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On the Galois groups of generalized Laguerre

Polynomials

Shanta Laishram

Abstract. For a positive integer n and a real number α, the generalized Laguerre polynomials are defined by

L
(α)
n (x) =

n∑
j=0

(n+ α)(n− 1 + α) · · · (j + 1 + α)(−x)j

j!(n− j)!
.

These orthogonal polynomials are solutions to Laguerre’s Differential Equation which arises in the treatment of the harmonic

oscillator in quantum mechanics. Schur studied these Laguerre polynomials for their interesting algebraic properties. In this short

article, it is shown that the Galois groups of Laguerre polynomials L
(α)
n (x) is Sn with α ∈ {± 1

2
,± 1

3
,± 2

3
,± 1

4
,± 3

4
} except when

(α, n) ∈ {( 1
4
, 2), (− 2

3
, 11), ( 2

3
, 7)}. The proof is based on ideas of p−adic Newton polygons.
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1. Introduction

For a positive integer n and a real number α, the generalized Laguerre polynomials are defined by

L(α)
n (x) =

n∑
j=0

(n+ α)(n− 1 + α) · · · (j + 1 + α)(−x)j

j!(n− j)!
.

These orthogonal polynomials have a wide range of applications in several areas of mathematics. Not
long after its appearance in the literature early in the twentieth century, it became evident, in the
hands of Schur, that the generalized Laguerre polynomials also enjoy algebraic properties of great
interest. In fact the irreducibility of these polynomials is connected to finding explicit examples of
solutions to Hilbert’s Inverse Galois Problem. We refer to [FKT12] for more details.

It was shown that L(α)(x) is irreducible for α ∈ {±1
2} in [Sch29] and [Sch31] and for α ∈

{±1
3 ,±

2
3 ,±

1
4 ,±

3
4} in [LaSh, Theorem 1] except when α = 1

4 , n = 2. By using these results of ir-

reducibility, it was shown in [SaSh15, Theorem 1.4] that the Galois group of L(α)(x) is Sn for n ≥ n0

where n0 = 182, 876, 1325 if q ∈ {±1
2}, q ∈ {±

1
3 ,±

2
3} and q ∈ {±1

4 ,±
3
4}, respectively. In this short

note, we give a complete result for all n. Here Sn is the Symmetric Group on n symbols and An is
the Alternating Group on n symbols. We prove

Theorem 1.1. Let α ∈ {±1
2 ,±

1
3 ,±

2
3 ,±

1
4 ,±

3
4}. The Galois group of Laguerre polynomials L

(α)
n (x)

is Sn for every n ≥ 1 except when (α, n) ∈ {(1
4 , 2), (−2

3 , 11), (2
3 , 7)} where it is An for (α, n) ∈

{(−2
3 , 11), (2

3 , 7)} and S1 for (α, n) = (1
4 , 2).

We give a proof of Theorem 1.1 in Section 3. The proof of Theorem 1.1 is an application of a result
of Hajir [Haj05] based on p−adic Newton polgons, see Lemmas 2.1 and 2.2. The new ingredient in
this paper is the clever use of Lemma 2.1 as Lemma 2.2 instead of [SaSh15, Lemma 3.3]. In fact the
proof of [SaSh15, Theorem 1.4] can be much shortened by using Lemma 2.2.
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2. Preliminaries

Hajir [Haj05] gave a criterion for an irreducible polynomial to have large Galois group using Newton
polygons. We restate the result which is [Haj05, Lemma 3.1].

Lemma 2.1. Let f(x) =
∑m

j=0

(
m
j

)
cjx

j ∈ Q[X] be an irreducible polynomial of degree m. Let p be a
prime with m

2 < p < m− 2 such that

(i) ordp(c0) = 1,

(ii) ordp(cj) ≥ 1 for 0 ≤ j ≤ m− p,

(iii) ordp(cp) = 0.

Then p divides the order of Galois group of f over Q. In fact, this Galois group is Am if disc(f) ∈ Q∗2
and Sm otherwise.

We will be applying the above lemma to following polynomial. Let α = u
v with u, v ∈ Z, gcd(u, v) =

1 and v > 0. Let

G(x, u, v) : = vnn!L(u
v

)(
−x
v

)

=

n∑
j=0

(
n

j

)
(u+ vn)(u+ v(n− 1)) · · · (u+ v(j + 1))xj .

(2.1)

In [Sch31], Schur showed that its discriminant is given by

D(u,v)
n := Disc(G(x, u, v)) =

n∏
j=2

jj(
u

v
+ j)j−1.

We write D
(u,v)
m = bY 2, Y ∈ Q with

b =

{
3·5···n·(u+2v)(u+4v)···(u+(n−1)v)

vδ
if n ≡ 1, 3(mod 4)

3·5···(n−1)·(u+2v)(u+4v)···(u+nv)
vδ

if n ≡ 0, 2(mod 4)
(2.2)

where δ = 0 if n ≡ 0, 1(mod 4) and 1 if n ≡ 2, 3(mod 4).
We now apply Lemma 2.1 to G(x, u, v). We prove

Lemma 2.2. Let 1 ≤ r < v, gcd(r, v) = 1 and p be a prime with

p > v, p ≡ r−1u(mod v) and
u+ v + nv

r + v
≤ p ≤ n− 3. (2.3)

Let G(x, u, v) be given by (2.1) be an irreducible polynomial of degree n. Assume that |u| < v. Then
the Galois group of G(x, u, v) is An or Sn according as b (given by (2.2)) is a square or not an square
of an integer.

Proof. We apply Lemma 2.1 with

cj = (u+ vn)(u+ v(n− 1)) · · · (u+ v(j + 1)).

Since 1 ≤ r < v, we have u+v+nv
r+v > n

2 and hence n
2 < p < n−2 is valid. It suffices to check conditions

(i)− (iii) of Lemma 2.1.
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Since p ≡ r−1u(mod v), we get p|(u + iv) for some i. Let i0 be the least positive integer i with
this property. Then 1 ≤ i0 < p. Further let u + i0v = pr0. Then r0 ≡ r(mod v). We claim that
r0 < v. Suppose not. Then u + i0v = pr0 ≥ pv ≥ (i0 + 1)v since i0 < p contradicting |u| < v. Thus
r0 < v. This with r0 ≡ r(mod v) and 1 ≤ r < v implies r = r0. Since u+v+nv

r+v ≤ p, we have

u+ v + (n− p)v ≤ rp = r0p = u+ i0v

giving i0 > n− p. Thus n− p < i0 < p. This gives i0 − p < 0 and i0 + p > n and hence u+ i0v is the
only multiple of p in {u, u + v, · · · , u + nv}. Further u + i0v = pr < pv < p2 implying p||(u + i0v).
Hence conditions (i)− (iii) of Lemma 2.1 are valid and the assertion follows.

The above Lemma contains [SaSh15, Lemma 3.3]. We also need the following result on b being a
square or not.

Lemma 2.3. Let 2 ≤ n ≤ 1325,

α =
u

v
∈ {±1

2
,±1

3
,±2

3
,±1

4
,±3

4
}

and b be given by (2.2). Then b is square only when (u, v, n) ∈ {(−2, 3, 3), (−2, 3, 11), (2, 3, 7)}.

Proof. First we check that for 2 ≤ n ≤ u+ 2v, the assertion is valid. Hence we now take n > u+ 2v.
Let

n1 =

{
n
2 if n is even
n−1

2 if n is odd.

Assume u 6= ±2 if v = 3. Then we see that b is divisible by every prime p ≡ u(mod 2v) with
n < p ≤ u + 2vn1 to the first power. Hence if there is such a prime, b cannot be a square. For
u+ 2v < n ≤ 1325, we check that this is true. Thus we now take v = 3, u = ±2. Let u1 = u

2 . Then

(u+ 2v) · · · (u+ 2n1v) = 2n1(u1 + v)(u1 + 2v) · · · (u1 + n1v)

and hence b is not an square if there is a prime p with n < p ≤ u1 + n1v and p ≡ u1(mod v) where
v = 3. We check that this is the case for u + 2v < m ≤ 1325 except when u = −2,m ∈ {5, 6, 7, 11}
and u = 2,m = 19. For u = −2,m ∈ {5, 6, 7, 11} and u = 2,m = 19, we check that b is not a square
except when u = −2,m = 11. Hence the assertion follows.

3. Proof of Theorem 1.1

Let

α =
u

v
∈ {±1

2
,±1

3
,±2

3
,±1

4
,±3

4
}.

As mentioned before, it was shown that L(α)(x) is irreducible for α ∈ {±1
2} in [Sch29] and [Sch31] and

in [LaSh] for α ∈ {±1
3 ,±

2
3 ,±

1
4 ,±

3
4} except when α = 1

4 , n = 2 and hence same is true for G(x, u, v).
For n ≤ 13, we check in SAGE for n ≤ 11 and MAGMA for n = 12, 13 that the assertion of Theorem
1.1 is valid.

Hence we may suppose that n > 13. Further we can take n ≤ 1325 by [SaSh15, Theorem 1.4]. It
suffices to prove that G(x, u, v) has Galois group Sn. We use Lemmas 2.2 and 2.2. It suffices to find
a prime p with

p > v, p ≡ r−1u(mod v) and
u+ v + nv

r + v
≤ p ≤ n− 3.
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for some r, 1 ≤ r < v, gcd(r, v) = 1. Let α = u
v ∈ {±

1
2}. We check that there is a prime p with

2n+2+u
3 ≤ p ≤ n − 3 except when u = 1, n = 19. We check that for n = 19, the Galois group of

L( 1
2

)(x) is Sn.
Let α = u

v ∈ {±
1
3 ,±

2
3}. Since 1 ≤ r < 3, we need to find a prime p with

3n

4
+

3 + u

4
≤ p ≤ n− 3, p ≡ u(mod 3)

or

3n

5
+

3 + u

5
≤ p ≤ n− 3, p ≡ 2u(mod 3).

Hence it suffices to find a prime p with 3n
4 + 3+u

4 ≤ p ≤ n− 3 or

3n

5
+

3 + u

5
≤ p < 3n

4
+

3 + u

4
, p ≡ 2u(mod 4).

We check that this is the case except when

u = −1 :n = 15

u = −2 :n ∈= 19

u = 1 :n ∈ {18, 19}
u = 2 :n ∈ {14, 15, 31}.

For these values of u
3 and n, we check in MAGMA that Galois group of L(u

3
)(x) is Sn.

Let α = u
v ∈ {±

1
4 ,±

3
4}. Since r ∈ {1, 3}, we need to find a prime p with

4n

5
+

4 + u

5
≤ p ≤ n− 3, p ≡ u(mod 4)

or

4n

7
+

4 + u

7
≤ p ≤ n− 3, p ≡ 3u(mod 4).

Hence it suffices to find a prime p with 4n
5 + 4+u

5 ≤ p ≤ n− 3 or

4n

7
+

4 + u

7
≤ p < 4n

5
+

4 + u

5
, p ≡ 3u(mod 4).

We check that this is the case except when

u = −1 :n ∈ {14, 15, 30, 31}
u = −3 :n ∈ {20, 21, 23}
u = 1 :n = 19

u = 3 :n ∈ {14, 29, 30, 31}.

For these values of u
4 and n, we check in MAGMA that Galois group of L(u

4
)(x) is Sn. This completes

the proof of Theorem 1.1.
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