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A Necessary Condition for Designing Waveforms
with better PAPR than OFDM

Marwa Chafii, Jacques Palicot, and Rémi Gribonval

Abstract—This paper analyses the behaviour of the peak-to-
average power ratio (PAPR) in multi-carrier modulation (MCM)
systems regarding to the modulation waveform. The study gives
a necessary condition of improving the PAPR performance
compared with the conventional orthogonal frequency division
multiplexing (OFDM) system based on Fourier transform and
rectangular filter. In addition, we show in which conditions on
the waveform, OFDM is optimal in terms of PAPR performance,
and we define an infinite family of optimal MCM systems for the
given modulation conditions. To illustrate our results, we present
simulations of the PAPR behaviour for different MCM systems.

Index Terms—Peak-to-Average Power Ratio (PAPR), Multi-
Carrier Modulation (MCM), Orthogonal Frequency Division
Multiplexing (OFDM), Generalized Waveforms for Multi-Carrier
(GWMC), Fourier Transforms.

I. I NTRODUCTION

T HE OFDM [1] is a multi-carrier modulation (MCM)
system widely used in wireless applications such as

digital audio broadcasting (DAB), digital video broadcasting-
terrestrial (DVB-T/T2) [2], WiMAX, and 4G, due to its
resilience against frequency selective channels comparedto
the single modulation systems. However, the OFDM signal
suffers from large amplitude variations. The fluctuations of
the OFDM envelope generate non-linear distortions when
we introduce the signal into the high power amplifier (HPA)
due to the non-linearity of the HPA response. To avoid these
distortions, an input back-off is needed in order to amplify
the signal in the linear area of the HPA. The larger is the
peak power, the larger is the input back-off introduced, and
the smaller is the HPA efficiency. The energy consumption
of the power amplifier represents60% of the total energy
consumption in a base station [3]. Therefore, the signal
amplitude variations should be reduced in order to get a
better HPA efficiency and minimize the power consumption.
The peak-to-average power ratio (PAPR) [4] [5] has been
introduced as a random variable that measures the power
variations of the signal.

It has been proved that the PAPR depends on the waveform
used in the modulation [6] [7]. As presented in the next
paragraph, there exist several MCM systems based on different
waveforms. In this paper, we investigate the behaviour of
the PAPR regarding to the modulation waveforms. We show
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analytically that having a temporal support1 less than the
symbol period is a necessary condition on the waveforms
in order to reduce the PAPR compared with OFDM2.
Moreover, we prove that, if the previous necessary condition
is not satisfied, i.e the waveforms have a temporal support
larger than or equal to the symbol period, OFDM is optimal
in terms of PAPR performance. In addition, we prove that
OFDM is not the only optimal system in this case, but we
define a large family of MCM systems with optimal PAPR
performance. The conclusions are presented in Figure 9. To
the best of our knowledge, this is the first work that study
the necessary condition of reducing the PAPR, and gives an
analytical proof of the optimality of the OFDM in terms
of PAPR performance, and discusses the conditions of the
validity of this optimality.

The modulation scheme of conventional OFDM is based on
the inverse fast Fourier transform (IFFT) and the rectangular
filter. There exists other variants of the OFDM, for example,
OFDM/OQAM (offset quadrature amplitude modulation) [8],
[9] which is a filter bank based multi-carrier (FBMC) system
that allows a flexible selection of the pulse shaping filters such
as the isotropic orthogonal transform algorithm (IOTA) [10],
the extended gaussian functions (EGF), the PHYDYAS3,
and the Hermite filters, in order to reduce side lobes without
using guard bands in contrast to the conventional OFDM.
Oversampled OFDM is another variant of OFDM, which can
use a well-localized pulse shape to fight against time and
frequency dispersion [11]. Non-orthogonal frequency division
multiplexing (NOFDM) [12] is an MCM system that does
not have any restriction about the distance between pulses in
the time-frequency (TF) plane, and the design of the pulse
shape, which leads to a better bandwidth efficiency, while
the TF location and the shape of the pulses for conventional
OFDM are strictly defined. Previous MCM systems can be
treated as subclasses of the generalized multi-carrier (GMC)
system which includes OFDM, NOFDM, FBMC [13] and
other variants as explained in the taxonomy proposed in [14].
For the different pulse shaping filters, the reader can refer
to [15] that defines and gives the analytical expression and
characteristics of the most known prototype filters in the

1The support of a function means here the interval outside which the
function is equal to zero

2The study here considers the OFDM without guard interval, but the
analysis is the same for OFDM with cyclic prefix, since the addition of cyclic
prefix does not give any additional information about the peakpower

3Physical Layer For Dynamic Spectrum Access And Cognitive Radio, more
details on http://www.ict-phydyas.org/
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literature.
Instead of modulating the signal with the IFFT, other
transforms can be used. In [16], the author introduces
the Hadamard transform and Phi transform for MCM
applications, than compares them with conventional OFDM.
In the literature, and for different applications, we find
also MCM systems based on the inverse discrete cosine
transform (IDCT) [17] [18], the inverse discrete wavelet
transform (IDWT) [19], the inverse wavelet packet transform
(IWPT) [20], and the inverse Slantlet transform (ISLT) [21].
Nowadays, many MCM systems are competing conventional
OFDM in terms of out-of-band (OOB) radiation, bit error
rate (BER), computational complexity, and other measures.In
fact, the flexibility in the choice of the pulse shape in GMC
systems allows high spectral efficiency combined with lower
OOB radiation than conventional OFDM [22]. It has been also
showed that MCM systems based on Hadamard transform
are more suitable for optical communications than OFDM
at short distance transmission, in terms of computational
complexity [23]. In [24], the MCM scheme based on the
IDCT has been proved better than the one based on the IFFT
(OFDM) in terms of BER under certain channel conditions.

The remainder of this paper is structured as follows. In
Section II, we define the generalized waveforms for multi-
carrier (GWMC) systems considered in our derivations, and
formulate the PAPR reduction problem as an optimization
problem. The solution of this problem is given in Section III
with the whole proof behind. To support the theoretical results,
we illustrate some examples of MCM systems in Section IV.
Finally, Section V concludes the paper and opens perspectives
of the work.

II. PROBLEM FORMULATION

A. Notation: the GWMC Model

The notations used in this paper are as follows:M denotes
the number of carriers.Cm,n stands for the complex input
symbol, time indexn, modulated by carrier indexm. Let
us assume that(Cm,n)(m∈[[0,M−1]], n∈Z) are independent and
identically distributed, with zero mean and unit varianceσ2

C .
T is the GWMC symbol period. The modulation transform
and the pulse shaping filter are modeled by a single function
denoted bygm ∈ L2(R) (the space of square integrable
functions). The GWMC transmitted signal is expressed as

X(t) =
∑

n∈Z

M−1∑

m=0

Cm,n gm(t− nT )
︸ ︷︷ ︸

gm,n(t)

. (1)

In the discrete time context, letP be the number of samples
considered in the symbol periodT . We define the discrete-time
PAPR of the GWMC signal as follows

PAPRd =
maxk∈[[0,P−1]] |X(k)|2

Pmean

Pmean = lim
K→+∞

1

2K + 1

K∑

k=−K

E(|X(k)|2)

The index d corresponds to the discrete-time context. The
mean powerPmean is defined over an infinite integration time,
because our scenario assumes an infinite transmission time,but
the observation is limited to a single GWMC symbol.

B. Reminder of the Optimization Problem associated to PAPR
reduction

In our previous work [7], we showed that the PAPR reduc-
tion problem can be formulated as the following constrained
Optimization Problem

Optimization Problem (OP).

maximize
(gm)m∈[[0,M−1]]

∫ T

0

ln(1− e

−γ
∑M−1

m=0 ‖gm‖2

P
∑

n∈Z

∑M−1
m=0 |gm(t−nT )|2 ) dt,

subject to ∃A,B ∈ R

A = min
m,t

∑
n∈Z

|gm(t− nT )|2 > 0, (2)

and B = max
m,t

∑
n∈Z

|gm(t− nT )| < +∞ (3)

The quantity that we want to maximize in OP is equiva-
lent to minimizing the complementary cumulative distribution
function (CCDF) of the PAPRPr(PAPRd ≥ γ), which is the
probability that the PAPR exceeds a defined valueγ. Equation
(2) means that the translated versions of every carriergm are
overlapping in time. The temporal support of the waveform
gm does not vanish in the symbol periodT . Equation (3) is
satisfied ifgm has a “decay” in time. All bounded functions
that have a finite temporal support, satisfy condition (3).
Our previous study in [7] shows how we formulate the OP
and explains why the maximized quantity is equivalent to
the CCDF of the PAPR. It also explains why we need the
conditions in Equation (2) and Equation (3) in order to satisfy
Lyapunov conditions. In this paper, we give a solution of
the OP, and we discuss how this solution can be interpreted
regarding several MCM systems.

III. M AIN RESULTS

In this section, the solution of the OP is presented. The
PAPR optimality of conventional OFDM is also proved and
discussed. The early work in this context goes back to the
study of A. Skrzypczak et al. for the OFDM/OQAM and
the oversampled OFDM [25]. They show analytically that the
PAPR performance for the latest two MCM systems based
on different pulse shapes is not better than the conventional
OFDM based on the rectangular pulse shape. Based on simu-
lation results, A. Kliks [26] notices that, when simulatingthe
CCDF of the PAPR for the GMC signal for different pulses,
the lowest values are obtained for the rectangular pulse. In
this analysis, we consider the GWMC system, which is a
more general MCM system and based on a larger choice of
modulation schemes.
Hereafter, a detailed proof of the solution of the OP.

A. Replacing OP with a Simpler Problem

In order to characterize the optima of OP, we first do
some simplifications. We start by noticing that the functions
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(gm)m∈[[0,M−1]] perform the same role and only the sum
∑

n∈Z

∑M−1
m=0 |gm,n(t)|

2 is involved in the maximized quan-
tity, the maximization can thus be performed over only one
non-negative functionf(t), such that

f(t) =

M−1∑

m=0

∑

n∈Z

|gm,n(t)|
2, (4)

Equation (2) implies that∃ a =MA such thatf(t) ≥ a > 0.
Similarly, Equation (3) implies thatf ∈ L∞, whereL∞ is the
space of essentially bounded functions. Moreover,

∫ T

0

f(τ)dτ =

∫ T

0

M−1∑

m=0

∑

n∈Z

|gm(t− nT )|2 dt

=

M−1∑

m=0

∑

n∈Z

∫ nT+T

nT

|gm(t)|2 dt

=

M−1∑

m=0

∫ +∞

−∞
|gm(t)|2 dt

=
M−1∑

m=0

‖gm‖2. (5)

The quantity that we want to maximize is then expressed as

maximize
f∈L∞

β(f) =

∫ T

0

ln(1− e
−γ

∫T
0 f(τ)dτ

Pf(t) ) dt. (6)

subject to ∃ a such that

f(t) ≥ a > 0.

Remark 1. It is worth noting that the expression ofβ(f) does
not change if we multiply the functionf(t) by a scalar: for
all λ ∈ R

∗+, we have

β(λf) = β(f). (7)

It follows that if the problem in Equation (6) has an optimal
solution, then there exists an infinite set of optimal solutions
obtained by scaling the first solution.
Moreover, denotingf̃(t) = f(Tt), we have

β(f) = T

∫ 1

0

ln(1− e
−γT

∫ 1
0 f̃(τ)dτ

P f̃(t) ) dt (8)

=: T β̃(f̃), (9)

and f̃ ≥ a > 0. (10)

Maximizingβ̃ with respect tof̃ is then equivalent to maximiz-
ing β with respect tof .

From Remark.1, we can still simplify the expression ofβ̃

by considering the following normalization

γT

P

∫ 1

0

f̃(τ)dτ = 1. (11)

This corresponds to considering̃f(t) = Cf(tT ), such that
C = P

γ
∑M−1

m=0 ‖gm‖2
. The condition Equation (11) is also con-

sidered as another constraint of the OP. The new expression
of β̃ is then

β̃(f̃) =

∫ 1

0

ln(1− e
−1

f̃(t) ) dt. (12)

B. Theoretical Analysis

We define the following convex subsets ofL∞

• F :=
{

f : [0, 1] → R
∗+ such that

∫ 1

0
f(τ)dτ = P

γT

}

,

• Fa := F ∩ {f : [0, 1] → R
∗+ such thatf ≥ a},

• F+ := ∪
a>0

Fa.

We consider here the optimization problem in Equation (12)
with the constraint Equation (10), and Equation (11). To
characterize its optima, we first recall the definition of its
stationary points.

Definition 1. We say that a functionf∗ ∈ Fa is a stationary
point of β̃ defined in Equation (12) under the constraint in
Equation (10), and Equation (11) if and only if: for anyφ ∈
L1 ∩ L∞([0, 1]) such that

∫ 1

0

φ(t) dt = 0 (13)

we have

dβ̃(f∗ + ǫφ)

dǫ

∣
∣
∣
∣
∣
ǫ=0

= 0. (14)

L1 is the space of Lebesgue integrable functions. Notice that
for all φ satisfying Equation (13), the functioñf = f∗ + ǫφ

satisfies Equation (11). For small enoughǫ, f̃ = f∗ + ǫφ also
satisfies Equation (10).
The solution of the optimization problem is organized as
follows

Lemma 1.
Let f0 be the unique solution to the equation
1− 2f0 + 2f0e

−1
f0 = 0.

∀f ∈ Ff0 , ∀φ ∈ L1 ∩ L∞([0, 1]) such that Equation (13)
holds, we have

d2β̃(f∗ + ǫφ)

dǫ2

∣
∣
∣
∣
∣
ǫ=0

≤ 0. (15)

Lemma 2.
The constantf∗ = P

γT is the unique stationary point of̃β
defined in Equation (12) over the setF+.

Corollary 1. The constantf∗ = P
γT is a global maximum of

β̃ in Equation (12) under the constraint in Equation (10), and
Equation (11) over the setFf0 .

Hereafter, the proofs are presented.

1) Proof of Lemma 1:Let f0 be the unique solution to the
equation1− 2f0 + 2f0e

−1
f0 = 0 (see Appendix), andf ∈ Ff0 .

Sincef ∈ Ff0 andφ is bounded, there isǫ0 > 0 such that for
any ǫ such that|ǫ| ≤ ǫ0, the constraint in Equation (10) holds.
We now explicit the derivatives involved in Equation (14). We
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have

β̃(f + ǫφ) =

∫ 1

0

ln(1− e
−1

f(t)+ǫφ(t) ) dt

dβ̃(f + ǫφ)

dǫ
=

∫ 1

0

−φ(t)
(f(t)+ǫφ(t))2 e

−1
(f(t)+ǫφ(t))

1− e
−1

(f(t)+ǫφ(t))

dt (16)

d2β̃(f + ǫφ)

dǫ2
=

∫ 1

0

d

dǫ
(

−φ(t)
(f(t)+ǫφ(t))2 e

−1
(f(t)+ǫφ(t))

1− e
−1

(f(t)+ǫφ(t))

)dt

=

∫ 1

0

( 2φ2

(f−ǫφ)3 + φ2

(f+ǫφ)4 )e
−1

f+ǫφ (1− e
−1

f+ǫφ )

(1− e
−1

f+ǫφ )2
dt

+

∫ 1

0

( φ
(f+ǫφ)2 e

−1
f+ǫφ )( −φ

(f+ǫφ)2 e
−1

f+ǫφ )

(1− e
−1

f+ǫφ )2
dt

d2β̃(f + ǫφ)

dǫ2

∣
∣
∣
∣
∣
ǫ=0

= −

∫ 1

0

(−2φ2

f3 + φ2

f4 )e
−1
f (1− e

−1
f )

(1− e
−1
f )2

dt

−

∫ 1

0

φ2

f4 e
−2
f

(1− e
−1
f )2

dt.

d2β̃(f + ǫφ)

dǫ2

∣
∣
∣
∣
∣
ǫ=0

= −

∫ 1

0

φ2

f4 e
−1
f

(1− e
−1
f )2

︸ ︷︷ ︸

≥0

(1− 2f + 2fe
−1
f )

︸ ︷︷ ︸

s(f)

dt.

In Appendix, we show that the functions is positive whenf
is greater than a certain valuef0 satisfyings(f0) = 0. Then,
we conclude that, for allf ∈ Ff0 ,

d2β̃(f∗ + ǫφ)

dǫ2
≤ 0. (17)

2) Proof of Lemma 2:Considerf∗ ∈ F+. Let φ ∈ L1 ∩
L∞([0, 1]) be such that Equation (13) holds. We have from
Equation (16)

dβ̃(f + ǫφ)

dǫ

∣
∣
∣
∣
∣
ǫ=0

=

∫ 1

0

−φ(t)
f2(t) e

−1
f(t)

1− e
−1
f(t)

dt,

Defining

ψ(t) =
e

−1
f∗(t)

[1− e
−1

f∗(t) ]f∗2(t)
, (18)

it follows that Equation (14) is equivalent to,
∫ 1

0

φ(t)ψ(t)dt = 0. (19)

At this stage, we can check that iff∗ = P
γT then

ψ(t) = c0 does not depend ont, hence we have established
that for any φ(t) satisfying Equation (13), we must have:
∫ 1

0
ψ(t)φ(t)dt = c0

∫ 1

0
φ(t)dt = 0, i.e. Equation (14) holds.

This shows, as claimed, thatf∗ = P
γT is a stationary point of

Equation (12) under the constraint Equation (10), and Equation
(11). We will now prove the converse.
Assume now thatf∗ ∈ F+ is a stationary point of Equation
(12) with the constraint Equation (10), and Equation (11).
What we have just established is that Equation (19) must hold

for all φ that satisfies Equation (13).ψ is then orthogonal to all
the zero mean functionsφ ∈ L1 ∩ L∞. Thus,ψ is a constant
c0, i.e.

e
−1

f∗(t)

[1− e
−1

f∗(t) ]f∗2(t)
= c0. (20)

Hence,∃ c0 ∈ R such that∀t ∈ [0, 1] f∗(t) belongs to the set
of solutions of the equationh(f) = c0 with

h(f) =
e

−1
f

[1− e
−1
f ]f2

. (21)

To conclude thatf∗ itself be constant, we now analyse the
variations of the functionh(f).
The simulation ofh(f) in Figure 1, shows that for a certain

f

h(
f)

c
max

f
−
(c

0
) f

+
(c

0
)

c
0

Figure 1: The curve of the functionh(f)

valuec0, the line of equationh(f) = c0 cuts the curve of the
functionh in a single point which coincides with the maximum
value ofh that we notecmax, and two distinct points whenc0
is less thancmax. Whenc0 is greater thancmax the line does
not cut the curve ofh.
Thus, the setSh of solutions of Equation (20) can be expressed
as

Sh =

{

f+(c0), f−(c0) if 0 < c0 ≤ cmax,

∅ if c0 > cmax.
(22)

Note that whenc0 = cmax, we havef+(c0) = f−(c0).
f+(c0) is the greatest solution, andf−(c0) is the smallest one
(f−(c0) ≤ f+(c0)).
The following property summarizes what we have established
so far

Property 1. Let f∗ ∈ F+ be a stationary point of̃β, under
the constraint Equation (10), and Equation (11). There exists a
constantc0 ∈ [0, cmax], a setA+ and a setA− = [0, 1] \ A+

such that

f|A+
= f+(c0), and f|A−

= f−(c0). (23)

f|A+
(f|A−

respectively) is the restriction of the functionf
over the setA+ ⊂ [0, 1] (A− ⊂ [0, 1] respectively).
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Table I: Solutions of Equation (20) for different values ofc0

c0 f−(c0) f+(c0)
0.64 0.720 00.72
0.62 0.510 00.83
0.60 0.450 00.90
0.50 0.360 01.34
0.40 0.300 01.90
0.30 0.250 02.76
0.20 0.210 04.46
0.10 0.170 09.48
0.05 0.145 19.50
0.02 0.091 49.49
0.01 0.085 99.49

Table II: Variations off+, f− and 1
f+−f−

as a function ofc0

c0

f+

f−

1
f+−f−

0 cmax

+∞+∞

fmaxfmax

00

fmaxfmax

00

+∞+∞

Corollary 2. The Lebesgue measure of the intervalA+ can
be expressed as

L̃A+(c0) =

P
γT − f−(c0)

f+(c0)− f−(c0)
∈ [0, 1] (24)

In fact, from Equation (11) and Property1, we have

L̃A+
(c0)f+(c0) + (1− L̃A+

)f−(c0) =
P

γT
(25)

L̃A+
(c0)(f+(c0)− f−(c0)) =

P

γT
− f−(c0). (26)

Property 2. Let f∗ ∈ F+ be a stationary point of̃β, under the
constraint Equation (10), and Equation (11). Then, the value
of c0 solves the following optimization problem

maximize
c0

β̃(c0) = L̃A+
(c0) ln(1− e

− 1
f+(c0) )

+(1− L̃A+
(c0)) ln(1− e

− 1
f−(c0) ),

subject to L̃A+
(c0) ∈ [0, 1].

Numerical Results:Table I shows for each value ofc0 the
set of solutionsSh of Equation (20). As we can see,f−(c0)
is an increasing function ofc0 and f+(c0) is a decreasing
function of c0, we can resume these conclusions in Table II.
Now, we should study the variations of̃β(c0), which depend

on the monotonicity of̃LA+ . We have P
γT ≥ f− since L̃A+

is positive, so we cannot decide directly on the monotonicity
of L̃A+ , because it is the product of a positive decreasing
functionc0 7→ P

γT − f−(c0) and a positive increasing function
c0 7→ 1

f+(c0)−f−(c0)
. Therefore, we simulate the variations of

L̃A+ and β̃(c0) as depicted in Figure 2, 3.
To maximizeβ̃ we should minimizẽLA+ under the constraint
of 0 ≤ L̃A+ ≤ 1. For L̃A+ = 0, we havef− = P

γT and

Table III: Values ofγmax for different values ofM for the
OFDM system

M 8 16 32 64 126 256 512 1024
γmax, in dB 11 14 17 20 23 26 29 32

β̃∗ = ln(1− e−
γT
P ). Thus, f∗ takes a single valuef− and

f∗ = P
γT . To conclude, forf∗ ∈ F+ a stationary point of

β̃ under the constraint in (Equation 11), we havef∗ = P
γT .

This concludes the proof of Lemma 2.
3) Proof of Corollary 1: From Lemma 1,β̃ is a concave

function over the convex setFf0 . Then, its local maximum is
global maximum overFf0 [27]. From Lemma 2,f∗ = P

γT is

a global maximum of̃β overFf0 .

C. Discussion

The condition∀t, f̃(t) ≥ f0 expressed in the previous
results corresponds to the following constraint in terms ofthe
family of modulation functions(gm)m∈[[0,M−1]]:

∀t γ ≤
P
∑M−1

m=0

∑

n∈Z
|gm,n(t)|

2

f0
∑M−1

m=0 ‖gm‖2
, (27)

which means that our results are valid for the values ofγ

smaller than a threshold valueγmax. Let us consider the
OFDM system for example: the modulus of the waveformgm
corresponds to the rectangular filter supposed of unit energy
(‖gm‖2 = 1), andP =M for critical sampling. The threshold
value is expressed then asγmax = M

f0
. Table III shows the

values ofγmax, the threshold of the validity of our results, in
function of the number of carriersM , for the OFDM system.
In practice, the PAPR does not reach these values ofγ for the
corresponding number of carriersM .
Based on the previous theoretical results, we deduce some

properties that can predict the behaviour of the PAPR distri-
bution function for GWMC systems compared to the OFDM
system.

Property 3. (Sufficient condition for optimality)
Any GWMC system satisfying Equation (2), and Equation (3)
such that

M−1∑

m=0

∑

n∈Z

|gm(t− nT )|2 is constant over time, (28)

has locally optimal PAPR performance, and globally opti-
mal PAPR performance among all GWMC systems satisfying
Equation (2), and Equation (3) such that Equation (27) holds.

Corollary 3. (Optimality of conventional OFDM)
The OFDM achieves optimal PAPR performance among all
GWMC systems satisfying Equation (2), and Equation (3) such
that Equation (27) holds. So does the Walsh-Hadamard system.

Example: See Subsection IV-A.

Corollary 4.
Any GWMC system satisfying Equation (2), and Equation (3)
and Equation (27) such that

∑M−1
m=0

∑

n∈Z
|gm(t−nT )|2 is not

constant over time has worse PAPR performance than OFDM.
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c
0

β (c
0)

Figure 3: The curve of the functioñβ(c0).

Example: See Subsection IV-B.

Theorem. Necessary Condition of Improving PAPR Perfor-
mance
To design a GWMC system with better PAPR performance than
OFDM, one must choose the modulation functions so that at
least one of the following conditions holds:

i) the system fails to satisfy Equation (2): this means that
the temporal support of at least one modulation function
must be smaller or equal than the symbol period.

ii) the system fails to satisfy Equation (27).

In fact, the result in Corollary 4 is true when the constraints
in Equation (2) and Equation (3) and Equation (27) hold.
In practice, all the waveforms has to satisfy Equation (3),
because they have a finite temporal support and they are
bounded. Then, we have

i) if a family of functions (gm)m∈[[0,M−1]] does not satisfy
Equation (2), that means that there exists at least an
index m0 ∈ [[0,M − 1]] such thatgm0

has a temporal
support smaller than the symbol period, which means
that its amplitude vanishes at least in a time interval,
thengm0

has a larger frequency support and then a worse
frequency localization. This is due to the time frequency
localization (TFL), which is limited by the Heisenberg
uncertainty principle4. Thus, we are led to a trade-off
between frequency localization and PAPR performance.
Example: See Subsection IV-C.

ii) if Equation (27) is not satisfied, that means that, for
a defined GWMC system(gm)m∈[[0,M−1]], the PAPR
is compared to the values ofγ > γmax. Knowing that
the PAPR is bounded by a multiple factor ofM [29]:
PAPRbound =

maxm,n |Cm,n|2B2

σ2
C
A

M , the CCDF is then
equal to zero whenγ > PAPRbound. Thus, the analy-
sis is restricted to the values ofγ betweenγmax and
PAPRbound, which does not represent an interval of

4Or sometimes the Heisenberg-Gabor theorem, it states that a function can-
not be both time-limited and band-limited (a function and its Fourier transform
cannot both have bounded domain). Then, one cannot simultaneously sharply
localize a signal in both the time domain and the frequency domain. More
details can be found in [28]

interest, since in practice the PAPR does not reach these
large values ofγ.

IV. A PPLICATIONS

In order to illustrate our results, we consider three variants
of the OFDM, that are based on different families of modu-
lation functions, and we simulate the CCDF of their PAPR.
A comparison in terms of PAPR performance, between each
variant and the conventional OFDM, is presented.

A. Walsh-Hadamard-MC (WH-MC)

Instead of using the IFFT for the modulation, we can use
inverse Walsh-Hadamard transform (IWHT). Then, the family
of the modulation functions is expressed as:

gm(k) =Wq(k)

Wq are the Walsh functions and are columns of Hadamard
matrix of dimensionM = 2Q, which is defined by the
recursive formula:

H(21) =

(
1 1
1 −1

)

(29)

H(22) =







1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1






, (30)

and for2 ≤ q ≤ Q:

H(2q) =

(
H(2q−1) H(2q−1)
H(2q−1) H(2q−1)

)

= H(2)⊗H(2q−1), (31)

where⊗ denotes the Kronecker product.
Note that the Hadamard matrix consists only of+1 and−1
entries, that is why the implementation has a simple structure
featuring only additions and subtractions. In fact, IWHT can
be implemented using the radix-2 algorithm, which means that
there are onlyM log2M complex additions required [30].
Figure 4 depicts the shape of the first Walsh functions. As we

can notice, all the functions have the same modulus and this
modulus is constant over time. From Corollary 3, WH-MC
has the same PAPR optimal performance as the conventional
OFDM.
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Figure 4: Walsh Hadamard functions.

Let us check this conclusion by simulation. We generate
10000 realizations of the WH-MC symbol using the quadrature
phase-shift keying (QPSK) constellation diagram. We consider
64 carriers. In Figure 5, we simulate for both OFDM and WH-
MC, the CCDF of the PAPR, respecting the same parameters
for the two systems.
We can observe that the conventional OFDM and the WH-
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γ in db
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C
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F

(γ
) 

=
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ro
b[

P
A

P
R

≥γ
])

 

 

OFDM
WH−MC

Figure 5: CCDF of the PAPR for conventional OFDM and
WH-MC.

MC have the same PAPR distribution function, hence the same
PAPR performance. Indeed, this observation is consistent with
our theoretical predictions.

B. WCP-OFDM

Weighted cyclic prefix-OFDM (WCP-OFDM) which fives
a weighted version of the cyclic prefix-OFDM, by using
non-rectangular pulse shapes. The prototype filter out-of-band
energy (OBE) defined in [31] is used in WCP-OFDM. In
this case, the family of modulation functions is expressed as

gm(k) = g(k)ej2π
m
M

k such thatg(k) is defined as5:

g(k)ej2π
m
M

k =







1√
M

cos(a+ b 2k+1
2∆ )ej2π

m
M

(k)

if 0 ≤ k ≤ ∆− 1,
1√
M
ej2π

m
M

(k)

if ∆ ≤ k ≤M − 1,
1√
M
cos(a+ b

2(P0−k)+1
2∆ )ej2π

m
M

(k)

if M ≤ k ≤ P0 − 1,

0, else.

with g(k) is the OBE filter.
We can easily check thatg(k) satisfies the conditions
in Equation (2) and Equation (3). In addition, We no-
tice that ∀m ∈ [[0,M − 1]] ∀k ∈ [0, P ] the modulus
|gm(k)|2 = |g(k)ej2π

m
M

k|2 = |g(k)|2 depends on time. From
Corollary 4, the PAPR performance of WCP-OFDM has to be
worse than the conventional OFDM.
To approve this conclusion, we simulate the CCDF of the
PAPR by considering the OBE filter.
Figure 6 represents a comparison of the CCDF of the PAPR
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Figure 6: CCDF of the PAPR for conventional OFDM and
WCP-OFDM.

between the conventional OFDM and the WCP-OFDM. We
can notice that the curve of WCP-OFDM is shifted to the
right, compared to OFDM. Thus, OFDM has a better PAPR
performance than WCP-OFDM, which matches our theoretical
result.

C. Wavelet OFDM

Wavelet OFDM, or also known as orthogonal wavelet divi-
sion multiplexing (OWDM) [32], is an MCM system based on
the wavelet transform. The principle of the wavelet transform
is to decompose the signal in terms of small waves components
called wavelets. The Wavelet OFDM transmitted signal can be

5 b = 1
α+βM0

, a = π
4
− 1

2
b, M = ∆M0, α = −0.1714430594740783,

β = −0.5852184808129936, ∆ = P0 −M
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defined as:

x(t) =
∑

n

J−1∑

j=J0

2j−1∑

k=0

wj,kψj,k(t− nT )

+
∑

n

2J0−1∑

q=0

aJ0,qφJ0,q(t− nT ).

• J − 1: last scale considered, withM = 2J ,
• J0: first scale considered (J0 ≤ j ≤ J − 1),
• wj,k: wavelet coefficients located atk-th position from

scalej,
• aJ0,q: approximation coefficients located atq-th position

from the first scaleJ0,
• ψj,k = 2

j/2ψ(2jt− kT ): the wavelet orthonormal family,
ψ is the mother wavelet function,

• φJ0,q = 2
J0
2 φ(2J0t−qT ): the scaling orthonormal family

at the scaleJ0, φ is the mother scaling function.
Note that the wavelet functions and the scaling functions have
identical energy. For more details about the wavelet theory,
the reader can refer to [33].
Several wavelets can be used to modulate the input symbols,
such as Daubechies, Coiflets, and Symlets. We are inter-
ested here to the Haar wavelet, which belongs to the family
of Daubechies wavelets. The Haar mother wavelet function
ψhaar(t) is expressed as:

with ψhaar(t) =







1√
T

if 0 ≤ t ≤ T
2 ,

− 1√
T
, if T

2 ≤ t ≤ T,

0, else.

(32)

The scaling functionφhaar(t) can be described as:

and φhaar(t) =

{
1√
T

if 0 ≤ t ≤ T,

0, else.
(33)

Figure 7 describes haar wavelet functionsψhaar
j,k for J0 = 0

Figure 7: Haar wavelet function for different scales.

andM = 8. As we can notice, the temporal support of the
contracted versions of the mother wavelet functionψhaar are
smaller than the symbol periodT , this family of functions does
not satisfy then the constraint in Equation (2). From Property
III-C, we can get a better PAPR performance than using
Fourier transform. Let us check it by simulation. We use Haar

wavelet transform, and we extract the detail and approximation
coefficients at the maximal level 6 (J0 = 0). We can observe
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Figure 8: CCDF of the PAPR for conventional OFDM and
Haar Wavelet based OFDM.

in Figure 8 that the curve of Haar Wavelet OFDM is shifted
to the left, compared to OFDM. Thus, Haar Wavelet OFDM
has a better PAPR performance than conventional OFDM.
Note here that the PAPR is reduced without using the classical
PAPR reduction methods [34], [35], but by changing the
modulation waveform, which gives new insights regarding
PAPR reduction problem.
Figure 9 summarizes the conclusions of this study. In practice,
all MCM waveforms belong to the setA of the functions that
satisfy Equation (3). The OP problem analysed in this work
is for the waveforms belonging to the setB, which means
satisfying Equation (2). Systems inB ∩C (including OFDM,
WH-MC) have the best possible PAPR performanceamong
all systems inB (such as WC-OFDM). Any system with
better PAPR performance than OFDM must be inD. There
are indeed systems (Daubechies6, Symlet3, Coiflet 2) in D

with better PAPR performance than OFDM. Some are even in
C (Haar wavelets), but not inB.

Figure 9: Taxonomy of MCM waveforms regarding the PAPR
performance.

V. CONCLUSION

In this paper, we have investigated the GWMC system
based on the family of modulation functions (the modulation
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Table IV: Study of the positivity of the functions

f

s′′(f)

s′(f)

s(f)

0 +∞

+

−2

0

1

−1

f0

0

transform and the pulse shaping filter) that does not vanish
in the symbol period, and we have proved analytically that
the PAPR, which depends on the modulation waveform, is
optimal only if the sum of these waveforms over the number of
carriers and the number of symbols is constant over time. We
have concluded that there exists an infinite number of GWMC
systems that are optimal in terms of PAPR performance, and
the conventional OFDM based on the Fourier transform and
the rectangular filter belongs to this family. In addition, we
have deduced that the PAPR performance of GWMC systems
cannot be better than OFDM system without reducing the
temporal support of the modulation functions compared to the
symbol period.
We have given some examples to illustrate our theoretical
results: the WH-MC is optimal based on the characteristics
of its waveform and has then the same PAPR performance
as the conventional OFDM, the WCP-OFDM’s waveform
is not constant over time and thus it is worse than the
conventional OFDM in terms of PAPR performance. We have
also showed that for the Haar wavelet waveform which does
not satisfy our constraints, the PAPR performance is better
than the conventional OFDM with a loss in terms of frequency
localization.
The future work is to construct a waveform that reduces
the PAPR compared to OFDM, by acting on the number of
intervals that vanish over time and taking into consideration
the trade off between the PAPR and the frequency localization.

APPENDIX

We study the variations of the function
s(f) = 1− 2f + 2fe

−1
f , we have

s′(f) = −2 + 2e
−1
f +

2

f
e

−1
f (34)

s′′(f) =
2

f2
e

−1
f + 2(−

1

f2
e

−1
f +

1

f

1

f2
e

−1
f )

=
2

f3
e

−1
f ≥ 0 (35)

As we can see in Table IV, the functions is positive when
0 < f ≤ f0. A numerical approximation givesf0 ≈ 0.63.
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