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Abstract

In the beginning of the 2000 years, J. D. Benamou and Y. Brenier have proposed a
dynamical formulation of the optimal transport problem, corresponding to the time-space
search of a density and a momentum minimizing a transport energy between two densities.
They proposed, in order to solve this problem in practice, to deal with it by looking for a
saddle point of some Lagrangian by an augmented Lagrangian algorithm. Using the theory
of non-expansive operators, we will study the convergence of this algorithm to a saddle point
of the Lagrangian, in the most general conditions, particularly in cases where initial and final
densities cancel on some areas of the transportation domain. The principal difficulty of our
study will consist of the proof, in these conditions, of the existence of a saddle point, and
especially in the uniqueness of the density-momentum component. Indeed, these conditions
imply to have to deal with non-regular optimal transportation maps: that is why an impor-
tant part of our works will have for object a detailed study of the properties of the velocity
field associated to an optimal transportation map in quadratic space.

1 Introduction

The optimal transport problem is generally formulated as follows: considering two sets of par-
ticles or probability measures, the question is to find the assignment between those discrete or
continuous objects minimizing a given cost. This is referred to as optimal transport or optimal
assignment: even if these two denominations describe the same problem, they reflect however
two different approaches. Indeed, while it was initially a problem of optimal displacement, the
pioneer Gaspard Monge, acknowledging the fact that the optimal trajectory from one point to
another was the straight line, himself reduced this problem to a simple assignment problem.
The same holds for the formulation given later by Leonid Kantorovitch (another pioneer): his
problem was also reduced to a single assignment (or allocation) problem of the elements of a
given resource to be transported. A such, the trajectories are not involved in the transport cost,
which only reflects the price to pay to move a mass from one point to another.

The reduction of the optimal transport problem to an assignment problem first makes it
easier to tackle theoretically. (see, for instance, the work of Kantorovitch [16]). However, when
it comes to deal with the problem practically, that is to describe more precisely the optimal
assignment plan, this formulation is less efficient. Some approaches even choose to reintroduce
the notion of displacement: this will be the case of the method that we will deal with here.

The first attempt to link the optimal assignment and optimal displacement problems was
proposed by R. J. McCann [18|. There was considered the continuous displacements between
two measures, that is, to determine a continuum of intermediate measures between two measures



w and v, so that the integral sum of local optimal costs (ie the distance of Wasserstein step
by step) would be equal to the global optimal allocation cost between p and v. The idea is
that for infinitely close measures, there is no difference between optimal assignment and optimal
displacement.

Relying on this continuous interpolation idea between the densities pg and p; by densities p;
of constant mass, second-order algorithms have been proposed to solve the problem efficiently
[4]. This type of approach is nevertheless limited to non-vanishing densities. As as we know, the
only numerical method handling the general case is based on the work of Y. Brenier and J.-D.
Benamou. They introduced a continuous formulation, originating from fluid mechanics, of the
optimal transport problem in [3]: this amounts to determine directly the evolution of the density
p =t +— py as well as the velocity field v which advects this density, corresponding to the optimal
map V¢. Such a pair (p,v) therefore verifies a continuity equation.

One of the main inerest of the dynamic formulation of the optimal transport problem is its
expression in terms of fluid mechanics quantities: this makes the model very flexible, and allows
easy generalization to other physical constraints [17, 8] which could be relevant in applications.
The introduction of these physical constraints (anisotropy of the domain, constraints of free
divergence or rigidity on the velocity field) in the dynamic problem was the subject of [15].

But the main interest advanced by the authors of [3| was the ability to introduce an algorithm
to exploit this physical formulation of the optimal transport problem, based on a convex refor-
mulation of the latter. For this purpose, they had chosen to introduce the impulsion m = pv,
and to reduce the problem to the search for an optimal p = (p*, m*) rather than (p*,v*). In
other words, to find the optimal velocity field v* on the support of the density p* (the velocity
field v can indeed vary outside the support of p without modifying the value of the travel energy
K). Such a formulation makes it possible to convexify the transport energy and to linearize the
mass conservation equation. The problem then becomes the following: minimizing a convex,
proper, lower semicontinuous energy.

The authors of [3] had in this same article proposed to rephrase this convex dynamic problem
as the search for a saddle point (¢, ¢, 1) of a Lagrangian L, and then to address this new problem
with an augmented Lagrangian algorithm (more precisely ADMM) such as developed in [11]|. This
algorithm has been used since 1999 and works well in practice, although a number of theoretical
questions remain unanswered: the existence of solutions in the context of this new dynamic
formulation, the existence of a saddle point for L, the convergence (weak or strong) of the
algorithm, and the possible uniqueness of a solution, in the general setting of possibly vanishing
densities.

Before going further, let us first introduce the dynamic formulation of the optimal transport
problem proposed by Benamou and Brenier in [3].

2 Formulation of the problem and presentation of the algorithm

2.1 The problem of Monge-Kantorovich in R? for a quadratic cost

In all the following, we denote by | - | the Euclidean norm on R? (for all d € N). Consider two
nonnegative densities (pg, p1) on R? (d € N*), with bounded supports and of the same mass.
The problem of Monge-Kantorovich is to determine an optimal transport plan 7' between poL?
and p;£¢ minimizing

/Rd d(z, T(x))?po(z)dz, (2-1)

where d(z,y) is a distance on Q. We write T#(poL?) = p1 £ the push forward by T of pgL¢ on
p1L%, i.e. such that for any bounded subset A of RY, fA po = fT—l(A) p1. The quadratic distance



of Wasserstein Wa(po, p1) is defined by:

Wa(po, p1)? = inf /d,T 2 da. 2-2
2p0p) = f e ), W@ T@) po(@)de (2-2)

In the Euclidean case (where d(z,y) = |x — y|), there exists a unique transport plane T
between py and p; that can be written as the gradient of a lower semi-continuous (l.s.c.) convex
function ¢ (Brenier’s Theorem [20] p.66) i.e.

2 2 . 2

Walmopr)? = [ IVot@) =alp(yde= ot | @) —afm@)dn @9
This problem, in the dynamic formulation of the Monge problem introduced by J. -D. Benamou
and Y. Brenier [3], can be rephrased as a minimization problem of a kinetic energy K, depending
on a mass p and a velocity field v, such that p is transported from pg to p1, by v.
Let us begin by formulating in details this new optimization problem in a framework that will
be convenient for its resolution by the augmented Lagrangian algorithm [3], and which will be
the main object of our study.

2.2 Convex and augmented lagrangian formulation

We propose to study the following problem: let pg,p1 € L?(RY) be two probability densities
with bounded supports. The dynamic optimal transport formulation consists in increasing the
dimension of the problem by adding a temporal variable ¢ € [0, 1]. Formally, we look for a couple
(p,v), where p denotes a nonnegative density, and v a vector field with values in R?, both defined
on |0, 1[x €, where € is a bounded open convex set of R? containing supp(pg) and supp(p1). This
couple is required to satisfy the continuity equation,

Op + div(pv) =0 (2-4)

with homogeneous Neumann boundary conditions on pv, and with initial and final conditions on
p:

p(0,2) = po(a), p(1,2) = p1 (). (2-5)
Among all such couples (p ,v) we look for a minimizer of K(p,v) = (1/2) fol fq v|?pdzdt. As K
is not convex, and the constraint (2-4) is nonlinear, the authors in [3| proposed as a new variable
m = pv in place of v, and consider the transport cost:

_ 1 m(t. )2
K(p,m) = /0 ; |20(8752>’ dx dt, (2-6)

with the corresponding continuity constraint:
Op +divym =0 (2-7)

still with homogeneous Neumann boundary conditions on m and initial / final conditions (2-5).
The nonnegativity constraint on p turns to {p > 0 or (p,m) = (0,0)} through the change of
variable m = pv. By introducing a Lagrange multiplier ¢ to handle the linear constraints (2-7)
and (2-5), we can write a saddle-point formulation of the problem:

(pm) o A[xQ P Q

, [m)?
inf sup [A) - A),I[XQ(aﬂ[)p = Vg m) + / (¢(07 ')/00 - "/J(la ')pl) : (2'8)



Another curcial idea of [3], is to encode the above nonnegativity constraint by introducing the
Legendre transform of (p,m) + |m|?/(2p):

2 .

with ¢ = (a,b) € RxR? and P = {(a,b) € R xR% a < —|b|?/2}. Since the transport cost is now
convex and l.s.c., it is equal to its biconjugate by the Legendre transform. We therefore have
Im|?/(2p) = Sup(q,p) (pa +m b — F(a,b)). The problem is thus partially linearized with respect
to the variables (p, m): the non-linear part (i.e. F') reduces to the indicator function of P, which
will be implemented as a projection on that convex subset.

By some manipulations as sup-integral or inf-sup inversions, and by setting ¢ = (a,b) and
p = (p,m), the saddle point problem (2-8) is reformulated as inf y 4 sup, L(¢,p, 1) where

L(,p, 1) = F(q) + G() + (11, Veuth — @) 12 (2-9)

with G(v) = [¥(0,-)podr — [o¥(1,-)p1dz and F = x5 (meaning F(q) = 0 if ¢ € P and
F(q) = 400 otherwize), where P = {(@,b) € L2(Q) x L*(Q)%,a < —[b|2/2}. In the following
we will write P in place P. The augmented Langrangian formulation is finally given, for some
parameter r > 0, by:

Lo (6,0,10) = F(0) + G() + (1, Vot — g2 + L[| Veath — a3 (2-10)

2.3 Benamou-Brenier algorithm

To solve the saddle point problem associated to (2-10), the authors of [3] have proposed an
algorithm based on a Uzawa method: the ALG2 algortihm introduced by M. Fortin and R.
Glowinski in [11]. This consists in performing the following steps, starting from ("1 ¢"~1 u"):

1. Step A: Find the unique ¥" such that L, (4", ¢" 1, u™) < L(,¢" 1, u™), V.
2. Step B: Find the unique ¢" = (a™,b") such that L, (¢¥™, ¢", ") < L.(¥", ¢, u™), Yq.

3. Step C: Update (p" ™!, m"™1), setting p" ™! = ™ + r(Vioo" — q"),

More precisely, the algorithm breaks down as follows: Step A can be interpreted as a projec-
tion on fields which are gradients. We look for the unique ¥™ € H'(Q)/R such that:

Vh € HY(Q), G(h) + (™, Vizh) + (Vi)™ — ¢" 1, Vi .h) = 0.

Formally, this corresponds to find ™ solution of —rA; ;9" = div; (,u" — rq"il), with as initial
and final conditions:

Tat’(vbn(oa ) = pPo — pn(o, ) + Tan_l(()? ')a and rat,(vbn(l? ) =p1— pn(1> ) + Tan_l(L ')?

and homogeneous Neumann boundary conditions on (0, 1) x 9€2. This operation corresponds to
a kind of Helmoltz decomposition.

Step B is an orthogonal projection on P: ¢" = Pp ((1/r)u™ + V¢ x9™). This projection is an
orthogonal L? projection, which corresponds to a point-wise projection.

Step C uses the computed gradient of step A to implement a projection on the affine space
of constraints (2-4) and (2-5): p"™ = p" + r(Vi 0" — ).



Remark. We chose to take the same parameter r > 0 for the Uzawa step C to ensure the
positivity constraint of p” and cancellation of m™ when p” vanishes. Indeed step B can be
rewritten as V¢’ € P (", ¢’ — ¢") < 0, which means that p"*! = (p"*!, m™*1) is orthogonal
to the paraboloid P at ¢". We deduce by the strict convexity of P, that for all (¢, z) €]0,1[x,
p"(t,x) > 0or (p"(t,x),m"(t,x)) = 0.

2.4 Objectives and related existing works

The main object of this article is to propose a theoretical framework allowing to answer the
three follwing points: existence of saddle points, their unicity properties and convergence of the
considered algorithm. The proposed study will also be the opportunity to characterize rigorously
some properties of the velocity field associated with an optimal transport plan.

A first study of the Benamou-Brenier algorithm was carried out in 2004 by K. Guittet in
[13]. This study considered periodic in space boundary condition: Q = T¢ (where T denotes the
torus in dimension d, i.e. T¢ = R?/Z%). The strongest assumption of this first study was that the
density p*, solving the problem (2-6), had to be larger than a positive constant. This assumption
implied in particular a certain regularity of the associated transport plan (discontinuity free).

Indeed, under such conditions, the potential ¢ must be of class C' and with Lipschitzian
gradient. The regularity of an optimal transport plan on a convex domain (i.e. more precisely
here the potential ¢) depending on the regularity of the initial and final densities py and py,
additionally assumed to be strictly positive, was studied by Caffarelli in [6] and [7]. A special
case mentioned in [13] is the one when we consider pg and p; strictly positive on T and belonging
to C*H(T?), for some | €]0.1[, and a € N% These conditions imply, according to a study of
Cordero-Erausqui in [9], that the optimal transport potential ¢ is of class C**2 and, for any
t € [0,1], the density p; also has a C®! regularity on T? and bouned from below by a strictly
positive constant independent of ¢.

Under the above assumptions, the author of [13] first shows the existence of a solution (p*, m*)
for the dynamic formulation of optimal transportation; solution from which is proven the exis-
tence of a saddle point (*, ¢*, u*) for the Lagrangian L. However, there is no uniqueness result
for the density-momentum couple p* = (p*, m™*).

There is also a convergence result of the Benamou-Brenier algorithm: however, this does not
explicitly give the strong or weak convergence of the main component of the triplet (¢, Gn, fin)-
Indeed, considering the problem (2-6), the component of interest is the density-momentum com-
ponent i, = (pn, my). However in this convergence result, only the strong convergences in H! /R
and L? of the components 1, and ¢, are proven. Moreover, the proof of this convergence seems
incomplete (see section 8).

In this article, we consider a more general framework. The open set 2 will here be assumed
to be convex and bounded, with homogeneous Neumann boundary conditions on the momentum
m, but more importantly, the density p will not be assumed to be minored by a strictly
positive regular constant. We will simply assume that the densities pg and p; are elements of
L?(Q) (thus potentially non-regular) in the neighborhood of 95.

In this framework, we will show the existence of a saddle point for the Lagrangian L, solution
of the problem (2-6), as well as the uniqueness among the set of saddle points (¢*, ¢*, u*) of
the Lagrangian L of u* = (p*,m*), which shows that the density corresponds to the McCann
interpolation. The uniqueness result established in this article only concerns the component p,
sinc, as we will see at the beginning of the section 6, there is no uniqueness of the saddle
points of L: in fact, the components ¢ and ¢ can vary outside the support of p.

These first two points (results of existence and uniqueness) will be established after a pre-
liminary study on the regularity of the velocity field v inherent to an optimal transport. In



particular, we would like to underline the new results of this paper: V; v € LP((0,1), L] c(Rd))
forall 1 < p < 4o00and 1 < g < +oo such that 1/p+1/q > 1, and especially v € I/Vllo’f([O, 1] x R%)
(ie. VQ cCc R4 v e WHP((0,1) x Q) ) for all 1 < p < 2 (see Theorem 4.2 and corollary 4.3.

This study will also lead us to characterize accurately a velocity field inherent to an optimal
transport in L?. More precisely, we will detemine sufficient hypothesis on a velocity field v €
L2 ([0,1],RY) for a density transported by v to be the McCann interpolation of an optimal
(unique) transport Theorem 7.1. These hypothesis will be reduced to the usual characteristics
of optimal isotropic transport, in particular straight-line trajectories, at constant speed, and
without crossing.

Finally, we will establish the weak convergence of the Benamou-Brenier algorithm, as well as
the strong convergence of a relaxed version of it, towards a saddle point of the Lagrangian L.

3 Existence of a saddle point

The main objective of this first part is to directly build a saddle point of L defined in (2-10).
Let us therefore define the framework rigorously: let pg and p; be two probability densities (i.e.
non-negative and integral equal to 1) of L?(R?) with bounded supports, and  a sufficiently
regular bounded convex open set of R? such that supp(pg) Usupp(p1) C €. In the remainder of
this paper, we denote @ = (0,1) x Q.

For all 7 > 0, we write L*(po, p1,2) the set of Lagrangian saddle points L, which are elements
of Sg = H'(Q)/R x LAQ)H1 x L2(Q)1.

Let us define the following three properties for a triplet (i, g, u) € Sg of L,:

Properties (I). (v, q, 1) € Sg verifies:
(P1) V¢ €P, (u,q —q) <0,

(P2) Yh € HY(Q), G(h)+ (u, Vizh) =0,
(P3) Vg =q.

where the paraboloid P is defined by

b

P = {(a, b) e L2(Q) x L2(Q)%, a+ - < 0} , (3-1)

and the linear operator G by G(h) = /h(O, )po dx — /h(l, Jp1dz, for all h € HY(Q).

Proposition 3.1. A saddle point (¢V*,q*, u*) € Sg of L, is characterized by the properties (I),
for allr > 0.

Idea of proof: We first check that for a triplet (¢*, ¢*, u*) € Sg satisfying the properties (I), we
have the relation

Lr(@b,q,lﬁ*) Z Lr(w*aq*au*) 2 LT(¢*,C]*,M)

for all (¢, q,u) € Sg, which characterizes a saddle point of L,. Conversely, for a saddle point
(v*, ¢*, u*) € Sg of L, one verifies one by one the properties (I), first by fixing ¢ = ¢* and ¢ = ¢*
(one then shows (P3)), then fixing ¢ = ¢* et u = p* (we show (P2)), and finally by fixing u = p*
and 1 = 9* (we show (P1)). Since the saddle points of the Lagrangian L, are independent of
r > 0, then we will only consider the (not increased) Lagrangian L. O



By setting 1 = (p, m) and ¢ = (a,b) (with a + @ < 0), we can reinterpret the properties

(P1) and (P2). (P1) means that if u(¢,x) is nonzero then it is orthogonal to the paraboloid at
the point ¢(¢,x), i.e. co-linear to the vector (1,b(¢,x)). The property (P1) can be translated as
follows: p > 0, m = pb, p(a + |b|?/2) = 0. Next, (P2) corresponds to the mass conservation
equation verified by p and b (i.e. Oyp + div,(pv) = 0, taking v = b) for the initial and final
densities pg and p;.

We now recall that according to Brenier’s theorem [20] (p. 66), there exists a convex potential
¢ verifying p1 L% = Vo#(poL?) from which we define the following quantities:

Definition 3.1. For all t €]0, 1], we define:

1. The characteristic displacement at the instant t,

12
X(t,-)=(1—1)id+tVep = Vo avec ¢p = (1 — t)|2| +to, (3-2)
2. The associated velocity field v,
id — - * L2
ot ) = VO e g = -l (3-3)

where (¢1)* = (¢¢)* denotes the Legendre transform of the potential ¢y (defined above).

3. The convez density p, composed by the union on [0, 1] of the McCann interpolation densities
pt between po L and py LT [18]:

plt,)LL = pt = X (1,)#(po). (3-4)

Let us also define the (I'1) property on the potential ¢:
Hypothesis (I'1). ¢ and ¢* are convex, continuous and admit a minimum on RY.

Here ¢* always designates the Legendre transform of ¢.
Reminder: A convex and continuous function on R? is locally Lipschitz.
For the purpose of our study, we complete the Brenier Theorem ([20] p. 66) as follows:

Proposition 3.2. Let py be a probability density Lebesque-measurable on R and py a probability
measure defined on the tribeof Lebesque in R?. There exists a potential ¢ : R* — R, satisfying
the property (T'1), such as Vo# (poﬁd) = 1.

Idea of proof: One can first show that the optimal transport potential ¢ given by the Bre-
nier’s Theorem (convex, semicontinuous inferior and gradient bounded almost everywhere on
supp(poL?)) is finite and of bounded gradient on an open neighborhood of the support of pgL?.
It is then possible to extend the restriction of ¢ to this neighborhood by a finite ¢ convex function
on R? sontibuous, supralinear and sub-quadratic. The supralinearity of ¢ implies the existence
of a global minimum for the latter, and ensures that its Legendre transform 5* will also be finite
(and thus continuous) on R?. The sub-quadratic character of ¢ ensures the supralinearity of 5*,
and therefore the existence of a global minimum. O

We can now define the following set:

Definition 3.2. Let py be a probability density Lebesque-measurable on R% and py a probability
measure defined on the tribe if Lebesque in RY. We denote by ®(poL?, p1) the set of functions
¢ : RT — R satisfying the property (T'1) such that Vo# (poL?) = p1.



3.1 Reformulation of the Properties (I)

Let us give an idea of the approach that will be followed: let us set u = (p, pv) and ¢ = (—%|U|2, v).
To construct a saddle point, such p and ¢ should satisfy the properties (I). It will be sufficent to
verify that with p and v defined like in (3-4) and (3-3) satisfy the following properties:

Properties (T').
(P1°) The density p verifies p € L*(Q).
(P2’) The velocity field v is an element of L™(Q)%.

(P3’) The velocity field v satisfies the Burgers equation in the sense of the distributions:
1 2
0w + ivx\vl =0

(P4’) The potential (p,v) satisfies the mass conservation equation in the distributions sense for the
initial and final conditions pg and p1 and the homogeneous Neumann boundary conditions:

/Q (Oth +v.Vh)p+ /Q h(0, x)po(x)dx — /Qh(l,x)pl(q:)dx =0 (3-5)

We will see that p and v satisfying the properties (I') is sufficient to build a triplet (v, q, u)
satisfying properties (I). However, the inverse is not true: a triplet (1, ¢, u) satisfying the prop-
erties (I) is not enough to build a density-velocity field pair (p,v) satisfying properties (I'), and
such that u = (p,pv) and ¢ = (—%[v|%,v). Indeed, the component ¢ may not belong to the
boundary of the paraboloid (a,b) — a + (1/2)|b|? < 0 outside the support of y.

The properties (P1’) and (P2’), respectively established in Lemma 5.1 and 4.2, ensure that the
saddle point is in the correct space, i.e. in Sg (defined at the beginning of the section 3). Indeed,
we have ¢ € L2(Q)! & ve LY Q) c L®(Q)4, p € L2(Q)7! < pe L2(Q) et pv € L2(Q)4,
and, for the potential 1, we have W1>(Q) ¢ HY(Q).

The properties (P2’) and (P3’) involve the property (P3). Indeed, having ¢ deriving from a
space-time potential amounts to verifying, for a dimension d < 2, that curl; ;(¢) = 0 (recalling
that ¢ = (—1[v[%,v)) in the sense of distributions (see [12] Theorem 2.9 p.31), so that

(9tv + %VMQ = O,
curl(v) =0 & F e D(Q),v =V

It is clear that the velocity derives from a potential in space in the sense of the distri-

ot =i (5 (31— @) (35)

(see the definition of v in (3-3), and this potential from which v is derived is an element of
Li (Q). According to the Lemma 5.2, this proves the property (P3), provided that the field v is

loc
an element of L>(Q)?% and verifies the Burgers equation

butions, namely:

1
o + §vxyv|2 =0

in the sense of distributions.
Even if the notion of rotational is no longer defined for d > 2, the Lemma 5.2 allows us to
state the property (P3) from (P2’) and (P3’), whatever the dimension d is, provided that we



have v € L>(Q)%. Let us note that the rotational can in fact be defined in dimension d + 1 > 3,
but this one will then have an image in a d(d — 1)/2 dimension space.

Finally, note that the property (P4’) translates the property (P2) of (I). Indeed, we can easily
extend the relation for h € H'(Q) once it is established for h € C*°(Q. Finally notice that with
the above results, the Property (P1) is verified by setting m = puv.

3.2 Main results of existence, uniqueness and regularity

We say that v satisfies properties (II) if and only if:
Properties (II).

1. There exists 1) € VVli:O([O, 1] x Q) (i.e. ¥ € WEH2((0,1) x w), for all bounded open set
w C Q) such that v = V).

2. The velocity field v satisfies the Burgers equation in the sense of the distributions, namely
the relation

1
O + va|v|2 = 0. (3-7)

According to the Lemma 5.2 that will be stated below, the properties (II) are equivalent to
the following ones:

1. ve L2 (0,1] x Q) ie. v e L®((0,1) x w)?, for all bounded open set w C Q,

loc

2. v+ 3V4[v[? = 0 (in the sense of distributions),
3. there exists 1 € L}, .((0,1) x Q), such that v = V1,

which correspond to the properties (P2’) and (P3’).

The properties (II) contain the characteristics of an isotropic optimal transport for a quadratic
cost: the first point (i.e. v = V1) corresponds to the property of non crossing trajectories
(recalling that in dimension less than 3 this property is equivalent to a rotational free velocity
field v); and the second point (the Burgers equation) is in line with the property of straight-line
displacement.

At the end of section 7, we will give a framework in which we can rigorously characterize an
optimal transport-type mass displacement from these properties alone.

We say that v satisfies properties (B) if and only if:

Properties (B).
1. v is locally Lipschitz on ]0,1[x €,
2. Vizv € L™ ((0,1), L,.(Q)),

loc

3. Vizv € LP((0,1), L (Q)) with 1/p + 1/q > 1 (in particular v € W'llo’f([(), 1] x Q) with
1<p<2).

The principal results of existence and uniqueness we show are the following:



Theorem 3.1 (Existence of a saddle point). Let pg and py two probability densities of L?(RY)
with bounded supports, and let Q a sufficiently regular bounded open set of R? such that supp(po)U
supp(p1) C Q. For all ¢ € ®(poL?, p1LY) (see relation 3.2), there is a non-negative density
ps € CY([0,1], L3(2)), such that for all [0,1] x R%, we have

p¢(t7 )Ed = X(i)(tv )#(poﬁd)a avec X¢(t7 ) = Vaor = (1 - t) id +tV 0,

and a velocity field vy, defined with respect to ¢ as in (4-12). Then, setting py = (pg, ppvy) and
qs = (—(1/2)|vg|?,vg), there exists 4 € Wllofo([(), 1] x Q) such that q5 = Ve and such that
(Y4, 4o, ttp) (o at least its restriction on ]0,1[x) is a saddle point Lagrangian L. In addition,
vy satisfies the properties (II) and (B).

As we will see in section 7, the fact that v satisfies the properties (II) is sufficient to character-
ize an optimal transport in L?. On the other hand, the fact that v verifies the properties (3) is in
itself a result apart from this construction: these properties, although interesting in themselves,
will not be directly used to characterize an optimal transport velocity field in L?. However, very
close properties will be considered to show the different statements on the uniqueness of the
component (p, m) of the saddle points of L, and the results related to the characterization of an
optimal transport-type velocity field.

Theorem 3.2 (Unicity of density and momentum). If (¢¥*, ¢*, u*) is a saddle point of L (the
assumptions on py, p1 and Q being the same as in the Theorem 3.1), then for any potential
¢ € ®(poL?, p1L£Y), we have p* = (p*,m*) = (P, PsVs), with the velocity field vy defined with
respect to ¢ as in (4-12), and

polt, VLT = Xy(t, )#(po L) € C([0,1], L*(R)), with Xy(t,) = Vady = (1 — 1) id +tV .

In general, the set of saddle points (v, ¢, ) of L is not reduced to a single element: only the
component 1 = (p,m) is unique. In other words, the set of points (¢, q, ) of L share the same
component pu, i.e. there is uniqueness of the density p and the velocity field v on the support
of p. The components g and 1 can indeed vary outside the support of p. For more details, see
sub-section 4.2.1 of [14].

4 Velocity field properties

In this section, we define and characterize a velocity field associated to an optimal transport
map using Brenier’s Theorem. This constitutes the basis of the existence and uniqueness
results concerning the saddle points of L (see sections 5 and 6), as well as the generalized results
of the section 7.

Let us begin by introducing the notion of infimal convolution, or inf-convolution:

Definition 4.1 (inf-convolution (/2] chapter 12)). Let f and g be two functions from R? to
| = 00, +00]. The inf-convolution of f and g, denoted by fOg, is defined by

fOg : RY =] — oo, +oo] : o +— inf {f(z —y) +9(y)}- (4-1)

In the remainder of our problem, we will need the following property, in conjunction with the
Legendre transform ([2] chapter 13): for all functions f and g from R? to | — oo, +00], we have

(fHg)* = f"+g" (4-2)

We also recall the definition of the proximal operator:
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Definition 4.2 (The proximal operator ([2] chapter 12)). Let f be a function of R™ (n € N*)
in R proper, l.s.c. and convex, and let x € R™. The proximal operator of f in x, denoted by
Proxy(z) is the unique minimizer of f + %’SE — |2 in R™. In other words:

Proxy(z) = argmin <f(y) + %]y - x|2> . (4-3)
yeR”

The proximal operator can be characterized by the following relation:
y =Proxs(z) & x—ye€df(y). (4-4)

The operators Proxs and id — Proxy are non-expansive (1-Lipschitz). Let us recall the identity
of Moreau (linking the proximal operator of f with that of its Legendre transform f*):

Prox, s« = id —yProx;/(-/7) (4-5)

We have here defined the operator on R”, but this can be defined on more general spaces
(Hilbert spaces for example), with the same properties.
Let us finally define the Moreau envelope:

Definition 4.3 (Moreau envelope ([2] chapter 12)). Let f : R? —] — 0o, +00] conver, L.s.c.
proper and let v > 0. The Moreau envelope of f with parameter v is defined by:

it = 10 (217| - |2) . (4-6)

By definition of the prozimal operator, we can therefore also characterize 'F, for all x € R and
v >0, by:

2$(@) = F(Prox ) + 5o = Prox () (47)
where Vf is conver and Fréchet-differentiable on RY. Using (4-5), its gradient reads:

V('f) =y (id — Prox,;) = Prox ./, (-/7). (4-8)
The mapping V(7f) is therefore v~ -Lipschitz. Moreover, for every x € R%, from (4-8) and

(4-4) ), we have
V(f)(x) € 0f (Proxys(z)). (4-9)

4.1 Definition and first properties of the velocity field

With the above definition 4.3, the velocity field (3-3) of an optimal transport can be written
as a proximal operator p. This will allow us to deal more easily with the problems of "breaks"
of the velocity field (which are not necessarily discontinuities). An interesting property of this
proximal opertor is that it realizes a bijection in the regular areas of the velocity, while being
able to close the potential "breaks" of the velocity.

Definition 4.4 (Operator p). Let ¢ : R — R satisfying the property (T'1) (especially ¢ is convex
and continuous at every point of R, and admits in each of these point a non-empty and compact
sub-differential). The operator p is defined as

py: [0,1[xR¢ — R

(t,z) > Prox ¢, (ﬁ)

11—t

Py satisfies the following properties:
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1. for all t € [0,1], py(t,-) is 1/(1 —t)-Lipschitz,

2. if t €]0,1], by setting ¢y = (1 —1t)|-|[2/2+tp, then (¢)* is of class C* on RY and we have:
qu(t, ) = V()" (4-10)

3. for allt € [0,1], py(t,-) is surjective on R? and for all x,y € R?,

y=pyt,r) & x€(1-1t)y+tdp(y). (4-11)
4. the velocity v introduced in (3-3) can be defined from Py by:

P— (4-12)

vg(t, ) =

for all t €]0,1[ and x € R,

Proof: The first point simply results from the non-expansity of the proximal operator (see Defi-
nition 4.2). The second point can be established by observing that the Legendre transform (¢;)*
of ¢; can be written in the form of a Moreau envelope. Indeed, through the property (4-2) of
the inf-convolution we have (¢;)* = 17(t¢)*. Using the relation (4-8) of the Definition 4.3, we
can then deduce that for all ¢ €]0,1[, (¢;)* is of class C' on R?, and

* id—PI‘OX(lft)(td))* B . _

The third point is immediately deduced from the characterization (4-4) of the proximal operator.
Finally, the fourth point comes by combining relations (4-10) and (3-3). O

Remark 4.1. In the following, when there is no ambiguity on ¢, we will use v to denote the
velocity field vg.

We now recall that the field of trajectories X, defined for all ¢ € ]0,1[ in (3-2), is
X(tv ) = vx(ét) = (1 — t) id +tVo.

Combining this relation with (4-10), we can observe that p(t, -) formally represents the reciprocal
of the characteristic traces X (¢,-) = Vz(¢¢)".

In the general case (i.c. under the hypothesis (I'1)), py(t,) is not injective on R%: The
operator p¢(t, -) thus repairs the "breaks" that can be generated by a transport plan. Indeed
Py (t, ) re-concentrates the area s generated by diffusion (by the characteristic trajectories X (¢, -))
of the break points on these same points. Thus p,(t,-) can be bijective only in the case where
there are no "breaks" in the transport plan.

Remark 4.2. The" break” points of the transport plan correspond to the points where the poten-
tial ¢ is not differentiable. Although Theorem 4.1 attests that the set of such points is negligible,
the diffusion of these breaks, and in particular the torsion of the velocity field at these points in
t =0 (ort =1 if we consider the points of irreqularity of ¢*) is not. Indeed, the torsions of the
velocity field in the neighborhood of break points may prevent from having H' regularity of
the velocity field at these points. Notice that a H' reqularity of the potential ¢ would have
greatly simplified the study discussed in section 6 on the uniqueness of the saddle points of the
Lagrangian L. Unfortunately, such requlatity can not be assumed in general.
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Next, we can deduce from (4-12) and the first property in 4.4, that for ¢ €]0, 1] fixed, the
velocity field v(t,-) is lipschitz on R?. It is also possible to define a Lipschitz constant that is
only time dependent so that it does not rely on space nor on ¢. The Lipschitz constant

Ly =2/t(1—1t) (4-14)

is namely always valid on R? (for the Euclidean norm | - |), whatever ¢ is. The field of velocity v
is therefore continuous and almost everywhere Fréchet-differentiable in space (by Rademacher’s
Theorem 4.1), and thus ||V v(t, x)| is additionally uniformly bounded by L; = 2/t(1 —t) for
almost all 2 € R?, where || - || denotes the subordinate norm to | - |.

Using the reformulation of v in the definition 4.4, we finally deduce the following property
on the velocity field:

Proposition 4.1. We assume that ¢ satisfies the property (I'1). For every t €]0,1[, and for
every y € R such that ¢ is a Fréchet-differentiable in y (for almost all y € R?), we have :

vé(y) —Yy= 875X<t7 y) - 'U(t, X(ta y))v (4_15>
with X (t,-) = Véy = V[(1 — t)id +tV ).

Proof: Let us take y € R? such that ¢ is differentiable at y (i.e. d¢(y) = {Vo(y)}). Note that
according to (4-11), we have y = p,, (t, (1 — t)y + tV@(y)) = py(t, X (t,y)). The equation (4-15)
can be deducted immediately from (4-12). O

The above proposition can also be reformulated as follows: given that X (¢,-) = V¢, and
Py(t,-) = Va(¢r)* (See the second point of the definition 4.4): for any ¢ €]0,1[, and for all
x € R? such that ¢ Frechet-differentiable in x, we have (V. (¢¢)* o V) (z) = .

4.2 Velocity field control

In this subsection, we will show some properties of the velocity field v defined in (4-12). In
particular, we will be interested in the fact that v is in the space L3 ([0,1] x )4, so that it
satisfies the property (P2’).

Proposition 4.2. We suppose that ¢ satisfies the property (I'1). Let a velocity field v be defined
with respect to ¢ as in (4-12). We then have v € L2 ([0,1] x R4 More precisely, for any

loc

bounded open set w C RY, if we define M = sup,¢,, |0¢(x)| and M* = sup,¢,, |0¢* ()|, we have

sup  |u(t,z)| <5 (max{M, M*} + sup(w)). (4-16)
(t,x)€]0,1[xw

Moreover, there exists 1) € VVlE’é’o([O, 1] x Q), such that v = V).

Idea of proof: We will show that v(¢,-) is uniformly bounded on w in the neighborhood of ¢ = 0.
Take for example ¢ €]0,1/2] and y € w, and let = € (1 —t)y + tdp(y). According to (4-11) , we
have py(t,z) =y, so v(t,z) = (v —y)/t € 9d(y) — y.

We have already seen in (4-14) that for the Euclidean norm | - |, v(t, -) is 2/t(1 — t)-Lipschitz
in space on R? for ¢ €]0;1], so

0(t,y) — (t. )| < -yl <4 ‘xty‘ — 4u(t, )] (4-17)

2
t(1—t)
We have |v(t,y)| < 5lv(t,z)| <5 (M + sup(w)) (by (4-17)) for all ¢ €]0,1/2] and all y € w, with
M = sup|0¢(x)|. The same argument can be used in the neighborhood of ¢ =1 on [1/2,1].

TEW
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For the second point, we recall that according to the last point of the definition 4.4, we have
v(t, ) = (id =V, (¢)*)/t with ¢, = (1—1)|-|?/2+t¢. Thus, v = V. in the sense of distributions,
with ¢ (¢, ) = (1/t) (|- /2 — (¢¢)*), for all ¢ €]0,1[ and for all z € R%. We thus deduce that
v e L2([0,1] x RY) and also ¢ € Wllgfo([o, 1] x RY) by applying the Lemma 5.2. O

In this case, M and M™* are finite. Indeed, as ¢ is assumed to satisfy the property (I'1), ¢
and ¢* are assumed to be finite and convex on R¢ and therefore locally Lipschitz, in particular
Lipschitz on w. Thus, d¢ and d¢* are uniformly bounded on w. Note also that if ¢ verifies the
property (I'1), then, as (¢*)* = ¢, ¢* also satisfies this property.

As we shall see later in the proposition 4.5, if for all ¢ €]0, 1] the interpolated transport plans
V¢ would had been reversal, i.e. if ¢ had been of class C'! with Lipschitz gradient, then we would
have had py(t,-) = (V) ™t = V(¢y)*, and then by (4-12) v(t,-) = Vo ((Vey) ™) — (Vgr) L.
The field v would then have been extensible by continuity in ¢ = 0 and ¢ = 1: the result of the
proposition 4.2 would then have been obvious.

However, in the general case, a transport can induce a change in topology between the
supports of the initial and final masses, that is to say admitting "breaks" and therefore points
of non-regularity for the potential ¢.

With respect to the initial saddle point problem, we have ¢ = (—(1/2)\1}]2, v) c L>®(Q)¥*! ¢
L*(Q)™!. As already stated in (4-14), for every t €]0, 1], v(t,) is continuous and Lipschitz on
R (by providing R? with Euclidean norm, one can take 2/t(1 — t) as the Lipschitz constant).
The field v(t,) is therefore Lipschitz on RY, for a Lipschitz constant independent of ¢ on any
interval [a, 8] C]0,1[. One can for instance consider the constant M, g = supy, g 2/t(1 — ). It
is therefore possible to apply the Cauchy-Lipschitz Theorem on [«, 8]. Then, for every = € R4
and t €]0, 1[, the Cauchy problem

{ yé,x = U(',yt@) (4—18)
Yt,x (t) =,
admits a unique maximum solution over any interval o, 5[, 0 < a < t < 8 < 1. We can
then easily prove that there exists a unique solution defined on ]0,1[ and that it can be written
Yrx(s) = (s —t)v(t,z) + « for all s €]0,1[. Indeed, such a solution satisfies y; ,(t) = =, and
Yr..(8) = v(t,x) = v(s, (s = t)o(t,x) + ) = v(s,yt2(5)), as stated in the next Proposition 4.3. Tt
should also be noticed that the problem of Cauchy:

/
y' =v(y)
4-19
{ y(t) = X(t,2) = (1 — )z + 1V6(), (+19)
has y(s) = (s — t)v(t, X (¢t,x)) + X (t,z) = X (s,x) as unique solution on |0, 1[.

We also want to show that the v field is locally Lipschitz on |0, 1[xR?, i.e. in time-space
(and not just in space). This is the first point of the properties (B) on (0,1) x R

Proposition 4.3. We suppose that ¢ satisfies the property (I'r). Then for all t,s €]0,1[, and
for all z € RY,
v(t,x) = v(s, (s —t)v(t,z) + ).

Idea of proof: This can be shown using the properties (4-11) and (4-12) of the operator p. [

In the above proof, the hypothesis (I'1) is only useful for the conditions on ¢, and not for ¢*.
In fact, we here only need this assumption to male ¢ admitting at all points of R? a non-empty
and compact sub-differential.

Proposition 4.4. We suppose that ¢ satisfies the property (I'1). Then v is locally Lipschitz on
the space 0, 1[xR<.
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Idea of proof: For all (t1,1), (t2,72) € [, 8] x RY, we have, according to Proposition 4.3, the
relation v(t1, z1) = v (t2, (t2 — t1)v(t1,x1) + x1) (one reduces to the same time t2). We can then
conclude by the Lipschitz property (in space) of the field v(¢,-), with the Lipschitz constant
2/t(1 —t) for the Euclidean norm (see (4-14)). O

4.3 Preamble on the regularity of the velocity field

One of the assertions to verify in order to establish the Theorem 3.1, is to prove that every
velocity field v defined by

o(t,z) = w _ % (az ~ Prox <1 - t>) , (4-20)

with ¢ satisfying (I'1), is in line with properties (IT) and (B).

The first point of the properties (II) was partially established by the Proposition 4.2 (that
is v € L2 ([0,1] x R)), and will be fully established by the Lemma 5.2. The first point of the
properties (BB) has been established by the Proposition 4.4.

We will therefore try to establish that v also satisfies the remaining properties, i.e. the second
point of the properties (II), and the last two points of properties (B) (sub-section 4.7).

As we have already mentioned after the theorem 3.1, properties () will no longer be used
in the rest of our study. However, their demonstration, as well as that of the Burgers equation
for v, will be done in parallel with other results concerning the control of the gradient
of regularized velocity fields, and will allow the control of the solutions of the problem of
Transport generated by the field v. These parallel results will then prove important in the proofs
(based on the characteristic method) of the main results of the sub-section 6.2 and the section
7, relating to uniqueness The transport of the density p and the characterization of the velocity
field v for optimal transport.

Moreover, the properties (B) illustrate one of the difficulties relative to the field v that we
will have to circumvent, namely that if it is infinitely close to a regularity H' on [0, 1] x RY, it is
not generally the case (for example in the case of a mass intersecting in two parts, the velocity
field associated with the optimal transport is not in the space H' in the instant moment ¢ = 0),
which will complicate our study somewhat in the section 6 (we will return).

As we have already mentioned above, this non-regularity H' is partly due to the possible
"breaks" in the continuous transport scheme in ¢ = 0 (or conversely to possible connections in
t = 1). Such breaks correspond to the points of non-differentiability of the potential ¢ and the
connections in ¢ = 1 are linked to the non-differentiability points of the Legendre transform ¢*
of the potential ¢. However, because of the symmetry of the problem, we will not need to deal
with the connection problems in ¢ = 1.

We will start by showing these different properties in an "ideal" framework, that is to say
without breaks: this will constitute the framework of the sub-section 4.4. For this purpose, we
first consider that the potential ¢ is fairly regular, more precisely that it satisfies the property
(T'9) that we enumerate below:
¢ satisfies the property (I'a) if and only if:

Hypothesis (I'y). ¢ satisfies the property (T'1), is of class C1, and V¢ is Lipschitz (i.e. ¢ €
CHH(RY)).

We recall that ¢ verifies the property (I'1) if and only if ¢ and ¢* are convez, continuous and
admit a minimum on R?.

Once this is done, we will establish these properties in the general framework of the opti-
mal transport (i.e. for ¢ satisfying the property (I'1)), going back to the regular case via a
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regularization by Envelope of the potential ¢. This will be the main object of the sub-section
4.5.

For this next study we will often need to call upon two fundamental results, which we present
below: the Rademacher Theorem (differentiability of a locally Lipschitz function).

Theorem 4.1 (The Rademacher Theorem ([10] p.81)). Let f : R? — R™ be a locally Lipschitz
function. Then f is L™"-almost everywhere Fréchet-differentiable (and its differential in the sense
of Fréchet coincides with its differential in the sense of distributions).

Let us give at once an example of the application of Rademacher Theorem (an example which
will be useful to our problem):

Example 4.1. We know that proposition 4.4 is valid under the (I'y) property (and therefore
also under the (T'y) property), we know that v is locally Lipschitz on ]0,1[xR®. Thus, according
to Rademacher’s Theorem ref rademacher, v is almost everywhere differentiable on |0, 1[xRY,
and its differential corresponds to its derivative in the sense of distributions. In particular, it is
observed that

1
v- Vv = §Vx\v\2, (4-21)

in the sense L4 -almost everywhere, as in the sense of distributions.

4.4 Burgers Equation and results of regularity : case (I'y)

In this subsection, we will assume that ¢ satisfies the hypothesis (I'2) in order to show that, in
the "ideal" case (without breaks), the velocity field v satisfies the Burgers equation in the sense
of distributions, i.e.

1
Ov + §Vx|v]2 =0,

As well as the control of the gradient of the velocity field: Vg v € L2 ([0, 1[, L*(R?)) (the
properties stated in the different results will in fact be a little more precise, in order to better
correspond to our future objectives).

The operator p, (definition 4.4) corresponds in some ways to a spatial "reciprocal" of the
operator X(t,-) = V() = (1 —t)id+tVe. "In some ways" because, X(¢,-) is generally not
invertible. This will however be the case under the assumption (I'g).

Proposition 4.5. Under the property (I'z), py satisfies (that is to say in addition to the prop-
erties already specified in the definition 4.4, for allt € [0,1], the following properties:

1. py(t,-) is bijective on R? and for all z,y € RY,

y=py(t,r) & x=(1-t)y+tVo(y). (4-22)
2. py(0,-) =1id.
3. the velocity v defined (3-3) can be defined from py by :

T — py(t, )

o (4-23)

U(tv Qf) = V¢(p¢(t, x)) - p¢(t> $) =

for all (t,z) €]0,1[xR%,
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4. v can be continuously extended on [0,1[xR? (i.e. int=0) and
0(0,2) = Vo(z) - 1, (+24)
for all x € RY.

Proof: The potential ¢ is assumed to be of class C'!, therefore differentiable at every point « € R¢,
and by convexity we have 0¢(z) = {V¢(x)}, hence the first point. We thus deduce immediately
the second (taking ¢t = 0), and the third point:

T — p¢(t7 l‘)

, =o(t,x). (4-25)

© = (10 Py(t2) + 1V6(py(t.7) & VolDy(t.2)) ~pylt.z) =
For the last point, let z € R? and a (£, zn)n € (Q)" converging to (0,z). For a a minimum of
¢, we have py(t, (1 —t)a) = a for all t € [0,1]: the lipschitz character of p, Then let us prove
by estimating the distance from py4 to a that the sequence (p¢(tn,xn))n is bounded, same as
the sequence (V¢(p¢(tn,xn)))n (by continuity of V¢). The right-hand side of the equivalence
(4-25) then allows us to prove that (pg(tn, $n)>n converges to x (so continuity of p, in (0,0) ).
The second term of this equivalence allows us to conclude. ]

We note that ¢, = (1/2)(1 — t)| - |? + t¢ is of class C?, strictly convex and superlinear
(for ¢ is convex and | - |? is strictly convex and superlinear). Thus, for all ¢ €]0,1[, X(¢,-) =
(1 —1)id +tVe¢ = V¢ is bijective of reciprocal p,(t, ) = Vi(¢¢)*. Let’s look at the first result
announced at the beginning of this subsection on the v field: the Burgers equation.

Proposition 4.6. Under the property (I'z), v satisfies (3-7), mamely:
1 2
O + §Vx]v| =0

in the sense of distributions.

Idea of proof: We can note that, if ¢ is on class C', then by deriving the advection relation
V¢ —id = O Vydr = v(t, Vzdt), we then obtain (see for justification the example 4.1): 0 =
OV adr = (00 + v - Vo) (Vady) (vecall : ¢y = (1 —1t)[-[*/2 + tg)). O

In order to prove the second regularity result on v announced at the beginning of this sub-
section, which will be stated in the Proposition 4.8, we will present now intermediate results on
the potential ¢.

Proposition 4.7. We assume that ¢ satisfies the property (T'y). Let R’ > R > 0 and a € R?
such that ¢(a) = indfcb. Then there exists to €]0, 1[ such that for all t € [0, 1],
R

Ps(t, B(a, R)) C py(to, B(a, R). (4-26)
More precisely, it is sufficient to satisfy the property (4-26) that to satisfies the condition:

R —R

to<mind =, —°
0 mm{z’M+zya|

} avec M = sup |0¢(z)]. (4-27)
z€B(a,2(R+|al))

Idea of proof: Let x € B(a,R) and t,tg € [0,1] such that tg > 0 and t € [0,%0]. p,(t,z) €
Py (to, B(a, R')) if and only if there exists y € B(a, R') such that p4(to,y) = py(t, 7). According
to the definition of p, (by the equivalence (4-22)), for y € R4:

Py(to.y) = Py(t,z) & y=(1—1t) Py(t,x) +tVo(Py(t, z)). (4-28)
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Let us take y = (1 — to) py(t, 2) + toVé(py(t, 7)) and look for a sufficient condition on #o for
y € B(a, R'). First, let us recall that, from the (4-4), p,(t, (1 — t)a) = a, and therefore that for
every x € B(a, R),

1
1-1¢

[Pyt ) —al = [py(t, 2) — py(t, (1 —t)a)| < [z — (1 —t)a| < 1_1t0(R + la).

By taking to < 1/2, we thus have p,(t,r) € B(a,2(R + |a|)). Now, under the property (I'2), ¢
is of class C'! on R? and therefore locally lipschitzian, and thus lipschitzian on B(a,2(R + |al)).
We can therefore ask

M = sup |0¢(x)| < +oo.
z€B(a,2(R+|al))

For all t € [0,t] and = € B(a, R), and y = (1 — to) py(t, ) + 1oV (Py(t, 2)):

ly —al < (1 —to)| py(t,z) — al +to|Vo(py(t,z)) — al
|p

(t
< (1= t0)| py(t, ) — Py(t, (1 — H)a)| + to (VD (t, 2))| + la])
11—_?’36 — (1 —t)a| +to (M + |a|) < |z — a| + t|a| + to (M + |a])

< R+to(M +2|a]).

IN

Even if tg < min{1/2, (R’ — R)/(M + 2|a|)}, then for all ¢t € [0,t9] and x € B(a,R), y
(1 —to) py(t,z) +toVh(py(t,2)) € B(a, R') ie. pylto,y) = Py(t,x), and so py(t, B(a, R))
Py (to, B(a, R')).

Lemma 4.1. We suppose that ¢ satisfies the property (I'z). For every t € [0,1], pyl(t,-) is

On

almost everywhere differentiable on R? (its differential coincides with its derivative in the sense
of distributions). Moreover, for almost every x € R, V¢ is differentiable in ps(t, ) and

Vapy(t,z) = (tHess()(py(t ) + (1= H)I) ™! (4-29)
where I € M4(R) designates the identity matriz.

Proof: Lett € [0,1]. The operator py(t, -) is Lipschitz and bijective, and from (4-22) its reciprocal
is py(t, )7l =tVe+(1—t)id = X (¢,-). Recall that by hypothesis V¢ is assumed to be Lipschitz.
According to the Rademacher Theorem 4.1, V@ et py(t,-) are almost everywhere differentiable
on R? and their differentials coincide with their derivatives in the sense of distributions. Thus
the set F of the points of R where V¢ is not differentiable is zero measure (for the Lebesgue
measure). The fact that V¢ is assumed to be lipschitzian implies that X (t,-) is also, and
therefore L4(X (t, F)) =0 ([10] p. 75) : X(t, F) is the set of points z € R? for which V¢ is not
differentiable in p, (¢, ), this means that V¢ is differentiable in p(t, z) for almost all z € R,
Thus, for almost every = € R%, Py(t,-) is differentiable in z, V¢ is differentiable in p,(t, z) et
I = (tHess(¢)(py(t, 7)) + (1 = t)I)Vz py(t, ). The potential ¢ being convex, Hess(¢)(py(t, ))
is symmetric positive, and hence by coercivity, ¢ Hess(¢)(py(t, 7)) + (1 —1t)I is symmetric definite
positive and therefore invertible in My (R), which concludes the proof. O

The fact that V¢ is globally lipschitzian on R? is very important here because it ensures that
Ps(t,-) does not concentrate too large areas of R?. Indeed, if V¢ does not have such regularity,
the set of x in which ¢ is not twice differentiable could not be of measure zero.

Note that for every ¢ € [0, 1], the operator p¢(t, -) proves to be almost everywhere differen-
tiable on RY, whatever the regularity Of ¢ (because a proximal operator is always Lipschitz). The
additional property brought here by the regularity of ¢ is in fact the bijectivity of the operator
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p¢(t, -). The globally Lipschitz character of V¢ yet allows us to explicate almost everywhere
Vapy(t,-) as a function of py(t, -).
We consider the norm | - |; on Mg4(R) defined on |A]; = Z\a”\

We now have all the elements to state the following proposmon which is one of the main
results of this section: it concerns the control of the gradient of the velocity field v. This control,
as we have already mentioned in the previous subsection, will be exploited later to control the
solutions of the transport problem generated by the v field (see the uniqueness results of the
section 6. This Proposition is valid for v = vy defined from a potential ¢ verifying the (I';)
property, but as for all the results of this sub- Section, we will demonstrate this first by assuming
that the potential ¢ satisfies the property (I'2), that is to say, let us recall, that ¢ is assumed to
be convex, of class C1, reduced to R?, and its spatial gradient V¢ is assumed to be Lipschitzian
We then generalize the proof in the following subsection (i.e. for a potential ¢ satisfying the

property (I'1)).

Proposition 4.8. We suppose that ¢ satisfies the property (I's). Let R' > R > 0 and a € R?

such that ¢(a) = indfqb. Then there exist constants C' and C' (independent of ¢, a, R and R')
R

such that for all tg €]0, 1] satisfying the condition 4-27, we have the property:

/

vt €]0, t0), / Voot o)) de < c/ Vao(to, o) de < —C— £2(B(a, ) (4-30)
B(a,R) B(a,R) to(1 —to)

and so Vv € L>([0,t0], L*(B(a, R))).

Proof: Let t €]0,1]. Remember that for all 2 € R, v(t,z) = Vo(py(t, ) — py(t, ). According
to the Lemma 4.1, for almost all z € R?, v(t,-) is differentiable on x and

Veo(t, 2) = Vi py(t, x)(Hess(9) (py (1, ) — 1)
= (tHess(0)(py(t,x)) + (1 — )1) ™" (Hess(¢) (py(t, ) — I).

The 1/t(1 —t)-Lipschitz character of v(t,-) (to a multiplicative constant), already mentioned
above, implies |V,v(t,-)|1 is bounded by ¢/t(1 — t) (c a constant depending only on the chosen
norms). Thus |V v(t, )1 € L¥(RY) c LY(RY). Since the function X (t,-) = tV¢ + (1 — t)id
is Lipschitz and bijective (and py(t,-) is its reciprocal), we therefore can apply the Generalized
Variable Change Theorem ([10] p. 117) and we obtain:

(4-31)

/ Voot 2)|y doe = / | det(t Hess(¢)(y) + (1 — £)1)]
B(a,R) Py (t,B(a,R)) (4-32)

x | (¢ Hess(¢)(y) + (1 — )I) ™" (Hess(¢) (y) — )1 dy.

For every y € R? where V¢ is differentiable, the Hess(¢) matrix is symmetric positive and
can therefore be diagonalised in an orthonormal basis: let us consider Ai(y), -+, A\g(y) > 0 the
eigenvalues associated with Hess(¢) in such an orthonormal basis. Considering the equivalence
between the |- |; norm and the Frobenius norm, we obtain the following relation:

d

Cil(tHess(@)(u)+(1 = ) (Hes(@)) Db < 3 ; W 7l, (4-3)
< Cal(t Hess(9)(y) + (1 — )1) ™ (Hess(6) (y) — D1,

where the constants C; and C depend only on the constants of equivalence between the |-|; norm
and the Frobenius norm. Moreover, by invariance of the determinant by a similar transformation,
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we get for all ¢ € [0, 1] and almost all y € R%:

det(t Hess(¢)(y) + (1 —£)I) = (tAa(y) + (1 = 1)) -~ (EAa(y) + (1 = 1)). (4-34)
By injecting (4-33) and (4-34) into (4-32), we so obtain, for every ¢t €]0,1[ (and every R > 0):

d

d
Z /I>¢(t,B(a,R)) |)\j(y) - 1|l];[1(t)\1(y) +(1—1)

01/ Vau(t, 2)1 da <
B(a,R) j=1
i#£]

(4-35)

gcg/ Vau(t, 7)1 da
B(a,R)

recalling that A\i(y), -+, Aa(y) > 0. The constants C; and C3 are independent of ¢ and R. Let
to €]0,1[ verifying the condition (4-27) of the Proposition 4.7. Hence, by this Proposition, we
have py(t, B(a, R)) C py(to, B(a, R')). The condition (4-27) also gives tp < 1/2, and so for any
t €]0,to), we have 1 — ¢ < 1 < 2(1 — tg). We have \;(y) >0 (i =1,--- ,d) for almost all y € R?,
and thus 0 < tA;(y) + (1 —t) < 2(toAi(y) + (1 — tp)). Thus, thanks to the inequality (4-35), we
can conclude:

d
1
|Vau(t,z)|pde < g / —1|||t)\ +(1—1))
/B(a,R) ]:1 P, (t,B(a,R))

1751
2§ - (4:36)
<z / N — UM () + (1 — 1)) (436
01; po(toBaR)) E
i#j

2d
< 02/ |Vav(to, x)|1 dz
Cv JB(aRr)

Finally, as already mentioned at the beginning of proof, there exists a constant ¢ > 0 such
that |Vgv(to, )1 is bounded by ¢/to(1 — o), which completes the proof of the Proposition. [

The proof of this Proposition also provides us with evidence for another Lemma concerning
the control of v which will be useful in the following: it will in fact be the combination of the
different results of this section concerning the control of the gradient of the field v which will
allow us to control the solutions of the transport problem and thus obtain our future uniqueness
results.

Lemma 4.2. We suppose that ¢ satisfies the property (I's). Then there exists a constant C' > 0
such that for all t €]0, 1],

C
IVav(t, )l oo ray < T3 (HHGSS(¢)HLO<>(Rd) + d)

(where the norm L™ is taken from || - ||: the subordinate norm to the Euclidean norm | - | of
RY).
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Proof: By taking the inequality (4-33) and the equivalence between the | - |; and Frobenius
norms, we obtain, for every y € R% where V¢ is differentiable:

Ai(y) =1
thi(y) + (1 —1)

C1|(t Hess(9) (y) + (1 — t)I) ™" (Hess(¢)(y) — D <

d
1
< d+> Ny
i=1 o L=t i=1

< {2 (| Hess(9) ) + d).

(4-37)

We can then conclude by injecting the equation (4-31) into this last inequality. O

4.5 Burgers Equation and results of regularity : case (I')

We will now place ourselves in a more general framework and extend the results of the previous
subsection to potentials ¢ which no longer satisfies the property (I'1), that is, in this subsection
¢ will possess non-differentiability points causing breaks in the transport plane.

In a first time, we will show that the result of the Proposition 4.6, which one prove that v satisfies
the Burgers equation (3-7) namely:

1
v + §Vz|vl2 =0,

remains valid for ¢ satisfying only the property (I'1).

In a second time, we will show, in particular by invoking the Proposition 4.8, that in general

terms, that for all 0 < R < R’ and a € R? such that ¢(a) = indf ¢, and for all 0 < ¢y <
R

min{1/2, (R’ — R)/(M + 2|a])}, we have V,v € L*°([0, o], L' (B(a, R))), And more particularly
that there exists a constant C’ > 0 such that, for all ¢ € [0, ¢o],

C/
Veu(t,z)|ide < -  r*B a,R)).
/B(a,m' (1)l dr < s (Bl )

In the context of our optimal transport problem, we proved at Proposition 3.2, that we can
assume that the potential ¢ satisfies the property (I'y). We will show, by regularizing ¢, that
Vv is uniformly integrable in the neighborhood of ¢ = 0, then we will argue symmetrically to
show that it is the same in the neighborhood of ¢ = 1. For this regularization, we will use the
Moreau envelope (introduced in the Definition 4.3) % of ¢ for all v > 0 whose definition we
recall: for all z € R,

0(@) = inf 5o =y + 6(0) = 5ol — Prox(@) + 6(Prox,s(@). (439

For all v > 0, we also define the velocity field v, forallt €]0,1[ and = € R? by

UV(t7x) = 1)’@(15,.%’) = V(ﬁ(p“@(t?m)) - p~y¢(t,fl?) = +7 (4_39>
with we recall,
x
py(t,x) = Proxiw <1 — t) .
We also recall that % is of class C' and that for all z € R?,
x — Prox,s(x
V() () = L9 ¢ g (Proxg(a))  (by (1)) (1-10)
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The potential % is then v~ !-Lipschitz.

First, we have to prove that if ¢ satisfies the property (I'1), then % satisfies the (I'g) property,
and thus can be returned via the ¢, to the cases treated in the sub-section 4.4 (i.e. for ¢ and
thus of transport plans without breaks).

Lemma 4.3. If ¢ satisfies the (I'1) property, then "¢ statifies the (I's) property for all v > 0

Idea of proof: Note that on one side (7f)" = f* + 2| |* (and then if f* is in a Hélder space C!
and admits a minimum on R¢, the same holds for (7f)*. And note on the other hand that the
functions phi and 7% have the same minima on R ]

We now report convergence results for V¢ and (v-),.

Lemma 4.4. We suppose that ¢ satisfies the property (I't). Then the family (V$)~~o is locally
bounded, uniformly with respect to v > 0. Moreover, for all x € R?, the set of the adhesion values
of the family (V¢(x)),, when v > 0 tends to 0 is included in Op(x).

In particular, if ¢ is differentiable in x, then Vp(x) converges to Vé(x) when v > 0 tends to 0.
The functions V¢ converge simply almost everywhere to V¢ when v tends to 0.

Proof: We can easily show that for every a minimum of ¢ on R? and > 0, we have V(¢)(B(a,r)) C
0¢ (B(a,r)): it is enough to jointly use the relation (4-9) and the inclusion Prox,4(B(a,r)) C
B(a,r), this one resulting from the non-expansiveness of the operators Prox,,4 and the fact that
a is a fixed point for these operators, i.e. Prox,4(a) = a (property resulting from the relation
(4-4)). The d¢ (B(a,r)) (union of the subdifferentials of ¢ on B(a,r)) is bounded in R? (because
of the convex and locally Lipschitzian character of the potential ¢), this proves the first point
of our Lemma. The second point can be deduced immediately by applying the basic definition
of the subdifferential to any sequence [V"¢(z)],, converging in R? (v, — 0). By the first point,
we know that the family (V¢(x)),0 is bounded in R?, and this for all z € R%. We can finally
deduce from these two points that, if ¢ is differentiable in x, then from any subsequence of
[V ()], (with v, — 0), we can extract a subsequence converging to V¢(z): then it suffices to
conclude with the absurd. O

Proposition 4.9. We suppose that ¢ satisfies the property (I'1). The family (vy)y>o0 (with
vy = Vg satisfies the following convergence properties:

1. For every bounded open set w in R* and any ~vo > 0, (U )ro=y>0 15 uniformly bounded on
10, 1[xw by a constant independent of v €]0, yo].

2. For every bounded open set w in R and any o > 0, there exists a constant M independent
of v €]0,7v0], such that

vy €10,70], ¥t €10, 1, [lo(t, ) = v (8, )|y < M. (4-41)

We can deduce in particular from this relation that vy converges simply to v on |0, 1[xR4
when v tends to 0.

3. For every 1 < p < 400 and every bounded open set w in RY, v, converges to v in LP((0,1) x
w) when 7y tend vers 0.

4. For every 1 < p < 400 and any open set bounded w in R, and for all t €]0,1], vy(t,-)
converges weakly in WP (w) to v(t,-) when + tends to 0.
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Brief proof: For the first point (bound of the family v,), according to Proposition 4.2, we have
[0y ]| Lo 0,1 [xw) < B (max{ My, M3} + sup(w)), with My = [[V¢| o () and M = ||a(7¢) | Lo (w)
According to Lemma 4.4, the constants M, are uniformly bounded w1th respect to the v > 0.
The same holds for the constants M7 With respect to the v €]0,7p] by noticing, according to
the property (4-2) of the 1nf—c0nvolutlon that 9 (7¢)" = 9¢* + vid. For the second point,
i.e. the inequality (4-41), according to (4-13), for all ¢ €]0, 1[, we have the relation V,(¢)* =
(id — Prox(;_¢)(1g)<)/(1 — ). In addition, by applying twice the fundamental relation of the
proximal operator (4-4) and the property (4-2), we have

Prox(1—4) ) = ProXa—) g +(1-1) 2| - 12 = Proxa_se)- (id —y(1 = t)[id +(1 — t)vy (2, -)]) .

Thus, according to (4-10) and (4-12), and by non-expansiveness of the proximal operator:

1
[0y(, ) = ot )] = m\PYOXu—t)(tw ~ ProX— o)

*\ld+( t)vy(t,-)] -

We thus conclude the relation (4-41) by the fact that the fields v, are uniformly bounded on
10, 1[xw independently of v €]0,70]. The third property is immediately deduced from the two
preceding ones by invoking the Dominated Convergence Theorem. For the last point, we also
apply the Dominated Convergence Theorem to prove that v,(t,-) converges to v(t,-) in LP(w)
when 7 tends to 0: note that the first two properties are valid on all |0, 1[xR¢ and not only almost
everywhere modulo some measure. Thus, any subsequence of (v,(t,-)), which converge weakly
in WHP(w) get v(t,-) for limit (reasoning within the sense of the distributions). Let us recall an
n-th time that the v, (¢,-) and v(¢, -) are ¢/t(1—t)-Lipschitz, where ¢ is a constant depending only
on the norm chosen on R? (hence independent of ¢ and ), hence ||V, v, (%, Mooy < e/t(1—1t),
for all ¥ > 0. We can then reason by extracting subsequences of (v (t,-))~ converglng weakly to
v(t,-) in WHP(w) (reflexive space if 1 < p < +00): if there was a subsequence of (v, (¢, -)), which
would not converging to v(t,-), we could extract a sub-subsequence converging to v(t,-), which
would be absurd ... O

The first two points of this latter proposition imply the following corollary:

Corollary 4.1. We assume that ¢ satisfies the property (I'1). For every bounded open set w in
R? and any vyo > 0, there exists a constant C, independent of v, such that the family (Vy)7>0
satisfies:

va € [0,1], vy €10,50], ¥t €10, 1 [[o(t,) = vy (8 Moy < € (1) (4-42)

Proof: According to the first point of the Proposition 4.9, there exists a constant K, independent
of v €]0,70], such that [[v(t,-) — vy Lec(j0,1[xw) < K. According to (4-41), we then have for all
a € [0,1],

ot ) = vy (1 Mooy < MOK (F)7 < max{M, K} ()" (4-43)

O]

We now have enough elements to prove in the general case, that is to say for ¢ satisfying the
property (I'1) (thus for a transport plane admitting possible "breaks"), the announced results At
the beginning of the section concerning the Burgers equation, and in a second the control and
regularity results on Vv and the Vu,.

Proposition 4.10. With the property (I'1), v satisfies (3-7), that is to say:
1
O + §Vm\vl2 =

or equivalently, Oyv + v - Vv = 0, in the distribution sense.
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Idea of proof: We apply the proposition 4.9 in the weak formulation of the Burgers equation. [

Proposition 4.11. We assume that ¢ satisfies the property (I'1). Let R > R > 0 and a € R?
such that ¢(a) = indfcb and let M = sup |0é(x)|. Then there exists an constant C' > 0
R

z€B(a,2(R+]al))
— independent of ¢, "¢ (and then of v), a, R and R’ — such that for all ty €]0,1[ satisfying the
condition to < min{1/2, (R’ — R)/(M + 2|a|)}, and by setting vy = v, we have the property:

/
Vy >0, Vt €]0, 1], / |Vavy(t, x)|1 do < ¢ £*(B(a, R")). (4-44)

B(a,R) to(1 — o)
thus Vv, € L2([0,t0], LY (B(a, R))), for all v > 0.

Idea of proof: As already mentioned in the Lemma 4.4, we have the inclusion V(%)(B(a,r)) C
9¢ (B(a,r)), and thus, by setting r = 2(R + |a[), we have My = suppg(,,|V'¢| < M. Thus,
a to verifying the hypothesis of the statement (independent of «), also satisfies the hypothesis
of the Proposition 4.8 whatever v > 0. We can therefore apply this last proposition for such
a to for all vy, and we so get (4-44). For the case v = 0 (i.e. vo = v), it is enough to apply
the fourth convergence result of the proposition 4.9: we can conclude by passage to the lower
semi-continuous weak limit. O

4.6 Additional results for unicity results to come

The two results of this subsection are results of control of the regularized velocity fields v,. These
will be useful for studying the properties of uniquenessof saddle points (see section 6).

Corollary 4.2 (Corollary of the Proposition 4.11). We suppose that ¢ satisfies the property (I'1).
Let Q C R be a bounded open set and 0 < t,, < 1. Then there exists a constant K > 0 such
that for every v > 0 and any t € [0,t,,], we have

/ V0, (t,2)]1 dz < K. (4-45)
Q

Proof: For t < ty, we apply the Proposition 4.11; and for t¢,, > t > ty we use the fact that the
term |V, v(to,-)|1 is bounded by ¢/t(1 —t), for ¢ a constant depending only of the chosen norm
(here from | - |1). O

We shall end with the following Lemma:

Lemma 4.5. Let ¢ : R? — R conver verifying the property (I'1). Then there exists a constant c,
independent of v, such that for every 1>~ > 0, all t €]0,1[ and almost all x € R where vy(t,+)

is differentiable,
c

\Y ty )|l oo < —-.
IV 8 ey < 7
Proof: The relation (4-8) of the Definition 4.3, as well as the non-expansiveness of the operator

id — Prox,s (Definition 4.2), let us permit to assert that there exists a constant Cp, independent
of v, such that |[Hess("9)|| o (gay < Co/v. We then conclude by the Lemma 4.2. O
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4.7 An independent but notable result

It is interesting to note that the result of the Proposition 4.11 can be generalized and that we
can show by symmetry in time that V; v € L>((0,1), L*()) for every bounded open set €.

This result is in no way useful for the results of existence and uniqueness to follow, that
prepare the other results of section. It is nevertheless quite notable for us to enunciate it: it
offers a result of regularity and control of the velocity field of an isotropic optimal transport for
the distance L2. These properties complete the properties (B). Because of its independence, we
will only generalize the Proposition 4.11 for the case v = 0 (i.e. vg = v).

Theorem 4.2. We suppose that ¢ satisfies the property (I'1). Let Q be a bounded open set of
R4, Then Vv € L>((0,1), L}(Q)), in other words there erists a constant K > 0 such that for
all t €]0,1],

/ |Vigv(t,z)|1de < K. (4-46)
Q

Idea of proof: We symmetrize the result of the Proposition 4.11 (case v = 0) on the edges in
time (respectively in the neighborhood of ¢ = 0 and ¢t = 1) and we apply the markup ¢/t(1 — t)
in the middle. O

We can extend this result:

Corollary 4.3. We suppose that ¢ satifies the property (I'1). Let Q be a bounded open set.
For all p,q > 1 such that 1/p +1/q > 1, we have Vv € LP((0,1),LY(R2)). And in particular
v e WIP((0,1) x Q) for all 1 < p < 2.

Idea of proof: We mix the result of the Theorem 4.2 with the markup by c¢/t(1 — ¢) (in other
words we partially bounded from above |V,v(tp,-)|1 in order to be able to apply the Theorem
4.2). For the particular case WP, it is enough to take p = ¢ < 2. ]

Theorem 4.2 and its Corollary 4.3 give the most consistent assumptions of regularity that
one can have in general for the velocity field v. Indeed, according to the Corollary 4.3, a velocity
field v defined with respect to a potential ¢ (verifying the property (I'1)), let us recall it, by the
relation (4-12), that is to say for all ¢ €]0, 1 by

o(t,) = volt,) = 2 = L id (19 + (1~ 1)id)"), (4-47)

is an element of I/Vli’f([(), 1] x R?) (that is to say that its restriction to any bounded open set § of
R is an element of W1P((0,1) x Q) ) and this for all p < 2. The question that arises naturally
is to know if v = v, could not in reality be an element of H} ([0, 1] x R?). In general, this is not

the case (take Caffarelli’s example of the mass cut in two).

5 Existence

In order to prove the existence of a saddle point for the Lagrangian L, we have given ourselves
for first objective to build a couple density-velocity field (p,v) satisfying conditions (I'). The
velocity field v = vy, defined in (4-12), immediately satisfies the properties (P2’) and (P3’),
according respectively from Proposition 4.2 and Proposition 4.10. We now have to build a density
p = py, satisfying the property (P1’) (p € L?(Q) ), and such that the couple (pg,vy) satisfies
the condition (P4’) (conservation of the mass). The candidate density, as already announced in
(3-4), will of course be the density of the McCann interpolation between pgL£? and pi £?. Before
starting, let us define more precisely the notion of "measure push forward", which we briefly
introduced in the subsection 2.1.
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Properties (C). Let 2 be an open set of R?, and let v be a measure on the Lebesque tribe
of Q. We said that v satisfies the properties (C) if and only if v(K) < 400 for any compact
K Cc Q; v(E) = inf{v(V), E C V, V open set} for every Lebesque-measurable set E of Q;
v(E) = sup{v(K), K C E, K compact} for any E open set and for any Lebesque-measurable
set E of Q such that v(E) < 400.

Proposition 5.1. We give R? of the tribe of Lebesque. Let p be a positive measure o-finished on
the Lebesgue, and T : RY — RY measurable (always on the Lebesque tribe). We suppose that the
measure  is finite. Then there exists a positive measure on the Lebesque tribe v on R?, satisfying
the properties (C), such that

Vf e CO(RY), /Rdfdy_ Rdf(Tx)du. (5-1)

Moreover, for every Lebesque-measurable set A C RY, we have v(A) = p (T~1(A)). We then say
that v is the thrust of the measure p by the operator T, denoted v = T#pu.

The equation v(A) = p (T~'(A)) translates the fact that the v conserve mass measured
by p: v gives to any displaced, deformed, contracted or dilated area by the operator T the same
mass than given by u before applying the operator. The notion of measurement thrust therefore
translates a property of conservative mass transport. This is partly at the origin of the idea
of a dynamic formulation of the optimal transport problem. As stated in the introduction, this
dynamic formulation implies that we replace the "optimal conservative assignment" approach
with that of an "optimal conservative displacement" (we study the evolution of a density p
between pg and p; on a time scale [0,1]). The natural candidate density that we consider is
therefore the one formed by the set of intermediate measurements between pgL¢ and p; L% =
(Vo#poL?), which can be assimilated to a series of "optimal micro-transports" along the time
scale [0,1]: the interpolation density of McCann, which have been already defined in (3-4),
defined at each instant ¢ by the density p; = pf of the measure

peLh = pl L% = [(1 = t)id +tV @] #(po LY) = Vi (poLY). (5-2)

The following proposition ensures that it is possible to choose the representatives of each of these
densities p; so that the density (¢, x) — p(z) is measurable and such that the weak formulation
of the measure push forward (5-1) remains valid for test functions which are only measurable:
indeed, within the framework of the Benamou-Brenier algorithm, the test functions involved in
this weak formulation will be of type LP.

Proposition 5.2. Let pg € L'(R?, dL%) be a compact support, such that pg > 0, and ¢ : R = R
satisfying the (I'1) property. Then, for all t € [0,1[ there exists a positive measure vy on the
Lebesgue tribe of RY, with support in (tVe¢ + (1 — t)id) (supp(po)) (bounded), satisfying the
various properties in the Proposition 5.1,such that v; = (tV¢ + (1 — t)id)#(po L), i.e.

Vi eCU®D, [ fav= [ 5eVo@) + (1= ha)po(e)dL(a) (53)

Moreover, vy is absolutely continuous with respect to the Lebesque measure L% on RY (ie. vy <
L), in other words, there exists p; € L'(R%, £%) such that vy = p L. It is also possible, for all
t € [0,1], to choose a representative of py in such a way that (t,x) — pi(x) is measurable on
[0, 1[xRZ.

Finally, the following properties are satisfied:
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1. For all h € L2 (R, £9) and t € [0, 1], we have ho (tV¢ + (1 —t)id) € L (R, LY), and

loc loc
/ hdv, = / h(zx)ps(z) dL(x) = / h(tVo(x) + (1 — t)x)po(x) dL (z).
R4 R4 R4

2. For all h € L2 ([0,1[xRY, LY the function (t,x) — h(t,tVé(z) + (1 —t)z) is in the
space L3 ([0,1] x RY), and

/ h(t, 2)po(x) AL () ALt / h (LAY 6() + (1 — 1)) polz) dL(x) dL(D).
R4 Rd

3. Forallh € C2([0,1[xRY), t = [oq h(t,") dvy = [ga b pr dL? is continuous on [0,1[, in other
words t — vy is continuous on [0, 1] in D’(Rd).

We shall not present here these last two propositions because of the length and the technicality
of their proofs, which are useless to the understanding of our purpose. However, these statements
are not superfluous. Indeed, without considering the extension to a class of measurable functions
of a property verified originally by continuous functions, a property true "almost everywhere"
for a measurable function, such as for exemple the boundary of a function L*°, is no longer
necessarily true when we compose this function on the right with another one: we must, for
example, ensure that the image of a set negligible by the other function, here tV¢ + (1 — ¢)1id,
remains negligible. Similarly, the fact that for every t € [0, 1], there exists a measurable spatial
density p; for £¢ for a measure v; does not necessarily ensure the possibility to choose for each
t a representative p; of py such that the spatio-temporal density (¢,x) — py(z) is measurable
for £4+1. This proposition therefore justifies the use of certain theorems, in particular that of
Fubini. For exact proof of the propositions 5.1 et 5.2, we refer to Appendix B of [14], which is
exclusively devoted to them.

To return to our problem of existence of a saddle point, we now have to prove that our
candidate density, the McCann interpolation density between pgL? and py L%, verifies the (P1°)
property, namely is an element of L?( Q).

Lemma 5.1. Let 1 < p < 4o0. Let Q an open set of R, and po, p1 € LP(Q) two densities
of Q with bounded support, et let ¢ : RY — R convex such that py LT = (Vo) #(po L). Let
t — py the interpolation density of McCann between pg and py such that defined in (5-2), and
such that existence (and the space-time mesurability) is justified by the Proposition 5.2. Then
t s pp € CY([0,1], LP(Q)) (strong continuity).

Proof: For all 1 < p < 400, we introduce the functional F, : Po(RY) — [0, +oo] defined
for all i € Py(RY) (Py(R?) is defined as the space of probability measures p on R? satisfying

Jra |2? dp(@) < +00).

[ @ actay it = .01 € Pa(r, -

+o00 else.

Fp(p) =

Such a functional one has been classified in [18] under the term "internal energy" of the space
(P2(R%), Wy). This function is "geodesically convex" on the space (Pa(R%), Ws), in other words
it is convex along the geodesics of this space, which are the interpolations of McCann. Thus, the
function A, : [0,1] — [0, +00], defined for all ¢ € [0,1] by A,(t) = Fp(p:LY), for t — p; defined
n (5-2), is convex on [0, 1], and is here finite in ¢ = 0 and ¢ = 1 (because pg, p1 € LP(Q2), and
p0; p1 € Pp(R%)): it is hence finite and bounded on all the interval [0, 1]. It is therefore clear, by
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definition of A, that for every t € [0,1], o € LP(2). Moreover, t = ||pt||zr(q) is bounded on
[0, 1] by a constant M. It is also clear, from the Proposition 5.2, that ¢ — p; is weakly continuous
by [0,1] in LP(Q): it is sufficient to reason by density of the space of the test functions C%(Q)
in Lq(Q) (for ¢ €]1,+o00[ such that 1/p +1/¢ = 1). Since the function A, is convex and finite

n [0,1], t = A(t) = ||pt||z£p(m is continuous on |0, 1[ (open), and admits a right limit in ¢ = 0
and a left limit in ¢ = 1. Thus, for any to €]0, 1], we have lim [|p¢]|", o, = [Ipto 175 > and, with
respect to the right limit of A in ¢ = 0 and its left limit in t = 1, we have

Timn A() = i [l ) < A©) = ol et lim A®) = lim ol 0 < AL = 1]

Therefore, for all tg € [0, 1], we have limsup,_;, [l p¢llr (@) < ot ll e (@)
Finally, we can conclude (see for example Proposition 3.30 of [21]) that the application t — p;
is strongly continuous from [0, 1] in LP(€2). O

Conversely, one could rigorously characterize the McCann interpolation by the relation

1
Yo € C([0,1] x Q), / o hpdr® dt = /0 /Rd h(t,tVo(x) 4+ (1 —t)x) po(x) dxdt. (5-5)

(0,1)
Indeed, by reasoning with Fubini’s Theorem and Lemma 5.1 (for extreme bounds t,,;, = 0 and
tmaz < 1), it can be proved that for any density p verifying (5-5), there exists a family of density
(pt)iefo,1] as defined in the proposition 5.2, such that t +— p; € C° ([0,1[, LP(R%)) and such that
p(t,z) = py(z) for almost all (¢,z) € [0, 1[xR? (see Lemma 4.1-5 of [14]).

By Brenier’s Theorem [20] p. 66), we have supp(p1) = V¢(supp(po)) (this property is
maintained by the re-precision of the potential ¢, satisfying the property (I'1), of the Proposition
3.2. Thus, Q being a convex open set of R? containing supp(pg) and supp(py), for all ¢ € [0, 1],
we have the inclusion (tV¢ + (1 — t)id)(supp(pg)) C Q. The weak formulation of the McCann
interpolation (5-5) clearly shows that if a test function h has its support disjoint of @, then
fol Jga hpdx dt = 0: the support of p : (t,2) = py(z) is therefore (strictly) included in the set
[0,1] x Q C Q.

We have now proved that the candidate density p : (¢,2) — pi(z), defined in (5-2), satisfies
the condition (P1’). The above paragraph ensures that the component p = (p, pv) is zero in the
neighborhood of the edges in space, and thus verifies the Neumann conditions implicitly included
in the weak conservation formulation of mass, i.e. the condition (P4’) (voir (3-5)). The following
proposition aims to prove that the pair (p,v) satisfies the condition (P4’).

Proposition 5.3. Let Q be a convex open set of R%. Let pg be a probability density and pui a
probability measure such that supp(po),supp(p1) C Q, and such that there exists ¢ : R? — R
satisfying the property (I'1), and py = Vo#(poL?). Let p =: (t,x) — ps(z) and v as defined
respectively in (5-2) and (4-12). Then the couple (p,v) satisfies (3-5) (conservation of the mass)
i.e.

h e C2([0,1] x Q), /

o Q((?th—l—v-vxh)pdxdt—i-/
1] %

h(0, ) po dx—/ h(1,-) dps = 0. (5-6)
Q Q

Pmof We recall that by the Proposition 4.1, for all ¢ €]0,1[, and for almost all 2 € R
0 X =v(t, X (t,x)), therefore for all h € COO([O 1] x Q),

/ (Oth +v -V h) pdx dt = / (Oeh(t, X (t,)) + 0: X (t,-) - Voh(t, X (t,-))) po dz dt
R4

Rd
/dt/Rd (t, X (t,)) po da dt = /Rdh(Lvm(x))pO(x)dx_/Rdh(o,w)po(x)dx,
(5-7)
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Since py = Vo#(poL?), we have [pa h(1,Va¢)podz = [ h(1,-)dur. The fact that v € L®(Q)
(Proposition 4.2) ensures that the integrals are well defined. We can thus conclude because of
the inclusion supp(p) C [0, 1] x Q. O

Under the hypotheses of Proposition 5.3, taking p1 as pu1 = p1£%, and assuming moreover
that po,p1 € LP(RY) (and then p € LP((0,1) x R?%) according to the Lemma 5.1) for p > 2.
Then, taking ¢ < 2 such that 1/p+1/q = 1, the weak relation (5-6) extends to the test functions
h € Wh4((0,1) x Q). Indeed, the space C2°([0, 1] x2) is dense in W14((0, 1) x 2) for the associate
norm and, in addition, the trace operator extends from C2°([0, 1] x Q) to W4((0,1) x Q) int =0
et ¢ = 1 when we take L?(Q2) as the space of arrival, which is valid here since pg, p1 € LP(2).

Since the conditions (I') are now established for (p,v), we are able to compile them to prove
the Theorem 3.1), that is to say to build a triplet (v, q, u) satisfying the properties (I). Let us
recall that for this, we have chosen to set u = (p, pv) et ¢ = (—(1/2)|v|?,v). Let us start with
a first result to clearly establish the condition (P3) on the term ¢: that is say that for such a g,
there then exists ¢* € VV;)COO([O, 1] x Q) such that ¢ = V;,9*. Note that the velocity field, in
addition to satisfying the properties (P2’) and (P3’), can be written as v = V9 (see (3-6)). The
triplet (¢0*, g, ) will then be our saddle point, and we will show in the proof of the Theorem 3.1
that it also verifies the properties (P1) and (P2).

Lemma 5.2. Let us consider a field of velocity v € L=(Q)? (property (P2’)), satisfying the prop-
erty (P3’) (the Burgers equation in the sense of distributions) for which there exists a potential
Y € L} (Q), such that v = V1.

Then there exists a potential * € WH°(Q), satisfying in sense of distributions the Hamilton-
Jacobi equation Opp* + (1/2)|V0*|> = 0 and for which, by setting ¢ = (—(1/2)|v|?,v), we have
q = Vig*. The property (P3) is then satisfied.

Proof: In the sense of distributions, we have
1 2 1 2 Lo
00+ 5Valv]? =0 & O(Vaw) + 5Valo =0, & Vo (9 + 5ll*) =0 (58)

There exists a distribution 7' depending only on ¢ €]0, 1], such that d;p + 1[v|? = T (see, for
example, Theorem 2.16 in [21]). We set ¢* = ¢ — G, where G is a primitive distribution of
T on ]0,1[ (and always depends only of t). We then verify, in the sense of the distributions,
Voo = Vb = v € L®(Q)?, and 9pp* = —(1/2)|v|*> € L>=(Q). We recall that the open set € is
assumed to be regular: we so have V, z1* € L>®(Q)%T!. We then have ¢* € W1(Q) (to make
sure, see Lemma 4.1-11 of [14]). Thus, we have ¢* € Wh(Q). O

We are now able to demonstrate the main result of this section, that is the Theorem 3.1
establishing the existence of a saddle point for the Lagrangian L.

Proof of the Theorem 3.1: Let us remember that a element (v, q, u) of LP*(pg, p1,$2) must sat-
isfies (¢, q, 1) € Sg, as well as the properties (I). First, by the Proposition 4.2, we know that
vy € L®(Q)? (property (P2’)) and, by the Lemma 5.1, that t = py(t,-) = Xyt )#po €
C° ([0,1], L*(2)) (property (P1°)).
Then iy = (pg, Psvs)s @6 = (—(1/2)|vg|?,v4) € L2(Q) (or at least the restrictions to @ of p, and
¢s). Moreover, we have shown above that supp(pg) C [0.1] x €, then supp(sue) C [0.1] x Q: The
homogeneous Neumann conditions on the space edges of p are thus verified.

Moreover, by setting s = (pg, povs) and g, = (—(1/2)|vg|? vg), the condition (P1) is
naturally verified. Indeed, for all ¢’ = (a,b) € P (the paraboloid defined in (3-1) p. (3-1)), we
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have

1 1
1
<u¢,q’—q<z>>=/ /(ap¢+b-v¢p) dxdt—/ /2!v¢\2p¢dwdt
0o Jo 0o Jo
! Loo Lo R
< a+ -|b]" + S|vg|” | pe da dt — =|vg|“pg dx dt < 0.
0 Jo 2 2 0 Jo?2

The condition (P2) results as for it from the Proposition 5.3 (property (P4’)). Finally, v, verifies
the condition of the Lemma 5.2: indeed, according to Proposition 4.10, vy satisfies in the sense
of distributions the Burgers equation (property (P3’)). Moreover, by (3-6), we know that vy
derives from a spatial potential.

Application of Lemme 5.2 permits us to conclude to the existence of one ¢4 € VVlE’COO([O, 1]x Q)
such that g, = V2104 and thus to verify the condition (P3), and also that the triplet (¢, g4, f14)
is indeed an element of Sg. This concludes our proof. O

6 Unicity

6.1 Unicity of the velocity field on the density support

We start by studying the problem of the uniqueness of the velocity field on the support of the
different potentially candidate densities, that is to say that for all the saddle points of L, denoted
by (¥*, ¢*, p*) = (¥*, ¢*, (p*, m*)), the densities p* are propagated according to the same velocity
field v.

Lemma 6.1. If (¢v*, ¢*, 1u*) is an element of LP*(pg, p1,Q) (with Q a bounded convex open set of
RY, and po, p1 € L*(RY) two densities which supports are included in ), with u* = (p*, m*).

Then, for all ¢ € ®(poLY, p1 L), by setting v = vy as defined at (4-12), for all t €]0,1[, we
have m* = p*vg.

Idea of proof: We will give a "schematic" proof of the uniqueness of the velocity field on the
union of supports of the candidate densities, which is based on the convexity of the set of saddle
points and the strict convexity of the paraboloid P = {(a,b) € R x R, a + |b2/2 < 0}. For a
more rigorous proof we refer again to [14] (chapter 4).

We assume (91, q1, 1) and (12, g2, 2) two stool points of L. The fields p; and ug are both
orthogonal (in the sense of the canonical scalar product of L?) to the hyperparaboloid defined
by P = {(a, b) € L*(Q) x L*(Q)%,a + ]b| /2 < 0} respectively at the fields ¢; and g2. We
will see later in the 8 (see the page 41), that the set of saddle points of L is convex: the point
(1/2)[(¥1,q1, 1) + (2,42, p2)] is also a saddle point of L. The field (1/2)(u1 + p2) is also
orthogonal to tilde mathcal P at the field in the (1/2)(q1 + g2).
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Let a point (tp,z0) € [0,1] x © such that
the vectors 1 (to, o), p2(to, xo) as well as the
vector (1/2)(p1 + p2)(to, xo) are all three or-
thogonal to the paraboloid P respectively at
the points q1(to, 7o), g2(to, zo) and (1/2)(q1 +
q2)(to, ro) (which is indeed the case for £9-
almost all point (¢,z) € [0,1] x Q); and such
that pi(to,x0) # 0 or ua(te,zo) # 0: thus
(1/2)(p1 + p2)(to, zo) # 0 (due to the orthog-
onality of the vectors pi(to, xo) and pa(to, o)
at the paraboloid P).
If we have q1(to,z0) # ga2(to,zo), the point
(1/2)(q1 + g2)(to,x0) would then be strictly
inside the paraboloid P, because of its strict
convexity: the vector (1/2)(u1 + p2)(to,xo)
would then necessarily be zero, which would
contradict the above assumption about this
vector.
Ainsi;, on a qi(to,x0) = qa(to, o). Les
vecteurs 1 (to, xo) et pa(to, xo) sont donc tous
deux orthogonales au paraboloide P au méme
point ¢1(to, o) et donc proportionnels au
vecteur (1, by (to,xo))-
Thus, we have qi(to,x0) = q2(to,xo). The
vectors w1 (to, xo) and pa(to, xo) are therefore
both orthogonal to the paraboloid P at the
same point ¢ (tg,zo) and therefore propor-
tional to the vector (1, b1 (to,xo)).

We then have ,Ltk(to,a,’o) = (pk(to,xo),mk(to,xo)) = (pk(t(),xo),pk(to,xo)bl(to,xo)), for k =
1,2, and so for £%-almost all (g, zg) € supp(u1) Usupp(uz). The fields i1 and pg therefore share
the same velocity field (i.e. the field b1) on supp(u1) Usupp(pe). O

Let us resume: for any ¢ € ®(poL?, p1 L?) fixed and for every saddle point (1*, ¢*, u*) of L,
p* is associated with the same velocity field vy with 0;p* + div,(p*ve) = 0 (because m* = p*vy),
with the initial and final conditions p*(0,:) = po and p*(1,:) = p1. In other words, for all
h € HY(Q), we have

1
/0 /Q (Och(t, z) + vy(t, ). Vah(t, ) p*(t, ) da dt + /

Q

h(O,-)po—/Qh(l,-)m:O.

We now prove that there exists a unique p* which satisfies these conditions, i.e. p*(t,-) =
X4(t,-)#po (and this for all ¢ € ®(peL?, p1£4)). We will use the method of the characteristics,
based on the Proposition 4.3.

6.2 Unicity of density in L?

In the previous subsection, we showed that the velocity field v corresponding to the displacement
of the densities was identical on the union of the supports of the candidate densities, and could
be written in an explicit form, i.e. under the form (4-12). This result implies in particular that,
if one could show the uniqueness of the density p, we could also conclude the uniqueness of the
momentum m (because m = pv). However, it is indeed this uniqueness of the velocity field which
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will allow us, via a method of characteristics, to conclude to the uniqueness of the density and
its explicitation (in other words that it is indeed the temporal interpolation of McCann between
the densities pgp and p1). The result on which the uniqueness of the density will be explicitly
based is the Proposition 6.1 which we enunciate below.

Proposition 6.1. Let a convex potential ¢ : R? — R satisfying the property (I'1), po € LQ(Rd),
and a velocity field v = vy defined from ¢ like in (4-12). Let a density p € L*((0,1) x R%), with
bounded support in [0,1] x R, such that

{ Op + divg(pv) =0,
p(0,) = po

(in the distributions sense), i.e.

1
Wh € C([0, 1[xRY), / / (8th+v~Vzh)pdxdt+/ B0, )podz = 0. (6-1)
0 R4 R4

Then p(t,-) = pe(t,-) = (tVo+ (1 —t)id)#po for almost all t € [0,1]. In other words:

1 1
Wi € CO((0, 1] x RY), /0 /Rdgopdxdt:/o /Rdgp(t,tv¢(:v)+(1—t)x)p0(x)dxdt. (6-2)

Moreover t — p(t,-) € C° ([0, 1[, L*(R%)).

Let us begin by explaining our approach. Let (i, q, 1) be a saddle point of L as defined
in (2-10), and let ¢ € ®(poL? p1L?) (thus satisfying the property (I't) on RY). The latter
satisfies the properties (I), which implies in particular the weak conservation of the mass relation
G(h) + (4, Vizh) = 0 for all h € HY(Q), as well as the linear coupling density-momentum:
w=(p,m) = (p,pv) € L*(Q), with v defined as in (4-12) (see Lemma 6.1) and satisfying the

properties (II) and (B) (see the conclusion of the section 4), whence v =vg € H= () WHP(Q).
1<p<2

From these properties, we deduce that for every h € H'(Q):

/Ol/Q(athjLU‘V:vh)pdxdt:/Qh(la')ﬁ’ldff—/ﬂh(o,-)podz. (6-3)

Let ¢ € C°(Q) such that supp(¢) CJ0,1[xQ C Q. By solving the transport problem in v and
¢ by a characteristics method, there is a function h € H defined for any (¢, z) €]0, 1[xR? by:

~

1
hitz) = — /t (s, (s — )o(t, z) + ) ds, (6-4)

which one verifies 8,571 + v - sz = ¢ and Vizh = {(Vigv)a + 8, with a € L>(Q)?, and
B € L. (Q)H! (since Vv is of size d x (d + 1)). Moreover, we have

loc

h(1,-)=0, et h(0,-)=— /1 o(t, X(t,-))dt, avec X(t,) =tVeo+ (1 —1t)id (6-5)
0

The function h is an element of the space H and therefore of every space W1P(Q) (at least its
restriction to Q) for all 1 < p < 2, it has a trace in L?(Q2) at t = 0 and ¢ = 1, whatever the
dimension d of the transport space: it is enough to choose p close to 2. However, under conditions
(6-5), the relation

~ 1 1
h(0,-) :—/0 o(t, X(t,)) dt = —/0 o(t, 1V + (1 —t)id) dt
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is also not obvious to show (since in general v does not extend continuously in 0), even if it is
very intuitive. Indeed, we have for all ¢ €]0, 1],

~ 1 1
h(t, X (1, 2)) :—/t go(s,(s—t)v(t,X(t,x))+X(t,x))ds:—/t o(s, X(s,))ds,  (6-6)

given that X (0,-) = id. However, since X (t,-) is generally not invertible, and V¢ is generally
non-continuous, the relation 6-5 can not be deduced immediately from relation 6-6.

Two cases would have, if they had taken place, facilitated the demonstration: Firstly, if we
could have had v € H} (Q), we would have had :

IVeahlD) < Iz oy IVeavlizpy + LAOIBILp) < +o0,

on any domain D = (0,1) x w, with w a bounded open set (w C R?). Hence we deduce that

h € H! (Q) and thus h € HY(Q) (or at least the restriction from h to ). In a second time, if we
could have had p € L(Q) with ¢ > 2 (rather than p € L%*(Q)), it would have had been possible
to extend the conservation relation of mass (6-3) to all h € W1P(Q) (instead of h € H(Q)) for
1 < p < 2 verifying 1/p+ 1/q¢ = 1, and thus for any h € H. In both cases, it would have been

possible to inject h into the relation (6-3):
1 1 ~ ~
/ / o(t, z)p(t, z) de dt = / / <8th(t, x) + v(t, x).Vxh(t,x)> p(t,x) dxdt
0 JQ 0 JQ
— [ hap@ de— [ 0.2 de = - [ BO,2)p(x) ds
Q

f Q
1 1
:/Q/O so(t,X(t,:c))dtpo(x)dx:/O /ng(t,X(t,aj))pO(x)dxdt.
(6-7)

And this for any ¢ € C°(Q) such that supp(¢) CJ0,1[x€Q. This would have allowed us to
conclude that p is the same as the one constructed in the Theorem 3.1 (existence of a saddle
point for L), that is to say

pldr @ dt) = (id-, X)#(po dx @ dt), avec id, : (t,z) —t (6-8)

(even if it means to have to extend to the entire space @) to properly define the measure push
forward in agreement with the notion of measure push forward as defined in the Proposition 5.2).

Unfortunately this will not be the case: we are unable to show either of these two cases.
However, we do not abandon "the idea", that is to say to treat the problem more or less by the
method of the characteristics.

To cling to the first of these two cases, we will approach the velocity field v (associated with
the transport plane V@) by velocity fields v, = v+ associated with regularized transport plans:
that is to say transport plans of type V¢, ou %, where % denotes the ~-regularization by a
Moreau envelope of the potential ¢ (see Definition 4.3). This regularization has in particular the
property of erasing the fractures of the transport plan, which ones are responsible for the fact
that v does not have regularity H' in the neighborhood of ¢+ = 0 (the neighborhood of t = 1 do

not causing problems because, by construction, h is uniformly zero on this neighborhood).

The convergence of the relation (6-3) injected by the h, (solutions associated with v,) to
a relation (6-8) type will call on the results developed in the section 4, especially those in the
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subsections 4.5 and 4.6. Moreover, to prove this convergence, we will also cling to the second
evoked case by calling upon the density of the spaces L4(Q) (¢ > 2) in L*(Q) (see Lemma 6.2).

In addition, the trace explicitness problem of h, discussed above will not arise because the

v, extend by continuity in ¢ = 0: it is then similarly for the h, (see Proposition 4.5). The proof
of the possibility of such an extension follows the same reasoning than those one illustrated by
the relation (6-6): indeed, in this case X, (t,-) will be invertible and V% will be continuous.

In summary, by a characteristics method, it is possible to construct some functions h, €
H'(Q), uniformly zero in the neighborhood of ¢+ = 1 (independently of 7), such that:
Othy + vy - Vyhy = @ = Othy + v - Vyhy + (vy — v) - Vihy,

et avec iNzW (0, -) convergeant vers — fol o[t, (1 —1)id +tV,¢] dt dans L?(RY) lorsque v tend vers 0.
En injectant une telle fonction h. dans (6-3), on obtient
and such that h.(0,-) converges to — f01 @[t, (1 — t)id +tV,p] dt in L?(RY) when ~ tends to

0. By injecting such a function h, in (6-3), one obtains

l/‘jgdwpdmdt ‘/‘jéd (1 =)z + tV,é(z)|po(z) dz dt + R, (), with (6-9)

:/0 /Rd(vw—v).vxlwmpdxdt—/ h podx—/ /Rd (1 —1t)id +tV . ¢]po dz dt.

(6-10)
It is therefore necessary, to prove the Proposition 6.1, to prove that the R,(¢) converges to 0
when 7 tends to 0: to do this, as already mentioned above, we will use the complementary results
of the subsection 4.6.

The h, are defined with respect to v, by (6-4). We can then prove that we have

Vaho(t,z)

< (IVauy(t, @) + DI Vel oo j0,1]xray» for almost all (¢, z) €]0, 1[xR?  (6-11)

(for more details see [14] subsection 4.2.5), we specifically detail the fact that h, € H'(Q)).
The potential % verifying the property (I'1) (Lemma 4.3), and according to (4-24), vy is

extended by continuity in ¢ = 0: so it is the same for h., (which is thus continuous on [0, 1[x ),
and for all z € R,

~ 1 1
h~(0,2) = _/0 ¢(s,5v,(0,2) + ) ds = _/0 (s, sVp(x) + (1 — s)x)ds (6-12)

(coinciding with the trace L? of ﬁ,y in t = 0). According to the Lemma 4.4, V¢(z) con-
verges for almost all x € Q to V¢é(z) (for all © where ¢ is differentiable). Moreover, the term
o(s,sVI(x) + (1 — s)z) is uniformly bounded by |p|/p~ for all (s,z) €]0,1[x€. Thus, by

dominated convergence, we have

~ 1
Ty () = /QhA,(O, )po dx + /0 /Qcp(s, sVo(x) + (1 — s)x)po(x) drds m 0. (6-13)

With the mark-up (6-11), we thus have

tm tm
By(@)] < Iy (9)] + [ Vol (/0 /Q|v—v7|‘\vwi|~rp|dxdt+/0 /Q|v—v»y\-|p|dwdt>.
(6-14)
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Proposition 4.9 tells us that |v — v, is uniformly bounded and simply converges to 0 on ]0, 1[x2
when 7 tends to 0. Thus, since p € L2((0,1) x §2), we conclude via the Dominated Convergence
Theorem that the term fg’" Jo v — vy - |p| dx dt converges to 0.

Finally, to complete the proof of Proposition 6.1, we have to prove that the term fg m fQ v — vy
|Vavy| - |p| dx dt converges to 0, which is the subject of the following Lemma.

Lemma 6.2. Let ¢ : R? — R be a convex potential verifying the (I'y) property, and a velocity
field v = vy defined with respect to ¢ as in (4-12), and 0 < t,,, < 1. Let p € L*((0,1) x RY), with
bounded support into [0,1] x R?, and Q C R? a bounded open set such that supp(p) C [0,1] x Q C
Q. For any v > 0, we define Uy = Uy, where "¢ is the Moreau envelope of ¢ by the parameter vy,
see Definition 4.3. Then we have the result of convergence:

tm
/0 /Rd ]v—vvl-|va7]'|p\dxdt7j60. (6-15)

Proof: We will begin by showing the following increase:

tm

vr et [ [ o=l Ve loldedt < Mol (6-16)
with M a constant. To do this, we will proceed to a Chasles division in time of type t’” =
I —I-ftm Recall that for ¢ €]0, 1], the fields v, (¢,-) and v(t,-) are ¢/t(1 — t)-Lipschitz sur ]Rd,
with ¢ 1ndependent of ¢ and v. For example, by the Lemma 4.5, we have ||V v, (¢, )|, « ®d) <
(¢/1 —t)min{1/~,1/t}. In the first term, we will thus have ¢ < v, and we will proceed to the
bounded from above |V, v,| < \/E|va7\1/2 /(v/7V/1 —t). In the second, we will have ¢ > ~,
and we will so proceed to the bounded from above |V v,| < /¢ \vaﬂl/g /(V/ty/1 —t). For the
various weighted upper borns, we will invoke the Corollaries 4.1 and 4.2, with keeping the same
notations for the constants and parameters involved in these utterances (the parameter o and
the constants C' and K).

For the first term, we choose @ = 0. We have:

/;/Rdw—w-rvxw-wdmdmCﬁ/”%/vxw )
ol ) ('

M
< dr) dt < — 2g) = = llpllz2
e (L 2 < M g = Yl

=

’ ‘p(t7 )| dx dt

(6-17)
with M = (2Cv Kc¢)/+/1 — t,. For the second term, we choose a = 1/2. We then have:
tm tm 1 1
/7 [ o= vl Ve lpldode < C\/Eﬁ/ = [ 190, ol o
<l [T (frmew) (e a
2V x) - p|” dx
1-¢ gl "l Q
M 1 1 M
ALV TN dt) Mol < Fvmy s - ol < lelliz

(6-18)
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Thus, by summing (6-17) and (6-18), we obtain the inequality (6-16).

This upper born is of course not sufficient to prove (6-15). In fact we are "at the limit" of
obtaining this convergence: if, in previous calculations, we had could, rather than perform the
Cauchy-Schwarz inequalities, perform a Holder inequality integrating slightly less the gradient of
the field v , and therefore a little more the density p, we could have obtained this convergence.
More precisely, assuming that p € LP(Q), with p > 2, rather than p € L?(Q), we then obtain the
result of convergence (6-15). Indeed, with taking 1 < g < 2 such that 1/p 4+ 1/¢ = 1, note that:

IVou(t,z)| = |Veu(t,z)[pHa < (M) " IVau(t,z)|1. (6-19)

-

For all 0 < a < 1, we then have:

t t 1
m m fya C P 1
ol V| - ol dedt < Y sl - |p| da dt
L7 Lol Wt plasae < [T () (i555) " [ vl ol
1

1

1 1
C P 1 7 >
i to+1/p : P 6-20
<o) [ (Lwelae) ([ bas) e 620
- 1
<C ¢ 5 [(l o 1 1 d q
N 1—ty, JK 1y /0 taa+q/p t) ellr@)-

Now, we have ¢ < 2, and it follows that by fixing 0 < a < 1 small enough, we can then have
gla+1)<2 & qa+q/p=qa+q—1<1: the term 1/t9+%/P is thus integrable on ]0,1[, and
we then obtain the result of convergence (6-15).

Finally, we have to prove the convergence (6-15) in the case where we have only p € L?(Q).
Note that the intersection of the spaces LP(Q), for all p > 2, is dense into p € L?(Q). Indeed, if
p € L*(Q), then for all 0 < A < 1, we have 2/A > 2 and |p|* € L?*((0,1) x Q). Moreover, it is
easy to show, via the Dominated Convergence Theorem, that the family (|p|*) A€j0,1] converges
to |p| in L?(Q) when A tends to 1.

Let € > 0. For all v > 0 and all 0 < A < 1, we have the upper born:

tm tm
[ ool Von - loldzde < [ [ ool 192 1o - 16| doa
0 R4 0 R4

. (6-21)
+/ / [0 — vy - [Vvs| - |p| do dt.
0o Jrd
By fixing A €]0, 1[, such that ||[p] — |,0|)‘HL2(Q) < ¢/M, we thus have by (6-16):
tm
vy el [ [ ool Vol - 1ol dede <1l < 6P, <o (622
0 JRrd L*(Q)

We then can, by injecting the last inequality into (6-21), and by the convergence result obtained
for |p|* € LP(Q), p = 2/\ > 2, set a rank 7o > 0 such that for any 0 < v < 7o,

tm tm
/ /|U—UV|-|V;,;UV|-]p|dxdt§e—|—/ /|v—vv|-\va7|-]p|Adwdt§26. (6-23)
0 Rd 0 Rd
O

With this last proof, we conclude the proof of the Proposition 6.1. To finish to prove the
Theorem 3.2 which deals with the uniqueness of the component . = (p, m) shared by the saddle
points of L, e only have to show that a density p* associated with one of these saddle points
(v*, ¢*, u*) verifies the conditions of application of the Proposition 6.1.
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Proof the Theorem 3.2: Let (¢¥*,¢*, n*) an element of LP*(po, p1,2) (i.e. a saddle point). Ac-
cording to the Proposition 3.1, we have G(h) + (u*, Vi h) = 0, for all h € HY(Q). Let
¢ € ®(poL?, p1L£?) (thus verifying the property (I'1)). According to the Lemma 6.1, by defining
vy on ]0, 1[xRY like in (4-12), we have m* = p*vs. In other words, for all h € H(Q):

/ (Oth + vy - Vh) p* dwdt—i—/ h(0,-)po dx — / h(1,-)p1dx = 0. (6-24)
Q Q Q

Let p* € L?((0,1) x R%) the extension by 0 of p* on (0,1) x R%. Noting that for all h €
H! ((0,1) x R%), we have hg € HY(Q) and V; hg = (Vizh) g, the relation (6-24) is extensible
from @ to the entire space (0,1) x R, Thus, according to the Proposition 6.1, we then have the
equivalence p*(t,-) = py(t,-) = (tVe + (1 — t)id)#po for almost all ¢ € [0, 1], with in addition
t— py(t,-) € CO([0,1[, L2(RY)). O

7 Characterization of an optimal transport velocity field

In this last section, we present a generalization of our study about the uniqueness of the com-
ponent p: we want to use this study to try to characterize less formally an optimal transport
velocity field. The result will be roughly the following: any density of L?, with bounded sup-
port and continuously borne by a locally bounded velocity field, of which the trajectories are
all straight lines that never intersect, that is to say, satisfying the properties (II) corre-
sponds to an optimal transport (a McCann interpolation) and is the only solution for such
a displacement.

For a convex open set § of R? (not assumed bounded here), Let us define the space °L2 ((0, 1) x
Q) of densities p € L%((0,1) x ) which are non-negatives and with compact supports into
[0, 1] x €.

Theorem 7.1. Let Q be a convex open set of R%. Let v* a velocity field on Q0 satisfying the all
properties (II), and let pg € L?(2), such that po > 0, and such that supp(po) is bounded in .
Let a density p* € bLi(Q) (space defined above) be a solution, in the sense of the distributions,
of the system

{ Op + div,(pv*) =0, (7-1)

p(o, ) = Po,

Then the density p* is the unique solution of the system (7-1) in the space "L%((0,1) x ).
Moreover, p* is assimilated to an interpolation of McCann, and p* € C° ([0,1[, L*(2)) N°L2(Q):
in other words, there exists a unique non-negative measure vy defined on the Lebesque tribe of €2,
which support is bounded in supp(po) U [Ute[o,l] supp(p*(t,-))], satisfying the properties (C), and

a convex function ¢ on R? verifying the property (T'1), such as vy = Vo (po ,Cd), and
vt € [0,1], (p"(t,)LY) = (pp(t,)LY) = (tV + (1 — 1) id) #(poL?). (7-2)
The couple (p*,v*) the verifies the system:

{ Op* + divg(p*v*) =0,
p*(0,) = po, p*(1,") = 11.

that is, reformulated in the weak sense,

1
Vh € C°([0,1] x ), / /(ath—kv*-vxh) p* dxdt—}—/ h((),-)pod$—/ h(1,-)dvy =0. (7-4)
0 JQ Q Q
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Finally, the velocity field v* satisfies the properties (B) (recalled just before the utterance of this
Theorem) on supp(p*) and, for all (t,x) € supp(p*), we have v*(t,x) = vg(t,x) (with vy always
defined by (4-12)).

The proof resumes about the same elements as those developed in the sections 5 and 6,
sometimes somewhat more technical, mainly due to the fact that the measure of arrival in this
case (7-1) is no longer a density measure, of type p1£%, but simply a finite measure v satisfying
the properties (C). We will not give here the details of the evidence, just an idea of the process.
For details, we refer again to (section 4.3).

The first step is simply to prove the existence, in the sense of the distributions, of the incoming
measure 1, as defined in the statement of the Theorem 7.1. For this purpose we use classical
functional analysis tools [14] (in particular the Riesz [19] representation theorem). We also show
that the weak formulation (7-4) is always valid for test functions taken from W¢*°(]0,1] x Q).

Then we consider ¢, an optimal transport potential between pgLP and vy satisfying the
property (I'1), then we build "a saddle point", i.e. a triplet (14, gy, ¢), as we did in the section
5, and constructed in the Theorem 3.1 and the Lemme 5.2. In fact, the Brenier Theorem assumes
density only for the starting density poL?: the Proposition 3.2 is thus always valid, as well as the
set of reasoning we have done with respect to the construction of the velocity field v4. However,
we can not obtain the membership of p, to L?((0,1) x Q) via the Lemma 5.1 (which requires
vy = p1 L% with p; € L2(Q2)). We can not extend the test functions of the weak formulation of the
mass conservation for the (ps,v4) pair to the space H} ((0,1) x ), as follows the Proposition
5.3 (note that the latter only considers density measurement for the initial one). Extending
these test functions to the space I/Vlifo((o, 1) x Q), which is necessary because the potential 1),
is necessarily in this last space.

We then construct, in the same way, a second saddle point from the pair (p*,v*), that is to
say a triplet (u*,¢*,¥*), with u* = (p*, p*v*), ¢* = (—(1/2)|v*|?,v*) and V;,9* = ¢* (Lemma
5.2). We can then, as well as for the Lemma 6.1, prove the uniqueness of the velocity field on the
supports of py and p*: in other words, in the case that interests us, p*v* = p*vy. Although our
triplets (pg, ¢, ¥e) and (p*, ¢*,1*) are no longer necessarily in L?, and that we can no longer
really speak of "projections" and "orthogonality" in the schematic proof that we have done for the
Lemma 6.1, the reasoning remains globally the same and we reach the same conclusion (Lemma
4.3-14 de [14]). Thus, according to the Proposition 6.1, the density p* verifies the relation (7-2),
with ¢ — p*(t,-) € CY ([0, 1], L*(2)).

Now, let us show that p* is the only solution with bounded support of the system (7-1) in the
space °L2 ((0,1) x): assume there exist two solutions p', p? of the system (7-1) in °L2 ((0, 1) x€2),
and show that then p! = p? in L%((0,1) x 2)). Let us introduce p = (p* + p?)/2. Such a p is
also a solution of the (7-1) in °L2 ((0,1) x ). Therefore, from the above, there would exists a
convex function ¢ of R satisfying the property (I'1), such that, by defining vg as in (4-12), we
have pv* = pug, ie. (p* + p?)v* = (p* + p?) vg. The field v* is then almost everywhere equal
to the field vz on supp(p') U supp(p?), thus plv* = p! vg and p> vt = p? vg. Therefore, p' and
p? both satisfy the system (7-1), with replacing v* by vg- According to the Proposition 6.1, we

thus have pt = p? : t pg = (tVo + (1 —t)id) #po in L*((0,1) x Q)).

8 Convergence of the algorithm

The aim of this section is to demonstrate the weak convergence of the Benamou-Brenier algo-
rithm, as well as the strong convergence of a relaxed version of the algorithm towards a saddle
point of the Lagrangian L. For this purpose, we will reformulate the problem of convergence of
the algorithm towards one of these saddle points, into a more generic problem of convergence to
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a fixed point of non-expansive operator. We start by identifying the saddle points of L at the
fixed points of an "iteration of the algorithm" operator.

Proposition 8.1. There is an equivalence between a saddle point of L (and thus of L, for all
r > 0) and a fixved point of the algorithm (defined in the subsection 2.3). In other words, (1, q, p)
is a saddle point of L if and only if it remains invariant for the Benamou-Brenier algorithm
(here we take r > 0).

Proof: Let (¢, q, ) be a saddle point of L. We denote (¢, ¢/, i) the new triplet obtained after
one iteration of the algorithm. Let us show that (¢/,¢',u') = (¢,q,u) in Sg. By taking the
step A, and by the property (P2) of (I), by taking h = 1" — 1), we obtain va(@bl —¥)|? =0.
According to the inequality of Poincaré, we get 10" = in H*((0,1) x Q)/R. In step B, we look

for the unique ¢’ verifying (u+ Vo' —¢',p—¢') <0, for all p € P. As ¢ =1, by the properties
(P1) and (P3) which characterize a saddle point, ¢ is a good candidate and therefore the only
one, hence ¢ = ¢. Finally, V; ¢/ = Vi,9 = ¢ = ¢ and thus by the step C we finally have
/
p=p
Finally, let (¢, ¢, 1) be a fixed point of the algorithm. Let us show that it is a saddle point
of L. Step C gives immediately V.1 = ¢, and consequently step B gives (u,p — ¢) < 0 for all

p € P, and step A gives G(h) + (i, Vizh) = 0 for all h € H(Q). Since the three properties (I)
are verified, (¢, q, p) is therefore a saddle point of L. O

It is now possible, according to the Proposition 8.1, to formally redefine our algorithm con-
vergence probleme to a saddle point of Lagrangian L, to a problem of convergence of a sequence
of type zn+1 = Mux, to a fixed point of the operator M defined as the product of an iteration
of each step of the algorithm (and taking for example x, = (Vn, ¢n, pn) ). We will see in the
subsection 8.2 that by placing in an appropriate Hilbert space, it is possible to characterize such
an operator M as a non-expansive type operator (1-Lipschitz).

As a preamble to this reformulation, the following subsection will be devoted to the formu-
lation of some general results useful for our study in relation to non-expansive operators.

8.1 Some convergence results for non-expansive operators

For any non-expansive operator M, we will state in this section a series of results allowing to
obtain both weak convergence to a fixed point of M of the iterative algorithm z,4+1 = Mz,
and the strong convergence of a relaxed version of this algorithm.

We begin by recalling some useful standard definitions for the sequel. Let (H, (., .)) an
Hilbert space and let M : H — H.

Definition 8.1 (Non-expansive Operator). The operator M is called non-expansive if and
only if it is 1-Lipschitz, and firmly non-expansive (implies non-expansive) if and only if we
have |Mxz — My|? < (x —y, Mz — My), for all x,y € H.

The operator M is also called quasi-firmly non-expansive on a subset A of H, containing
the set of fived points of M, if and only if, for any fived point x* of M, we have |z — z*||*> —
Mz — 2*||? > ||x — Mz||? for all z € A.

Let us now consider two convergence results that can be applied, for the first one to the
problem of the weak convergence of the algorithm, and for the second one, to the problem of the
strong convergence of a relaxed version of the algorithm. The Theorem 8.1 is easily proved by
classical tools of functional analysis (the proof in particular invoke the Opial Lemma [|). The
second one is a result due to H. Bauschke in [1]. The detailed proofs of those two theorems are
in [14] (section 2.3 and appendix B).
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Theorem 8.1. Let M be a non-expansive operator on H, and quasi-firmly non-expansive on
M(H) (the image of H by M). Assume that the set Fiz(M) of the fized points of M is non-
empty. Let (x,)n be a sequence of elements of H satisfying for every n € N the estimate:

|IM(z,) — Zpt1]| < €n, where (€,)n is a non-negative real sequence satisfying > e, < +00. Then
n

(zn)n weakly converges in H to a fized point of M.

Theorem 8.2 (H. Bauschke [1]). Let M be a non-expansive operator and assume that the set
Fix(M) of the fized points of M is non-empty, and let (An)n>0 be a sequence of parameters of
[0,1[, converging to 0, and satisfying: Y, An = 400 and >, |Ant1 — An| < 400. Let H be a
Hilbert space, and M a non-expansive operator over H. Given a and xg in H, we define the
sequence () by the recurrence xn11 = Apa + (1 — X\py) Mz, (Yn > 0), where for all n € N is
verified the estimate |Myx, — Mz, | < €,, with ), €, < 400.

Then the sequence (xy,)y converges strongly to Pra (where F = Fix(M) is the set of fized
points of M: it is a closed conver set).

The sequence (€,,)y, here represents the inevitable numerical errors inherent in the implemen-
tation of such an algorithm. It is assumed here that these errors are highly controlled, which is
not very realistic in practice.

About the Theorem 8.2, it is easy to prove that the set of fixed points of a non-expansive
operator is a closed convex set (see Lemma 2.3-7 of [14]).

8.2 Formulation of the Benamou-Brenier algorithm in terms of non-expansive
operator

We will now be able to put into practice the convergence results set out in the previous section
in the context of the Benamou-Brenier algorithm. It is sufficient to show that the iterations
of the algorithm can be considered as the iteration of a certain non-expansive operator. Let
the space H = L2(Q)%! x L*(Q)%*!, provided with the scalar product ((u1,q1), (p12, o)) g =
{1, p2) 2 +12{q1,q2) 2. The space (H,{(.,.)) is then a Hilbert space.

Let B: H — H be the operator which associate to (u,q) the product (¢/,¢’) of the last two
steps (B and C) of the algorithm Benamou-Brenier. Here v is ephemeral: indeed, if (u*, ¢*, ™)
is a saddle point of the Lagrangian L (and thus L,) defined in (2-9), then (u*, ¢*) = B(u*, ¢*).
Conversely if (u*, ¢*) is a fixed point of B then (u*,¢*,9*) is a saddle point of the Lagrangian
(where ¢* is the unique element of Sg¢g which satisfies ¢* = V4*). The potential ¢ therefore
constitutes only a calculation step.

Proposition 8.2. The operator B is non-expansive on H, and quasi-firmly non-expansive on
B(H).
Proof: (w1, q1) and (p2, g2) being given, we determine (17, ¢;) = B(u1, 1) and (k5, g5) = B(p2, ¢2)

by the following iteration (recall: see subsection 2.3). For i = 1,2, we look for:

e Step A : The unique v, € (H!/R)(Q) such that G(h) + (i, Vh) 2 + r(Vep: — qi, Vh) 2 = 0,
for all h € (H'/R)(Q).

e Step B : The unique ¢} such that (u; + (VY. —q}),p —¢})r2 <0, for all p € P.

e Step C : We define p; by ul = p; + (Vi — ql).
Let us start by studying the non-expansivity of B. Note that by injecting the equation of
step C into step A and step B (for ¢ = 1 or i = 2), we obtain the two new equations:

Vh e HY(Q)/R, G(h)+ (i}, Vh) 2 +7(q) — ¢, Vh)2 =0, et p€ P, (uf,p—q})2 < 0. (8-1)

Let us call them (8—1)1 and (8—1)2. We set () = ug) —ugl) g = qg) —qf) and E(,) = wg) —¢§,).
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Respectively, by taking (8—1)}:2 - (8—1)2-1:1 and h = ﬂ/, and by summing (Etape B);—y with
p = ¢}, and (Etape B);—1 with p = ¢}, we obtain respectively the two following relations:

(@, V§) +r(@ -a. V) =0 and (7.7) > 0. (8-2)
noted (8-2)' and (8-2)2. By summing these two relations, we then have (17, vy — q)+r{@ —
q, V@S < 0. By factoring the term |fi|? — |f7'|?, we then obtain

AP 7P = - A ) = (VO -2+ r(VY - 7))~ r(VY - 7)) (8-3)
= =20 (@, V' = @)+ |VE —7)” > 2*(V§ 7 —q) +* |V -7
De plus, on a (V9,7 —q) = (Vi ~ 3,4 ~0) + (2.9 ~ 1)
(1/2) (17 - [a* + 17 —a°) + (V&' - 2.7 - ) — [7 —
=(1/2) (|7 - la* + [ - a) + (V&' - 7.7 - ).

(8-4)
By re-injecting (8-4) in (8-3), on obtain:
Al =P = (72 =) + (j7 - @ + 2V 7.7 —q) + V9 — 7)) 55
> r*([7° - @) +r*|V§ — P,
ie. (% +r2fg?®) — (72 + 7 ) = r?|Vve' — g > 0. (8-6)

Now, we have || (41, q1) = (2, 42) || = |f* +r?[q]* and [B(u1,q1) = B(p2, a2)lm = 7' +7%[q'*:
the operator B is therefore non-expansive.

We now demonstrate the quasi-firmly non-expansiveness of B on B(H ) Let (1*,q*) a fixed
point of B (hence include in B(H)), z = (u,q) € B(H) let us define ( q) = ( i,q) = Ba.
By using equation (8-6) with (,q,71) = (¢ — %, ¢ — ¢*,u — p*) and (&', ﬁ) (W' =¥, q -

q*, 1 — p*), we obtain:
(lp = P+l — g P) = (W — 0P +r°ld — ¢ P) > V@ —¢*) — (g —¢")>.  (8-T7)
For the second member, 2|V (¢ — 9*) — (¢ — ¢*)|*> = r}|VY' — ¢|* = |(t/ — p) + (¢’ — ¢)|?
= |u' — > +2r(y — g — @) +r°d" — ql?,

with (4 — p, ¢ — q) > 0, according to the relation (8-2)* (recalling that (y,¢) € B(H)). Thus,
proceeding in the same way as in [11], we obtain:

(o= P+ = ¢ P) = (W = P +7°%d = ¢ P) > |0 = ul> + %1 — qf,
that is to say, [|(1,q) — (&, ¢*)% — 1/, @) — (W5, @)% > 1B, q) — (1, 9)||%- O

By applying the Theorem 8.1 to the operator B, we are then able to prove the weak-L?
convergence of the Benamou-Brenier algorithm to a fixed point of B (i.e. to a saddle point of L)
whose existence is justified by the Theorem 3.1. Similarly, by applying the Theorem 8.2, we can
easily define a relaxed version of the algorithm with strong-L? convergence. This non-expansive
operator approach has recently been used to show the convergence, weak or strong, of other
algorithms, especially some splitting-proximal algorithms [5].

Proposition 8.2 also justifies the convexity (and closure) of the set of saddle points of L
(property invoked in the schematic proof of the Lemma 6.1). Indeed, as already mentioned
above, the set of fixed points of a non-expansive operator is a closed convex set. The operator
B immediately gives us this convexity for the components p and g. The characteristic (P3) of
the properties (I) as well as the linearity of the gradient operator V; , transpose this convexity
to the component v, and therefore to the set of saddle points of L.
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9 Conclusion and perspectives

The starting point of our work was to study the consistency of the Lagrangian augmented
algorithm by Benamou-Brenier. We have shown in the section 8 the weak convergence of the
Benamou-Brenier algorithm to a saddle point of the Lagrangian L (see page 4), which models
the dynamic formulation of the optimal transport problem, as proposed in [3]. This proof of
convergence is based on a reformulation of the algorithm as an iterative sequence of a non-
expansive operator B (1-Lipschitz), whose fixed points are equivalent to the saddle points of L.
This formulation enabled us to exploit the literature associated with the theory of non-expansive
operators, by which we were able to propose a relaxed version of the Benamou-Brenier algorithm,
with strong convergence, to a saddle point of L. However, numerical experiments did not reveal
any real improvement in the relaxed versions, with respect to the speed of convergence and the
accuracy of the calculations, compared to the original algorithm.

This convergence of the algorithm and its relaxed versions remain nevertheless conditioned to
the existence of a saddle point for the Lagrangian L (and therefore of a fixed point of the operator
B). Therefore, in the sections 4 and 5, we have initially undertaken to prove the existence of such
a saddle point, while also showing in section 6, the uniqueness of the evolution of the density and
the momentum resulting from such transport. We have tried to prove all this under the most
general possible conditions, especially in cases where the starting and arrival densities pg and p;
cancel at certain areas in the transport domain (the existence of a saddle point in the case of
strictly positive densities which have already been treated in [13]).

Such conditions imply in particular to be able to take into account the case where the number
of connected components of the supports of the densities pg and p; are not the same. Such cases
generally reveal non-regular optimal transport plans, which is why a large part of our work will
have involved an in-depth study of the regularity and behavior of a velocity field associated with
such transport plans. This study of the velocity field associated with an optimal transport plan
will have been the main object of the section 4. This study will also have been the opportunity,
specially in section 7, to try to characterize in general the properties of a velocity field associated
with an optimal transport in the space L? (see the Theorem 7.1 p. 37).

Our prospects for completing this work are quite broad. As for the Benamou-Brenier algo-
rithm, and more generally the algorithms dealing with dynamic optimal transport, we would
like to be able to highlight tools and methods of precise analysis of the convergence properties
of these algorithms: stopping or distance criterias of the calculated steps with respect to the
theoretical solution, theoretical information on the speed of convergence, etc...

In regards to the studies conducted in sections 4, 5 and 6, concerning the existence and
uniqueness of solutions to the dynamic optimal transport problem in L?, we would like to be
able to extend them to cases of dynamic optimal transport operating in less classical environ-
ments, especially non-isotropic environments (see our article [15]), or even more generally within
Riemannian varieties.
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