-Lipschitz, where c is a constant depending only on the norm chosen on Rd, we
have ‖∇xvγ(t, ·)‖L∞(ω) ≤ c/t(1 − t), for all γ > 0. We can then extract a subsequence of
(vγ(t, ·))γ converging weakly to v(t, ·) inW 1,p(ω), which is a reflexive space if 1 < p < +∞.
We then conclude by contradiction: if the whole sequence is not converging, we could
extract a subsequence such that no subsequence converge to v(t, ·). By extracting a sub-
subsequence that converges to v(t, ·), we get a contradiction.

The first two points of ths latter Proposition imply the following corollary.

Corollary 8.1. We assume that φ satisfies the property (Γ1). For every bounded open set ω in
Rd and any γ0 > 0, there exists a constant C, independent of γ, such that the family (vγ)γ>0

satisfies:
∀α ∈ [0, 1], ∀γ ∈]0, γ0], ∀t ∈]0, 1[, ‖v(t, ·)− vγ(t, ·)‖L∞(ω) ≤ C

(γ
t

)α
. (8-96)

Proof: According to the first point of the Proposition 8.5, there exists a constant K, independent
of γ ∈]0, γ0], such that ‖v(t, ·) − vγ‖L∞(]0,1[×ω) ≤ K. According to (8-95), we then have for all
α ∈ [0, 1],

‖v(t, ·)− vγ(t, ·)‖L∞(ω) ≤MαK1−α
(γ
t

)α
≤ max{M,K}

(γ
t

)α
. (8-97)

8.3 Finalization of the proof of Propositions 4.5 and 6.2

We now have enough elements to prove Proposition 4.5 (i.e. to prove that the field v = vφ
satisfies the Burger’s equation in the general case) and Proposition 6.2.

Sketch of proof of Proposition 4.5: For φ satisfying the property (Γ1) (thus for a transport plane
admitting possible "breaks"). To make this proof, we merely have to apply the proposition 8.5
in the weak formulation of the Burgers equation, and to involve the Proposition 8.2.

Sketch of proof of Proposition 6.2: As already mentioned in the Lemma 8.4, we have the in-
clusion ∇(γφ)(B(a, r)) ⊂ ∂φ (B(a, r)), and thus, by setting r = 2(R + |a|), we have Mγ =
supB(a,r) |∇γφ| ≤ M . Thus, a time t0 verifying the hypothesis of the statement (independent of
γ), also satisfies the hypothesis of the Proposition 8.4 whatever γ > 0. We can therefore apply
this last proposition for such a t0 for all vγ and we so get (6-59). For the case γ = 0 (i.e. v0 = v),
it is enough to apply the fourth convergence result of the proposition 8.5: we can conclude by
passage to the lower semi-continuous weak limit.

8.4 An independent but notable regularity result

We now show that Proposition 6.2 can be generalized to ∇t,xv ∈ L∞((0, 1), L1(Ω)) for every
bounded open set Ω. This property is not required in the presented results on existence and
uniqueness. It nevertheless gives a new insight of the regularity and the control of the velocity
field of an isotropic optimal transport for the L2 distance.

Theorem 8.2. Assume that φ satisfies the property (Γ1). Let Ω be a bounded open set of Rd.
Then ∇t,xv ∈ L∞((0, 1), L1(Ω)), in other words there exists a constant K > 0 such that for all
t ∈]0, 1[, ∫

Ω
|∇t,xv(t, x)|1 dx ≤ K. (8-98)
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Sketch of the proof: We symmetrize the result of the Proposition 6.2 (case γ = 0) respectively
in the neighborhood of t = 0 and t = 1, and apply the upper bound c/t(1− t) in the middle.

Corollary 8.2. We suppose that φ satifies the property (Γ1). Let Ω be a bounded open set.
For all p, q ≥ 1 such that 1/p + 1/q > 1, we have ∇t,xv ∈ Lp((0, 1), Lq(Ω)). And in particular
v ∈W 1,p((0, 1)× Ω) for all 1 ≤ p < 2.

Sketch of the proof: We jointly use the result of the Theorem 8.2 with the estimate by c/t(1− t).
In other words, we partially bound from above |∇xv(t0, ·)|1 in order to be able to apply the
Theorem 8.2. For the particular case W 1,p, it is sufficient to take p = q < 2.

Theorem 8.2 and its Corollary 8.2 give the most consistent regularity that one can have for
general velocity field v. Indeed, according to the Corollary 8.2, a velocity field v defined with
respect to a potential φ (verifying the property (Γ1)) for all t ∈]0, 1[ by

v(t, ·) = vφ(t, ·) =
id−pφ(t, ·)

t
=

1

t
(id−(tφ+ (1− t) id)∗) , (8-99)

is an element of W 1,p
loc ([0, 1] × Rd). Hence the restriction of v to any bounded open set Ω of Rd

is an element of W 1,p((0, 1) × Ω), for all p < 2. The question that arises naturally is whether
v = vφ could not be an element of H1

loc([0, 1] × Rd). In general, this is not the case (see for
instance Caffarelli’s counter-example on mass splitting).

9 Convergence of the algorithm

The aim of this section is to demonstrate the weak convergence of the Benamou-Brenier algo-
rithm, as well as the strong convergence of a relaxed version of the algorithm towards a saddle
point of the Lagrangian L. For this purpose, we will reformulate the problem of convergence of
the algorithm towards one of these saddle points, into a more generic problem of convergence to
a fixed point of non-expansive operator. We start by identifying the saddle points of L at the
fixed points of an "iteration of the algorithm" operator.

Proposition 9.1. There is an equivalence between a saddle point of L (and thus of Lr for all
r > 0) and a fixed point of the algorithm (defined in the subsection 2.3): (ψ, q, µ) is a saddle
point of L if and only if it remains invariant for the Benamou-Brenier algorithm.

Proof: Let (ψ, q, µ) be a saddle point of L. We denote by (ψ′, q′, µ′) the new triplet obtained
after one iteration of the algorithm. Let us show that (ψ′, q′, µ′) = (ψ, q, µ) in Sg. Fom property
(P2) of (I), and taking h = ψ

′ − ψ, we obtain ‖∇t,x(ψ
′ − ψ)‖2 = 0 in step A. According to the

Poincaré inequality , we get ψ′ = ψ in H1((0, 1) × Ω)/R. In step B, we look for the unique

q′ verifying 〈µ + ∇ψ′ − q′, p − q′〉 ≤ 0, for all p ∈
∼
P. From Properties (P1) and (P3) which

characterize a saddle point, we get ψ = ψ′. q is thus a good candidate and therefore the only
one, hence q′ = q. Finally, ∇t,xψ′ = ∇t,xψ = q = q′ and we finally have µ′ = µ in step C.

Finally, let (ψ, q, µ) be a fixed point of the algorithm. Let us show that it is a saddle point
of L. Step C gives immediately ∇t,xψ = q, and consequently step B gives 〈µ, p − q〉 ≤ 0 for all

p ∈
∼
P, and step A gives G(h) + 〈µ,∇t,xh〉 = 0 for all h ∈ H1(Q). Since the three properties (I)

are verified, (ψ, q, µ) is therefore a saddle point of L.

It is now possible, according to the Proposition 9.1, to redefine our problem of convergence
of the algorithm to a saddle point of Lagrangian L, to a problem of convergence of a sequence
of type xn+1 = Mxn to a fixed point of the operator M. In subsection 9.2, we will see that it is
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possible to characterize such an operator M as a non-expansive type operator in an appropriate
Hilbert space,.

General results on non-expansive operators are first recalled in the next subsection.

9.1 Some convergence results for non-expansive operators

For any non-expansive operator M, we will state in this section a series of results allowing to
obtain both weak convergence to a fixed point of M of the iterative algorithm xn+1 = Mxn,
and the strong convergence of a relaxed version of this algorithm.

We begin by recalling some useful standard definitions for the sequel. Let (H, 〈. , .〉) an
Hilbert space and let M : H → H.

Definition 9.1 (Non-expansive Operator). The operator M is called non-expansive if and
only if it is 1-Lipschitz, and firmly non-expansive (implies non-expansive) if and only if we
have ‖Mx−My‖2 ≤ 〈x− y, Mx−My〉, for all x, y ∈ H.

The operator M is also called quasi-firmly non-expansive on a subset A of H, containing
the set of fixed points of M, if and only if, for any fixed point x∗ of M, we have ‖x − x∗‖2 −
‖Mx− x∗‖2 ≥ ‖x−Mx‖2 for all x ∈ A.

We nos recall two main convergence results.

Theorem 9.1. Let M be a non-expansive operator on H, and quasi-firmly non-expansive on
M(H) (the image of H by M). Assume that the set Fix(M) of the fixed points of M is non-
empty. Let (xn)n be a sequence of elements of H satisfying for every n ∈ N the estimate:
‖M(xn)− xn+1‖ ≤ εn, where (εn)n is a non-negative real sequence satisfying

∑
n
εn < +∞. Then

(xn)n weakly converges in H to a fixed point of M.

Theorem 9.2 (H. Bauschke [1]). Let M be a non-expansive operator and assume that the set
Fix(M) of the fixed points of M is non-empty, and let (λn)n≥0 be a sequence of parameters of
[0, 1[, converging to 0, and satisfying:

∑
n λn = +∞ and

∑
n |λn+1 − λn| < +∞. Let H be a

Hilbert space, and M a non-expansive operator over H. Given a and x0 in H, we define the
sequence (xn) by the recurrence xn+1 = λna + (1 − λn)Mnxn (∀n ≥ 0), where for all n ∈ N is
verified the estimate ‖Mnxn −Mxn‖ ≤ εn, with

∑
n εn < +∞.

Then the sequence (xn)n converges strongly to PFa (where F = Fix(M) is the closed convex
set of fixed points of M.

The sequence (εn)n here represents the inevitable numerical errors inherent in the implemen-
tation of such an algorithm. It is assumed here that these errors are highly controlled, which is
not realistic in practice.

Theorem 9.1 can be shown using classical functional analysis tools such as the Opial Lemma
[1]. The second Theorem th:bauschke is a result due to H. Bauschke in [1]. The detailed proofs
of those two theorems can be found in [14] (section 2.3 and appendix B). Notice that in Theorem
9.2, it is easy to prove that the set of fixed points of a non-expansive operator is a closed convex
set (see Lemma 2.3-7 of [14]).

9.2 Formulation of the Benamou-Brenier algorithm in terms of non-expansive
operator

We are now able to apply the convergence results sof the previous subsection in the context of
the Benamou-Brenier algorithm. To that end, it is sufficient to show that an iteration of the
algorithm can be considered as the iteration of a certain non-expansive operator. We consider
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the space H = L2(Q)d+1 × L2(Q)d+1, provided with the scalar product 〈(µ1, q1), (µ2, q2)〉H =
〈µ1, µ2〉L2 + r2〈q1, q2〉L2 , so that (H, 〈., .〉) is an Hilbert space.

Let B : H → H be the operator which associate to (µ, q) the product (µ′, q′) of the last two
steps (B and C) of the algorithm Benamou-Brenier. Here ψ is transitory: indeed, if (µ∗, q∗, ψ∗)
is a saddle point of the Lagrangian L (and thus Lr) defined in (2-9), then (µ∗, q∗) = B(µ∗, q∗).
Conversely if (µ∗, q∗) is a fixed point of B then (µ∗, q∗, ψ∗) is a saddle point of the Lagrangian,
where ψ∗ is the unique element of Sg which satisfies q∗ = ∇ψ∗. The potential ψ is therefore only
required for computational purposes.

Proposition 9.2. The operator B is non-expansive on H, and quasi-firmly non-expansive on
B(H).

Proof: (µ1, q1) and (µ2, q2) being given, we determine (µ′1, q
′
1) = B(µ1, q1) and (µ′2, q

′
2) = B(µ2, q2)

by the following iteration (see subsection 2.3). For i = 1, 2, we look for:
• Step A : The unique ψ′i ∈ (H1/R)(Q) such that G(h) + 〈µi,∇h〉L2 + r〈∇ψ′i − qi,∇h〉L2 = 0,
for all h ∈ (H1/R)(Q).
• Step B : The unique q′i such that 〈µi + r(∇ψ′i − q′i), p− q′i〉L2 ≤ 0, for all p ∈ P̃.
• Step C : We define µ′i by µ

′
i = µi + r(∇t,xψ′i − q′i).

Let us start by studying the non-expansiveness of B. Note that by injecting the equation of
step C into step A and step B (for i = 1 or i = 2), we obtain the two new equations:

∀h ∈ H1(Q)/R, G(h) + 〈µ′i,∇h〉L2 + r〈q′i− qi,∇h〉L2 = 0, et p ∈ P̃, 〈µ′i, p− q′i〉L2 ≤ 0. (9-100)

Let us call them (9-100)1 and (9-100)2. We set µ(′) = µ
(′)
2 − µ

(′)
1 , q(′) = q

(′)
2 − q

(′)
1 and ψ(′)

=

ψ
(′)
2 − ψ

(′)
1 .

Respectively, by taking (9-100)1i=2−(9-100)1i=1 and h = ψ
′, and by summing (step B)i=2 with

p = q′1, and (step B)i=1 with p = q′2, we obtain respectively the two following relations:

〈µ′,∇ψ′〉+ r〈q′ − q,∇ψ′〉 = 0 and 〈µ′, q′〉 ≥ 0. (9-101)

denoted as (9-101)1 and (9-101)2. By summing these two relations, we then have 〈µ′,∇ψ′−q′〉+
r〈q′ − q,∇ψ′〉 ≤ 0. By factoring the term |µ|2 − |µ′|2, we then obtain

|µ|2 − |µ′|2 = 〈µ− µ′, µ+ µ′〉 = −r〈∇ψ′ − q′, 2(µ+ r(∇ψ′ − q′))− r(∇ψ′ − q′)〉

= −2r〈µ′,∇ψ′ − q′〉+ r2|∇ψ′ − q′|2 ≥ 2r2〈∇ψ′, q′ − q〉+ r2|∇ψ′ − q′|2.
(9-102)

Moreover,we have 〈∇ψ′, q′ − q〉 = 〈∇ψ′ − q, q′ − q〉+ 〈q, q′ − q〉

= (1/2)
(
|q′|2 − |q|2 + |q′ − q|2

)
+ 〈∇ψ′ − q, q′ − q〉 − |q′ − q|2

= (1/2)
(
|q′|2 − |q|2 + |q′ − q|2

)
+ 〈∇ψ′ − q′, q′ − q〉.

(9-103)

By re-injecting (9-103) in (9-102), we get:

|µ|2 − |µ′|2 ≥ r2
(

(|q′|2 − |q|2) +
(
|q′ − q|2 + 2〈∇ψ′ − q′, q′ − q〉+ |∇ψ′ − q′|2

))
≥ r2(|q′|2 − |q|2) + r2|∇ψ′ − q|2,

(9-104)

i.e. (|µ|2 + r2|q|2)− (|µ′|2 + r2|q′|2) ≥ r2|∇ψ′ − q|2 ≥ 0. (9-105)

Now, we have ‖(µ1, q1)− (µ2, q2)‖H = |µ|2 +r2|q|2 and ‖B(µ1, q1)−B(µ2, q2)‖H = |µ′|2 +r2|q′|2:
the operator B is therefore non-expansive.
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We now demonstrate the quasi-firmly non-expansiveness of B on B(H). Let (µ∗, q∗) a fixed
point of B (hence include in B(H)), x = (µ, q) ∈ B(H) let us define (µ′, q′) = B(µ, q) = Bx. By
using equation (9-105) with (ψ, q, µ) = (ψ − ψ∗, q − q∗, µ − µ∗) and (ψ

′
, q′, µ′) = (ψ′ − ψ∗, q′ −

q∗, µ′ − µ∗), we obtain:

(|µ− µ∗|2 + r2|q − q∗|2)− (|µ′ − µ∗|2 + r2|q′ − q∗|2) ≥ r2|∇(ψ′ − ψ∗)− (q − q∗)|2. (9-106)

For the second term, we get

r2|∇(ψ′ − ψ∗)− (q − q∗)|2 = r2|∇ψ′ − q|2 = |(µ′ − µ) + r(q′ − q)|2

= |µ′ − µ|2 + 2r〈µ′ − µ, q′ − q〉+ r2|q′ − q|2,

with 〈µ′ − µ, q′ − q〉 ≥ 0, according to the relation (9-101)2 (recalling that (µ, q) ∈ B(H)). In
the same way as in [11], we thus obtain:

(|µ− µ∗|2 + r2|q − q∗|2)− (|µ′ − µ∗|2 + r2|q′ − q∗|2) ≥ |µ′ − µ|2 + r2|q′ − q|2,

that is to say, ‖(µ, q)− (µ∗, q∗)‖2H − ‖(µ′, q′)− (µ∗, q∗)‖2H ≥ ‖B(µ, q)− (µ, q)‖2H .

By applying Theorem 9.1 to the operatorB, we are then able to show the weak-L2 convergence
of the Benamou-Brenier algorithm to a fixed point of B (i.e. to a saddle point of L) whose
existence is justified by Theorem 3.1. Similarly, by applying Theorem 9.2, we can easily define
a relaxed version of the algorithm with strong-L2 convergence. This non-expansive operator
approach has recently been used to show the convergence, weak or strong, of proximal splitting
algorithms [5].

Proposition 9.2 also justifies the convexity (and closure) of the set of saddle points of L
(property mentioned in the schematic proof of the Lemma 6.1). The set of fixed points of a
non-expansive operator is indeed a closed convex set. The operator B immediately gives us this
convexity for the components µ and q. The characteristic (P3) of the properties (I) as well as the
linearity of the gradient operator ∇t,x transfer this convexity to the component ψ, and therefore
to the set of saddle points of L.

10 Conclusion and perspectives

The starting point of our work is the study of the Lagrangian augmented algorithm of Benamou-
Brenier [3]. We have shown in the section 9 the weak convergence of this algorithm to a saddle
point of the Lagrangian L, which models the dynamic formulation of the optimal transport
problem. This proof of convergence is based on a reformulation of the algorithm as an iterative
sequence of a non-expansive operator B, whose fixed points are equivalent to the saddle points
of L. This formulation allows us to exploit the literature associated with the theory of non-
expansive operators, from which we were able to propose a relaxed version of the algorithm that
strongly converge to a saddle point of L. However, numerical experiments did not reveal any
real speed or accuracy improvement of the relaxed algorithm with respect to original one.

The convergence of the algorithm and its relaxed version remains conditioned to the existence
of a saddle point for the Lagrangian L, and therefore of a fixed point of the operator B. Hence
in sections 4 and 5, we have tackled the problem of existence of such saddle points. In section 6,
we have then shown the uniqueness of the evolution of the density and the momentum resulting
from such transport. Our study have been carried out in the most general conditions, especially
in cases where the starting and arrival densities ρ0 and ρ1 could vanish on some subset of the
transport domain. As far as we know, this is the first mathematical convergence proof of the
Benamou-Brenier algorithm for canceling densities in L2.
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Such conditions imply to take into account the case where the number of connected compo-
nents of the support of the densities ρ0 and ρ1 are not the same. Such cases generally exhibit
non-regular optimal transport plans. This is the reason why a large part of our work (namely
sections 4 and 8 ) has involved an in-depth study of the regularity and behavior of a velocity
field associated with transport plans.

This study also gave us two opportunities to obtain parallel results. Firstly, in subsection
8.4, we have stated new results about regularity and control of a velocity field associated to an
optimal transport. And conversely, in section 7, we propose to state minimal properties that a
velocity field has to satisfy in order to be associated to an optimal transport in L2 (see Theorem
7.1).

In forthcoming works, we would like to analyze the convergence properties of general dy-
namic optimal transport algorithms: stopping or distance criterias with respect to the solution,
theoretical information on the speed of convergence, etc.

Another perspective concerns the studies realized in sections 4, 5 and 6, on the existence
and uniqueness of solutions of the dynamic optimal transport problem in L2. We would like to
extend such results to cases of dynamic optimal transport operating in less classical environments,
especially non-isotropic domains (see [15]), or more generally within Riemannian manifolds.
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