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A Necessary Condition for Designing Waveforms
with better PAPR than OFDM

Marwa Chafii, Jacques Palicot, and Rémi Gribonval

Abstract—This paper analyses the behaviour of the peak-to- analytically that having a temporal suppdrtless than the
average power ratio (PAPR) in multi-carrier modulation (MCM)  symbol period is a necessary condition on the waveforms
systems regarding to the modulation waveform. The study gives ;, order to reduce the PAPR compared with OFDM

a necessary condition of improving the PAPR performance M that. if th - it
compared with the conventional orthogonal frequency division oreover, we prove that, It the previous necessary conuitio

multiplexing (OFDM) system based on Fourier transform and IS not satisfied, i.e the waveforms have a temporal support
rectangular filter. In addition, we show in which conditions on larger than or equal to the symbol period, OFDM is optimal
the waveform, OFDM is optimal in terms of PAPR performance, in terms of PAPR performance. In addition, we prove that
a_nd we define_an infini_tg family c_)f optimal MCM systems for the OFDM is not the only optimal system in this case, but we
given modulatlon conditions. To_lllustrate_our results, we present defi I family of MCM ¢ ith optimal PAPR
simulations of the PAPR behaviour for different MCM systems. pgr:‘r;?mzm?:regeﬂ??:%n?:lusions zz T)Tessgvr:tedoipr)wlrgii;ure 9. To
Index Terms—Peak-to-Average Power Ratio (PAPR), Multi- he pest of our knowledge, this is the first work that study
Carrier Modulation (MCM), Orthogonal Frequency Division the necessary condition of reducing the PAPR, and gives an
Multiplexing (OFDM), Generalized Waveforms for Multi-Carrier . . . v A
(GWMC), Fourier Transforms. analytical proof of the optimality of the OFDM in terms
of PAPR performance, and discusses the conditions of the
validity of this optimality.
I. INTRODUCTION
i i i , The modulation scheme of conventional OFDM is based on
HE OFDM [1] is a multi-carrier modulation (MCM) 6 jnverse fast Fourier transform (IFFT) and the rectaagul
1 system widely used in wireless applications such gger There exists other variants of the OFDM, for example,
digital audio broadcasting (DAB), digital video broadéagt  5rppm/0QAM (offset quadrature amplitude modulation) [8],
terrestrial (DVB-T/T2) [2], WIMAX, and 4G, due 10 itS 1g) \yhich is a filter bank based multi-carrier (FBMC) system
reS|I|e_nce against frequency selective channels Compm,edthat allows a flexible selection of the pulse shaping filtershs
the single modulation systems. However, the OFDM signgl 4 isotropic orthogonal transform algorithm (I0TA) 110

suffers from large amplitude variations. The fluctuatioris %he extended gaussian functions (EGF), the PHYDYAS

the OFDM envelope generate non-linear distortions whep,y the Hermite filters, in order to reduce side lobes without

we introduce the signal into the high power amplifier (HPA)ging guard bands in contrast to the conventional OFDM.

due to the non-linearity of the HPA response. To avoid thegg o rsampled OFDM is another variant of OFDM, which can
dIStOI‘.tIOI’]S,.aI’] Input back-off is needed in order to ampthse a well-localized pulse shape to fight against time and
the signal in the Imear_area c_)f the HPA. The larger is ﬂ}‘?equency dispersion [11]. Non-orthogonal frequency sii
peak power,'the larger is thg input back-off introduced, "’,‘r?‘ﬂultiplexing (NOFDM) [12] is an MCM system that does
the smaller is the HPA efficiency. The energy consumptiqfy; paye any restriction about the distance between putses i
of the power amplifier representf)’% of the total energy o time-frequency (TF) plane, and the design of the pulse
consgmpnon n a base station [3]. The.refore, the S'gr]§1j1ape, which leads to a better bandwidth efficiency, while
amplitude variations should be reduced in order t0 getas TF |ocation and the shape of the pulses for conventional
better HPA efficiency and minimize the power conSUMpioIbep are strictly defined. Previous MCM systems can be
The peak-to-average power ratio (PAPR) [4] [5] has begfaeq as subclasses of the generalized multi-carrier@GM
introduced as a random variable that measures the POWELtem which includes OFDM, NOFDM, FBMC [13] and

variations of the signal. other variants as explained in the taxonomy proposed in [14]

For the different pulse shaping filters, the reader can refer
It has been proved that the PAPR depends on the wavefogny 5] that defines and gives the analytical expression and

used in the modulation [6] [7]. As presented in the nextharacteristics of the most known prototype filters in the
paragraph, there exist several MCM systems based on differe

waveforms. In this paper, we investigate the behaviour of

1 . . . i
the PAPR regarding to the modulation waveforms. We shqm;?fn Slg Z%%r; ct’(f) ;Encuon means here the interval outside fwhie

2The study here considers the OFDM without guard interval, the
M. Chafii and J. Palicot are with the CentraleSupélec, IET®,78 Cesson- analysis is the same for OFDM with cyclic prefix, since the &ddiof cyclic
Sévigné, France (e-mafmarwa.chafii, jacques.palico@supelec.fr) . prefix does not give any additional information about the peaker
R. Gribonval is with Inria Rennes-Bretagne, 35042 Rennedeg£eFrance 3physical Layer For Dynamic Spectrum Access And Cognitiveiatore
(e-mail:remi.gribonval@inria.fr) details on http://www.ict-phydyas.org/
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literature. The indexd corresponds to the discrete-time context. The
Instead of modulating the signal with the IFFT, othemean powet’,, .., is defined over an infinite integration time,
transforms can be used. In [16], the author introducé®cause our scenario assumes an infinite transmissiontirne,
the Hadamard transform and Phi transform for MCMhe observation is limited to a single GWMC symbol.
applications, than compares them with conventional OFDM.

In the literature, and for different applications, we fings, Reminder of the Optimization Problem associated to PAPR
also MCM systems based on the inverse discrete COSi@ction

transform (IDCT) [17] [18], the inverse discrete wavelet
transform (IDWT) [19], the inverse wavelet packet transforrﬁo
(IWPT) [20], and the inverse Slantlet transform (ISLT) [21]O
Nowadays, many MCM systems are competing conventiona
OFDM in terms of out-of-band (OOB) radiation, bit errofOptimization Problem (OP).

In our previous work [7], we showed that the PAPR reduc-
n problem can be formulated as the following constrained
Ptimization Problem

rate (BER), computational complexity, and other measures. . =ML g2
fact, the flexibility in the choice of the pulse shape in GMC  maximize / In(1 — e”Enez M lgm (t—nT)|2 ) dt,
systems allows high spectral efficiency combined with lower (97)mefo.n—1] 0

OOB radiation than conventional OFDM [22]. It has been also ~ Subjectto 3 A,BeR

showed that MCM systems based on Hadamard transform A:minz |gm (t —nT)> > 0, 2
are more suitable for optical communications than OFDM ™ ez
at short distance transmission, in terms of computational and B:maxz |gm (t — nT)| < 400 (3)
complexity [23]. In [24], the MCM scheme based on the mt e

IDCT has been proved better than the one based on the IFFTThe quantity that we want to maximize in OP is equiva-
(OFDM) in terms of BER under certain channel conditions.|ent to minimizing the complementary cumulative distribat
function (CCDF) of the PAPRPr(PAPR; > ~), which is the
The remainder of this paper is structured as follows. Iprobability that the PAPR exceeds a defined vajuEquation
Section Il, we define the generalized waveforms for mult{2) means that the translated versions of every cagjeare
carrier (GWMC) systems considered in our derivations, arlerlapping in time. The temporal support of the waveform
formulate the PAPR reduction problem as an optimizatiaf), does not vanish in the symbol peridd Equation (3) is
problem. The solution of this problem is given in Section llkatisfied ifg,, has a “decay” in time. All bounded functions
with the whole proof behind. To support the theoretical fissu that have a finite temporal support, satisfy condition (3).
we illustrate some examples of MCM systems in Section NOQur previous study in [7] shows how we formulate the OP
Finally, Section V concludes the paper and opens persjgsctiand explains why the maximized quantity is equivalent to
of the work. the CCDF of the PAPR. It also explains why we need the
conditions in Equation (2) and Equation (3) in order to $atis
Lyapunov conditions. In this paper, we give a solution of
the OP, and we discuss how this solution can be interpreted

Il. PROBLEM FORMULATION

A. Notation: the GWMC Model regarding several MCM systems.
The notations used in this paper are as follows:denotes
the number of carriersC,,,, stands for the complex input I1l. MAIN RESULTS
symbol, time indexn, modulated by carrier indexn. Let In this section, the solution of the OP is presented. The

us assume thatCy, n)(mefo,p-1], nez) are independent and PAPR optimality of conventional OFDM is also proved and
identically distributed, with zero mean and unit variange. discussed. The early work in this context goes back to the
T is the GWMC symbol period. The modulation transformngtudy of A. Skrzypczak et al. for the OFDM/OQAM and
and the pulse shaping filter are modeled by a single functigiie oversampled OFDM [25]. They show analytically that the
denoted byg,, € L*(R) (the space of square integrablePAPR performance for the latest two MCM systems based
functions). The GWMC transmitted signal is expressed as on different pulse shapes is not better than the convertiona
OFDM based on the rectangular pulse shape. Based on simu-

M-1
X(t) = Z Z Coan g (t — T 1) lation results, A. Kliks [26] notices t.hat, when_simulatit‘@
7 m=0 —_— CCDF of the PAPR for the GMC signal for different pulses,
gm.n(t) the lowest values are obtained for the rectangular pulse. In

In the discrete time context, lg¢ be the number of samplesthis analysis, we consider the GWMC system, which is a
considered in the symbol peridd We define the discrete-timemore general MCM system and based on a larger choice of

PAPR of the GWMC signal as follows modulation schemes.

) Hereafter, a detailed proof of the solution of the OP.
maxgefo,P—1] |X(k?)|

PAPR;, =
Prean . A. Replacing OP with a Simpler Problem
P lim 1 Z E(X(0)?) In or_der _t(_) c_haracterize the optimg of OP, we first_ do
K—+o00 2K +1 P some simplifications. We start by noticing that the funcsion



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 3

(gm)me[[o - 1]] perform the same role and only the sunB. Theoretical Analysis

ZnEZZ |gm »(t)|? is involved in the maximized quan-
tity, the Maximization can thus be performed over only one We define the following convex subsets b

non-negative functiory (), such that . Foe {f 0,1] = R** such that [ f(r)dr — 7}
S )2 4 o F,:=Fn{f:[0,1] — R** such thatf > a},
=3 > lgmal®)P, @ gty

m=0 neZ @30

Equation (2) implies thall a = M A such thatf(t) > a > 0. We consider here the optimization problem in Equation (12)
Similarly, Equation (3) implies thaf € L°>°, whereL™ is the with the constraint Equation (10), and Equation (11). To

space of essentially bounded functions. Moreover, characterize its optima, we first recall the definition of its
T T M—1 stationary points.
_ _ 2
/0 J(mydr = / ZO ZZ |9m (t = nT)[" dt Definition 1. We say that a functiorf* € F, is a stationary
m ne

point of 3 defined in Equation (12) under the constraint in

_ le Z "T+T| )2 dt Equation (10), and Equation (11) if and only if: for amy<c
- gt L' N L*([0,1]) such that
m=0 nezZ
M-1
_ 1
- Z / lgm (B)1 dt / o(t)dt = 0 (13)
]V[ 1 0
m=0
The quantity that we want to maximize is then expressed as .
aranty P B +ed)|
o T — J§ f(rydr T de = 0 (14)
maximize  B(f) :/ In(l—e 77® ) dt. (6) € —0
ferLes= 0

subject to  Ja such that _ . _ .
Ft)>a>0. L' is the space of Lebesgue integrable functions. Notice that
- for all ¢ satisfying Equation (13), the functiof = f* + ¢¢
Remark 1. It is worth noting that the expression 6f ) does satisfies Equation (11). For small enoughf = f* + ¢¢ also
not change if we multiply the functiofi(t) by a scalar: for satisfies Equation (10).
all A e R**, we have The solution of the optimization problem is organized as

BOM) = B(f). (7) follows

It follows that if the problem in Equation (6) has an optimaleémma 1. _ _ _
solution, then there exists an infinite set of optimal sohgi L€t fo be the unique solution to the equation

obtained by scaling the first solution. 1—2fo+42fpeTo =0.
Moreover, denotingf(t) = f(Tt), we have Vf e Fy, V¢ € L' N L>([0,1]) such that Equation (13)
1 T 3 Fryar holds, we have
B(f) = T/ In(l—e P& )dt (8)
0 2 2( £%
= TH(f), ©) W <0, (15)
and f>a>0. (10) =0

Maximizing3 with respect tof is then equivalent to maximiz-

ing 8 with respect tof. Lemma 2.

The constantf* = % is the unique stationary point gf
From Remark.1, we can still simplify the expression/bf defined in Equation (12) over the skt .

by considering the following normalization P i
Corollary 1. The constantf* = T isa global maximum of

1 ~
7T/ f(T)dT = 1. (11) B in Equation (12) under the constraint in Equation (10), and
Equation (11) over the sefy,.

This corresponds to considering(t) = C'f(¢tT'), such that Hereafter, the proofs are presented.

C= W The condition Equation (11) is also con-
S|dereg:as anot er constraint of the OP. The new expressmr]r) Proof of Lemma Liet fo be the unique solution to the
of 3 is then equationl — 2fy + 2fpe 7o o =0 (see Appendix), and € Fy,.
1 ) Since f € Fy, and¢ is bounded, there is, > 0 such that for
B(f) = / In(1 —e7®) dt. (12) anye such thate| < , the constraint in Equation (10) holds.
0 We now explicit the derivatives involved in Equation (14)eW
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have for all ¢ that satisfies Equation (13).is then orthogonal to all
~ 1 . the zero mean functiong € L' N L*>°. Thus, is a constant
B +e8) = [ (1 - o) de o, i
0
5 —¢(t) o FrrTeamm &
d 1 - e (f(H)+ed(t)) e f* )
B(f + ep) _ / (FH)+eo(#))? _ dt (16) = — = ¢p. (20)
de 0 1 — eT@Fes [1—eT®]f*3(t)
5 —¢(t) EIGEETION
d*B(f + €9) _ /1 i( Fotea@myze o Jt Hence,3 ¢y € R such thatvt € [0,1] £*(¢) belongs to the set
de? o de 1 — e TOFeam of solutions of the equatioh(f) = ¢y with
29> #? T s _
_ (M Tar F e A e ) 7
_ oTFes )2 h(f) - -1 . (21)
0 (1 —ef%s) [1—e7]f2
1 (- f o7 ) (=l eFTeF
+/ (Grare )(E{+5¢)2e ) dt To conclude thatf* itself be constant, we now analyse the
0 (1 —e7e@)? variations of the functiorh(f).
The simulation ofh(f) in Figure 1, shows that for a certain
~ 942 2. -1 -1
23] + o) /W?? teT-eT)
de? . 0 (1—e7 )2
1 22.F
—(/‘ TE—
0 (1-e7)?
42 2 1 ﬁe% 1
—gi;ﬁa :—/W—iiffwl—w+2ﬁ?jﬁ. :
de 0 (1—e7)? '
= —_— s(f) '
>0 :
In Appendix, we show that the functionis positive whenf

is greater than a certain valyg satisfyings(fo) = 0. Then,
we conclude that, for alf € Fy,,

B + ed)
de? =0
2) Proof of Lemma 2:Considerf* ¢ F,. Let ¢ € L' n valuecy, the line of equatiorh(f) = ¢y cuts the curve of the
L>([0,1]) be such that Equation (13) holds. We have frorfunction in a single point which coincides with the maximum
Equation (16) value ofh that we noter,,.,, and two distinct points whee,
is less tharc,,.x. Whency is greater tham,,,. the line does

f,ep) f

£c,)

Figure 1: The curve of the functioh(f)
17)

1 —o@®) i

do(f +ep)| / 7 e’ U not cut the curve of.
de —o ) 1—efd Thus, the seb), of solutions of Equation (20) can be expressed
as
Defining
it f.ﬁ,.(C()), f_(CO) if 0< Co S Cmax»
e T D S, = 22
w(t) = =1 2 ’ (18) " {@ if Co > Cmax- ( )
[1—e™®]f*(t)
it follows that Equation (14) is equivalent to, Note that wheny = cpax, We havef (co) = f-(co).
1 f+(co) is the greatest solution, anfl (cy) is the smallest one
/ d(t)(t)dt = 0. (19) (f=(co) < fr(co)).
0 The following property summarizes what we have established
At this stage, we can check that if* = Z. then SO far

(t) = co does not depend of) hence we have establishquroperw 1. Let f* € F, be a stationary point of, under

that for any ¢(t) satisfying Equation (13), we must haveine constraint Equation (10), and Equation (11). Theretexis

1 1 . .
Jo ¥O)d(t)dt = co [y ¢(t)dt =0, i.e. Equation (14) holds. constantey € [0, crmax], @ SetA, and a setd_ = [0, 1]\ A.
This shows, as claimed, thdt = - is a stationary point of gych that
v

Equation (12) under the constraint Equation (10), and Eguat
(11). We will now prove the converse. fia, = f(co), and fla = f_(co).

Assume now thaff* € F is a stationary point of Equation

(12) with the constraint Equation (10), and Equation (11). f|4, (fj4_ respectively) is the restriction of the functigi
What we have just established is that Equation (19) must halder the setd, C [0,1] (A_ C [0, 1] respectively).

(23)
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Table I: Solutions of Equation (20) for different values @gf

co f—(co) | f+(co)
0.64 0.720 00.72
0.62 0.510 00.83
0.60 0.450 00.90
0.50 0.360 01.34
0.40 0.300 01.90
0.30 0.250 02.76
0.20 0.210 04.46
0.10 0.170 09.48
0.05 0.145 19.50
0.02 0.091 49.49
0.01 0.085 99.49

Table II: Variations off,, f_ andh%f_ as a function ofy

co 0 Cmax
+o0
T+ I
f; 0 / fmdx
1 “+o00
7o o ——

Corollary 2. The Lebesgue measure of the interv] can
be expressed as

% — f-(co)
f+(co) = f-(c0)

In fact, from Equation (11) and Property we have

LA, (er) = € [0,1] (24)

(o) fi(eo) + (1= Ea)f-(eo) = % (25)
Loa, (o) (f(co) — f—(co)) = 7% —f)  (28)

Property 2. Let f* € F, be a stationary point of, under the

Table IIl: Values ofv,,.x for different values ofM for the
OFDM system

M 8 16 | 32
Ymax, INdB | 11 | 14 | 17

64 | 126 | 256 | 512 | 1024
20 23 26 29 32

B* = In(1 —e—%). Thus, f* takes a single valug_ and
]f* = %. To conclude, forf* € F, a stationary point of
£ under the constraint in (Equation 11), we hafe = 7%-
This concludes the proof of Lemma 2.

3) Proof of Corollary 1: From Lemma 1,3 is a concave
function over the convex sdty,. Then, its local maximum is
global maximum ovetFy, [27]. From Lemma 2,f* = % is

a global maximum of3 over Fy,.

C. Discussion

The conditionVt, f(t) > fo expressed in the previous
results corresponds to the following constraint in termshef
family of modulation functiongg,,)mefo, a1

M-1
P30 Yonez lgmn ()
M-1
f(] 2771:0 ||gm||2

which means that our results are valid for the valuesyof
smaller than a threshold value,... Let us consider the
OFDM system for example: the modulus of the wavefarm
corresponds to the rectangular filter supposed of unit gnerg
(lgm|I* = 1), andP = M for critical sampling. The threshold
value is expressed then ag,.x = ]‘—g Table Il shows the
values ofy,.x, the threshold of the validity of our results, in
function of the number of carrierd/, for the OFDM system.

In practice, the PAPR does not reach these valuesfof the
corresponding number of carriefd.

Based on the previous theoretical results, we deduce some
properties that can predict the behaviour of the PAPR distri
bution function for GWMC systems compared to the OFDM

constraint Equation (10), and Equation (11). Then, the gal?YSte™:

of ¢y solves the following optimization problem

maximize  f(co) = L., (co)In(1 — o T

+(1 = La, (co))In(1 — e =),
subjectto Ly, (co) € [0,1].

Numerical ResultsTable | shows for each value af the
set of solutionsS;, of Equation (20). As we can se¢, (co)

Property 3. (Sufficient condition for optimality
Any GWMC system satisfying Equation (2), and Equation (3)
such that

M—-1
Z Z |G (t — nT)|? is constant over time (28)

m=0neZ

has locally optimal PAPR performance, and globally opti-
mal PAPR performance among all GWMC systems satisfying

is an increasing function of, and f,(cy) is a decreasing Equation (2), and Equation (3) such that Equation (27) holds
function of ¢y, we can resume these conclusions in Table ”Corollary 3. (Optimality of conventional OFDW!

Now, we should study the variations 6(00), which depend

on the monotonicity ofl 4. We haveZ. > f_ since L4+

is positive, so we cannot decide directly on the monotopici
of L4+, because it is the product of a positive decreasi

The OFDM achieves optimal PAPR performance among all
GWMC systems satisfying Equation (2), and Equation (3) such
that Equation (27) holds. So does the Walsh-Hadamard system

ng

functioncg — % — f_(co) and a positive increasing function Example: See Subsection IV-A.

1
€07 Fe)—I-(

L 4+ and 3(c,) as depicted in Figure 2, 3.

To maximize we should minimizeL 4+ under the constraint and Equation (27) such that,,

of 0 < L+ < 1. For Ly+ = 0, we havef_ = £ and

~T

=y Therefore, we simulate the variations oCorollary 4.

Any GWMC system safisfying Equation (2), and Equation (3)
Y s [gm (t—nT) 2 s not

constant over time has worse PAPR performance than OFDM.
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‘% %
Figure 2: The curve of the functioh 4+ (o). Figure 3: The curve of the functiofi(cy).
Example: See Subsection IV-B. interest, since in practice the PAPR does not reach these

Theorem. Necessary Condition of Improving PAPR Perfor- large values ofy.

mance
To design a GWMC system with better PAPR performance than
OFDM, one must choose the modulation functions so that atln order to illustrate our results, we consider three vdsian
least one of the following conditions holds: of the OFDM, that are based on different families of modu-
i) the system fails to satisfy Equation (2): this means thl%ttoonmfugﬁggrr:sih ?Z:jmv;/eofs '&uéﬁe tehr?orcr:ncéxage()fb:eht\?vl(reeﬁ\AZaRc;h
the temporal support of at least one modulation function " P . pert '
. variant and the conventional OFDM, is presented.
must be smaller or equal than the symbol period.

i) the system fails to satisfy Equation (27).

IV. APPLICATIONS

A. Walsh-Hadamard-MC (WH-MC)
In fact, the result in Corollary 4 is true when the constmint . .
. ) . . Instead of using the IFFT for the modulation, we can use
in Equation (2) and Equation (3) and Equation (27) hold., ;
: . . nverse Walsh-Hadamard transform (IWHT). Then, the family
In practice, all the waveforms has to satisfy Equation (3

because they have a finite temporal support and they aFethe modulation functions is expressed as:

bounded. Then, we have gm (k) = Wy(k)

o ) ) ) W, are the Walsh functions and are columns of Hadamard
i) if a family of functions (g )mefo,n1—1] does not satisfy auiv of dimension)M = 29, which is defined by the
Equation (2), that means that there exists at least gt} sive formula:

index mg € [0, M — 1] such thatg,,, has a temporal

support smaller than the symbol period, which means H(2Y = G 11) (29)
that its amplitude vanishes at least in a time interval, B

theng,,, has a larger frequency support and then a worse 11 1 1

frequency localization. This is due to the time frequency H(2?) = I -1 1 1 (30)
localization (TFL), which is limited by the Heisenberg 11 -1 -1)
uncertainty principle*. Thus, we are led to a trade-off I -1 -1 1

between frequency localization and PAPR performanceyng for2 < ¢ < @:
Example: See Subsection IV-C. 1 1
i) if Equation (27) is not satisfied, that means that, forg(2e) = (H(qu) H(2q1)> = H(2)® H(29™"), (31)
a defined GWMC systen(g,,)mejo,m—1, the PAPR H(2970) H(2977)
is compared to the values of > ymax. Knowing that where® denotes the Kronecker product.
the PAPR is bounded by a multiple factor 8 [29]: Note that the Hadamard matrix consists only-ef and —1
PAPR, una = %M, the CCDF is then entries, that is why the implementation has a simple stractu
equal to zero Wherﬁ > PAPR,,unq. Thus, the analy- featuring only additions and subtractions. In fact, IWHT can
sis is restricted to the values of between~y,,., and be implemented using the radix-2 algorithm, which means tha
PAPR,,.na, Which does not represent an interval othere are onlyM log, M complex additions required [30].
Figure 4 depicts the shape of the first Walsh functions. As we
40r sometimes the Heisenberg-Gabor theorem, it states thatddnwan- can notice, all the functions have the same modulus and this

not be both time-limited and band-limited (a function and itsiffer transform  modulus is constant over time. From Corollary 3. WH-MC
cannot both have bounded domain). Then, one cannot simuitalyesharply ’

localize a signal in both the time domain and the frequency donidore has the same PAPR optlmal performance as the conventional
details can be found in [28] OFDM.
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w, gm(k) = g(k)e??> 3% such thatg(k) is defined a%
W,
| 1 2k41 j2r 2 (k)
Wy WCOS(G-Fb oA )e M
w, if 0<k<A-1,
I e L jonm (k)

w VT
WS e g(k)e/2m 3k = ifmA <k<M-1,
W6 | I | _ %COS(Q + bQ(PoXC)+1)ej2ﬂ%(k)

7 T ] 1 M 2
w if M<k<P—1,

8 | | [ | | | |

0, else

with g(k) is the OBE filter.

Figure 4: Walsh Hadamard functions. We can easily check thay(k) satisfies the conditions
in Equation (2) and Equation (3). In addition, We no-
tice thatvm € [0,M — 1] Vk € [0,P] the modulus

. : . : |gm (K)|* = |g(k)e??"57%|> = |¢(k)|* depends on time. From
Let us check this conclusion by simulation. We generaE?orollaw 4, the PAPR performance of WCP-OFDM has to be
10000 realizations of the WH-MC symbol using the quadraturﬁlorse than the conventional OEDM.
phase-shift keying (QPSK) constellation diagram. We ae1Si 1, onor6ve this conclusion, we simulate the CCDF of the
64 carriers. In Figure 5, we simulate for both OFDM and WHpapp by considering the OBE filter.
MC, the CCDF of the PAPR, respecting the same parametéggy re 6 represents a comparison of the CCDF of the PAPR
for the two systems.
We can observe that the conventional OFDM and the WH-

10 v
: —e—OFDM
. —*— WH-MC %
3 5
g £t
o, "
Qo o S
g | :
1l Q
= O
g
o 10 3 4 5 6 7 8 9 10 11 12
yin db
10 , ‘ : ‘ : : ‘ :
ot e 7yin w0 n Figure 6: CCDF of the PAPR for conventional OFDM and
WCP-OFDM.
Figure 5: CCDF of the PAPR for conventional OFDM and
WH-MC. between the conventional OFDM and the WCP-OFDM. We

can notice that the curve of WCP-OFDM is shifted to the
right, compared to OFDM. Thus, OFDM has a better PAPR
PAPR performance. Indeed, this observation is consistéht Wyag|t.
our theoretical predictions.

C. Wavelet OFDM

Wavelet OFDM, or also known as orthogonal wavelet divi-
B. WCP-OFDM sion multiplexing (OWDM) [32], is an MCM system based on
the wavelet transform. The principle of the wavelet transfo

Weighted cyclic prefix-OFDM (WCP-OFDM) which fives is to decompose the signal in terms of small \_Naves_components
a weighted version of the cyclic prefix-OFDM, by usingca”ed wavelets. The Wavelet OFDM transmitted signal can be
non-rectangular pulse shapes. The prototype filter oltaoid
energy (OBE) defined in [31] is used in WCP-OFDM. In 5p— 1 ,a=Z —1p M =AMy, a = —0.1714430594740783,
this case, the family of modulation functions is expressed & = 70%§§%%48081§99326, A=P - M
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defined as:
J—129-1
z(t) = Z Z Z w; )k (t — nT)
n j=Jy k=0
Jo_q

2
D) angbag(t —nT).
q=0

n

o J —1: last scale considered, with/ = 27,

o Jo: first scale considered/{ < j < J — 1),

o wj . wavelet coefficients located atth position from
scalej,

e ayj, 4 approximation coefficients located @th position
from the first scaleJy,

o Pk = 2"29(27t — kT): the wavelet orthonormal family,

v is the mother wavelet function,

wavelet transform, and we extract the detail and approxanat
coefficients at the maximal level &/{ = 0). We can observe

10° adaad

—e— OFDM
—<¢— Haar Wavelet OFDM

10|

CCDF(y) = Prob[PAPR>y])

I I I I I I I I
3 4 5 6 7 8 9 10 11 12

yin db

_ ol o . i i
* buoq =22 ¢(270t—qT): the scaling orthonormal family riqre g: CCDF of the PAPR for conventional OFDM and

at the scaleJy, ¢ is the mother scaling function.

Haar Wavelet based OFDM.

Note that the wavelet functions and the scaling functioneha

identical energy. For more details about the wavelet theoiy Figure 8 that the curve of Haar Wavelet OFDM is shifted
the reader can refer to [33]. to the left, compared to OFDM. Thus, Haar Wavelet OFDM
Several wavelets can be used to modulate the input symbelsgs a better PAPR performance than conventional OFDM.
such as Daubechies, Coiflets, and Symlets. We are intRiote here that the PAPR is reduced without using the cldssica
ested here to the Haar wavelet, which belongs to the famipAPR reduction methods [34], [35], but by changing the
of Daubechies wavelets. The Haar mother wavelet functighodulation waveform, which gives new insights regarding

Ynaalt) is expressed as:

o ffo<t< g,
With  tnaa(t) = § — 7, if § <t <T, (32)
0, else
The scaling functionphaaf(t) can be described as:
L jfo<t<T,
and  pnaalt) = ¢ VT - (33)
0, else

Figure 7 describes haar wavelet functiap}f}ca' for Jo =0

PAPR reduction problem.

Figure 9 summarizes the conclusions of this study. In practi
all MCM waveforms belong to the set of the functions that
satisfy Equation (3). The OP problem analysed in this work
is for the waveforms belonging to the s8t which means
satisfying Equation (2). Systems BN C (including OFDM,
WH-MC) have the best possible PAPR performam@eeong

all systems inB (such as WC-OFDM). Any system with
better PAPR performance than OFDM must belin There
are indeed systems (Daubechi&sSymlet3, Coiflet 2) in D
with better PAPR performance than OFDM. Some are even in

C (Haar wavelets), but not if3.

'BNC: (3),(2) (28)
|[D=A\B: (3), not(2) |

Figure 7: Haar wavelet function for different scales. i i
Figure 9: Taxonomy of MCM waveforms regarding the PAPR

and M = 8. As we can notice, the temporal support of th@erformance.
contracted versions of the mother wavelet functigii?" are

smaller than the symbol peridf, this family of functions does

not satisfy then the constraint in Equation (2). From Prtyper V. CONCLUSION

llI-C, we can get a better PAPR performance than usinglIn this paper, we have investigated the GWMC system
Fourier transform. Let us check it by simulation. We use Haaased on the family of modulation functions (the modulation
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Table IV: Study of the positivity of the function

0 fo

“+00
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[4]
transform and the pulse shaping filter) that does not vanish
in the symbol period, and we have proved analytically thajs
the PAPR, which depends on the modulation waveform, is
optimal only if the sum of these waveforms over the number of
carriers and the number of symbols is constant over time. Wg
have concluded that there exists an infinite number of GWMC
systems that are optimal in terms of PAPR performance, and
the conventional OFDM based on the Fourier transform ang
the rectangular filter belongs to this family. In additione w
have deduced that the PAPR performance of GWMC systems
cannot be better than OFDM system without reducing the
temporal support of the modulation functions compared ¢o th
symbol period.

We have given some examples to illustrate our theoreticé?]
results: the WH-MC is optimal based on the characteristics
of its waveform and has then the same PAPR performariéél
as the conventional OFDM, the WCP-OFDM'’s waveform
is not constant over time and thus it is worse than the1]
conventional OFDM in terms of PAPR performance. We have
also showed that for the Haar wavelet waveform which does
not satisfy our constraints, the PAPR performance is bet{ez]
than the conventional OFDM with a loss in terms of frequency
localization. [13
The future work is to construct a waveform that reduces
the PAPR compared to OFDM, by acting on the number &l
intervals that vanish over time and taking into considerati
the trade off between the PAPR and the frequency localizatigis)

APPENDIX

We  study thﬁe1 variations  of  the
s(fy=1-2f+2fe7T, we have

function[ie]

() = —2+27 +%e’71 34y

/ 2 -1 1 =+ 11 =1

s"(f) Fef +2(*Pef +?Fef) [18]
= %e%’ >0 (35)

As we can see in Table IV, the functionis positive when [19]

0 < f < fo. A numerical approximation giveg ~ 0.63.

0 for its support of this work.
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