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Abstract

We analyze the stability of naturally curved, inextensible elastic rib-
bons. In experiments, we first show that a loop formed using a metallic
strip can become unstable if its radius is smaller than its natural radius of
curvature (undercurved case): the loop then folds onto itself into a smaller,
multiply-covered loop. Conversely, a multi-covered, overcurved metallic
strip can unfold dynamically into a circular configuration having a lower
covering index. We analyze these instabilities using a one-dimensional
mechanical model for an elastic ribbon introduced recently (Dias Audoly,
2014), which extends Sadowsky’s developable elastic ribbon model in the
presence of natural curvature. Combining linear stability analyses and nu-
merical computations of the post-buckled configurations, we classify the
equilibria of the ribbon as a function of the ratio of its natural curvature
to its actual curvature. Our ribbon model is formulated in close analogy
with classical rod models; this allows us to adapt classical stability meth-
ods for rods to the case of a ribbon. The stability of a ribbon is found
to differ significantly from that of an anisotropic rod: we attribute this
difference to the fact that the tangent twisting modulus of a ribbon can be
negative, in contrast to what is possible in the well-studied case of linearly
elastic rods. The specific stability properties predicted by the curved rib-
bon model are confirmed by a finite element analysis of cylindrical shells
having a small height-to-radius ratio.
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1 Introduction

As their cross-section is much smaller than their length, slender rods can un-
dergo significant rotations while the material strains remain in the elastic range.
The stability of thin elastic rods has long been recognized as an important is-
sue, and has developed into a vast, and now classical field [1]. To give just
two examples, excessive deformation of slender rods can describe the failure of
engineering components such as drill strings, masts and pipelines [24] as well
as the conformations of biological molecules, in particular, DNA [12]. Thin
rods are usually considered capable of bending about two orthogonal axes and
twisting along their centerlines, where natural curvature and torsion can be
specified initially to capture different starting geometries. Three imperatives
underpin the analysis of deformation: equilibrium, compatibility and material
constitutive behavior in the form of generalized Hooke’s laws; and for finite ro-
tations, these become coupled within a nonlinear framework, for example, the
well-known Kirchhoff rod equations of force and moment equilibrium on a given
cross-section.

The cross-sectional shape of a rod determines its bending and torsional stiff-
ness about its principal axes. For linearly elastic rods, these laws are linear
themselves. When the cross-section tends towards being flat, i.e. when the
rod is more like a strip or ribbon, a beam-like viewpoint merely adjusts the
stiffnesses according to their geometrical definitions. For a very thin ribbon,
the stiffness ratio may be very large, which affects the physical deformation in
some dominant way and, more importantly, the integrity of the assumptions on
which the beam theory is founded. It is therefore imperative to reformulate the
assumptions of cross-sectional influence. Typically, researchers assume that the
ribbon behaves like a narrow and thin elastic plate or shell [20, 21, 22]. Care
needs to be exercised in the context of highly deformed strips, where the levels of
local deformation are large enough to warrant a developable response in which
the Gaussian curvature all but disappears; this imposes further constraint upon
the kinematical relationships between curvature and torsion.

To date, the two approaches to thin elastic strips have been developed sep-
arately, each one having its own advantages and drawbacks. On one hand,
modelling strips as anisotropic rods makes it possible to reuse the large body of
work available on the analysis and computation of equilibria, stability and dy-
namics of thin rods; however, accuracy can be compromised because rod models
ignore the special role played by developable configurations of the midsurface
of a thin strip. Such configurations have a much lower elastic energy than non-
developable ones when the thickness is much smaller than the width. On the
other hand, ribbon models based on plate theory, which appeared in the semi-
nal works of Sadowsky [20, 19, 9, 10] and Wunderlich [26, 25], are mechanically
accurate but were developed as a largely independent branch of elasticity. This
branch is much less advanced—for instance, the equations of equilibrium of a
ribbon were not derived until relatively recently [22], and no stability analysis
based on the one-dimensional ribbon model has been carried out to date, to the
best of our knowledge.
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In this paper, we try to bring together the best of both worlds, and show
that the ribbon model, when appropriately formulated, can be analyzed in close
analogy to a rod model, without losing physical accuracy. To this end, we use the
ribbon model introduced by Dias and Audoly in another paper of this special
issue [3], which extends both the energy proposed by Sadowsky [20] and the
equations of equilibrium derived by Starostin and van der Heijden [22] for a flat
ribbon, to a naturally curved ribbon. This curved ribbon model is formulated
mathematically as a constrained elastic rod: like rods, but unlike other ribbon
models, it makes use of a frame of directors; in this model, the inextensibility1

of the midsurface of the ribbon is taken into account by specifying kinematical
constraints, which gives rise to an effectively nonlinear constitutive law [3].
Being expressed in the same language as an elastic rod model, the ribbon model
of [3] enables us in the present paper (i) to set up a stability analysis for a one-
dimensional ribbon model for the first time, by a straightforward adaptation of
the classical stability methods used for rods, and (ii) to carry out a detailed
comparison of the predictions of the rod and ribbon models.

To illustrate this ideas, we consider a specific geometry, namely the buckling
instabilities of simple or multi-covered loops made of a naturally elastic ribbon,
when there is a mismatch between their natural radius of curvature and their
actual radius of curvature. In previous work, this problem has been addressed
using rod models including the effect of cross-section anisotropy and natural cur-
vature [7, 6, 15]; as our paper shows, the ribbon model yields markedly different
results. This choice of geometry is inspired by physical models with ribbon-like
cross-sections encountered during our research; industrial bandsaw blades pack-
aged as continuous loops of three turns and foldable sun-shades for protecting
vehicle passengers from sideways sunlight, both of which unfold into single loop,
planar structures. Both have initial, or “intrinsic” curvature, which is revealed
when the loop is severed; the ribbon has a different, unstressed natural cur-
vature. By reconnecting the original loop, the ribbon is loaded internally and
acquires pre-stress, and the levels of pre-stress and, hence, intrinsic curvature
dictate that each loop can be uniquely folded into three planar hoops. The sta-
bility of this configuration relative to the open-loop state is studied here for each
of the different cross-sectional models, with the objective of better understand-
ing the influences of each set of assumptions. We find that stable loops with
more than three turns are also possible, and we build a physical demonstrator.

The layout of this paper is as follows. Section 2 details our construction
and testing of a multistable hoop from a bandsaw blade. This blade originally
has stable single and triple ring states, and we adjust the natural curvature
plastically to explore the effect upon stability; we determine the values at which
the stability is lost or gained, leading us to a novel configuration of five stable
rings. These results are later compared to theoretical values in Section 6, and
we also describe a simple procedure for reliably folding the hoop between states.

1An inextensible surface is a surface that preserves its metric, hence the length of all curves
drawn onto it, upon deformation. We do not consider the case of surfaces that are inextensible
along a given set of material directions only, such as surfaces made up of woven networks of
inextensible fibers.
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Section 3 introduces our three modelling scenarios: the isotropic rod, the flat rod
and the ribbon. All of them assume inextensibility along the tangent line normal
to each cross-section, which we impose via a constrained Cosserat framework.
The constitutive, or generalized Hooke’s, laws relating the internal moment and
curvature-twist components on a given cross-section to each other are linear
for the rod models and non-linear for the ribbon model. In Section 4, all of
these laws are imported into the equations of motion linearized about initially
circular configurations, so that we may begin to understand later the differences
in properties of the multistable hoop. A key difference between the ribbon and
rod models is identified at this stage: the tangent twisting modulus of both
rod models is constant and positive, although that of the ribbon model varies
and may be negative. In section 5, the consequence of the positiveness or non-
positiveness of this modulus is explored in a simple scenario of the unbending of
an initially curved rod: we find that the ribbon model becomes unstable close
to the point where its tangent twisting modulus passes through zero, but the
rod models remain stable until a considerably larger deformation is applied. We
carry out a finite element analysis of a shell model to confirm the predictions
of the ribbon model. In section 6, we return to the original problem of the
stability of the multiply-covered strips, which we approach analytically and
computationally using the ribbon model. We present a combination of dynamic
stability analyses and numerical simulations of post-buckled equilibrium shapes.
A global picture of the equilibria and their stability emerges, which is both
consistent with our experiments and different from previous predictions based
on rod models.

2 Experiments

Figure 1 shows a loop constructed from a 3 m length of bandsaw blade whose
teeth have been ground down for ease of handling, resulting in a rectangular
cross-section of width 5.65 mm and thickness 0.65 mm. The blade was passed in
a controlled fashion through a set of rollers to impart uniform intrinsic curvature,
κn, about the minor axis of bending of cross-section, and the final open section
has around 3.33 turns as indicated, of radius r0 ≈ 143 mm. The ends of the
blade are then connected together by a short bracket to form a continuous
structure of three loops, which can be unfolded into a single loop or folded into
five- and seven loops, as we soon describe. Apart from the single loop, each
folded shape is almost but not quite planar owing to interference during the
overlapping of turns; all have circular loops of the same radius and, crucially,
the size of the initial curvature imparted by rolling allows each configuration to
be locally stable, i.e. to be relatively insensitive to sufficiently small out-of-plane
perturbations.

Folding and obtaining each form is straightforward after some practice.
Starting from a single loop, the ribbon may be twisted manually along any
diameter in the out-of-plane direction, as displayed in Fig. 2, until it drives it-
self into three equal loops. To obtain five loops, the radius of one of the three
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(a)
(b) (c)

(c’)

(d)

Figure 1: Stable configurations of a bandsaw blade performing as a multistable
hoop. The usual teeth have been removed from a commercially available product
of initial length of around 3 m. The blade comes with two stable shapes; the
open, single loop and the closed, folded triple loop. We adjusted the initial,
or “natural” curvature by first cutting the loop, and then passing it through
some mechanical rollers, which caused plastic curving about the cross-sectional
width. The ends of cut loop are then re-connected by a simple clasp, visible here,
before folding into higher-order configurations (see Fig. 2). Subfigures (a)–(c)
show stable states with one, three and five loops (top and bottom views); in (c’)
the five loop case has partially unraveled but is locked by frictional interplay
between the loops. In (d), the naturally curved rod for each of these cases—the
ends are free and it has just over three turns.
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(a)

(b)

Figure 2: Folding sequence for a loop with one, three and five stable loop
configurations. (a) A single loop is twisted along a given diameter by hand to
form a figure-of-eight loop in transition to the final three loop state. (b) Folding
three loops into five is accomplished by, first, manually feeding arc-length into
one of the three loops, at the expense of the other two, and then twisting this
larger loop as per the single loop. The resulting five-looped state then adjusts
itself automatically to the same radius everywhere even though we show them
as being slightly different—purely to convey the number of loops.

loops is increased by feeding the arc-length of the two other loops into this
larger loop by hand: when the larger loop is around 2–3 times as wide, it can
be twisted in a manner similar to the single loop, which forms three more loops
in addition to the current pair of smaller loops. Once released, the final five
loops adopt the same radii. Folding five- into seven loops is performed similarly
provided plastic strains are not incurred. Each shape, or state, has different
degrees of proximal stability: by far, the three loop configuration is most stable,
and the other states move towards it in sequence if significantly perturbed or
deliberately unfolded; from the single loop to three, or from seven- to five- to
three loops. This happens to be the case for this physical model; if the intrinsic
curvature is different, the stability character is altered.

A simple experiment is then performed to assess the limits at which stability
is lost. For a given κn, the length of the blade is varied by feeding it through
the bracket, thereby altering the closed length and r0. The set-up is then laid
on a horizontal table and gently released; stability is defined as being lost when
the configuration either folds into more turns or opens up into fewer turns, and
the critical data are reported in table 1. In particular, it is found that a single
loop is stable only if r0κn is less than 3.5. Above this value, a single loop cannot
exist in an unloaded state but spontaneously collapses into three loops. The
example in Fig. 1 has a ratio r0κn just below this value, and so is stable, but
the degree of perturbation needed for destabilizing this shape is small. Three
loops are just stable if r0κn is larger than 0.28, otherwise they open into a single
loop for smaller values of this ratio. If the ratio is increased, then the system is
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Table 1: Experimental regions of stability expressed in terms of r0κn (current
radius × natural, open curvature) using a steel bandsaw blade, of rectangular
cross-section 5.65 mm × 0.65 mm and L ≈ 3 m.

covering index m stability bounds
1 r0κn < 3.50
3 0.28 < r0κn < [beyond elastic limit]
5 0.42 < r0κn < [beyond elastic limit]

increasingly resistant to perturbations. Unlike a single loop, three loops unfold,
and the same is true for five loops, which open up into three loops if r0κn < 0.42.

Other limits were considered, for example, for seven loops unfolding into
five, but this was not recorded because there was too much contact between
the loops, and friction played a significant role in preventing the transition. We
also surmised that each of the three- and five loop scenarios were governed by
an upper bound on stability in terms of r0κn, where a higher ratio would cause
each case to be unstable in the direction of more loops, i.e. three loops would
spontaneously collapse into five loops etc. However, this was not observable
without incurring plastic deformation because the original loop radius needs to
be very small to unfold into a radius at least five-to-tenfold larger. In addition,
higher loop configurations are reached only by folding in a very precise way,
which is unlikely to happen spontaneously.

3 Models: elastic ribbon versus elastic rods

In this section, we introduce three different mechanical models that can be used
to represent a naturally curved elastic strip, such as the previously discussed
bandsaw blade. The ribbon model is the only one that can accurately capture
situations where the thickness h, the cross-sectional width w and the curvilinear
length L are all very different, with h � w � L: this model is derived from
a two-dimensional inextensible plate model by considering the limit w � L.
The two other models are given merely for the sake of comparison; they are
less accurate, but are somewhat simpler and have been extensively used in
prior work. One model is the isotropic rod model: this is the standard model
for a thin elastic rod having a circular cross-section — it simply ignores the
aspect-ratio of the cross-section. The other one is the flat rod model, obtained
by extrapolating the thin elastic rod model for a rectangular cross-section with
dimensions w×h to the limit of a flat cross-section, i.e. by letting h/w → 0. This
limit h/w → 0, however, is incompatible with Kirchhoff kinematical hypothesis,
which underpins the derivation of all rod models. The flat rod model is therefore
mathematically defined, but ill-justified from a mechanical perspective.
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flat cross-section

models

isotropic cross-section

ribbon (plate)
flat rod

isotropic rod

Figure 3: An elastic ribbon is represented as a Cosserat curve x(S) with directors
di(S). Throughout this paper, we compare the predictions of three mechanical
models based on this kinematical description: the accurate ribbon model (which
extends Sadowsky’s narrow plate model to account for natural curvature), the
classical rod model for a rectangular cross-section in the limit where the latter
has a small aspect ratio, h� w (flat rod model), and for a circular cross-section
(isotropic rod model).

3.1 Inextensible Cosserat curve

We start with a kinematical description, common to all three models. Let S
denote the arc-length in a reference configuration, and let L denote the curvi-
linear length of the rod. We use S ∈ [0, L] as a Lagrangian coordinate to
follow, or track, the location of material cross-sections. We will mostly consider
static problems. However, to analyze dynamic stability, we will occasionally
introduce a time variable, which we denote by τ . For any function f(S, τ), the
derivative with respect to position in the reference configuration is denoted by
f ′(S, τ) = ∂f/∂S and the temporal derivative by ḟ(S, τ) = ∂f/∂τ .

Vectors are denoted by boldface characters. A configuration is specified by
a Cosserat curve, i.e. by the centerline x(S) and by three orthonormal directors
di(S), with i = 1, 2, 3. We consider only inextensible and unshearable materials,
for which the following two kinematical constraints are applicable. First, one
of the directors, which we choose to be d3, coincides with the tangent to the
curve:

x′(S) = d3(S). (1)

Second, the director’s frame is orthonormal,

di(S) · dj(S) = δij , (2)

which must hold for any 0 ≤ S ≤ L and for any combination of indices (i, j),
where δij denotes Kronecker’s symbol. By convention, d1 is along the width
of the strip and d2 is perpendicular to the plane tangent to strip, see figure 3.
Note that inextensibility follows from projecting equation (1) along the tangent
direction d3: this yields |x′| = 1, i.e. |dx| = |dS|.

For closed ribbons, the centerline and directors are periodic, such that
x(L) = x(0) and di(L) = di(0) (the equilibrium requires that the internal
stress is period as well, and this will be imposed later).

The curvature strains (ω1, ω2) and the twisting strain ω3 are defined as
the components of the rotation gradient ω relative to the basis formed by the
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directors:

ωi(S) =
1

2

3∑
j=1

3∑
k=1

εijk d
′
j(S) · dk(S) (3)

where εijk is the alternating symbol. The rotation gradient, also known as the

“Darboux vector”, is represented by ω =
∑3
i=1 ωi di and obeys d′i = ω × di.

3.2 Kirchhoff’s equations of motion

To state the equations of motion for ribbons and rods, we introduce the time
variable τ . The internal stress is represented by the resultant R(S, τ) and by
the moment M(S, τ). In the absence of external forces, the linear and angular
momentum balances are expressed by Kirchhoff’s equations of motion,

R′(S, τ) = ρ ẍ(S, τ) (4a)

M′(S, τ) + x′(S, τ)×R(S, τ) = 0, (4b)

where ρ is the mass per unit length. Since we have ignored the rotational inertia
of the cross-section, the right-hand side of the equation for moment equilibrium
is zero; as we explain later, this has implications for the growth rate of twisting-
mode instabilities.

3.3 Constitutive laws

The components Mi = M · di of the internal moment M relative to the basis
of the directors are given by constitutive laws in terms of the strains ωi. The
three mechanical models (ribbon, isotropic rod, flat rod) arise from different
constitutive laws, all of which are denoted generically by f = 0,

f(M1,M2,M3, ω1, ω2, ω3) = 0. (5)

Expressions for f corresponding to the different models are proposed below.

3.3.1 Constitutive law for a ribbon

The ribbon model was introduced in the seminal work of Sadowsky [20, 21,
22]. He derived the energy of an elastic ribbon by dimensional reduction by
starting from the energy of a narrow, two-dimensional elastic plate, which he
reduced to a one-dimensional model using the developability condition. His
model correctly captures the inextensibility of the midsurface of the ribbon,
which therefore remains a developable (hence ruled) surface after deformation2.
Sadowsky explicitly parameterizes the ribbon’s midsurface using the inverse
cotangent η of the angle between the generatrices and the tangent d3 to the
centerline.

2By contrast, Kirchhoff’s kinematical hypothesis, which underpins rod models, valid when
w and h are comparable, but it does not capture developable configurations well in the limit
h� w.
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Using a variational method, Starostin and van der Heijden [22] derived the
equilibrium equations found by Sadowsky [18, 11, 20, 9], which they applied to
geometries such as that in [23]. Even though their variational method departs
from the standard treatment of thin elastic rods, the equilibrium equations they
obtain are very similar to the classical Kirchhoff equations for thin rods, as they
note.

In another paper in this special issue [3], Dias and Audoly extend Sadowsky’s
model to handle natural curvature. They also derive equilibrium equations for
ribbons by adapting the classical approach, i.e. by writing a principle of virtual
work for elastic ribbons analogous to elastic rods. This viewpoint makes evident
the strong similarities between the governing equations for rods and ribbons. It
it also has a practical advantage: it makes ribbons appear as a special case of
rods. We adopt this view in the present paper, which enables us to analyze
the stability of elastic ribbons by adapting of the classical stability analyses for
elastic rods in a straightforward way.

We temporarily drop the time variable τ , as it does not enter into the con-
stitutive laws. The direction of generatrices is parameterized by the quantity
η(S) in the Sadowsky model, and developability implies the constraint

ω3(S) = η(S)ω1(S). (6a)

Following [3], we refrain from eliminating the parameter η, and view instead
η and ω3 as two variables linked by a kinematical constraint. The ribbons
we consider here have zero geodesic curvature, i.e. ω2 = 0 in the reference
configuration, and their midsurface is inextensible, as previously noted. The
geodesic curvature is preserved upon isometric deformations of the midsurface,
hence the kinematical constraint

ω2 = 0 (6b)

persists during deformation.
As written in Section 2, κn denotes the natural out-of-plane curvature. For

simplicity, we assume κn is constant, and the reference configuration is taken to
be a section of open cylinder with height w and natural radius, κn

−1. The strain
energy stored in the deformed ribbon is derived in equation (34) of reference [3]
from the energy of an inextensible cylindrical shell as

Erib =
Brib

2

∫ L

0

[
ω1

2 (1 + η2)2 − 2κn ω1 (1 + ν η2)
]

dS, (7)

where Brib = Dw, is the product of the plate modulus D = E h3

12 (1−ν2) and the

width w of the ribbon; E is Young’s modulus and ν is Poisson’s ratio. The first
term inside parenthesis in the integrand is Sadowsky’s energy, and the second
term captures the effect of the natural curvature κn.

The first variation of the energy Erib enables the following constitutive law
to be found when the constraints in equations (6a) and (6b) are applied:

M1 =
∂Erib
∂ω1

− ηM3. (8a)
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Moreover, the condition of equilibrium for η writes:

∂Erib
∂η
− ω1M3 = 0. (8b)

We refer the reader to [3] for details. Note that M3 is the Lagrange multiplier
associated with the constraint (6a): the principle of virtual work for ribbons
is a constrained variational problem, and the terms (−ηM3) and (−ω1M3) in
equations (8a) and (8b) are constraint terms.

Using equation (8b), we have M3 = 2Brib

(
ω1 (1 + η2) η − κn ν η

)
; equa-

tion (8a) then yields M1 = Brib

(
ω1 (1−η4)−κn (1−ν η2)

)
. Eliminating η from

equation (6a), the two constitutive equations and the constitutive constraint for
a naturally curved ribbon are expressed altogether by frib = 0, with

frib =


M1 −Brib

[
ω1 − ω3

4

ω3
1
− κn

(
1− ν ω3

2

ω2
1

)]
ω2

M3 − 2Brib

[
ω3 + ω3

3

ω1
2 − κn ν

ω3

ω1

]
 (9)

Only the first and third components of frib = 0 are genuine constitutive laws; the
second component yields a constitutive constraint ω2 = 0, which is the geodesic
constraint introduced earlier in equation (6b): in the presence of a kinematical
constraint affecting a strain measure, ω2 = 0, this constraint indeed replaces the
constitutive law for ω2 and the bending moment M2 is determined by solving
the full equilibrium problem.

The ribbon model is fully captured by the expression of frib proposed in
equation (9), so we do not need to use equations (6–8) henceforth. It has been
checked in reference [3] that the equations of equilibrium (4) and the constitutive
law frib = 0 are equivalent to the equilibrium equations derived by Starostin
and van der Heijden [22] in the special case of a naturally straight and static
ribbon (κn = 0 and ẍ = 0).

3.4 Constitutive law for an isotropic rod

We define an ‘isotropic’ rod to be a linear elastic rod having equal principal
bending moduli, as for a circular cross-section (note that isotropic rods may be
naturally curved). The classical rod model representing an isotropic rod with
natural curvature κn expresses fiso as

fiso =

M1 −Biso (ω1 − κn)
M2 −Biso ω2

M3 − Ciso ω3.

 (10)

In its natural configuration, a section of this rod is a torus with cross-sectional
radius ρ, enclosing a circular centerline with radius κn

−1. The bending and

twisting moduli read Biso = E π ρ4

4 , Ciso = E
2 (1+ν)

π ρ4

2 , respectively, where

µ = E
2 (1+ν) is the shear modulus of an isotropic Hookean material.

11



3.5 Constitutive law for a flat rod

We call ‘flat rod’ the mathematical limit w � h of the rod model with a rectan-
gular cross-section, w × h, and a natural curvature κn. When the aspect-ratio,
h/w, of the cross-section tends to zero, the constitutive law is obtained in the
limit:

fflat =

M1 −Bflat (ω1 − κn)
ω2

M3 − Cflat ω3

 (11)

where Bflat = E wh3

12 , Cflat = E
2 (1+ν)

wh3

3 . Note that Bflat and Cflat are of

the same order of magnitude, ∼ w h3. The other principal bending modulus
is of order ∼ w3 h, and is therefore much larger: this is why we replaced the
corresponding constitutive law with the kinematical constraint ω2 = 0. For a
rectangular rod, the torsional constant is obtained by solving a Laplace equation

in a rectangular domain. The value of the torsional constant wh3

3 used here
corresponds to the solution of this Laplace problem for a thin strip of dimensions
w × h.

3.6 Not all models were created equal

As discussed at the beginning of §3, the ribbon model is the only accurate
model if h� w � L. The two other models cannot be justified asymptotically
in this limit and, worse, they are based on kinematical assumptions that cannot
capture the inextensible modes of deformation of the center-surface (which are
the lowest-energy modes when h � w). The rod models are given only for the
sake of comparison.

4 Linearized equations of motion near circular
solutions

Without specifying boundary conditions, we linearize these equations near a
circular configuration, as shown in figure 4. In so doing, we obtain the tangent
bending and twisting moduli associated with the different constitutive laws,
which play a key role in the stability analysis of the ribbon. The general lin-
earized equations of motion derived in the present section are applied later to
two specific geometries in §5 and §6.

4.1 Base state: circular solutions

We consider the twistless, circular state shown in figure 4, and analyze its stabil-
ity for different boundary conditions. All quantities pertaining to the base circu-
lar state are marked with a subscript or superscript ‘0’. Let therefore ω0

1 denote
the curvature in the circular state, and r0 = 1/ω0

1 the radius of curvature, as in
figure 4. The centerline is parameterized by x0(S) = r0 er(θ) where θ = ω0

1 S is
the polar angle. The directors read d0

1(S) = ez, d
0
2(S) = er(θ), d

0
3(S) = eθ(θ).
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(a) (b)

Figure 4: (a) Reference configuration of a ribbon with natural curvature κn. (b)
A circular actual configuration with curvature ω0

1 = 1/r0.

The kinematical constraints in equations (1–2) are satisfied, as can be checked.
The rotation gradient ω0 = ω0

1 ez has components (ω0
1 , ω

0
2 , ω

0
3) = (ω0

1 , 0, 0) in
the directors basis (d0

1,d
0
2,d

0
3).

In the present setting, the twisting strain is zero ω3 = 0. Observe that
the three constitutive laws all predict similar expressions for the bending and
twisting moment, M0

1 = B
(
ω0

1−κn

)
and M0

3 = 0 when ω3 = 0. Here B denotes
the bending modulus relevant to the model under consideration, B = Brib,
Biso or Bflat. Now, let us calculate M0

2 . For the isotropic rod model, M0
2 = 0

follows directly from the constitutive law. For the two other models, M0
2 = 0

follows from equilibrium: the balance of moments in equation (4b) implies 0 =

(M′0 +d0
3×R0) ·d0

3 = M′0 ·d0
3 = M0

3
′
+ω0

1 M
0
2 = ω0

1 M
0
2 . Therefore, in all cases

we have
M0(S) = M0

1 d0
1, where M0

1 = B
(
ω0

1 − κn

)
. (12a)

The consequence of equation (12a) is that M′0 = 0. Projecting now the
balance of moments M′0+d0

3×R0 = 0 onto d0
1 and d0

2, we find that R0
1 = R0

2 = 0.
The balance of forces is given by (4a) with ẍ = 0: this yields (R0

3 d
0
3)′ = 0; hence

R0
3 = 0 and so

R0(S) = 0. (12b)

By (12), the pre-stress in a circular configuration is a pure bending moment:
(R0(S),M0(S)) = (0,M0

1 d0
1). This bending moment drives the instabilities

which we analyze later. The opposite case of instabilities driven by a twisting
moment has been studied in the classical paper of Michell [16], see also [5].

4.2 Mode of vibration near a circular configuration

We consider a vibration mode near this circular configuration, i.e. assume a
small perturbation away from the circular state depending harmonically on the
time variable τ . We use the notation of complex analysis and denote by x̂ the
complex amplitude of displacement, by ψ̂ the complex infinitesimal rotation
vector, by R̂ the complex amplitude of the internal force perturbation, and by

13



M̂ the complex amplitude of the internal moment:

x(S, t) = x0(S) + [r0] x̂(S) eiΩ τ (13a)

di(S, t) = d0
i (S) +

(
ψ̂(S) eiΩ τ

)
× d0

i (S) (13b)

R(S, t) = 0 + [B (ω0
1)2] R̂(S) eiΩ τ (13c)

M(S, t) = M0 + [B ω0
1 ] M̂(S) eiΩ τ (13d)

The perturbations (x̂, ψ̂, R̂, M̂) have been nondimensionalized by including the
appropriate scaling factors in square brackets on the right-hand side. Our di-
mensionless units make use of the reference length r0 = 1/ω0

1 (radius of the
center-line the circular base state) and of the reference moment B ω0

1 . All other
reference quantities, such as forces and energies, are obtained by combining r0

and B ω0
1 . In equation (13), the perturbations (x̂, ψ̂, R̂, M̂) are sought as a

function of the rescaled arc-length defined by

S = ω0
1 S. (14)

Note that the expression for the director di in equation (13b) in terms of the

infinitesimal rotation ψ̂, automatically preserves the orthonormality between
directors to a linear order in the perturbation.

4.3 Linearized constitutive law

The constitutive law has been written in a generic form as f = 0 in equation (5),
and special forms relevant to the different models have been obtained in equa-
tions (9), (10) and (11). We now linearize these constitutive laws near the
circular configuration

(M1,M2,M3, ω1, ω2, ω3) = (M0
1 , 0, 0, ω

0
1 , 0, 0).

In terms of the increments of strain ω̃i and increments of bending and twisting
moments M̃i, the linearized constitutive laws all take the form

M̃1 = B ω̃1 (15a)

M̃2 = B g ω̃2 (15b)

M̃3 = B t ω̃3, (15c)

where B is the model-dependent principal bending modulus introduced ear-
lier, and (t, g) are the dimensionless second bending modulus and dimensionless
twisting modulus, respectively. Both t and g are model-dependent as well: their
expressions are listed in table 2. The tangent moduli t and g have a strong
influence on the stability of circular configurations: in particular, the tangent
twisting moduli g predicted by the ribbon and flat rod models have different
expression and this implies, as we shall confirm later, that these two models
have different stability properties.
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Table 2: Values of the dimensionless tangent elastic moduli predicted by the
different models near a circular configuration with radius r0. These coefficients
are obtained by linearizing equations (9–11) and identifying the result with the
form proposed in equation (15).

contrast of bending moduli g dimensionless twisting modulus t

ribbon ∞ 2 (1− ν κn r0)
flat rod ∞ 2

1+ν

isotropic rod 1 1
1+ν

In table 2, the statement of g = ∞ for the ribbon and flat rod models
suggests that equation (15b) should then be replaced by ω̃2 = 0 (which is indeed
the incremental form of the kinematical constraint ω2 = 0).

Note that the increments M̃i of the bending and twisting moments Mi =
M · di differ from the components M̂i = M̂ · d0

i of the perturbed internal

moment vector, M̂, onto the unperturbed directors basis: M̃i should not be
confused with M̂i. For instance, for an infinitesimal rigid-body rotation, M̂
follows the rotation and its components M̂i in the unperturbed directors basis
are non-zero, although the quantities Mi are constant, so M̃i = 0. Likewise, ω̃i
denote the increments of the strains ωi and not the components of a vector ω̂

(they are in fact the components of ψ̂
′
, as we note later).

4.4 Equations for the modes

Linearizing the kinematical condition (1), the equations of motion (4), the defi-
nition of twist-curvature strains in equation (3) and using the linearized consti-
tutive law in equation (15), we obtain

x̂′(S) = ψ̂ × d0
3, (16a)

R̂′(S) = −Ω
2
x̂, (16b)

M̂′(S) + d0
3 × R̂ = 0, (16c)

M̂ = ψ̂ ×M0 + (d0
1 ⊗ d0

1 + g d0
2 ⊗ d0

2 + td0
3 ⊗ d0

3) · ψ̂
′
(S), (16d)

where we have defined the dimensionless pre-stress M0 = M
0

1 d
0
1 (which is

identical for all models) and the dimensionless angular velocity Ω by

M
0

1 =
M0

1

B ω0
1

= 1− κn r0, (17a)

Ω =
Ω√

B
ρ (ω0

1)2
. (17b)
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Equation (16d) can be interpreted by observing3 that M̂ − ψ̂ × M0 =∑
i M̃i d

0
i , and that ψ̂

′
=
∑
i ω̃i d

0
i . When projected along any one of the

undeformed directors d0
i , equation (16d) then appears to be equivalent to any

one of the linearized constitutive laws in equation (8), in nondimensional form,
i.e. with B set to 1.

To solve these equations, it will be convenient to represent the unknown
amplitudes relative to the unperturbed director basis:

x̂(S) =

3∑
i=1

x̂i(S)d0
i (S), ψ̂(S) =

3∑
i=1

ψ̂i(S)d0
i (S), (18a)

R̂(S) =

3∑
i=1

R̂i(S)d0
i (S), M̂(S) =

3∑
i=1

M̂i(S)d0
i (S). (18b)

In dimensionless units, the unperturbed rotation gradient ω0
1 = ω0

1 ez reads

simply as ω0
1 = ez. Therefore, any one of the amplitudes (x̂, ψ̂, R̂, M̂), denoted

generically by v̂(S), is differentiated in the moving basis according to the formula

v̂′(S) = ez × v̂ +

3∑
i=1

v̂′i d
0
i = v̂′1 d

0
1 + (v̂′2 − v̂3) d0

2 + (v̂′3 + v̂2) d0
3. (19)

In the forthcoming sections, we analyze the stability of rods and ribbons in dif-
ferent circular geometries: we consider the unfolding of a semicircular ribbon
in §5 and the stability of m-covered circles in §6. These stability analyses make
use of the equations derived above: we insert the decompositions of the pertur-
bations into components given in equation (18) into the linearized equations of
motion (16), making use of the differentiation rule in equation (19). In so doing,
we obtain a set of twelve coupled linear ordinary differential equations—which
we supplement by appropriate boundary conditions.

5 Unfolding of a semicircular ribbon

Our analysis of the linearized constitutive laws has revealed a distinctive fea-
ture of the ribbon model: its tangent twisting modulus trib = 2 (1 − ν κn r0)
in dimensionless form becomes negative when the curvature reaches the value
r−1
0 = ν κn. This suggests that a ribbon can become unstable when it is unbent,

or undercurved, i.e. when the curvature is decreased from its natural value κn.
In this section, we consider the simplest geometry for which such an instability
can appear: the unfolding of a semicircular strip. A linear stability analysis
is first carried out, and predictions from the ribbon model are contrasted with
those of the rod models, whose tangent twisting modulus is always positive,
irrespective of the value of r−1

0 . A finite element analysis of a shell model is
conducted, which confirms our findings.

3To show these equalities, note that the left-hand side of the first equation is the derivative
of M̂ in the moving basis following the virtual motion. The second equation is a classical
formula for calculating the bending and twisting strain increments; see for instance [2].
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(a) (b)

Figure 5: Unfolding a semicircular ribbon. (a) Natural configuration: the case
of a semicircle corresponds to θn = π. (b) Undercurved, circular configuration
with differential rotation of the ends γ = θn ξ; its stability is analyzed in §5.3.

5.1 Geometry

We consider a naturally curved ribbon of arclength L, subtending an initial
angle θn = Lκn. It is progressively flattened by applying equal and opposite
rotations to both ends normal to the (Oxy) plane; see figure 5. Out-of-plane
displacements are completely restrained, but the ends are free to move without
friction towards, or away from, each other in-plane. The end-wise rotations take
place about the transverse direction ez and the relative rotation, γ, of the two
ends is expressed in terms of an unfolding parameter ξ as γ = θn ξ; the initial,
natural configuration corresponds to ξ = 0, and the flattened configuration
corresponds to ξ = 1. We analyze the stability of the circular configuration
during unfolding, i.e. as ξ ≥ 0 is increased.

5.2 Base circular solution

There exists a planar, circular solution to this problem, with curvature ω0
1 =

κn (1− ξ), hence a radius of curvature r0 = (ω0
1)−1 = κn

−1

(1−ξ) . By equation (17a),

the bending prestress is identical for all three mechanical models, and is written

as M
0

1 = 1− κn r0 = 1− 1
1−ξ .

The values of the dimensionless moduli t and g are given in table 2. In
particular, for the ribbon, t = trib is now a function of the unfolding parameter:

trib = 2 (1−ν κn r0) = 2
(

1− ν
1−ξ

)
. This modulus reaches zero when ξ = 1−ν,

corresponding to a curvature ω0
1 = ν κn. In view of this, we expect that the

ribbon model predicts an instability before ξ reaches the value (1 − ν). For
materials having a positive Poisson’s ratio ν where 1− ν < 1, the instability is
expected to occur well before the ribbon completely flattens.
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5.3 Linear stability analysis of the unfolding semicircle

A linear stability analysis of the circular configuration is now carried out by
specifying the linearized equations of motion derived in §4 for the particular
geometry of figure 5 and for the static case, Ω = 0. This yields the linearized
equations of equilibrium in the interior, which are linear ordinary differential
equations in the twelve amplitudes

(
x̂i(S), ψ̂i(S), R̂i(S), M̂i(S)

)
with i = 1, 2, 3.

These equations are supplemented by the relevant boundary conditions, namely(
x̂1, R̂2, R̂3, ψ̂1, ψ̂2, ψ̂3

)
S=0

=
(
x̂1, R̂2, R̂3, ψ̂1, ψ̂2, ψ̂3

)
S=L

= 0. Here, the indices
refer to the labelling of the material frame of the base circular solution, see
figure 5: the indices 2 and 3 refer to the plane (Oxy), while the index 1 refers
to the transverse direction (Oz).

The base solution is invariant by mirror symmetry with respect to the (Oxy)
plane. As a result, the equations for the linear stability decouple into a set of
equations for the quantities

(
x̂2, x̂3, ψ̂1, R̂2, R̂3, M̂1

)
on one hand, and another

set for the quantities
(
x̂1, ψ̂2, ψ̂3, R̂1, M̂2, M̂3

)
on the other hand; see §5.8 of ref-

erence [2] for details. These two sets of equations characterize in-plane modes
of instability involving bending, and out-of-plane modes involving twisting, re-
spectively — the so-called ‘ridge mode’ and ‘centerline mode’ in reference [2],
respectively. This decoupling is recovered in the analysis of m-covered circular
solutions later on in §6.

A detailed analysis shows that the unfolding ribbon first becomes unstable
by twisting out of plane. Therefore, to simplify the presentation, we assume
that the quantities,

(
x̂2, x̂3, ψ̂1, R̂2, R̂3, M̂1

)
are all identically zero. We cancel

the corresponding terms in the decomposition given in equation (18), and in-
sert the result into the linearized equations of motion (16), making use of the
differentiation rule in equation (19). Setting Ω = 0, we find that

x̂′1 − ψ̂2 = 0, (20a)

g ψ̂′2 + (M
0

1 − g) ψ̂3 − M̂2 = 0, (20b)

t ψ̂′3 − (M
0

1 − t) ψ̂2 − M̂3 = 0, (20c)

M̂ ′2 − M̂3 + R̂1 = 0, (20d)

M̂ ′3 + M̂2 = 0, (20e)

R̂′1 = 0, (20f)

where x̂1(S), ψ̂2(S), ψ̂3(S), M̂2(S), M̂3(S), R̂1(S) are functions of the dimen-
sionless arclength S = S

L . The boundary conditions are(
x̂1(0), ψ̂2(0), ψ̂3(0), x̂1(L), ψ̂2(L), ψ̂3(L)

)
= 0, (20g)

where the rescaled arclength is L = Lω0
1 = θn (1− ξ).

When the expressions of M
0

1, L, g and t in terms of ξ and ν are inserted (here,
we use the expressions of g and t relevant to any of the three mechanical models
under consideration), equation (20) becomes a linear eigenvalue problem for ξ
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depending on the parameters (θn, ν). For a non-trivial solution, these eigenval-
ues are marginally stable modes, and indicate a bifurcation from the unbuckled
(planar, circular) solution branch. An closed-form solution is available because
the coefficients of the equations are constant, but that solution turns out to be
lengthy and tedious to present. Instead, we solve this problem numerically using
a linear shooting method. We call S(θn, ν, ξ) the determinant of the shooting
matrix; according to the shooting method [17], the entries in the shooting ma-
trix are found by integrating an initial value problem for the differential system
in equation (20). The cancellation of the determinant detS(θn, ν, ξ) indicates
the existence of a marginally stable mode.

The numerical results for the linear stability of an unfolding semicircle are
shown in figure 6. For the ribbon model, an instability occurs slightly before
the tangent twisting modulus cancels, trib = 0, i.e. slightly before ξ reaches the
value ξ = 1 − ν, as anticipated earlier. The critical value of ξ is numerically
very close to 1− ν: the difference is as small as ∆ξ = .004 for ν = .3, as shown
in figure 6a’ (even though this difference is a function of Poisson’s ratio and of
the initial angular span, θn, it always stays of this order).

By contrast, the two rod models predict an instability at a much higher value
of the unfolding parameter, as indicated in figure 6b,c. The instability typically
does not take place before ξ reaches ≈ 2, corresponding to a circle that has been
fully everted, i.e. has been flattened out and then bent the other way around
until it has become mirror-symmetric to the original one.

In summary, the out-of-plane instabilities are predicted at very different
unfolding angles by the ribbon model on one hand, and by the rod models on
the other hand. This is evident from the very different positions of the stability
boundaries in the panel ‘a’ of figure 6, as compared to those in panels ‘b’ and
‘c’. The early instability of the ribbon model is triggered by the change of sign
of the tangent twisting modulus—no such change of sign takes place for the rod
models.

5.4 Simulations by the finite element method

In order to test our theoretical predictions, we performed computational simula-
tions using a finite element analysis for thin elastic shells using the commercially
available software package ABAQUS [8]. The semi-circle (θn = π) is formed as
a thin strip using four-noded S4R5 shell elements, with 20 elements across the
width and 200 around its length. The previous boundary conditions are cap-
tured exactly: the ends are free to rotate about an axis parallel to the width
direction, and no other rotations are permitted; one end is restrained against
linear translation and the other end can only displace in a direction between the
ends. The strip is loaded by imposing end-wise, in-plane rotations, and uniform
flattening without end-wise reaction forces is accomplished by the ends freely
moving relative to one another (they move apart for θ > π/2, and then together
when θ is larger). The shell elements can bend and stretch; we use a thickness
parameter than is only a small fraction of the width, see figure 7, implying
that the equilibrium configurations are close to inextensible. The high density
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Figure 6: Linear stability analysis of the unfolding semicircle (θn = π), as pre-
dicted (a) by the ribbon model, (b) by the flat rod model, and (c) by the isotropic
rod model. The ribbon model predicts a much lower instability threshold than
the two other models. The red domains correspond to a change of sign of the
determinant of the shooting matrix S(θn, ν, ξ): along its boundary, a marginally
stable twisting mode exists. (a’) For the ribbon model, the first instability, cor-
responding to the first root of the determinant of S, occurs slightly below the
value ξ = 1 − ν where the tangent twisting modulus cancels: the gap between
the two is as small as ∆ξ = .004 for ν = .3.
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Figure 7: Stability analysis of the unfolding semi-circular ribbon (θn = π).
Comparison of the finite element simulation (black symbols) to the ribbon model
(light blue): full stability analysis (symbols), and approximate threshold ξ =
1− ν where the twisting modulus cancels, trib = 0, (dotted lines).

of elements across the width of strip ensures that all stresses are accurately
resolved.

The material is chosen to be linear elastic, with the Young’s modulus of
steel, 210 GPa, and three width-to-thickness ratios, 5, 20 and 50, are considered,
along with two values, ν = .1 and ν = .3, of Poisson’s ratio. The initial radius
is 100 mm and the width is always w = 5 mm, giving a length-to-width ratio
L/w = 62.8. The analysis follows two steps. First, the strip is unbent to a given
end rotation, which is then held fixed with all other nodal displacements being
free. Second, a linear perturbation analysis is performed where the value of the
primary (lowest) eigenvalue is extracted. These steps are repeated for a range of
end rotations where the aim is to capture the eigenvalue performance of the strip
as a function of end rotation, width and Poisson’s ratio: the value at which an
eigenmode first becomes unstable is detected, and this critical value is plotted
as a function of the aspect-ratio h/w and of Poisson’s ratio ν. The results have
been collated in figure 7. A good agreement is obtained with the linear stability
analysis of the one-dimensional ribbon model. These finite element simulations
confirm the existence of buckling instabilities of undercurved strips, triggered
by the change of sign of their tangent twisting modulus.

6 Stability of overcurved and undercurved m-
covered strips

6.1 Geometry

We return to the experiments of §2 concerning the stability of m-covered loops.
The geometry is sketched in figure 8. The natural curvature is denoted by
κn. The strip is closed and the single loop (m = 1) is used as the reference
configuration. It is then bent into the m-covered strip sketched in figure 8b,
using the folding sequence of figure 2. Topology shows that the single loop can be
deformed by means of continuous deformations into an m-covered configuration
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(a) (b)

Figure 8: A multiloop. (a) A small chunk of the loop shown in natural configu-
ration, revealing the natural curvature κn. (b) An m-covered strip with covering
index m = 3, exhibiting over-curvature (ω0

1 > κn) or under-curvature (ω0
1 < κn).

The loop has been disentangled to help visualization but in our analysis self-
penetration is allowed and a perfectly planar, self-intersecting configuration is
considered.

only if m is an odd integer—see figures 1 and 2. We therefore restrict our
attention to odd integers m; in addition, the m-covered configuration involves
self-penetration if m > 1 but we ignore self-penetration entirely in our analysis.

We now analyze the stability of the m-covered strip, first by means of a linear
stability analysis (§6.2), and then by calculating the post-bifurcation solutions
numerically (§6.3). Let L be the length of the strip. The radius of the m-
covered configuration is r0 = L

2πm , which is said to be undercurved if ω0
1 < κn,

i.e. m < κn L
2π , and overcurved if ω0

1 > κn, i.e. m > κn L
2π .

6.2 Linear stability analysis

The planar, m-covered configuration is a particular case of a circular solution:
we use it as the base state of the general stability analysis carried out in §4.

Owing to the rotational invariance of the base state, we consider a vibration
mode with dimensionless wavenumber k, corresponding to a physical wavenum-
ber k = ω0

1 k. We denote by < the real part of a complex number: the compo-
nents of the perturbations in the directors basis are sought as

x̂j(S)

ψ̂j(S)

R̂j(S)

M̂j(S)

 = <

ei k S

x†j
ψ†j
R†j
M†j


 (21)

in terms of complex amplitudes

ŷ = (x̂1, x̂2, x̂3, ψ̂1, ψ̂2, ψ̂3, R̂1, R̂2, R̂3, M̂1, M̂2, M̂3).

Since the ribbon is closed, the perturbations are periodic after m turns. This
imposes a quantification condition for k: there exists some integer n such that

k =
n

m
. (22)
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The difference in phase after m turns, k L = n
m

L
r0

= 2π n is then a multiple of
2π.

We insert the harmonic form of the perturbations in equation (21) into
equation (18), and then into the linearized equations of motion (16), making use
of the differentiation rule in equation (19). The resulting linearized equations
of motion take the form

A(M
1

0, g, t; k,Ω
2
) · ŷ = 0, (23)

where

A =



ik 0 0 0 −1 0

0 ik −1 1 0 0 0 0

0 1 ik 0 0 0

Ω
2

0 0 ik 0 0

0 Ω
2

0 0 0 ik −1 0

0 0 Ω
2

0 1 ik

0 −1 0 ik 0 0

0 0 1 0 0 0 ik −1

0 0 0 0 1 ik

−ik 0 0

0 0 −igk g −M0

1 0 1

0 M
0

1 − t −ikt



.

(24)
Note that for Ω = 0 it is possible to write A as a diagonal block matrix by
reordering the rows and columns—this is the decoupling discussed earlier in
§5.3, arising from the symmetry of the base state.

The dispersion relation reads detA(M
1

0, g, t; k,Ω
2
) = 0. Factoring the de-

terminant, we obtain

detA = g
((

1 + k
2)

Ω
2 − k2 (

1− k2)2)(
cΩ

2 − b k2 (
1− k2))

, (25a)

where

b =
(M

0

1)2

g
−
(

1 +
t

g

)
M

0

1 + t (1− k2
), (25b)

c = 1 +
k

2
t−M0

1

g
. (25c)

The roots Ω
2

of the dispersion relation detA = 0 are the numbers Ω
2

=

(Ω
2
)1 and Ω

2
= (Ω

2
)2 defined by

(Ω
2
)1 =

k
2 (

1− k2)2
1 + k

2 , (26a)

(Ω
2
)2 =

b k
2 (

1− k2)
c

. (26b)
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Figure 9: Linear stability analysis of m-covered configurations with m = 3 and
ν = .3, based on the ribbon model. (a) Dependence of the most negative squared

angular velocity (Ω
2
)2 on the wavenumber. (b) Graphical determination of the

stability of m-covered ribbons for fixed ν = .3 as a function of the parameter
κn r0 using the ribbon model. Unstable modes corresponds to the thick, hor-
izontal, dark red segments. (b’) Configurations are stable when no unstable
mode exists (light green segment), and unstable otherwise (dark red segments).
See the text for details.

The first root (Ω
2
)1 being always positive, the stability of the ribbon is governed

by the sign of the second root. This sign changes when k = 0, when k = ±1,
when b = 0, or when c = 0: these four equations yield the four possible types
of boundaries surrounding the regions of stability in figures 9b and 10.

The quantity (Ω
2
)2 is a function of k, b and c. On using equations (25), b and

c can be expressed in terms of M
0

1, g and t. Using table 2 and equation (17a),

we can finally express (Ω
2
)2 as a function of k, ν and (κn r0); there are three

such expressions, one for each mechanical model.

In figure 9a, we plot (Ω
2
)2 predicted by the ribbon model for ν = .3 and for

κn r0 = 0 (naturally straight ribbon, overcurved configuration, M
0

1 > 0), κn r0 =

1 (natural configuration, M
0

1 = 0), and κn r0 = 2 (undercurved configuration,

M
0

1 < 0). Stable modes corresponding to (Ω
2
)2 > 0 are shown in light green,

and unstable modes corresponding (Ω
2
)2 < 0 are shown in dark red. For a given

value of the covering index m (in this case, m = 3) the values of k satisfying
the quantification condition (22) are shown as horizontal lines. The modes

corresponding to k = 0 and k = ±1 (i.e. n = 0 and n = ±m) make both (Ω
2
)1

and (Ω
2
)2 vanish: these are rigid-body modes, which we represent by thick black
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lines. All other modes are non-rigid, and are shown using a thin brown line.
Vibration modes are denoted by small disks: stable modes correspond to the
intersection of a horizontal brown line with the green portion of a curve, and
unstable vibration modes to an intersection with the red portion of a curve.

The influence of the parameter κn r0 on the stability is grasped by the alter-
native presentation of the same data proposed in figure 9b. For a fixed value of
ν and a specific mechanical model (in this case, ν = .3 with the ribbon model),

the region where (Ω
2
)2 < 0 is shaded in the plane (κn r0, k). The represen-

tative values κn r0 = 0, 1, 2 used earlier now correspond to the vertical dotted
lines. Unstable modes lie at the intersection of horizontal brown lines represent-

ing the quantization condition for k with the shaded regions where (Ω
2
)2 < 0.

The m-covered ribbon is stable for a given value of κn r0 if, and only if, no
unstable mode exists: this test is carried out graphically by projecting verti-
cally the red segments onto the (κn r0)-axis in figure 9b’. For this particular set
of parameters, the m-covered ribbon appears to be stable in a single interval,
−.17 < κn r0 < +1.74 (m = 3, ν = .3, ribbon model). This solves the linear
stability problem of the m-covered ribbon, with ν = .3 and m = 3. The same
analysis is repeated in figure 10 for different values of m, and for the rod models
as well. Note that we recover the results of [15] when we use the rod models,
and the results of [6] in the particular case of a rod making a single loop, m = 1;
the results concerning the stability of the ribbon model are novel.

We make a few comments on these results. First, we check our analysis by
confirming that the natural configuration is always stable: the stability regions
in figure 10a’–c’ all contain the point κn r0 = 1, corresponding to a zero prestress

M
0

1 = 0.
Secondly, we observe that the ribbon model is, generally speaking, less stable

than the flat rod model. This difference is particularly marked for the simple
loop configuration (m = 1), which is stable for κn r0 < 2.50 with the ribbon
model, and up to κn r0 < 5.62 with the flat rod model. This large difference
in the upper bounds for κn r0 can be traced back to the presence of a vertical
asymptote to the curve, b = 0, bounding the stability region for the ribbon
model (shown as the vertical thick dashed line in figure 10a); by contrast, no
such asymptote exists for the flat rod model and the upper part of the curve,
b = 0, is much flatter in figure 10b than in 10a. Starting from equation (25b),
it is easy to show that the vertical asymptote is where the tangent twisting
modulus cancels, trib = 0, and corresponds to κn r0 = 1/ν. Therefore, the
change of the sign of the tangent twisting modulus trib is responsible for the less
stable behavior of the ribbon model as compared to the rod models—a similar
conclusion as for the earlier unfolding semicircle in §5.1.

Thirdly, we observe that the isotropic rod model is less stable than the flat
rod model. Recall that the difference between these models is that the flat rod
is subjected to the kinematical constraint ω2 = 0, as captured by the statement
gflat = 0. Unsurprisingly, the flat rod model has more flexibility to explore
unstable modes, is also more stable. As a particular case, we recover known
results [15] concerning the stability of naturally straight isotropic rods, see the
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Figure 10: Linear stability analysis of multiloop configurations, as predicted by
the different mechanical models, for ν = .3 and for various covering indices m.
We recover the results of [15] for the rod models as particular cases.
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dotted line κn r0 = 0 in figure 10b–b’: for ν = .3, m-covered configurations of
a naturally straight isotropic rod are found to be unstable for all values of m,
except for m = 1.

Finally, we found more boundaries to the stability domains in figure 10c for
the isotropic rod model, which has a finite second bending modulus giso < ∞,
than in figure 10a–b for the flat rod and ribbon models for which gflat = grib =
∞. This can be explained as follows. The equations b = 0 and c = 0 defining
the boundaries are polynomial equations for κn r0 and k when the expressions

of M
0

1 = 1− κn r0 and of t and g from table 2 are inserted into equations (25b–
25c). Their order is decreased when g is infinite. The equation b = 0 is a
quadratic equation for κn r0 when g is finite but a linear equation for g = ∞,
and the equation c = 0 is a linear equation for κn r0 if g is finite and has
no root if g is infinite (it does not depend on κn r0 then). Correspondingly,
figures 10a–b (ribbon and flat rod models) have a single b = 0 branch and no
c = 0 branch, and figure 10c has two b = 0 branches and another c = 0 branch
(as in reference [15]).

Along the boundaries b = 0 and c = 0 marginally stable modes exist, which
correspond to a loss of stability of the planar, m-covered configuration. There,

the determinant detA(M
1

0, g, t; k,Ω
2

= 0) nullifies and the marginally stable
modes can be found by calculating the null vectors ŷ of A. As noted earlier,
these modes are rigid-body modes for k = 0 (translation along the axis ez, and
rigid rotation about the axis ez) and k = ±1 (translations along the directions
ex and ey, and rigid rotations about these directions); for b = 0, the marginally
stable modes are out-of-plane modes4, similar to that studied earlier in §5.3;
finally, the boundary c = 0, which is only encountered with the isotropic rod
model (giso <∞), corresponds to a marginal mode involving locally a pure-twist
deformation about the tangent5.

Returning to the ribbon model, we note that an analytical expression of the
stability boundaries can be obtained. Rewriting the equation b = 0 in terms of
the parameter κn r0 and using the quantification condition (22) for k, we express
the roots of b = 0 as κn r0 = Km,n

rib , where

Km,n
rib =

1

ν

1− 1− ν

2 ν
((

n
m

)2 − 1
)

+ 1

 (ribbon model). (27)

All stability boundaries shown in figure 10a’ correspond to particular values of
Km,n

rib listed table 3; in fact, the values Km,m±1
rib shown in boldface in the table

are the critical values of the parameter κn r0 found earlier in figure 10a’. We
conclude that, according to the ribbon model, the m-covered ribbon is linearly

4We just found that the stability boundaries for the ribbon model are either rigid-body
modes, or out-of-plane modes (b = 0) but never in-plane modes (c = 0 has no root for g =∞).
This confirms the assumption made earlier in §5.3 that the stability of the ribbon model can
be analyzed assuming that the perturbations associated with in-plane modes are zero.

5We have ignored the rotational inertia in equation (16c) for the balance of angular mo-
mentum and, as a result, pure twist modes are associated with zero inertia and an infinite

frequency: this is why c = 0 makes (Ω
2
)2 infinite in equation (26a).
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Table 3: Upper and lower stability bounds for m-covered configurations based
on the linear stability analysis of the ribbon model for ν = .3, as predicted by
equation (27). Values of Km,n

rib =‘1.’ in italics correspond to rigid-body modes
(n = m) and should be ignored. Values in boldface (n = m± 1) correspond to
critical values of κn r0 where stability is lost. Other values correspond to higher-
order modes appearing when the base circular solution is already unstable.
Km,n

rib n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
m = 1 1. 2.50 2.93 3.10 3.18 3.23 3.26
m = 3 -1.67 -0.17 1. 1.74 2.20 2.50 2.70
m = 5 -2.17 -1.37 -0.45 0.36 1. 1.49 1.85
m = 7 -2.33 -1.86 -1.24 -0.58 0.03 0.56 1.

stable for κn r0 < K1,1
rib = 2.5 for m = 1, and for Km,m−1

rib < κn r0 < Km,m+1
rib for

m ≥ 3. Similar expressions for the stability boundaries of the rod models have
been obtained in reference [15].

In summary, we have analyzed the linear stability of m-covered configura-
tions of an elastic strip, ignoring self-penetration. The ribbon model yields
results that are qualitatively similar to those of the flat rod model. Quantita-
tively, however, the buckling threshold in the undercurved case (i.e. for large
positive values of κn r0) are substantially lower with the ribbon model than with
the flat rod model, especially for m = 1: this difference can be attributed mainly
to the change of sign of the tangent twisting modulus, trib, at κn r0 = 1/ν (thick
dashed line in figure 10). All instabilities of the ribbon involve an out-of-plane
mode.

6.3 Numerical post-bifurcated solutions

To validate and complement this stability analysis, we solved numerically the
post-bifurcation equilibrium solutions for a closed elastic ribbon. To do this, we
solved equations (1–4) together with the constitutive law for an elastic ribbon in
equation (9) and with periodic boundary conditions. We used AUTO-07p [4], a
library which implements the arc-length continuation method [14]. We started
from an m-covered planar configuration, detected bifurcations along this funda-
mental branch, and followed the various bifurcated solution branches emanating
from it. The branches are plotted in a plane whose coordinates are the dimen-
sionless natural curvature κn L

2π and the conjugate quantity κ∗ = − ∂E
∂κn

: our
diagram is distinguished in the sense of [13]. In dimensionless form, and after
using the definition of the ribbon energy in equation (7), κ∗ is given by

κ∗ = − 1

2π B

∂E
∂κn

=
1

2π

∫ L

0

ω1

(
1 + ν

(
ω3

ω1

)2
)

dS. (28)

For planar configurations, note that ω3 = 0 and thus that κ∗ = m.
A typical branch is represented in figure 11; this is the branch starting off

from the simple loop (m = 1), and extending the mode of instability n = 2
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Figure 11: A branch of post-bifurcated equilibrium solutions connecting the
simple loop (m = 1) to the 3-covered loop (m = 3), as simulated by numerical
continuation of the ribbon model with ν = .3. The continuation parameter is
the dimensionless natural curvature κn (horizontal axis); the quantity on the
vertical axis is the conjugate quantity κ∗.

occurring for κn r0 = K1,2
rib , i.e. κn

L
2π = K1,2

rib = 2.5. Above the buckling thresh-

old, the dimensionless natural curvature κn L
2π first increases, which is typical of

a supercritical pitchfork bifurcation. It reaches a maximum value 4.08 at a fold
point, and then decreases. Eventually, this branch connects to the triply-covered
circular configuration (m = 3); the value of the control parameter where this
connection occurs is κn L

2π = κn (mr0) = mKm,m−1
rib = 3K3,2

rib = −.5. Therefore,
the connections of the two endpoints of this branch with the planar, m-covered
configurations are fully consistent with the linear stability analysis of §6.2. Also,
we note that the sequence of equilibria shown alongside the branch closely re-
semble the folding sequence shown in figure 2a.

For rods, there exists a similar branch of non-linear solutions n = 2 connect-
ing the simple loop (m = 1) to the triply-covered loop (m = 3), but no fold point
exists along this branch, see figure 2 in [15]: it is not surprising that the ribbon
model, for which the constitutive laws are non-linear, gives rise to new bifur-
cations (here, a new fold point). As a result, the bifurcation (m,n) = (1, 2) a
supercritical (continuous) pitchfork bifurcation for rods, while it is a subcritical
(discontinuous) pitchfork bifurcation for the ribbon model.

Repeating this continuation procedure for all the other branches emanating
from the m-covered configurations, we constructed the diagram shown in fig-
ure 12. The branch studied in figure 11 appears there, along with many other
branches. The stability of the non-planar branches has been established as fol-
lows: we first identified the bifurcations from the layout of the branches (such
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Figure 12: (a) Sketch of the branches of non-linear equilibria of a closed elastic
ribbon, for ν = .3. The horizontal axis is the dimensionless natural curvature.
The stacked horizontal lines represent the m-covered planar configurations, with
m increasing from bottom to top. The curves represent the non-planar equilib-
rium branches connecting planar m-covered configurations. These curves were
first plotted in the same set of conjugate coordinates as in figure 11, and they
disentangled by hand to aid visualization, in such a way that their projection
onto the horizontal axis is unaffected; as a result, the vertical axis loosely rep-
resents the parameter κ∗. Dots denote connections of non-planar branches with
planar (m-covered) configurations, as calculated by the linear stability analysis
of §6.2. The stability of the planar solutions has been concluded based on the
analysis of §6.2. The stability on non-planar solutions has been guessed based
on the generic scenario of stability exchange at subcritical or subcritical pitch-
fork bifurcations and at fold points. (b) Domains of existence of stable planar
(green) and stable non-planar (dark green) m-covered ribbons.
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as a supercritical pitchfork bifurcation for m = 1 and κn L
2π = 2.5, a subcritical

pitchfork bifurcation for m = 3 and κn L
2π = −.5, and fold point along the n = 2

branch at κn L
2π = 4.08), and assumed that the generic stability scenario associ-

ated with each of these bifurcations is applicable (i.e. the bifurcated branches
are stable past a supercritical pitchfork bifurcation, and unstable past a sub-
critical pitchfork bifurcation; an unstable mode appears across a fold point).
The stable branches inferred in this way are summarized in part b of the figure.
These stability results would need to be confirmed by a more thorough analysis,
such as that done in [13] for the rod model.

A comparison with the bifurcation diagram for the anisotropic rod model,
shown in figure 2 of [15], reveals some similarities concerning the general layout
of the branches. There are two major differences, however. First, the evolution
of the dimensionless curvature κn along the branches is different: on almost
all branches the natural curvature varies monotonously for the anisotropic rod
model [15], while along many branches of the ribbon model, the natural cur-
vature first increases, passes through a maximum (fold points, orange stars in
the diagram) and then decreases, see figure 12 above. Second, the bifurcations
(and the equilibrium branches) for overcurved ribbons cluster near accumulation
point, as happens for instance near

(
κn L
2π ,m

)
= (1, 3.33) and

(
κn L
2π ,m

)
= (3, 10.)

in figure 12. This is consistent with the fact that the critical value mKm,n
rib of

the quantity κn L
2π converges to m

ν for n → ∞ by equation (27). This value is
precisely where the tangent twisting modulus cancels; when this happens, all
wavenumbers become unstable, hence the accumulation of bifurcations. By con-
trast, the critical values and the branch of the rod models are evenly spaced [15].

To sum up, we have obtained a complete bifurcation diagram showing the
non-linear equilibria of a closed ribbon. As for anisotropic rod models, branches
corresponding to non-planar equilibria of a ribbon connect planar solutions of
different covering indices m through bifurcations that are well predicted by the
linear stability analysis of §6.2. However, both the critical values of the natural
curvature for the onset of buckling from the planar configuration, and the as-
pect of the post-buckled branches differ significantly with the ribbon model, as
compared to the rod model: the branches of the (more non-linear) ribbon model
tend to cluster and they often include fold points where the natural curvature
passes through a maximum.

6.4 Comparison to experiments

In the experiments of §2, the single loop (m = 1) has been found to be stable for
κn r0 < 3.5; see table 1. This value is above the threshold K1,2

ribb = 2.5 predicted
by the linear stability analysis of the ribbon model for ν = .3, which is not
surprising in view of the existence of a stable, non-planar branch past this bi-
furcation (dark green branch bifurcating from (m,n) = (1, 2) in figure 12). The
experimental threshold κn r0 = 3.5 is reasonably close to the fold point termi-
nating the stable part of the post-buckled branch at κn r0 = 4.08. By contrast,
the flat rod model predicts a much higher stability limit, namely κn r0 = 5.62
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(see figure 10b’).
Comparison of the experimental stability limits for m ≥ 3 is more difficult

because of the presence of self-contact and friction, both of which were ignored
in the analysis. The experimental lower bounds are κn r0 = .28 (m = 3) and
κn r0 = .42 (m = 5), see table 1. This is consistent with the values K3,2

rib = −.17

(m = 3) and K5,4
rib = .36 (m = 5) found in the linear stability analysis for

ν = .3, see table 3. Note that the bifurcation diagram predicts that a subcritical
pitchfork bifurcation there, so these values are indeed the stability limits.

7 Conclusion

We presented experiments using metallic strips that had acquired residual cur-
vature after being deformed plastically. These strips were formed into a loop
shape, and then folded into multiply covered loops with a covering index equal
to m = 1 (single loop), m = 3 and m = 5. Buckling instabilities were observed,
both when the ratio of the natural curvature to the curvature of the loop is
small (overcurved case) and when it is large (undercurved case).

Motivated by these experiments, we carried out stability analyses for elastic
ribbons. We addressed the linear stability problem near m-covered circular
configurations, and computed non-linear equilibrium branches numerically. We
used the mathematical formulation of Dias and Audoly [3], who treat an elastic
ribbon as a kinematically constrained rod governed by non-linear constitutive
laws. This formulation allowed us to analyze the ribbon and rod models in a
unified language, and to easily adapt stability analyses routinely performed for
elastic rods to ribbons. By a detailed comparison of the models, we highlighted
a number of differences in their stability properties.

Many of these differences were interpreted, based on a simple feature of nat-
urally curved ribbons, which has not been reported so far: the tangent twisting
modulus can become negative when a ribbon is undercurved. This change of
sign induces buckling instabilities whose existence has been confirmed by finite
element simulations of an elastic shell having a small height-to-radius ratio.

As a final remark, we would like to emphasize that these buckling insta-
bilities are different from the classical lateral torsional buckling instabilities of
anisotropic beams: the latter can be observed for linearly elastic rods, and they
make use of twisting to transfer a bending moment initially applied in the stiffer
direction (i.e. involving the larger principal bending modulus) onto the weaker
direction (i.e. involving the smaller principal bending modulus); by contrast, the
buckling instabilities for ribbons which we described in this paper require the
twisting modulus to be non-constant, and have been demonstrated in geometries
where the initial bending moment is along the weaker direction.
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band”. Journal of Elasticity pp. 1–12 (2014)
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