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COMBINATORIAL THEORY OF PERMUTATION-INVARIANT

RANDOM MATRICES I:

PARTITIONS, GEOMETRY AND RENORMALIZATION.

by

Franck Gabriel

E-mail: franck.gabriel@normalesup.org

Abstract. — In this article, we define and study a new geometry and a new order on
the set of partitions of an even number of objects. One of the definitions involves the
partition algebra, a structure of algebra on the set of such partitions depending on an
integer parameter N . Then we emulate the theory of random matrices in a combinatorial
framework: for any parameter N , we introduce a family of linear forms on the partition
algebras which allows us to define a notion of weak convergence similar to the convergence
in moments in random matrices theory.

A renormalization of the partition algebras allows us to consider the weak convergence
as a simple convergence in a fixed space. This leads us to the definition of a deformed
partition algebra for any integer parameter N and to the definition of two transforms: the
cumulants transform and the exclusive moments transform. Using an improved triangle
inequality for the distance defined on partitions, we prove that the deformed partition
algebras, endowed with a deformation of the linear forms converge as N go to infinity.
This result allows us to prove combinatorial properties about geodesics and a convergence
theorem for semi-groups of functions on partitions.

At the end we study a sub-algebra of functions on infinite partitions with finite support:
a new addition operation and a notion of R-transform are defined. We introduce the set of
multiplicative functions which becomes a Lie group for the new addition and multiplication
operations. For each of them, the Lie algebra is studied.

The appropriate tools are developed in order to understand the algebraic fluctuations
of the moments and cumulants for converging sequences. This allows us to extend all the
results we got for the zero order of fluctuations to any order.
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1. Introduction

This article is the first of a self-contained set of three articles [8], [9] and [10] on
a combinatorial method in random matrices theory based on a geometry on partitions
and a new point of view on usual/free cumulants based on dualities between groups and
sub-algebras of partitions. This general method allows us to work with random matrices
which are invariant by conjugation by the symmetric group instead of the unitary or
orthogonal group, besides, no more assumption about the factorization of moments is
needed. The first article is about the combinatorial framework based on the partition
algebra. In the second article we will apply this framework to random matrices, and the
third one will put the emphasis on the random walks on the symmetric group and the
link with the S∞-Yang-Mills measure.

This set of articles has to be considered as the continuation of what could be called
the Gauge Theory School in random matrices. The article of F. Xu [18] is one of the
pioneer work about this point of view on random matrices. Later, this point of view was
developed by A. Sengupta [17], then highly improved by T. Lévy [12], [13], then it was
used by two students of T. Lévy: A. Dahlqvist in [7] and G. Cébron [5], [4].

We wrote these articles as a lesson for graduate students with the intention that no
special requirement is needed to understand them. The reader will find a new presenta-
tion and introduction to the random matrices theory. To achieve this, we only used the
Gauge Theory School’s papers, the seminal article for partition algebras [11], and the
book [16] which, in some sense, we tried partially to generalize. Another point of view
on random matrices which are invariant by conjugation by the symmetric group was
given first by C. Male in his paper on traffics [14]. Yet, the goal was to develop the ideas
of the Gauge Theory School and thus we did not use this article. In the forthcoming
article [6], the author and his coauthor build connections between the notions developed
here and the notions developped in [14]. In some sense, these articles can be seen also a
bridge to go from the book [16] to the traffic interpretation of [14], traffics which have
shown their importance in the study of random graphs [15]. At the moment the author
was finishing these articles, he was informed of M. Capitaine and M. Casalis’s work, [3],
on their Schur-Weyl’s interpretation of non-commutative free cumulants for unitary and
orthogonal invariant random matrices.

The point of view developed in the three articles [8], [9] and [10] allows us to recover
in a very simple way some famous theorems. The reader will also find in these articles a
simple tool box in order to prove convergences of random matrices (for example random
walks on the symmetric group). He will also find the tools in order to understand the
algebraic fluctuations of moments of random matrices. Besides, this point of view allows
us to define a general notion of freeness for matrices which are invariant by conjugation
by the symmetric group and we construct the first non-commutative multiplicative Lévy
processes for this notion of freeness. We will formulate two equivalent definitions of
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this freeness: one based on cumulants, and the other on moments. This freeness notion
is linked with a new R-transform which generalizes the old known R-transform. A
Kreweras complement is defined for partitions: this generalizes the notion already set
for permutations. Amongst others, we will state a matricial Wick’s theorem, which
allows us to recover the Wick law for Gaussian Hermitian or symmetric matrices. We
will also recover theorems about convergence of Hermitian Lévy processes proved in [2],
[1] and unitary Lévy processes proved in [4]: we extend them to the symmetric and the
orthogonal case. A new central limit theorem will be stated, which generalizes the non-
commutative and the commutative central limit theorem. In the article [9], convergences
of random walks on the symmetric group will be proved, and will be used in order to
show that the Wilson loops of the SN -Yang-Mills measure converge in probability when
N goes to infinity. This will imply a result about some convergence of ramified coverings
on the disk. We will also see how to inject the usual theory of probabilities in this
framework. This last assertion shows that one could, in this framework, study the
probabilistic fluctuations.

1.1. Renormalization and a physical point of view. — In this article, we emulate
the theory of random matrices in a combinatorial framework. Given a partition p of a
number of points, and an integer N , we consider (p,N) as a physical system involving
N particles. When the number of points is even, by polarizing the points in two sets, we
can consider (p,N) as a discrete time transformation operation. A partition p can be
seen as an elementary evolution of a system of size N : we can define the composition of
two partitions. Later in the paper, we consider these discrete-time transformations also
as the Hamiltonian of continuous time transformations.

An evolution of a system of size N is a linear combination of elementary evolutions
of size N . Thus, every transformation is uniquely characterized by a size N and by a
finite number of coefficients which, as we will see in the article, are bare quantities. Two
questions arise: how to describe a system of infinite size and how to renormalize the
bare quantities. As one does for perturbative renormalization, the important idea is to
consider observables: we define some observables, one for each partition. In Theorem 4.1,
we show how the bare coefficient must be renormalized in order to have finite observables
at the limit N = ∞.

Then, we show that, by using the same renormalization, the composition of two
evolutions converge also: this is proved in Theorems 6.1 and 7.1. In Theorem 7.2, we
consider continuous-time evolution transformations: we show that if the Hamiltonian is
renormalized as we did for discrete time transformations, then the evolution converges.
In Theorem 10.2, we characterize the Hamiltonian so that the factorization property of
large N holds.

We study also the development in power of 1/N of systems of size N which converge
to a continuous system.

The main novelty is to show that, even if one knows how to renormalize the bare
constants, it does not seem interesting to define a vector space of infinite systems since
all systems considered are defined in the same vector space whose basis is the set of
partitions of 2k elements. In order to have an interesting space of infinite systems, one
has to consider a renormalization of the algebras in which are defined the N -dimensional
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systems: the limit defines a non-trivial algebra in which one can study continuous evo-
lutions of continuous systems.

Let us remark that a consequence of our results is that, in our toy-model, given a con-
tinuous system, one has canonically a sequence of approximations by systems involving
N particles.

1.2. Layout of the article. — Using the set Pk of partitions of 2k elements as basis,
one can define an algebra known as the partition algebra which definition depends on a
parameter N ∈ N: the partition algebra C[Pk(N)]. For a comprehensive study of this
algebra, we recommend the article [11]. The main definitions are set in Section 2.

In Section 3, we define a geometry on the set of partitions of 2k elements which
generalizes a well-known geometry on the symmetric group Sk. This geometry is defined
by constructing a kind of Caley graph for Pk. This geometry allows to define a new
order on Pk for which we construct the Hasse diagram and we compute the Möbius
function. Using this new geometry, in Section 4 we define two notions of convergence
of sequences which are shown to be equivalent. We define the notion of coordinate
numbers, normalized moments, exclusive coordinate numbers and exclusive normalized
moments. One of the results that we prove is that exclusive coordinate numbers and
exclusive normalized moments are equal. In Section 5, a new deformed partition algebra
is defined: C[Pk(N,N)]. These algebras are shown to converge to a new algebra: this
is obtained by an improvement of the triangle inequality proved in Section 6 for the
distance defined on the set of partitions of 2k elements. Let us remark that we define in
the same section a Kreweras complement for partitions which generalizes the notion for
permutations. We use these results in Section 7 in order to show that the multiplication
is continuous for the notion of convergence of elements of

∏

N∈NC[Pk(N)]. We also study
the convergence of semi-groups in

∏

N∈NC[Pk(N)]. In Section 8, using the convergence
of sequences defined in Section 4, we show how one can prove combinatorial results, for
example, a new proof of the improved triangle inequality is given.

In Section 9, we develop the notion of algebraic fluctuations, and extend the results
already proved for the zero order of fluctuations to any order.

In Section 10, we construct an algebra E[P] which elements are functions on ∪k∈NPk.
This algebra can be endowed with two special laws: ⊞ and ⊠. We study two subgroups
of E[P] associated with the operations ⊞ and ⊠, the group of multiplicative invertible
elements. These groups are Lie groups, the Lie algebras of these groups are studied. We
also define the RA-transform, which generalizes the usual R-transform and we define
two others transformations linked with the notion of exclusive moments. To finish the
article, we extend these definitions to the setting of higher order fluctuations.

1.3. Acknowledgements. — This work has been realized during my PhD at the
LPMA which offered me the necessary liberty to complete this article. Many thanks
to the researchers and administrative staff of the LPMA. I am grateful to my PhD
advisor Thierry Lévy for supporting this research, for his helpful comments and correc-
tions which led to improvements in this manuscript and for the useful discussions about
mathematics and other subjects. I would like to express my special gratitude to Terence
Tao, particularly for his blog which, during a period of doubts, made me enjoy maths
again. This project began when I wanted to understand the link between the work of T.
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Lévy and the formulation given at the Pims summer school by David Brydges of Wick’s
theorem, I am really thankful to him for this. Also many thanks are due to Antoine
Dahlqvist who explained me the duality between permutations and partitions. I would
like to thank Tom Halverson and Arun Ram for answering my questions about parti-
tions. I am also grateful to Guillaume Cébron since I learned a lot thanks to his papers.
Thanks to Patrick Gabriel for his interest in my work and the discussions related to this
work that we had together, Marie-Françoise Gabriel and Catherine Lam for trying to
correct the English in this manuscript. At last, a thought to all the people which are
supporting researchers and whose names never appear in the acknowledgements.

2. Partition algebra

2.1. First definitions. — Let k andN be two positive integers. We will consider three
different algebras C [Sk] ,C [Bk(N)] ,C [Pk(N)]: respectively the symmetric algebra, the
Brauer algebra, and the partition algebra. These algebras satisfy the inclusions:

C [Sk] ⊂ C [Bk(N)] ⊂ C [Pk(N)] .

Thus, we will first construct C [Pk(N)] and we will see the two others algebras as
sub-algebras of C [Pk(N)]. The reference article for the partition algebra is the article
[11] of T.Halverson and A.Ram.

Let us consider 2k elements which we denote by: 1, . . . , k and 1′, . . . , k′. We define Pk

as the set of set partitions of {1, . . . , k} ∪ {1′, . . . , k′}. If k = 0, we consider Pk = {∅}.
Let p be an element of Pk. We will denote by p1, . . . , pr the blocks in p. The number of
connected components nc(p), the propagating number pn(p) and the length l(p) of p are
defined respectively by:

nc(p) = r,

pn(p) = #
{

i, pi contains both an element of {1, . . . , k} and one of {1′, . . . , k′}
}

,

l(p) = k.

Any partition p ∈ Pk can be represented by a graph. For this we consider two rows:
k vertices are in the top row, labeled by 1 to k from left to right and k vertices are
in the bottom row, labeled from 1′ to k′ from left to right. Any edge between two
vertices means that the labels of the two vertices are in the same block of the partition
p. Examples are given in Figure 1 and 2.

Figure 1. Partition p1 =
{

{1′, 1}{2′}{2, 3′, 5′}{3, 4, 4′}{5}
}

.

The notion of tensor product of partitions will be also very useful.

Definition 2.1. — Let k and l be two positive integers. Let p be an element of Pk and
let p′ be an element of Pl. Let us consider two diagrams: one associated with p, another
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Figure 2. Partition p2 =
{

{1′, 2′}{1, 2, 3′, 5}{3}{4′, 4}{5′}
}

.

with p′. Let p ⊗ p′ be the partition in Pk+l associated with the diagram where one has
put the diagram associated with p on the left of the diagram associated with p′.

Figure 3. Partition p1 ⊗ p2.

Let p1 and p2 be two elements of Pk. We say that p1 is coarser than p2 if any two
elements which are in the same block of p2 are also in the same block of p1. This order
is directed: for any partitions p1 and p2 in Pk there exists a third partition p3 which is
coarser than p1 and p2. For example, one can consider the partition p1 ∨ p2 defined as
follows.

Definition 2.2. — We define p1 ∨ p2 as the partition in Pk such that for any i, j ∈
{1, . . . , k}∪{1′, . . . , k′}, i and j are in the same block of p1∨p2 if and only if there exists
i = x0, x1, . . . , xl = j such that for any n ∈ {0, . . . , l − 1}, xn ∈ {1, . . . , k} ∪ {1′, . . . , k′}
and the two elements xn and xn+1 are in the same block of either p1 or p2.

It is always interesting to have a graphical representation for the operations defined
on partitions. One can recover a diagram representing p1 ∨ p2 by putting a diagram
representing p2 over one representing p1.

Figure 4. Two diagrams which represent p1 ∨ p2 = {{1, 1′, 2, 2′, 3′, 5, 5′}, {3, 4, 4′}}.

We will need also later of the infimum of p and p′

Definition 2.3. — Let p1 and p2 be two elements of Pk. We define p1 ∧ p2 as the
partition in Pk such that for any i, j ∈ {1, ..., k} ∪ {1′, ..., k′}, i and j are in the same
block of p1 ∧ p2 if and only if they are in the same block of p1 and in the same block of
p2.

Let us play a little with the graphical representation of p1 and p2 in order to define
other natural operations on the set of partitions.
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We will use later the transposition of a partition: it is the partition obtained by
permuting the role of {1, . . . , k} and {1′, . . . , k′}. For example if k = 3, let p =
{

{1, 1′, 3′}, {2, 3}, {2′}
}

, then tp =
{

{1′, 1, 3}, {2′ , 3′}, {2}
}

. For every diagram asso-
ciated with p, the diagram obtained by flipping it according to a horizontal axis is a
diagram associated with tp. One can find an example in Figure 5

Figure 5. Partition tp2

An other thing we can do is to put one diagram representing p2 above one diagram
representing p1. Let us identify the lower vertices of p2 with the upper vertices of p1.
We obtain a graph with vertices on three levels, then erase the vertices in the middle
row, keeping the edges obtained by concatenation of edges passing through the deleted
vertices. Any connected component entirely included in the middle row is then removed.
Let us denote by κ(p1, p2) the number of such connected components. We obtain an
other diagram associated with a partition denoted by p1 ◦ p2. For any elements p1 and
p2 of Pk, the partition p1 ◦ p2 does not depend on the choice of diagrams representing
the partitions p1 and p2.

p

p

1

2

p
1
p
2

o

Figure 6. Partition p1 ◦ p2.

The set of Brauer elements and the set of permutations will be stable by this operation
of concatenation.

Definition 2.4. — The set of Brauer elements Bk is the set of pair partitions in Pk.
The set of permutation Sk is the set of pair partitions in Pk whose propagating number
is equal to k.

For any p1 and p2 in Bk (resp. Sk), p1 ◦ p2 ∈ Bk (resp. Sk). Let us define the three
algebras C [Sk] ,C [Bk(N)] and C [Pk(N)].

Definition 2.5. — The partition algebra C [Pk(N)] is the associative algebra over C

with basis Pk endowed with the multiplication defined by:

∀p1, p2 ∈ Pk, p1p2 = Nκ(p1,p2)(p1 ◦ p2).

The Brauer algebra C [Bk(N)] (resp. symmetric algebra C [Sk]) is the sub-algebra of
C [Pk(N)] generated by the elements of Bk (resp. the elements of Sk).
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=  N

Figure 7. Example of a product which involves the counting of loops.

Notation 2.1. — In all the paper, Ak will stand either for Pk or Bk or Sk. Thus for
any N ∈ N, C[Ak(N)] will stand for C[Pk(N)], C[Bk(N)] or C[Sk(N)].

Let us remark that actually, the algebra C[Sk(N)] does not depend on N . We can see
any permutation σ ∈ Sk as a bijection from {1, . . . , k} to itself: for any i ∈ {1, . . . , k}
there exists a unique j ∈ {1′, . . . , k′} such that {i, j′} ∈ σ, we set σ(i) = j. For any
permutations σ1 and σ2, the bijection associated with σ1σ2 is the composition of the two
bijections associated with σ1 and σ2.

We can extend the operations of transposition, tensor product and multiplication on
the partition algebra, by linearity or bi-linearity.

The sub-algebra C[Sk] is not only stable for the ◦ operation. It also satisfies the
following property which can be proved by looking at the propagating number.

Lemma 2.1. — Let p, p′ ∈ Pk, if p ◦ p
′ ∈ Sk then p and p′ are in Sk.

Besides, for any partition σ ∈ Sk and any p ∈ Ak, κ(σ, p) = κ(p, σ) = 0. Let us
remark that, for any integer N , the algebras C[Ak(N)] have the same neutral element,
denoted by idk or id, for the product operation:

idk =
{

{i, i′}, i ∈ {1, . . . , k}
}

,

whose diagram for k = 5 is drawn in Figure 8. A consequence of Lemma 2.1 is that, as
idk ∈ Sk, the only invertible elements of Ak(N), for the multiplication operation, are
the permutations. The inverse of a permutation σ is σ−1 = tσ.

Figure 8. The neutral element id5.

We will later need some special permutations.

Definition 2.6. — Let I ⊂ {1, . . . , k}: I = {i1, . . . , il} with i1 < · · · < il. We define σI
the permutation which sends ij on j for any j ∈ {1, . . . , l} and i /∈ I on l+i−#{n, in < i}.
This is the partition:

σI =
{

{ij , j
′}, j ∈ {1, . . . , l}

}

∪
{

{i, (l + i−#{n, in < i})′}, i /∈ I
}

.
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Definition 2.7. — The transposition (1, 2) is the partition σ{2} in P2 defined by:

(1, 2) =
{

{1, 2′}, {2, 1′}
}

.

The Weyl contraction is the Brauer element in P2 defined by:

[1, 2] =
{

{1, 2}, {1′ , 2′}
}

.

These partitions are drawn in Figure 9.

1 21 2

Figure 9. The transposition (1, 2) and the Weyl contraction [1, 2].

Definition 2.8. — Let i, j be two distinct integers in {1, . . . , k}. The transposition
(i, j) in Sk is:

(i, j) = σ−1
{i,j}

(

(1, 2) ⊗ Idk−2

)

σ{i,j} = {{i′, j}, {i, j′}} ∪ {{l, l′}, l /∈ {i, j}}.

The set of transpositions on k elements is:

Tk =
{

(i, j), i, j ∈ {1, . . . , k}, i 6= j
}

.

The Weyl contraction [i, j] in Bk is:

[i, j] = σ−1
{i,j}

(

[1, 2] ⊗ Idk−2

)

σ{i,j} = {{i, j}, {i′ , j′}} ∪ {{l, l′}, l /∈ {i, j}}.

Due to the remark we made after Lemma 2.1, the product does not depend on which
C[Bk(N)] one considers to define the product. We denote by Wk the set of Weyl con-
tractions in Bk:

Wk =
{

[i, j], i, j ∈ {1, . . . , k}, i 6= j
}

.

A notion linked with the tensor operation, which will be central in the asymptotic
freeness results in the article [9], is the notion of irreducibility of partitions. Let p be in
Pk.

Definition 2.9. — A cycle of p is a block of p ∨ id. The set of cycles of p is denoted
by C(p). The number of cycles of p is denoted by c(p). The partition p is composed if
c(p) > 1. The partition p is irreducible if it is not composed. By convention, the empty
partition is irreducible.

Let us consider the set of irreducible partitions.

Definition 2.10. — We will denote by A
(i)
k the set of irreducible partitions of Ak.

It has to be noted that for any integer k:

S
(i)
k = {σ−1(1, . . . , k)σ, σ ∈ Sk},

where (1, ..., k) ∈ Sk is the k-cycle equal to σ{2,3,...,k}.
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The partition p is composed if and only if there exist p1 and p2 two partitions non equal
to the empty partition, and I a subset of {1, . . . , k} such that #I = l(p1), l(p2) = k−#I
and:

σ−1
I (p1 ⊗ p2)σI = p.

Let us define the decomposition of p into two partitions.

Definition 2.11. — The set of decompositions of p into two partitions is:

F2(p) =
{

(p1, p2, I) , σ
−1
I (p1 ⊗ p2)σI = p

}

.

Let us remark that for any partition, even the irreducible partitions, F2(p) 6= ∅. For
example, if p is irreducible:

F2(p) = {(p, ∅, {1, . . . , k}), (∅, p, ∅)}.

Let also remark that F2(∅) = {(∅, ∅, ∅)}.
We will need a notion of weak irreducibility later: this is based on the notions of

extraction and restriction. For any partition p we have a lot of choice in order to
represent p as a graph: the complete graph which represents p is the graph such that i
and j, two elements of {1, ..., k} ∪ {1′, ..., k′} are linked if and only if i and j are in the
same block of p.

Definition 2.12. — Let J be a subset of {1, . . . , k} ∪ {1′, . . . , k′}. Let us denote by Js

the symmetrization of J :

Js = J ∪ {j ∈ {1′, . . . , k′},∃i ∈ J ∩ {1, . . . , k}, j = i′} ∪ {i ∈ {1, . . . , k}, i′ ∈ J}.

We define:

– The extraction of p to J , denoted pJ . Let us take the complete graph which repre-
sents p, let us erase all the vertices which are not in Js and all the edges which are
not between two vertices in Js and at last let us label the remaining vertices from
left to right. This is the graph of pJ .

– The restriction of p to J , denoted p|J . Let us take the complete graph which repre-
sents p, let us erase all the edges which are not between two vertices in J and let
us connect each i /∈ Js with i′. This is the graph of p|J .

By convention, if Js = {1, . . . , k} ∪ {1′, . . . , k′}, then pJ = ∅ and p|J = id.

Definition 2.13. — The support of p is:

S(p) = {1, . . . , k} \ {i ∈ {1, . . . , k}, {i, i′} ∈ p}.

The partition p is weakly irreducible if pS(p) is irreducible. In particular the permutation
idk is weakly irreducible.

2.2. Partitions and representation. — In this section, we define a natural action
of the partition algebra (and by restriction of the Brauer and of the symmetric algebra)

on
(

C
N
)⊗k

. This action will be useful in order to translate combinatorial properties into
linear algebraic properties.

Let N and k be two positive integers.
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Definition 2.14. — For any p ∈ Pk and any k-uples (i1, . . . , ik) and (i1′ , . . . , ik′) of
elements of {1, . . . , N}, we set:

pi1,...,iki1′ ,...,ik′
=







1, if for any two elements r and s ∈ {1, . . . , k} ∪ {1′, . . . , k′} which
are in the same block of p, one has ir = is,

0, otherwise.

We can now define the action of the partition algebra C[Pk(N)] on
(

C
N
)⊗k

. Let

(e1, . . . , eN ) be the canonical basis of CN .

Definition 2.15. — The action of the partition algebra C[Pk(N)] on
(

C
N
)⊗k

is defined

by the fact that for any p ∈ Pk, for any (i1, . . . , ik) ∈ {1, . . . , N}k:

p.(ei1 ⊗ · · · ⊗ eik) =
∑

(i1′ ,...,ik′)∈{1,...,N}k

pi1,...,iki1′ ,...,ik′
ei1′ ⊗ · · · ⊗ eik′ .

This action defines a representation of the partition algebra C[Pk(N)] on
(

C
N
)⊗k

which we denote by ρPk

N :

ρPk

N : C[Pk(N)] 7→ End
(

(

C
N
)⊗k
)

.

Let us define Ej
i be the matrix which sends ej on ei. Let p be a partition in Pk. We can

write the matrix of ρPk

N (p) in the basis (ei1 ⊗ · · · ⊗ eik)(il)kl=1∈{1,...,N}k :

ρPk

N (p) =
∑

(i1,...,ik,i1′ ,...,ik′)/p
i1,...,ik
i
1′

,...,i
k′
=1

Ei1
i1′

⊗ . . .⊗ Eik
ik′
.(1)

For example, if p is the transposition (1, 2), then:

ρP2
N ((1, 2)) =

N
∑

a,b=1

Eb
a ⊗ Ea

b .

We think that this presentation allows us to understand, in an easier way, the represen-

tation ρPk

N . We illustrate in Figure 10, how to find the partition which representation
is given by a sum of the form (1). The partition p1 used in Figure 10 is the partition
drawn in Figure 1.

E
i

i

1

1

E
i

i

3

2

E
i

i

4

3

E
i

i

4

4

E
i

i

51

3

Figure 10.
∑

i1,i2,i3,i4,i5
Ei1

i1
⊗ Ei3

i2
⊗ Ei4

i3
⊗ Ei4

i4
⊗ Ei5

i3
= ρP5

N (p1).

Let us suppose that N ≥ 2k. Using Theorem 3.6 in [11], the application ρPk

N is
injective. Actually, if one considers only its restriction to the symmetric algebra or the
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Brauer algebra, it is enough to ask for N ≥ k. For N = k − 1 this result does not hold,
this is a consequence of the Mandelstam’s identity which asserts that:

∑

σ∈Sk

(−1)ǫ(σ)ρPk

k−1(σ) = 0,

where ǫ(σ) is the signature of σ.

Let us remark that the natural action of C[Pk(N)] on
(

C
N
)⊗k

behaves well under the
operation of product tensor.

Lemma 2.2. — Let k and k′ be two positive integers. Let p ∈ C[Pk] and p′ ∈ C[Pk′ ].
We have for any integer N :

ρ
Pk+k′

N (p⊗ p′) = ρPk

N (p)⊗ ρPk

N (p′).

2.3. The exclusive basis of C[Pk]. — The basis used to define the partition algebra
is quite natural, yet, it is not always very easy to work with. Indeed, if we look at the

representation ρPk

N of a partition, we see that the condition we used to define the delta
function is not exclusive. It means that we did not use the following exclusive delta
function:

(pi1,...,iki1′ ,...,ik′
)ex =







1, if for any two elements r and s ∈ {1, . . . , k} ∪ {1′, . . . , k′},
ir = is if and only if r and s are in the same block of p,

0, otherwise.

By changing in Definition 2.15 the delta function defined in Definition 2.14 by this
new exclusive delta function, we define a new function:

ρ̃Pk

N : C[Pk(N)] → End
(

(

C
N
)⊗k
)

.

Does it exist, for any partition p ∈ Pk an element pc ∈ C[Pk] such that for any integer

N , ρPk

N (pc) = ρ̃Pk

N (p) ? The answer is given by the following definition, as explained by
Equation (2.3) of [11].

Definition 2.16. — We define the family (pc)p∈Pk
as the only family of elements in

C[Pk] defined by the relation:

p =
∑

p′ coarser than p

p′c.

The notion of being coarser defines a partial order on Pk: the relation can be inverted.
The family (pc)p∈Pk

is well defined and it is a basis of the partition algebra C[Pk]. We
will call (pc)p∈Pk

the exclusive partition basis, it satisfies the following proposition.

Proposition 2.1. — For any positive integers k and N , for any partition p ∈ Pk,

ρPk

N (pc) = ρ̃Pk

N (p).
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3. Geometry on the set of partitions

In this section, we define a new geometry on the set of partitions Pk which generalizes
some well-known geometry on the symmetric group. We will see three ways to construct
a distance on Pk: one will allow us to work with linear algebra, another to compute the
distance in a combinatorial way, and the last one will use a graph which we will consider
as the generalized Cayley graph of Pk. We could have worked with partitions of {1, ...,K}
in order to define the geometry, yet, as in the following work we only consider Pk, we
decided to state the definitions and results in this setting. The fact that we consider Pk

comes from the fact that we are interested in random matrices. Yet, most of the results
and definitions would extend easily to the combinatorial setting behind the theory of
random tensors which are invariant in law by the symmetric group.

Depending on the context, we will consider a partition either as an element of Pk

or as an element of End
(

(

C
N
)⊗k
)

via the action defined in Definition 2.15. We re-

mind the reader that (e1, . . . , eN ) is the canonical base of CN . The family {ei1 ⊗ · · · ⊗

eik , (i1, . . . , ik) ∈ {1, . . . , N}k} is a basis of
(

C
N
)⊗k

: let Trk be the trace with respect

to this canonical basis. We do not renormalize it, thus Trk
(

Id
(CN )⊗k

)

= Nk. We can

define the trace of a partition.

Definition 3.1. — Let k and N be two positive integers, let p be a partition in Pk. We
define:

TrN (p) = Trk
(

ρPk

N (p)
)

.

For any integer N , we extend TrN by linearity to C[Pk(N)].

Let us remark that, if one does not want to use the representation ρPk

N , one could have
also define the trace by defining for any partition p ∈ Pk,

TrN (p) = Nnc(p∨id).(2)

3.1. Definition of the geodesic order. — We can now define a distance on Pk.

Proposition 3.1. — Let N be a positive integer, let p and p′ be two elements of Pk.
The number:

d(p, p′) = −logN

(

TrN (tpp′)
√

TrN (tpp)TrN (tp′p′)

)

does not depend on N : it is called the distance between p and p′.

The fact that d(p, p′) does not depend on N is a consequence of Lemma 3.1. Actually
we have not prove yet that it is a distance, even if it is fairly easy to see that it satisfies
the strict positivity property: it is a consequence of the Cauchy-Schwarz’s inequality.

The easiest way to prove that d(p, p′) does not depend on N is to show that it is a
combinatorial object.
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Lemma 3.1. — For any p and p′ in Pk:

d(p, p′) =
1

2

(

nc(p) + nc(p′)
)

− nc(p ∨ p′).

Proof. — This is a consequence of the following equality which holds for any p and p′

in Pk and any positive integer N :

TrN ( tpp′) = Nnc(tp◦p′∨id)+κ(tp,p′) = Nnc(p∨p′),(3)

which is a consequence of Equality (2) and the combinatorial equality:

nc(tp ◦ p′ ∨ id) + κ(tp, p′) = nc(p ∨ p′).

This latter equality can be understood by flipping the diagram of tp over the one of
p′: the flip transposes tp thus we get the two diagrams of p and p′ one over the other.
By definition, the diagram constructed by putting a diagram representing p′ over one
representing p is associated with p ∨ p′.

It remains to show that d satisfies the triangle inequality on the set of partitions Pk.
For that we will show that it is a geodesic distance on a graph.

Definition 3.2. — We define the weighted graph Gk = (Vk,Ek, wk) such that:

– the set of vertices Vk is Pk,
– there exists an edge e in Ek between p and p′ two elements of Pk if and only if:

• one can go from one to the other by gluing two blocks. Let us suppose that
we can go from p to p′. If p is the partition {p1, . . . , pr} then there exist i
and j, distinct, such that p′ = {ps, s ∈ {1, . . . , r} \ {i, j}} ∪ {pi ∪ pj}. The
weight of the edge e is set to 0.5: wk(e) = 0.5.

• one can go from one to the other by permuting two elements of {1, . . . , k} ∪
{1′, . . . , k′} which are in distinct blocks. Let us suppose that we can go from p
to p′ by permuting two elements. In this case, if p is the partition {p1, . . . , pr},
there exist s, t ∈ {1, . . . , k, 1′, . . . , k′} distinct and i, j ∈ {1, . . . , r} distinct,
such that s ∈ pi, t ∈ pj and p′ = {ps, s ∈ {1, . . . , r} \ {i, j}} ∪ {(pi \ {s}) ∪
{t}, (pj \ {t}) ∪ {s}}. The weight of the edge e is set to 1: wk(e) = 1.

Remark 3.1. — The graph Gk plays the role of the Cayley graph of Pk. Actually,
if one considers the subgraph Sk obtained by restraining it to the vertices which are
permutations, one really obtains the Cayley graph of the symmetric group Sk. The
Cayley graph Bk of Bk is defined as the restriction of Gk to the vertices which are in Bk.

We gave this definition so that the reader can understand easily why this graph is a
generalization of the usual Cayley graph. Yet, there is an other graph which will be used
in Proposition 3.2. Let us define G

′
k = (V′

k,E
′
k, w

′
k) such that:

– the set of vertices V′
k is Pk,

– there exists an edge in E
′
k between p and p′ two elements of Pk if and only if one

can go from one to the other by gluing two blocks,
– the weight function w′

k is constant equal to 1/2.

From now on, when we will consider the Caley graph for Pk, we will consider this
graph G

′
k. The graphs Gk and G

′
k are interesting as they allow us to better understand

the distance d.
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Figure 11. The graph G′
2
.

Proposition 3.2. — Let p and p′ be two elements of Pk. Let us define CGk
(p, p′) (resp.

CG′
k
(p, p′)) the set of paths π in Gk (resp. G

′
k) which begin in p and finish in p′. Let us

define the geodesic distance on Gk and on G
′
k between p and p′ by:

dGk
(p, p′) = min

π∈CGk
(p,p′),π=e1...el

w(e1) + · · ·+ w(el),

dG′
k
(p, p′) = min

π∈C
G′
k
(p,p′),π=e1...el

w(e1) + · · ·+ w(el).

We have the equalities:

d(p, p′) = dGk
(p, p′) = dG′

k
(p, p′).

Proof. — Let p and p′ be two elements of Pk. It is enough to prove that dGk
(p, p′) =

dG′
k
(p, p′) and d(p, p′) = dG′

k
(p, p′).

First, let us show that dGk
(p, p′) = dG′

k
(p, p′). This assertion comes from the fact that

one can permute two elements of {1, . . . , k} ∪ {1′, . . . k′} in the partition p by gluing two
blocks of p and then splitting one block of the resulting partition. Indeed, let us suppose
that p = {p1, . . . , pr}. Let s, t ∈ {1, . . . , k, 1′, . . . , k′}, distinct, and let i, j ∈ {1, . . . , r},
distinct, such that s ∈ pi and t ∈ pj. Then:

p′ = {ps, s ∈ {1, . . . , r} \ {i, j}} ∪ {(pi \ {s}) ∪ {t}, (pj \ {t}) ∪ {s}}

can be obtained by:

1. gluing pi and pj,
2. splitting pi ∪ pj in two: (pi \ {s}) ∪ {t} and (pj \ {t}) ∪ {s}.

The weight of this path is equal to 0.5+0.5 = 1. Thus, to compute the distance dGk
(p, p′),

it is enough to look only at paths in G
′
k: dGk

(p, p′) = dG′
k
(p, p′).
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Then, let us show that d(p, p′) = dG′
k
(p, p′). For this, let us see what happens to the

distance d(p, p′) between p and p′ when one moves from p′ to one neighborhood of p′ in
G

′
k. Suppose that we glue two blocks of p′, then nc(p) is constant, nc(p′) decreases by

1 and nc(p ∨ p′) stays constant or decreases by 1. In this case d(p, p′) will increase or
decrease by 0.5. Suppose now that we cut one block of p′, then nc(p) is constant, nc(p′)
increases by 1 and nc(p ∨ p′) stays constant or increases by 1. In this case d(p, p′) will
also increase or decrease by 0.5.

Thus a gluing/cutting can at most increase the value of d(p, p′) by 0.5. It implies that
d(p, p′) ≤ dG′

k
(p, p′). We have to show now that dG′

k
(p, p′) ≤ d(p, p′). Let us remark that

p ∨ p′ is coarser than p: we can go from p to p ∨ p′ by doing nc(p)− nc(p ∨ p′) gluing of
blocks. The same holds for p′: we can go from p′ to p∨p′ by doing nc(p′)−nc(p∨p′) gluing
of blocks. Thus one can go from p to p∨ p′ and then from p∨ p′ to p′ in nc(p)+ nc(p′)−
2nc(p ∨ p′) steps in G

′
k. Thus dG′

k
(p, p′) ≤ 1

2 [nc(p
′) + nc(p′)− 2nc(p ∨ p′)] = d(p, p′).

The function dG′
k
is a geodesic distance on a graph: it is thus a distance. As we have

just shown that d = dG′
k
, the next corollary is immediately proved.

Corollary 3.1. — The function d : Pk ×Pk → R
+ is a distance.

Lemma 3.2. — The restriction of d to the permutation group is quite usual:

d(σ, σ′) = k − nc(σ−1σ′),

for any σ, σ′ ∈ Sk. This distance is in fact the geodesic distance on the Cayley graph Sk

of Sk. By Lemma 6.26 of [12], the restriction of the distance d to Bk is also the geodesic
distance on the Cayley graph Bk of Bk.

Using this distance, we can define a notion of set-geodesic for any of the three sets of
partitions we are interested in. We remind the reader that the notation Ak was settled
in Notation 2.1.

Definition 3.3. — Let p ∈ Ak, the set-geodesic [id, p]Ak
is defined by:

[id, p]Ak
=
{

p′ ∈ Ak, d(id, p) = d(id, p′) + d(p′, p)
}

.

A geodesic in a graph between two vertices p and p′ is a path in this graph which length
is equal to the geodesic distance. Using Proposition 3.2 and Lemma 3.2, one shows that
for any p ∈ Ak, the set-geodesic [id, p]Ak

is the union of the geodesics between id and p
in the Cayley graph of Ak.

The distance on Ak allows us to define a new partial order on Ak.

Definition 3.4. — Let p and p′ be elements of Ak, we write that p′ ≤ p if and only if
d(id, p) = d(id, p′) + d(p′, p).

This is a partial order as the restriction of d to Ak ×Ak is a distance.



PARTITIONS AND GEOMETRY 17

3.2. Characterization of the order. — Let us define a notion of defect. Let p and
p′ in Pk.

Definition 3.5. — We define the defect of p′ from not being on the set-geodesic [id, p]Pk

by:

df(p′, p) = d(id, p′) + d(p′, p)− d(id, p) = nc(p′)− nc(p′ ∨ id) − nc(p ∨ p′) + nc(p ∨ id).

A simple but very useful lemma is the following.

Lemma 3.3. — If p is coarser than p′, then:

df(p′, p) = nc(p′)− nc(p′ ∨ id)− nc(p) + nc(p ∨ id).

If p is finer than p′ then:

df(p′, p) = nc(p ∨ id)− nc(p′ ∨ id).

Proof. — This is a simple calculation, where one has to use the fact that nc(p ∨ p′) =
nc(p) if p is coarser than p′ and nc(p ∨ p′) = nc(p′) if p is finer than p′.

We will now characterize the order by constructing the Hasse diagram of (Pk,≤). For
this, we define the notion of pivotal block for a partition p ∈ Pk.

Definition 3.6. — We define the set of pivotal blocks for p as the set of blocks b of p
such that there exists a way to cut b into two blocks in order to cut a cycle of p into two
cycles. We denote by Piv(p) the set of pivotal blocks for p.

For example, if p = {{1, 2, 1′, 2′}} ∈ P2, the block {1, 2, 1′, 2′} is a pivotal block for p
since we can cut it in order to get the new partition {{1, 1′}, {2, 2′}} which has one more
cycle.

Definition 3.7. — We denote by ∆(p) the set of all partitions p′ which are obtained
by cutting in p a pivotal block for p into two blocks in such way that p′ has one more
cycle than p. This defines a function ∆ from Pk to the subsets of Pk, namely P (Pk).

The admissible splits of p are Sp(p) =
∞
⋃

k=0

∆k(p).

Figure 12. A partition p such that (1, 2, 3)(4, 5)(6, 7, 8) ∈ Sp(p).

Lemma 3.4. — If p′ is finer than p, the three following assertions are equivalent:

1. p′ ∈ [id, p]Pk
,

2. nc(p′)− nc(p′ ∨ id) = nc(p)− nc(p ∨ id),
3. p′ ∈ Sp(p).
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Proof. — The fact that the two first assertions are equivalent is a consequence of Lemma
3.3. Let us prove that the second and the third assertions are equivalent. If p′ is finer
than p then one can go from p to p′ only by cutting blocks. At each step the number
of blocks goes up by one and the number of cycle is either constant or goes up by one.
Thus, if we want that the number of blocks minus the number of cycle is constant at
the beginning and at the end it must be constant during all the path from p to p′. This
means that at each step the number of cycles must go up by one, and thus we are cutting
a pivotal block in a way to create one more cycle. This proves that the second condition
is equivalent to p′ ∈ Sp(p).

Definition 3.8. — For any p ∈ Pk, let us define Glc(p) the set of partitions p′ in Pk

such that p′ is obtained by gluing blocks of p which are in the same cycle of p. The set
Glc(p) is only:

Glc(p) = {p′ ∈ Pk | nc(p ∨ id) = nc(p′ ∨ id) and p′ is coarser than p}.

The following proposition is straightforward.

Lemma 3.5. — If p′ is coarser than p, the two following assertions are equivalent:

1. p′ ∈ [id, p]Pk
,

2. nc(p′ ∨ id) = nc(p ∨ id),
3. p′ ∈ Glc(p).

Lemmas 3.4 and 3.5 allow us to prove the following characterization of the geodesic
order.

Theorem 3.1. — The partition p′ is in ∈ [id, p]Pk
if and only there exists p′′ ∈ Pk such

that the two following conditions hold:

1. p′′ ∈ Glc(p),
2. p′ ∈ Sp(p′′).

If so, then p′′ = p ∨ p′.

Thus, if one defines the set of admissible gluings Sp−1(p) as the set of all partitions
p′ such that p ∈ Sp(p′), then p′ ∈ [id, p]Pk

if and only if Glc(p) ∩ Sp−1(p′) 6= ∅, and if so
Glc(p) ∩ Sp−1(p′) = {p ∨ p′}.

An other formulation in order to state this theorem is the following theorem which
allows us to construct the Hasse diagram for the geodesic order.

Theorem 3.2. — We define the graph Gk = (Vk, Ek) such that:

– the set of vertices Vk is Pk,
– there exists an oriented edge from p to p′ if one can go from p to p′ by gluing two

blocks of p which are not in the same cycle of p or if one can go from p′ to p by
gluing two blocks which are in the same cycle of p′.

The graph Gk is the Hasse diagram of the geodesic order on Pk: p
′ ∈ [id, p]Pk

if and only
if there exists a path from p′ to p in Gk.

Remark 3.2. — Let {p, p′} be an edge in G
′
k, the Caley graph of Pk. As the Caley

graph is not oriented, we can always suppose that one can go from p to p′ by gluing two
blocks of p. If the two blocks we glue are not in the same cycle of p, then the oriented
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edge (p, p′) is in the Hasse diagram for the geodesic order. If not, then it means that
(p′, p) is in the Hasse diagram for the geodesic order.

Thus, for any non-oriented edge e of G′
k, there exists an orientation e+ of e such that

e+ is an edge of the Hasse diagram for the geodesic order and (e+)−1 is not: the Hasse
diagram is obtained by chosing a good orientation on the edges of the Caley graph G

′
k.

For P2, the Hasse diagram is obtained by considering the graph drawn in Figure 3.1 and
orienting the edges from down to top.

Proof of Theorem 3.1. — Using Lemma 3.8, we see that p′ ∈ [id, p]Pk
if and only if

nc(p∨p′∨ id) = nc(p∨ id) and p′ ∈ [id, p]Pk
, thus, if and only if nc(p∨p′∨ id) = nc(p∨ id)

and:

df(p′, p) = nc(p′)− nc(p′ ∨ id) − nc(p ∨ p′) + nc(p ∨ id) = 0,

which is equivalent to nc(p ∨ p′ ∨ id) = nc(p ∨ id) and:

df(p′, p ∨ p′) = nc(p′)− nc(p′ ∨ id) − nc(p ∨ p′) + nc(p ∨ p′ ∨ id) = 0,

which is again equivalent to nc(p ∨ p′ ∨ id) = nc(p ∨ id) and p′ ∈ [id, p ∨ p′]Pk
. Using

Lemmas 3.4 and 3.5, we get that p′ ∈ [id, p]Pk
if and only if:

p ∨ p′ ∈ Glc(p) ∩ Sf−1(p′).

Let us prove that #
(

Glc(p) ∩ Sf−1(p′)
)

≤ 1. Let p′′ ∈ Glc(p) ∩ Sf−1(p′): this implies
that:

nc(p′′ ∨ id) = nc(p ∨ id)

nc(p′′)− nc(p′′ ∨ id) = nc(p′)− nc(p′ ∨ id).

Thus nc(p′′) − nc(p ∨ id) = nc(p′) − nc(p′ ∨ id). Yet the fact that df(p′, p) ≥ 0 tells us
that:

nc(p ∨ p′)− nc(p ∨ id) ≤ nc(p′)− nc(p′ ∨ id).

Since p′′ is coarser than p and than p′, nc(p ∨ p′) ≥ nc(p′′). Thus:

nc(p′′)− nc(p′′ ∨ id) ≤ nc(p ∨ p′)− nc(p′′ ∨ id) ≤ nc(p′)− nc(p′ ∨ id).

Since the left and right hand sides are equal, we have that nc(p ∨ p′) = nc(p′′) and since
p′′ is coarser than p ∨ p′, we obtain that p′′ = p ∨ p′.

3.2.1. Properties of the admissible splitting. — Using the definition of the admissible
splittings, the following proposition is straightforward.

Proposition 3.3. — Let p ∈ Pk, the set Sp(p)∩Bk is either empty or has one element.

This last proposition leads us to the following definition.

Definition 3.9. — For any positive integer k, we define:

Sk = {p ∈ Pk | #(Sp(p) ∩Sk) = 1},

Bk = {p ∈ Pk | #(Sp(p) ∩ Bk) = 1}.

For any p ∈ Bk, we denote by Mb(p) the unique element in Sp(p) ∩ Bk.

An other important lemma is the following.



20 FRANCK GABRIEL

Lemma 3.6. — Let p be a partition in Pk which does not have any pivotal block, then
Sp(p) = {p}. In particular, if p ∈ Bk, p does not have any pivotal block, thus:

Sp(p) = {p}.

Proof. — The first assertion is a direct consequence of the definitions. It remains to
show that if p ∈ Bk, p does not have any pivotal block. We can suppose that p is
irreducible. Let us suppose that p has a pivotal block that we will denote by c. We can
always suppose that c is of the form {i, (i + 1)′} or {i, i + 1} since we can shuffle the
columns of p and take the transpose of p. With the same argument, we can suppose that
when one cuts the block c, the new partition we get has the form p1 ⊗ p2 with p1 ∈ Pi.
Here is the contradiction: the partition p1 must be composed of blocks of size two except
one block which is equal to {i}. This is not possible since p1 must be a partition of 2i
elements.

3.3. Computation of the Möbius function for the geodesic order. — Since
we have defined an order on Pk, namely the geodesic order, it would be interesting to
compute the Möbius function. In order to do so, we need to define two orders.

Definition 3.10. — Let p and p′ be in Pk. We say that:

– p′ is coarser-compatible than p if and only if p′ ∈ Glc(p). We denote this by p′ ⊣ p.
– p′ is finer-admissible than p if and only if p′ ∈ Sp(p). We denote this by p′ = p.

Both notions define a partial order on Pk.

We used the symbols ⊣ since when one reads it from right to left, one sees two segments
which become one segment ; we are gluing two blocks of p. For =, when one reads it
from right to left, one sees a segment which splits into two parts: we are spliting one
block of p.

We can define the matrices of the partial order ≤,⊣,=.

Definition 3.11. — The matrices of the partial orders ≤,⊣,= are:

– for the geodesic order ≤: Gp,p′ = δp′≤p,
– for the coarser-compatible order ⊣: Cp,p′ = δp′⊣p,
– for the finer-admissible order =: Sp,p′ = δp′=p.

Using these definitions, we can translate the Theorem 3.1.

Theorem 3.3. — The partial orders ≤,⊣, and = are linked by the following equality:

G = CS.

Proof. — Let us consider p and p′ in Pk. Using Theorem 3.1, we have:

Gp,p′ = δp′≤p =
∑

p′′∈Pk|p′′∈Glc(p),p′∈Sp(p′′)

1.

Thus:

Gp,p′ =
∑

p′′∈Pk

δp′′∈Glc(p)δp′∈Sp(p′′) =
∑

p′′∈Pk

δp′′⊣pδp′=p′′ =
∑

p′′∈Pk

Cp,p′′Sp′′,p′ .

This allows us to finish the proof.
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The notion of Möbius function is linked with the inverse of the matrix of the order.

Definition 3.12. — Let T be a finite set endowed with a partial order. Let M be the
matrix of the order as we defined in Definition 3.11. The Möbius function is the function
such that for any a and b in T,

µ(a, b) = (M−1)b,a.

Our goal is to compute the Möbius function for (Pk,≤). In order to compute the
inverse of G, we need the following lemma.

Lemma 3.7. — Let p, p′ and p′′ be in Pk. Let us suppose that p′ ⊣ p′′ and p′′ = p, then
p′′ = p ∧ p′.

Let us remark that it is the ”infimum version” of the last assertion of Theorem 3.1
which asserts that p′′ ⊣ p and p′ = p′′ if and only if p′′ = p ∨ p′.

Proof of Lemma 3.7. — Let p, p′ and p′′ be three partitions in Pk which satisfy the
hypotheses of Lemma 3.7. Using Lemmas 3.4 and 3.5, we know that:

nc(p′ ∨ id) = nc(p′′ ∨ id)

nc(p′′)− nc(p′′ ∨ id) = nc(p)− nc(p ∨ id).

Thus by using the two last equalities:

nc(p′′)− nc(p′ ∨ id) = nc(p)− nc(p ∨ id).

Besides, p′ ≤ p′′ and p′′ ≤ p thus p′ ≤ p: this implies that df(p, p′) = 0, thus:

nc(p′)− nc(p′ ∨ id) + nc(p ∨ id)− nc(p ∨ p′) = 0.

Using the two lattest equations, we get:

nc(p′′) + nc(p ∨ p′)− nc(p′)− nc(p) = 0.(4)

Using the triangle inequality, we know that d(p, p∧ p′)+ d(p∧ p′, p′′)− d(p, p′) ≥ 0, thus:

nc(p ∧ p′) + nc(p ∨ p′)− nc(p)− nc(p′) ≥ 0.(5)

Since p′′ is finer than p′ and than p, p′′ is finer than p∧ p′: this implies that nc(p∧ p′) ≤
nc(p′′). Using Equations (4) and (5), we get that nc(p′′) = nc(p∧p′). Thus p′′ = p∧p′.

Theorem 3.4. — Let p and p′ in Pk. We have:

(G−1)p,p′ = δp∧p′=pδp′⊣p∧p′µf (p ∧ p′, p)µf (p ∧ p′, p′),

where for any partition p1 and p2 such that p1 is finer than p2:

µf (p1, p2) = (−1)nc(p1)−nc(p2)

nc(p1)
∏

i=3

((i− 1)!)ri

where ri is the number of blocks of p2 which contains exactly i blocks of p1.
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Proof. — Using Theorem 3.3, we know that G = CS. Thus G−1 = S−1C−1. Let p and
p′ be two partitions in Pk, we know that:

(G−1)p,p′ =
∑

p′′∈Pk

(S−1)p,p′′(C
−1)p′′,p′ .

Since S, respectively C, is the matrix of the order =, respectively ⊣, for any partitions
p1 and p2 in Pk:

(S−1)p1,p2 = δp2=p1(S
−1)p1,p2 ,

(C−1)p1,p2 = δp2⊣p1(C
−1)p1,p2 .

This is due to the fact that the inverse of an upper triangular invertible matrix is still
upper triangular. Thus:

(G−1)p,p′ =
∑

p′′∈Pk |p′′=p,p′⊣p′′

(S−1)p,p′′(C
−1)p′′,p′ .

Using Lemma 3.7, we get that:

(G−1)p,p′ = (S−1)p,p∧p′(C
−1)p∧p′,p′ .

It remains to compute (S−1)p,p∧p′ and (C−1)p∧p′,p′ .
Each time that one considers a partial order on a finite set, its matrix O can be written

as Id+ Õ, with Õ being a nilpotent matrice. Thus:

O−1 =
∞
∑

i=0

(−1)iÕi,

this is the Rota’s Formula for the Möbius inversion. Thus, for any p and p′ in Pk:

(

S−1
)

p,p∧p′
=

∞
∑

i=0

(−1)i
∑

(p0,...,pi)∈Pk |p=p0 6=p1 6=... 6=pi=p∧p′

[

i−1
∏

l=0

Spl,pl+1

]

=

∞
∑

i=0

(−1)i
∑

(p0,...,pi)∈Pk |p=p0 6=p1 6=... 6=pi=p∧p′

[

i−1
∏

l=0

δpl+1=pl

]

.

Yet, if p ∧ p′ = p, then for any positive integer i, for any i+ 1-tuple (p0, ..., pi):

i−1
∏

l=0

δpl+1=pl =
i−1
∏

l=0

δpl+1 finer than pl .

Thus:

(S−1)p,p∧p′ = δp∧p′=p

∞
∑

i=0

(−1)i
∑

(p0,...,pi)∈Pk|p=p0 6=p1 6=... 6=pi=p∧p′

[

i−1
∏

l=0

δpl+1 finer than pl

]

.

This implies that:
(

S−1
)

p,p∧p′
= δp∧p′=p(F

−1)p,p∧p′,
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with F being the matrix such that for any p1, p2 ∈ Pk, Fp1,p2 = δp2 finer than p1 . The
inverse of this matrix is well known, for any p1, p2 ∈ Pk such that p2 is finer than p1:

(F−1)p1,p2 = µf (p2, p1),

where µf is the Möbius function for the order of being finer and is given in the statement
of Theorem 3.4. Similar arguments allow us to compute the inverse of C and to obtain
that:

(C−1)p∧p′,p′ = δp′⊣p∧p′µf (p ∧ p′, p′).

This allows us to obtain the desired formula for G−1.

Theorem 3.5. — The Möbius function for (Pk,≤), denoted by µ≤, is given by:

∀p1, p2 ∈ Pk, µ≤(p1, p2) = δp1⊣p1∧p2δp1∧p2=p2µf (p1 ∧ p2, p1)µf (p1 ∧ p2, p2).

Let us remark that if p1 ⊣ p1∧p2 then p1 ≤ p1∧p2 and if p1∧p2 = p2 then p1∧p2 ≤ p2.
Thus if both conditions hold, p1 ≤ p2 by transitivity of the geodesic order. This is why
we do not add the condition that p1 ≤ p2 in the formula for the Möbius function µ≤.

Remark 3.3. — Let us remark that, as a by-product of the proof of Theorem 3.4, we
computed the matrices C−1 and S−1, thus we know the Möbius functions for the orders
⊣, = and ≤.

3.4. Some properties of the geodesic order. —

3.4.1. Factorization of the geodesics. — The following property, known for Sk and Bk,
is still true for Pk: a geodesic between id and p1 ⊗ p2 must be the tensor product of a
geodesic between id and p1 and a geodesic between id and p2.

Lemma 3.8. — Let p ∈ Ak, we have:

[id, p]Ak
≃

∏

C∈C(p)

[

id#C
2
, pC

]

A#C
2

.

In particular if p1 and p2 are two partitions, p1 ∈ Ak1 and p2 ∈ Ak2, then p′ ∈ [id, p1 ⊗
p2]Ak1+k2

if and only if there exist p′1 ∈ Ak1 and p′2 ∈ Ak2 such that p′ = p′1 ⊗ p′2,

p′1 ∈ [id, p1]Ak
and p′2 ∈ [id, p2]Ak

.

3.4.2. No Brauer element is smaller than a permutation. — In the following lemma, we
show that the geodesic in the Cayley graph of Pk between two permutations either stay
in the set of permutations or intersect Pk \ Bk. Using the fact that [id, p]Ak

is the union
of the geodesics between id and p in the Cayley graph of Ak, we get an equality between
[id, σ]Bk

and [id, σ]Sk
.

Lemma 3.9. — Let σ ∈ Sk, then [id, σ]Bk
= [id, σ]Sk

.

Proof. — We will do a proof by contradiction. Let S ⊂ Sk be the set of permuta-
tions such that [id, σ]Bk

6= [id, σ]Sk
. Let σ ∈ S be a permutation such that d(id, σ) =

min
σ′∈S

d(id, σ′). Let us consider b an element of Bk \ Sk such that b ∈ [id, σ]Bk
. There

exists a geodesic in Bk which goes through b and goes from id to σ. Let b′ ∈ Bk be the
unique element on this geodesic such that d(id, b′) = 1. Let us remark that b ∈ [b′, σ]Bk

:
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this implies that b′ can not be a permutation. Indeed, if b′ was a permutation, then
[b′, σ]Bk

6= [b′, σ]Sk
and thus, [id, b′−1σ]Bk

6= [id, b′−1σ]Sk
. Yet d(id, b′−1σ) = d(b′, σ) =

d(id, σ) − 1. This would contradict the fact that d(id, σ) = minσ′∈S d(id, σ′). Thus b′

must be an element of Bk \Sk. Since d(id, b′) = 1, there exist i and j in {1, . . . , k} such
that b′ is equal to the Weyl contraction [i, j] in Bk. Thus there exist i and j in {1, . . . , k}
such that [i, j] ∈ [id, σ]Bk

. Using Theorem 3.1, this means that [i, j] ∨ σ ∈ Glc(σ) and
[i, j] ∈ Sp([i, j] ∨ σ). The first condition tells us that i and j must be in the same cycle
of σ, let us suppose so. The second condition implies that σ has only one cycle which is
not trivial and it implies that:

nc(σ ∨ [i, j]) − nc(σ ∨ [i, j] ∨ id) = nc([i, j]) − nc([i, j] ∨ id) = 1.

Yet nc(σ ∨ [i, j])− nc(σ ∨ [i, j]∨ id) = 0 thus [i, j] can not be in [id, σ]Bk
. This yields the

contradiction.

This lemma is the key point which will allow us to explain in the second article [9]
why processes on U(N) and O(N) have the same limit when one only considers usual
moments.

3.4.3. Geodesics and tensor product. — For the last geometric proposition, we need to
define the left and right parts of a partition p.

Definition 3.13. — Let k and l be two positive integers. Let p ∈ Ak+l, we denote by
pgk the extraction of p to {1, ..., k} and pdk the extraction of p to {k + 1, ..., k + l}. The

partition pgk is in Pk and pdk is in Pl.

Proposition 3.4. — Let k1 and k2 be two positive integers and let k = k1 + k2. Let p
be an element of Pk. Let p1 and p2 be respectively in Pk1 and Pk2 . We have equivalence
between:

1. p1 ⊗ p2 = p,
2. p1 = pgk1, p2 = pdk1 and pgk1 ⊗ pdk1 = p.

Proof. — First of all, it is not difficult to see that the second condition implies the first
one. Indeed, if p1 = pgk1 and p2 = pdk1 then p1 ⊗ p2 = pgk1 ⊗ pdk1 . Thus, by transitivity of

the order, if pgk1 ⊗ pdk1 = p, we get that p1 ⊗ p2 = p.
It remains to show that the first condition implies the second one. Let us remark

that p is coarser than p1⊗ p2 if and only if pgk1 is coarser than p1 and pdk1 is coarser than
p2. Thus it remains to prove that under the condition that p is coarser than p1 ⊗ p2,
p1 ⊗ p2 ∈ [id, p]Ak

implies that p1 ∈ [id, pgk1 ]Pk1
, p2 ∈ [id, pdk1 ]Pk2

and pgk ⊗ pdk ∈ [id, p]Ak
.

Since for any partitions the defect between two partitions is always positive, the result
would be a consequence of the following equality:

df(p1 ⊗ p2, p) = df(p1, p
g
k) + df(p2, p

d
k) + df(pgk ⊗ pdk, p).
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Let us prove this equality: using Lemma 3.3:

df(p1 ⊗ p2, p)− df(p1, p
g
k)− df(p2, p

d
k)− df(pgk ⊗ pdk, p)

= nc(p1 ⊗ p2)− nc((p1 ⊗ p2) ∨ id)− nc(p) + nc(p ∨ id)

− nc(p1) + nc(p1 ∨ id) + nc(plk)− nc(pgk ∨ id)

− nc(p2) + nc(p2 ∨ id) + nc(prk)− nc(pdk ∨ id)

− nc(pgk ⊗ pdk) + nc((pgk ⊗ pdk) ∨ id) + nc(p)− nc(p ∨ id)

= 0,

since:

nc(p1 ⊗ p2) = nc(p1) + nc(p2),

nc((p1 ⊗ p2) ∨ id) = nc(p1 ∨ id) + nc(p2 ∨ id),

nc(pgk ⊗ pdk) = nc(pgk) + nc(pdk),

nc((pgk ⊗ pdk) ∨ id) = nc(pgk ∨ id) + nc(pdk ∨ id).

This ends the proof.

4. Convergence of elements of
∏

N∈N C [Pk(N)]

4.1. Coordinate numbers and moments. —

4.1.1. Definitions. — Let k be a positive integer, recall the notation Ak defined in
Notation 2.1. For each integer N , we have defined an algebra C[Ak(N)]. Let (EN )N∈N

be a sequence such that for any positive integer N , EN ∈ C[Ak(N)]. For each integer
N , the algebra C[Ak(N)], seen as a vector space has the same basis Ak. Thus, we could
study the convergence of (EN )N∈N only from the vector space point of view by saying
that the sequence (EN )N∈N converges if and only if the coordinates of EN in the basis
Ak converge. Actually, this convergence forgets the fact that C[Ak(N)] is an algebra
which depends on an integer N . In order to define a better definition of convergence,
we have to define the coordinate numbers of E in C[Ak(N)].

Definition 4.1. — Let N be an integer. Let E be an element of C[Ak(N)]. We define
the numbers

(

κp(E)
)

p∈Ak
as the only numbers such that:

E =
∑

p∈Ak

κp(E)

N
−k+nc(p)

2
+d(id,p)

p.

The family (κp(E))p∈Ak(N) is called the coordinate numbers of E.

After Definition 4.4, we will explain how we get this definition, and why this definition
is in fact the most natural thing one can do. We will need to use the following equality:
for any integer k, for any p ∈ Ak,

−k + nc(p)

2
+ d(id, p) = nc(p)− nc(p ∨ id).(6)

This implies the following remark.
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Remark 4.1. — For any integer k, any integer N , for any E ∈ C[Pk(N)]:

E =
∑

p∈Ak

κp(E)

Nnc(p)−nc(p∨id)
p.

We will consider the coordinate numbers as linear applications from C[Ak(N)] to R:

κp : C[Ak(N)] → R

E 7→ κp(E).

The notion of coordinate numbers allows us to define a strong convergence for any
sequence (EN )N∈N ∈

∏

N∈N
C[Ak(N)].

Definition 4.2. — Let (EN )N∈N be an element of
∏

N∈N C[Ak(N)]. The sequence
(EN )N∈N converges strongly if the coordinate numbers of EN converges when N goes
to infinity: for any p ∈ Ak, κ

p(EN ) converges when N goes to infinity.

The goal now is to give a dual definition of convergence. We have seen in Definition

2.15 that any element of C[Ak(N)] can be seen as an element of End
(

(

C
N
)⊗k
)

and

we defined in Definition 3.1 the trace of any element C[Ak(N)]. Using this trace and
the structure of algebra of C[Ak(N)], we define, for any element of C[Ak(N)] and any
element p ∈ Ak, the p-normalized moment of E.

Definition 4.3. — Let N ∈ N, let p ∈ Ak and E ∈ C[Ak(N)]. The p-normalized
moment of E is:

mp(E) =
1

TrN (p)
TrN (Etp).

Using these normalized moments, we can define a weak notion of convergence for any
sequence (EN )N∈N ∈

∏

N∈N
C[Ak(N)].

Definition 4.4. — The sequence (EN )N∈N converges in moments if the normalized
moments of EN converges when N goes to infinity: for any p ∈ Ak, mp(EN ) converges
when N goes to infinity.

4.1.2. Coordinate numbers-moments transformation. — We can now explain how we
ended up with Definition 4.1 and how we had the idea to define the distance on the
set of partitions. The idea behind these definitions is that we want to know, given a
sequence (EN ) ∈

∏

N∈N C[Ak(N)], how the usual coordinates of EN in the basis Ak must
scale so that for any p ∈ Ak, mp(EN ) converges when N goes to infinity. Let N be an
integer, we have EN =

∑

p∈Ak
apNp. Thus

mp0(EN ) =
∑

p∈Ak

TrN (p tp0)

TrN (p0)
apN .

Thus the vector mN = (mp0(EN ))p0 and aN = (apN )p are linked by the relation mN =

MNaN where MN =
(

TrN (p tp0)
TrN (p0)

)

p0,p
.
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There are then two possible possibilities: to invert MN for N big enough. This is
the usual way, which leads to the Weingarten function. Or, one can make the following
Ansatz: if we write the system, we see that for any p, (aN )p is going to be multiplied
by (MN )p0,p for any p0 ∈ Ak. Thus we make the assumption that (aN )p must decrease
as the inverse of the maximum of (MN )p0,p over p0. That is apN ∼ apN−ηp , where ηp is
given by:

ηp = sup
p0

lim
N→∞

logN

(

TrN (p tp0)

TrN (p0)

)

.

The goal now is to know in which p0 the supremum is obtained. It is more than
tempting, seeing the scalar product TrN (p0

tp) to write what is inside the logN as:

TrN (p tp0)

TrN (p0)
=

TrN (p tp0)
√

TrN (p tp)TrN (p0 tp0)

√

TrN (p0 tp0)TrN (p tp)

TrN (p0)

=
TrN (p tp0)

√

TrN (p tp)TrN (p0 tp0)

√

TrN (p0 tp0)TrN (idk tidk)

TrN (p0 tidk)

√

TrN (p tp)

TrN (idk tidk)
.

We recognize thus the distance that we defined. In fact the intuition that is should be
a distance comes from the fact that one can write:

ηp = sup
p0

[−d(p, p0) + d(p0, idk)] +
1

2
(−k + nc(p)).

If d was a distance, then by the triangle inequality, for any p0,

d(p0, idk)− d(p0, p) ≤ d(p, idk).

This shows that the supremum is obtained at p0 = p, and thus the Ansatz tells us that:

apN ∼ apN−[ 12 (−k+nc(p))+d(id,p)],

to be compared with the Definition 4.1.
The first main result is given by Theorem 4.1 which shows the equivalence between

strong and weak convergence.

Theorem 4.1. — Let (EN )N∈N be a sequence such that for any N ∈ N, EN is an ele-
ment of C[Ak(N)]. The sequence (EN )N∈N converges strongly if and only if it converges
in moments. Let us suppose that (EN )N∈N converges in moments or strongly, for any
p ∈ Ak:

lim
N→∞

mp(EN ) =
∑

p′∈[id,p]Ak

lim
N→∞

κp
′
(EN ).(7)

Proof. — Let (EN )N∈N be an element of
∏

N∈N
C[Ak(N)], let p ∈ Ak and let N be a

positive integer. Using the coordinate numbers of EN , we can calculate the p-normalized
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moment of EN :

mp(EN ) =
1

TrN (p)
TrN (EN

tp) =
1

TrN (p)
TrN





∑

p′∈Ak

κp
′
(EN )

Nnc(p′)−nc(p′∨id)
p′ tp





=
∑

p′∈Ak

κp
′
(EN )

TrN (p′ tp)

TrN (p)Nnc(p′)−nc(p′∨id)
.

Using the Equality (3):

mp(EN ) =
∑

p′∈Ak

κp
′
(EN )Nnc(p∨p′)−nc(p∨id)−nc(p′)+nc(p′∨id).

Hence, using Definition 3.5:

mp(EN ) =
∑

p′∈Ak

κp
′
(EN )N−df(p′,p).(8)

Let us suppose that (EN )N∈N converges strongly. The triangle inequality for d shows
that for any p ∈ Ak, mp(EN ) converges when N goes to infinity and:

lim
N→∞

mp(EN ) =
∑

p′∈[id,p]Ak

lim
N→∞

κp
′
(EN ).

Now, let us suppose that it converges in moments. We can write (8) as:

mN = GNκN ,

wheremN =(mp(EN ))p∈Ak(N) , κ
N =(κp(EN ))p∈Ak(N) , andGN =

(

N−df(p′,p)
)

p,p′∈Ak(N)
.

The sequence (GN )N∈N converges to the matrix G defined in Definition 3.11, and since

G is invertible, κN = G−1
N mN converges to G−1m where m =

(

lim
N→∞

mp(EN )

)

p∈Ak

.

Let us take some notations in order to simplify our up-coming discussions.

Notation 4.1. — Let (EN )N∈N be an element of
∏

N∈N
C[Ak(N)]. From now on, we will

say that (EN )N∈N converges if and only if it converges either strongly or in moments.
Besides, let suppose that (EN )N∈N converges, then we will set, for any partition p ∈ Ak

and any P ⊂ Ak:

mp(E) = lim
N→∞

mp(EN ),

κp(E) = lim
N→∞

κp(EN )

κP (E) =
∑

p∈P

κp(E).
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4.2. Consequences of Theorem 4.1.— We have already an interesting corollary of
Theorem 4.1.

Theorem 4.2. — For this theorem, let us suppose that A is equal either to S or B.
Let (EN )N∈N be an element of

∏

N∈N
C[Ak(N)] which converges in moments, then for any

p ∈ Pk, the limit of mp(EN ) exists. Besides, for any p ∈ Pk, the following equality holds:

mp(E) =
∑

p′∈Ak,p′≤p

κp
′
(E).

Proof. — If (EN )N∈N ∈
∏

N∈N
C[Ak(N)] converges in moments then it converges strongly.

Thus seens as an element of
∏

N∈N
C[Pk(N)] it converges also strongly and thus in mo-

ments. The Equation (7) allows to conclude.

In the case where A = B, one can also prove that, under some hypotheses, the
convergence of the S-moments is equivalent to the convergence of the S-coordinate
numbers.

Theorem 4.3. — Let (EN )N∈N be an element of
∏

N∈N
C[Bk(N)] and let us suppose that

for any p ∈ Bk, (mp(EN ))N∈N is bounded. The following assertions are equivalent:

– for any σ ∈ Sk, κ
σ(EN ) converges when N goes to infinity,

– for any σ ∈ Sk, mσ(EN ) converges when N goes to infinity.

and if one of the condition is satisfied, then for any σ ∈ SN ,

mσ(E) =
∑

σ′∈[id,σ]Sk

κσ
′
(E).

Proof. — Let (EN )N∈N be an element of
∏

N∈N
C[Bk(N)] which satisfies the hypothesis of

the theorem. First of all, using the same notations of the proof of Theorem 4.1, we know
that, for N big enough κN = G−1

N mN . As the sequence (mN )N∈N is bounded and as G−1
N

converges to G−1 when N goes to infinity, we deduce that (κN )N∈N is also bounded.
Let σ ∈ Sk, using Equation (8), for any integer N ,

mσ(EN ) =
∑

p′∈Bk

κp
′
(EN )N−df(p′,σ).

Yet, if p′ ∈ Bk \Sk, using Lemma 3.9, df(p′, σ) < 0.

Let us suppose that for any σ′ ∈ Sk, κ
σ′
(EN ) converges, then mσ(EN ) converges as

N goes to infinity, and:

lim
N→∞

mσ(EN ) =
∑

σ′∈[id,σ]Sk

κσ
′
(EN ).

Let us suppose now that for any σ ∈ Sk, mσ(EN ) converges when N goes to infinity,

then for any increasing sequence (iN )N∈N of integers such that for any σ′ ∈ Sk, κ
σ′
(EiN )
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converges, we have:

lim
N→∞

mσ(EN ) =
∑

σ′∈[id,σ]Sk

lim
N→∞

κσ
′
(EiN ).

Hence, for any σ′ ∈ Sk, limN→∞ κσ
′
(EiN ) does not depend on the sequence (iN )N∈N:

this shows that for any σ′ ∈ Sk, κ
σ′
(EN ) converges when N goes to infinity. Again we

get also:

lim
N→∞

mσ(EN ) =
∑

σ′∈[id,σ]Sk

κσ
′
(EN ).

This finishes the proof.

4.3. Exclusive coordinate numbers and moments. —

4.3.1. Exclusive coordinate numbers. — In Section 2.3, we defined an other basis of
C[Pk], namely the exclusive basis. In the case we are working with an element E ∈
C[Ak(N)] we can also define the exclusive coordinate numbers.

Definition 4.5. — Let k and N be two positive integers. Let E be an element of
C [Ak(N)]. We define the numbers

(

κpc(E)
)

p∈Pk
as the only numbers such that:

E =
∑

p∈Pk

κpc(E)

Nd(id,p)+
−k+nc(p)

2

pc =
∑

p∈Pk

κpc(E)

Nnc(p)−nc(p∨id)
pc.

The family (κpc(E))p∈Pk
is called the exclusive coordinate numbers of E.

The next proposition shows that one can choose to work either with the exclusive
basis or with the usual basis of C[Ak] in order to study the convergence of (EN )N∈N ∈
∏

N∈N
C[Ak(N)].

Theorem 4.4. — Let (EN )N∈N be an element of
∏

N∈N
C[Ak(N)]. The exclusive coor-

dinate numbers (κpc(EN ))p∈Pk
converge as N goes to infinity if and only if (EN )N∈N

converges. Besides, if (EN )N∈N converges then for any p ∈ Pk, κ
p
c(EN ) converges as N

goes to infinity, and for any p ∈ Pk:

lim
N→∞

κpc(EN ) =
∑

p′∈Ak,p′∈Sp(p)

lim
N→∞

κp′(EN )

Proof. — Let (EN )N∈N be an element of
∏

N∈N
C[Ak(N)]. Then for any positive integer

N :

EN =
∑

p∈Ak

κp(EN )

Nnc(p)−nc(p∨id)
p =

∑

p∈Ak

κp(EN )

Nnc(p)−nc(p∨id)

∑

p′∈Pk |p′ coarser than p

p′c

=
∑

p∈Ak,p′∈Pk |p′ coarser than p

κp(EN )N−nc(p)+nc(p∨id)+nc(p′)−nc(p′∨id) p′c

Nnc(p′)−nc(p′∨id)
,
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and using Lemma 3.3:

EN =
∑

p′∈Pk





∑

p∈Ak,p finer than p′

κp(EN )N−df(p,p′)





p′c

Nnc(p′)−nc(p′∨id)
.

Thus, for any integer N , for any p′ ∈ Pk

κp
′

c (EN ) =
∑

p∈Ak,p finer than p′

κp(EN )N−df(p,p′).(9)

The result follows from this equality, the usual arguments already explained in Theorem
4.1 and Lemma 3.4.

Let us remark that, using Equality (9), one has the following proposition.

Proposition 4.1. — Let A be either S or B. Let N be an integer, let E ∈ C[Ak(N)],
for any p ∈ Ak:

κpc(E) = κp(E).

Proof. — This is a consequence of Equality (9) and the fact that p′ in Pk is finer than
p′ ∈ Ak implies that p′ /∈ Ak.

4.3.2. Exclusive moments. — As we did for the coordinate numbers, one can define
exclusive normalized moments.

Definition 4.6. — Let N ∈ N, let p ∈ Pk and E ∈ C[Ak(N)]. The p-exclusive nor-
malized moment of E is:

mpc(E) =
1

TrN (p)
TrN (E t(pc)).

One can also give a combinatorial definition of the p-exclusive normalized moment.

Lemma 4.1. — Let p and p′ be in Pk, then:

TrN (p t(p′c)) = δp′ coarser than p
N !

(N − nc(p′))!
.

The easiest way to prove this lemma is to do it graphicaly: we see that p′ must be
coarser than p, if not the trace is equal to zero, and if p′ is coarser than p, it is equal to

N !
(N−nc(p′))! .

Recall the Definition 3.8. Similarly to what we proved for coordinate numbers, we
prove the following proposition. Let us consider (EN )N∈N ∈

∏

N∈N C[Ak(N)].

Proposition 4.2. — The sequence (EN )N∈N converges in normalized moments if and
only if for any p ∈ Pk, (mpc(EN ))N∈N converges. Besides, if (EN )N∈N converges in
normalized moments then for any p ∈ Pk:

lim
N→∞

mp(EN ) =
∑

p′∈Pk ,p′∈Glc(p)

lim
N→∞

mp′c(EN ).
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Proof. — Because of Theorem 4.2, it is enough to consider (EN )N∈N an element of
∏

N∈NC[Pk(N)]. By computation:

mp(EN ) =
∑

p′coarser than p

Nnc(p′∨id)−nc(p∨id)mp′c(EN ).

We are in the same setting as for the proof of Theorem 4.1: we can write this equality
as:

mN = CNmc,N ,

where (mN )p = mp(EN ), (mc,N)p = mpc(EN ) and CN converges to the matrix C defined
in Definition 3.11. With the same arguments than in the proof of Theorem 4.1, we get
that mN converges to infinity if and only if mc,N converges to infinity: the sequence
(EN )N∈N converges in Pk−exclusive normalized moments if and only if it converges in
normalized moments and in this case:

lim
N→∞

mp(EN ) =
∑

p′∈Glc(p)

lim
N→∞

mp′c(EN ).

This finishes the proof.

4.3.3. In the exclusive world, coordinate numbers and moments are equal. — We will
prove that the limit of exclusive normalized moments are in fact equal to the limit of the
exclusive coordinate numbers. Let (EN )N∈N ∈

∏

N∈NC[Ak(N)]. Let us suppose that
(EN )N∈N converges in normalized moments.

Theorem 4.5. — For any p ∈ Pk,

lim
N→∞

mpc(EN ) = lim
N→∞

κpc(EN ).

Proof. — We will prove that for any integer N , any p ∈ Ak, seen as an element of
C[Ak(N)], for any p′ ∈ Pk,

κp
′

c (p) =





nc(p′)−1
∏

i=0

(

N

N − k

)



mp′c(p).

Indeed by the Equality (9), we get that for any p′ ∈ Pk:

κp
′

c (p) = δp′ coarser than pN
nc(p′)−nc(p′∨id).(10)

Let p′ ∈ Pk, by Lemma 4.1:

mp′c(p) =
1

Nnc(p′∨id)
TrN (p t(p′c)) = δp′ coarser than p

N !

(N − nc(p′))!
N−nc(p′∨id).

The theorem is now a simple consequence of a linearity argument and taking N going
to infinity.

Let us remark that one can prove Theorem 4.5 also by a purely combinatorial argument
using Theorem 3.3. Indeed, using similar notations as the one explained in Notation 4.1,
the Theorem 4.4 shows that:

(κpc(E))p∈Pk
= S (κp(E))p∈Pk

.
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The Equation (7) asserts that:

(mp(E))p∈Pk
= G (κp(E))p∈Pk

= CS (κp(E))p∈Pk
,

where the last equation is a consequence of Theorem 3.3. The Proposition 4.2 proves
that:

(mpc(E))p∈Pk
= C−1 (mp(E))p∈Pk

.

Thus:

(mpc(E))p∈Pk
= S (κp(E))p∈Pk

= (κpc(E))p∈Pk
.

Using this discussion, we see that one can give an expression of the exclusive moments
which involves the coordinate numbers.

Theorem 4.6. — For any p ∈ Pk,

lim
N→∞

mpc (EN ) =
∑

p′∈Ak,p′∈Sp(p)

lim
N→∞

κp
′
(EN ).

Using Lemma 3.6, one gets the following corollary.

Corollary 4.1. — Let p be a partition in Pk which does not have any pivotal block,
then:

lim
N→∞

mpc (EN ) = δp∈Ak
lim

N→∞
κp (EN ) .(11)

In particular, for any p ∈ Bk, the Equality (11) is valid.

Recall the Definition 3.9, using Proposition 3.3, one gets also the following corollary.

Corollary 4.2. — Let us suppose that Ak is equal either to Sk or Bk. For any p ∈ Pk:

lim
N→∞

mpc(EN ) = δp∈Ak
lim

N→∞
κMb(p)(EN ).

Let us remark that some simple equalities hold also for finite N , since, for example,
as a consequence of Equation 9 and the proof of Theorem 4.5, if Ak is equal either to
Sk or Bk, for any N ∈ N and any p ∈ Ak:

κp(EN ) =





nc(p′)−1
∏

i=0

(

N

N − k

)



mpc(EN ).

At the beginning of this section, we have argued that the simplest notion of conver-
gence of elements of

∏

N∈N
C[Ak(N)] was not interesting as it did not take into account the

fact that C[Ak(N)] is an algebra which depends on the parameter N . In the Section 5,
we will slightly modify the product defined on C[Ak(N)] in order to define a new algebra
C[Ak(N,N)]. In this new algebra the strong convergence will be the usual notion of
convergence in vector spaces.
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4.4. Projections and conjugation. — Let Ak be either Bk or Sk. Recall the Defini-
tion 3.11 where we defined the matrices G, C and S. There exist two natural projections
that one can define on C[Pk]. In order to define them, we need to define the restriction
and extension applications.

Definition 4.7. — The restriction on Ak is defined by:

R|Ak
: C[Pk] → C[Ak]

(xp)p∈Pk
7→ (xp)p∈Ak

.

The extension from Ak, denoted by EAk , is the unique application such that R|Ak
◦EAk =

IdAk
and

(

EAk ((xp)p∈Ak
)
)

p0
= 0 for any p0 /∈ Ak.

We define the restriction of G to Ak as:

G|Ak
= R|Ak

GEAk .

This is the matrix of the order ≤ restrained to Ak.

Definition 4.8. — The cumulant-projection on A is defined as the application:

CA
κ : C[Pk] → C[Pk]

such that:

CA
κ = EAk ◦ (G|Ak

)−1 ◦ R|Ak
◦G.

One can remark that R|A ◦G ◦ EAk ◦ (G|Ak
)−1 = IdAk

.

Lemma 4.2. — The cumulant-projection is a projection and Im(CA
κ ) = EAk(C[Ak]).

Proof. — The first assertion is a a consequence of the following computation:

CA
κ ◦ CA

κ = EAk ◦ (G|Ak
)−1 ◦ R|Ak

◦G ◦ EAk ◦ (G|Ak
)−1 ◦ R|Ak

◦G

= EAk ◦ (G|Ak
)−1 ◦

(

R|Ak
◦G ◦ EAk ◦ (G|Ak

)−1
)

◦ R|Ak
◦G

= EAk ◦ (G|Ak
)−1 ◦ R|Ak

◦G = CA
κ .

Besides, if x ∈ EAk(C[Ak]), there exists y ∈ C[Ak] such that x = EAk(y). This implies
that CA

κ (x) = CA
κ (E

Ak(y)) = EAk ◦(G|Ak
)−1◦R|Ak

◦G◦EAk (y) = EAk ◦(G|Ak
)−1◦G|Ak

(y) =

EAk(y) = x. Thus EAk(C[Ak]) ⊂ Im(CA
κ ). It is clear also that Im(CA

κ ) ⊂ EAk(C[Ak]),
hence the equality between the r.h.s. and the l.h.s.

Definition 4.9. — The moment-projection on A is defined as the application:

CA
m : C[Pk] → C[Pk]

such that:

CA
m = G ◦ CA

κ ◦G−1.
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Since CA
κ is a projection, CA

m is also a projection which image is given gy G◦EAk (C[Ak]).
It can also be interesting to define CA

mc by CA
mc = S ◦CA

κ ◦S−1. This is again a projection
which image is given by S ◦ EAk(C[Ak]). In Lemma 4.4, we characterize the set S ◦
EAk(C[Ak]).

By looking at the definition of the cumulant and moment-projections, one can see
that one needs to compute the inverse of G|Ak

: this amounts to compute the Möbius
function for (Ak,≤). If A is equal to S, this Möbius functions is well-known since one
can use the fact that (Ak,≤) is isomorphic to the poset of non-crossing partitions for
which the Möbius function has been computed by Kreweras.

Definition 4.10. — Let (mp)p∈Pk
be a element of C[Pk]. We say that (mp)p∈Pk

is
G-invariant if:

(mp)p∈Pk
= CA

m

(

(mp)p∈Pk

)

.

Using the fact that CA
m is a projection and that G = CS, we get the following lemma.

Lemma 4.3. — Let (mp)p∈Pk
be a element of C[Pk]. It is G-invariant if and only if

one of the following conditions is satisfied:

– (mp)p∈Pk
∈ G ◦ EAk(C[Ak]),

– G−1(mp)p∈Pk
∈ EAk(C[Ak]),

– C−1(mp)p∈Pk
∈ S ◦ EAk(C[Ak]).

The three conditions have to be understood as conditions on respectively the mo-
ments, the coordinate numbers, and the exclusive moments: this is why we wrote the
three conditions even if they are obviously equivalent. Let us also remark that the sets
EAk(C[Ak]) and S ◦ EAk(C[Ak) are easy to understand. Recall Definition 3.9 where we
defined Mb(p).

Lemma 4.4. — The set EAk(C[Ak]) is the set of elements x of C[Pk] such that for any
p /∈ Ak, xp = 0.

The set S ◦ EAk(C[Ak]) is the set of elements x in C[Pk] such that for any p ∈ Pk,
xp = δp∈Ak

xMb(p).

Proof. — The first assertion is straightforward. The second is a direct consequence of
Proposition 3.3 and Lemma 3.6. Indeed, if x ∈ S ◦ EAk(C[Ak]), there exists y ∈ C[Ak]
such that for any p ∈ Pk:

xp =
∑

p′∈Ak|p′=p

yp′ .

If p ∈ Ak, using Lemma 3.6, xp = yp and if p /∈ Ak, using Proposition 3.3, xp = yMb(p) =
xMb(p). Using the same arguments, one can show that if x in C[Pk] satisfies that for any

p ∈ Pk, xp = δp∈Ak
xMb(p), then x ∈ S ◦ EAk(C[Ak]).

Let us consider (A,G) an element of {(S, U), (B, O), (P,S)}. For any positive integer
N , U(N), O(N) and S(N) are respectively the unitary group of size N , the orthogonal
group of size N and the group of permutation matrices of size N . The notion of G-
invariant element of C[Pk] in Definition 4.10 is motivated by the following proposition.
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Proposition 4.3. — Let (EN )N∈N be an element of
∏

N∈N C[Pk(N)] which converges
when N goes to infinity. For any positive integer N , we define

FN =

∫

G(N)
g⊗kρPk

N (EN )(g∗)⊗kdg,

where dg is the Haar probability measure on G(N). There exists a sequence (ẼN )N∈N ∈
∏

N∈NC[Ak(N)] such that for any positive integer N : ρPk

N (Ẽn) = FN . The sequence

(ẼN )N∈N converges as N goes to infinity and:

(

κp(Ẽ)
)

p∈Pk

= CA
κ

(

(κp(E))p∈Pk

)

,

(

mp(Ẽ)
)

p∈Pk

= CA
m

(

(mp(E))p∈Pk

)

,

(

mpc(Ẽ)
)

p∈Pk

= CA
mc

(

(mpc(E))p∈Pk

)

.

Proof. — Let us consider (EN )N∈N and (FN )N∈N two sequences which satisfy the

asusmptions of the proposition. The existence of a sequence (ẼN )N∈N ∈
∏

N∈N C[Ak(N)]

such that for any positive integer N : ρPk

N (Ẽn) = FN is a consequence of the Schur-Weyl-

Jones dualities which are explained in the Section 3 of [9]. Let us prove that (ẼN )N∈N

converges as N goes to infinity and that the two equalities stated in the proposition are
satisfied.

In order to do so, it is enough to show that the normalized moments of (ẼN )N∈N

converge as N goes to infinity. Let p be in Ak, we have to prove that mp(ẼN ) converges
as N goes to infinity. Yet, for any positive integer N :

mp(ẼN ) =
1

Nnc(p∨id)
Trk

(

ρPk

N (Ẽn)ρ
Pk

N (tp)
)

=
1

Nnc(p∨id)
Trk

((

∫

G(N)
g⊗kρPk

N (EN )(g∗)⊗kdg

)

ρPk

N (tp)

)

=
1

Nnc(p∨id)

∫

G(N)
Trk

(

ρPk

N (EN )(g∗)⊗kρPk

N (tp)g⊗k
)

dg

By the Schur-Weyl-Jones dualities, for any g ∈ GN , (g∗)⊗kρPk

N (tp)g⊗k = p, thus:

mp(ẼN ) =
1

Nnc(p∨id)
Trk

(

ρPk

N (EN )ρPk

N (tp)
)

= mp(EN ).

This implies that mp(ẼN ) converges as N goes to infinity, and:

(

mp(Ẽ)
)

p∈Ak

= R|Ak

(

(mp(E))p∈Pk

)

.
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Considering this last equality with the following equalities:
(

κp(Ẽ)
)

p∈Pk

= EAk

(

(κp(Ẽ))p∈Ak

)

,

(

κp(Ẽ)
)

p∈Ak

= (G|Ak
)−1

(

(mp(Ẽ))p∈Ak

)

,

(

mp(E)
)

p∈Pk

= G
(

(κp(E))p∈Pk

)

,

one gets:
(

κp(Ẽ)
)

p∈Pk

= EAk ◦ (G|Ak
)−1 ◦ R|Ak

◦G
(

(κp(E))p∈Pk

)

,

which is nothing but the first equality we had to prove. In order to prove the second
one, one can do the following computations:

(

(mp(Ẽ))p∈Pk

)

= G
(

(κp(Ẽ))p∈Pk

)

= G ◦ CA
κ

(

(κp(E))p∈Pk

)

= G ◦ CA
κ ◦G−1

(

(mp(E))p∈Pk

)

= CA
m

(

(mp(E))p∈Pk

)

.

The third one is a consequence of the fact that
(

(mpc(Ẽ))p∈Pk

)

= S
(

(κp(Ẽ))p∈Pk

)

.

5. The deformed partition algebra

Let us define a deformation of the partition algebra by modifying the multiplication
which was set in Definition 2.5. Let k and N be two positive integers.

Definition 5.1. — We define the application:

MN
k : Ak → Ak

p 7→
1

Nd(id,p)+
−k+nc(p)

2

p =
1

Nnc(p)−nc(p∨id)
p.

This application can be extended as an isomorphism of vector spaces from C[Ak] to itself.

Seen as a vector space, the algebra C[Ak(N)] is isomorphic to C[Ak]. Thus, we can see
MN

k as an isomorphism of vector spaces from C[Ak] to C[Ak(N)]. Let us endow C[Ak]
with a structure of associative algebra by taking the pullback of the structure of algebra
of C[Ak(N)] by MN

k : for any p1, p2 in Ak the new product of p1 with p2 is given by:

p1.Np2 =
(

MN
k

)−1 [
MN

k (p1)M
N
k (p2)

]

.

This is the deformed algebra C[Ak(N,N)]. Using the definition of MN
k , one gets the

following proposition.

Proposition 5.1. — The deformed algebra C[Ak(N,N)] is the associative algebra over
C with basis Pk, endowed with the multiplication defined by the fact that for any p1, p2 ∈
Ak:

p1.Np2 = Nκ(p1,p2)Nd(id,p1◦p2)−d(id,p1)−d(id,p2)+
k+nc(p1◦p2)−nc(p1)−nc(p2)

2 (p1 ◦ p2).
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One can write the exponent in an other form so that it looks like a triangle inequality.

Lemma 5.1. — Let p and p′ in Ak. We have the equality:

d(id, p ◦ p′)−d(id, p) − d(id, p′) +
k + nc(p ◦ p′)− nc(p)− nc(p′)

2
+ κ(p, p′)

= d(tp′, p)− d(id, p) − d(id, p′) + k + nc(p ◦ p′)− nc(p)− nc(p′) + 2κ(p, p′).

Proof. — In order to prove this equality, for exemple one can consider N to the power
to the r.h.s and the l.h.s. and one can use the following equality:

N−d(tp′,p) =
Tr(pp′)

N
nc(p)+np(p′)

2

= Nκ(p,p′) Tr(p ◦ p′)

N
nc(p)+np(p′)

2

= Nκ(p,p′)N
−d(id,p◦p′)+ k+nc(p◦p′)

2

N
nc(p)+np(p′)

2

.

This allows us to prove Lemma 5.1.

Using the definition of the deformed algebra C[Ak(N,N)], we have the straightforward
proposition.

Proposition 5.2. — The application MN
k can be extended as an isomorphism of algebra

from C[Ak(N,N)] to C[Ak(N)]. Its extension will be also denoted by MN
k .

For any integer N , the deformed algebra C[Ak(N,N)] is isomorphic to C[Ak(N)].

Actually, the application MN
k is not only compatible with the multiplication, but also

with the ⊗ operation defined in Definition 2.1.

Lemma 5.2. — Let k and k′ be two positive integers. Let p ∈ Ak and p′ ∈ Ak′ . The
following equality holds:

MN
k+k′(p⊗ p′) = MN

k (p)⊗MN
k′ (p

′).(12)

The definition of the morphism MN
k was not chosen randomly: it was set so that the

following lemma holds.

Lemma 5.3. — Let E ∈ C[Ak(N)], we have:
(

MN
k

)−1
(E) =

∑

p∈Ak

κp(E)p.

Thus, one can see that we will be able to formulate the strong convergence in
∏

N∈NC[Ak(N)] by using the morphisms
(

MN
k

)

N∈N
and the usual notion of convergence

in vector spaces. Indeed, for any integers N and k, any element in C[Ak(N,N)] can be
considered as an element of C[Ak]. This allows us to state the following lemma.

Lemma 5.4. — Let (EN )N∈N be an element of
∏

N∈N
C[Ak(N)]. The sequence (EN )N∈N

converges strongly if and only if:

(MN
k )−1(EN )

converges when N goes to infinity in C[Ak] for the usual convergence in finite dimensional
vector spaces.
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6. Refined geometry of the partition algebra

In the last section, we defined the deformed algebra C[Ak(N,N)] and we explained
that the strong convergence can be seen as the natural notion of convergence in finite
dimensional vector space as soon as one works in the deformed algebra. In this section,
we will study the convergence of the algebras C[Ak(N,N)].

The core of Section 3 was to prove the triangle inequality for the function d defined
on Ak in Definition 3.1. The study of the convergence of the algebras C[Ak(N,N)] will
use intensively the following improved triangle inequality for Ak.

Proposition 6.1. — Let p and p′ be two elements of Pk, the following improved triangle
inequality holds:

d(p′, p) ≤ d(p′, id) + d(p, id) − k − nc(p ◦ tp′) + nc(p) + nc(p′)− 2κ(p, tp′).

The restriction of the improved triangle inequality to the permutations is obvious as
it is a consequence of the usual triangle inequality. Indeed, for any permutations σ and
σ′, nc(σ) = 0 and κ(p, p′) = 0. Yet, this is indeed an improved triangle inequality as
soon as one considers elements on Bk: let us suppose that p and p′ are equal to the Weyl
contraction [1, 2]. The triangle inequality asserts that 0 ≤ 2, since d(id, [1, 2]) = 1. Yet,
in this case:

d(p′, id) + d(p, id) − k − nc(p ◦ tp′) + nc(p) + nc(p′)− 2κ(p, tp′) = 0.

The improved triangle inequality asserts thus the stronger fact that 0 ≤ 0.
In fact, we can see this improved triangle inequality as a consequence of the usual

triangle inequality and an inequality between d(p, p ◦ p′) and d(id, p′). If we consider p
and p′ in the symmetric group, then we know that d(p, p ◦ p′) = d(p, pp′) = d(id, p′).
Yet, this equality does not hold any more in the general case, we only get the following
inequality.

Proposition 6.2. — Let p and p′ in Pk, we have the following inequality:

d(p, p ◦ p′) ≤ d(id, p′)−
k + nc(p ◦ p′)− nc(p)− nc(p′)

2
− κ(p, p′).

Proof. — Let p and p′ in Pk and let us define τ ∈ S2k:

τk = (1, k + 1)(2, k + 2) . . . (k, 2k).

Let us apply the triangle inequality:

d
(

p⊗ idk,
(

(p ◦ p′)⊗ idk
)

τ
)

≤ d(p ⊗ idk, p⊗ p′) + d
(

p⊗ p′,
(

(p ◦ p′)⊗ idk
)

τ
)

.(13)

The goal is to understand each of these three terms. The term d(p⊗ idk, p⊗p′) is simple:

d(p ⊗ idk, p⊗ p′) = d(id, p′).

Let us study d (p⊗ idk, ((p ◦ p
′)⊗ idk) τ). Using the definition of the distance in Propo-

sition 3.1, and the Equality (3):

N−d(p⊗idk,((p◦p
′)⊗idk)τ) =

TrN
[

(p⊗ idk)
t(((p ◦ p′)⊗ idk) τ)

]

N
nc(p)+k

2 N
nc(p◦p′)+k

2

,
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since nc(p⊗idk) = nc(p)+k and nc(((p ◦ p′)⊗ idk) τ) = nc((p◦p′)⊗idk) = nc((p◦p′)+k.
Yet:

TrN
[

(p⊗ idk)
t
((

(p ◦ p′)⊗ idk
)

τ
)]

= TrN
[

p t(p ◦ p′)
]

.

Thus, using again Proposition 3.1:

d
(

p⊗ idk,
(

(p ◦ p′)⊗ idk
)

τ
)

= d(p, p ◦ p′) + k.

Let us consider d (p⊗ p′, ((p ◦ p′)⊗ idk) τ). Using the same arguments:

N−d(p⊗p′,((p◦p′)⊗idk)τ) =
TrN

(

pp′ t(p ◦ p′)
)

N
nc(p)+nc(p′)

2 N
nc(p◦p′)+k

2

.

Using the definition of κ(p, p′) and the Equality (3):

N−d(p⊗p′,((p◦p′)⊗idk)τ) = Nκ(p,p′) TrN
(

p ◦ p′ t(p ◦ p′)
)

N
nc(p)+nc(p′)

2 N
nc(p◦p′)+k

2

= Nκ(p,p′)+ 1
2
[nc(p◦p′)−nc(p)−nc(p′)−k].

Thus:

d
(

p⊗ p′,
(

(p ◦ p′)⊗ idk
)

τ
)

= −κ(p, p′)−
1

2
[nc(p ◦ p′)− nc(p)− nc(p′)− k].

Let us come back to the triangle inequality (13). This shows that:

d(p, p ◦ p′) + k ≤ d(id, p′)− κ(p, p′)−
1

2
[nc(p ◦ p′)− nc(p)− nc(p′)− k],

and thus:

d(p, p ◦ p′) ≤ d(id, p′)−
nc(p ◦ p′) + k − nc(p)− nc(p′)

2
− κ(p, p′).

This is the inequality we wanted to prove.

Proof of Proposition 6.1. — Let p and p′ be two elements of Ak. Using the triangle
inequality:

d(id, p ◦ p′) ≤ d(id, p) + d(p, p ◦ p′).

And an application of Proposition 6.2 implies that:

d(id, p ◦ p′) ≤ d(id, p) + d(id, p′)−
k + nc(p ◦ p′)− nc(p)− nc(p′)

2
− κ(p, p′).(14)

And using Lemma 5.1:

d(tp′, p) ≤ d(id, p) − d(id, p′) + k + nc(p ◦ p′)− nc(p)− nc(p′) + 2κ(p, p′).

The result follows then from the fact that nc(tp′) = nc(p′).

We can generalize the inequality (14) to a n-uple of elements of Ak.

Lemma 6.1. — For any positive integer n, for any (pi)
n
i=1 ∈ (Ak)

n:

d(id, ◦ni=1pi)≤
n
∑

i=1

d(id, pi)−
1

2

[

(n− 1)k + nc(◦ni=1pi)−
n
∑

i=1

nc(pi)

]

−
n−1
∑

i=1

κ(pi, pi+1),

where we have used the notation ◦ni=1pi = p1 ◦ . . . ◦ pn.
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In fact, the best way to understand the improved triangle inequality is to work with
the equivalent inequality (14). This formulation of the improved triangle inequality leads
us to the next notion.

Definition 6.1. — Let p and p′ be two elements of Ak. We will say that p ≺ p ◦ p′ if
and only if:

d(id, p ◦ p′)− d(id, p) − d(id, p′) +
k + nc(p ◦ p′)− nc(p)− nc(p′)

2
+ κ(p, p′) = 0.

Let p0 ∈ Ak. We will write that p ≺ p0 if there exists p′ ∈ Ak such that p0 = p ◦ p′ and
p ≺ p ◦ p′.

Definition 6.2. — Let us suppose that p ≺ p0. We define for any p ≺ p0:

Kp0(p) = {p′ ∈ Ak, p ◦ p
′ = p0}.

Let us suppose that p ≺ p ◦ p′. We recall that:

d(id, p ◦ p′) ≤ d(id, p) + d(p, p ◦ p′)

≤ d(id, p) + d(id, p′)−
k + nc(p ◦ p′)− nc(p)− nc(p′)

2
− κ(p, p′).

Thus, if the first term and the third term are equal, then p ∈ [id, p ◦ p′]Ak
. We have

shown the following lemma.

Lemma 6.2. — Let p and p0 in Ak, if p ≺ p0 then there exists p′ ∈ Ak such that
p0 = p ◦ p′ and

p ∈ [id, p0]Ak
.

Let us remark that for any σ ∈ Sk, {σ
′ ∈ Sk, σ

′ ≺ σ} = [id, σ]Sk
. This is due to

the fact that κ(σ, σ′) = 0 for any couple of permutations, the fact that nc is constant on
the set of permutations and the fact that any permutation is invertible. Using similar
arguments and Lemma 2.1, one can have the better result.

Lemma 6.3. — Let k be an integer. Let σ ∈ Sk, then:

{p ∈ Pk, p ≺ σ} = [id, σ]Sk
.

Besides, for any p ∈ Pk, {σ ∈ Sk, σ ≺ p} = [id, p]Pk
∩Sk.

Let us state a consequence of Lemma 6.2: the factorization property for ≺.

Lemma 6.4. — Let k and l be two positive integers. Let a ∈ Pk and b ∈ Pl. For any
p ∈ Pk+l such that p ≺ a⊗ b, there exist p1 ≺ a and p2 ≺ b such that p = p1 ⊗ p2.

This lemma is a consequence of Lemma 6.2 and the factorization property for the
geodesics stated in Lemma 3.8.

Let p and p0 in Ak such that p ≺ p0. Let us have a little discussion on Kp0(p): by
definition this is not empty but it is not reduced to a unique partition. For example,
one can show that if p = {{1, 2, 1′, 2′}} and p0 = {{1′, 2′}, {1}, {2}} then:

Kp0(p) =
{{

{1}, {2}, {1′}, {2′}
}

,
{

{1}, {2}, {1′ , 2′}
}}

.
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Let (1, . . . , k) be the k-cycle in Sk that we already defined in Definition 2.10. It
is well-known that the poset of non-crossing partition over {1, . . . , k} is isomorphic to
([id, (1, . . . , k)]Sk

,≤). From now on, we will consider any non-crossing partition over

{1, . . . , k} as an element of [id, (1, .., k)]Sk
. The following lemma is straightforward.

Lemma 6.5. — If p0 = (1, ..., k) and p ∈ [id, (1, ..., k)]Sk
, then Kp0(p) is the Kreweras

complement of the non-crossing partition corresponding to p.

We are going now to see one of the main results of the paper, namely the fact
that the improved triangle inequality implies the convergence of the deformed algebras
(

C[Ak(N,N)])
)

N∈N
stated in the forthcoming Theorem 6.1. Before doing so, we need

to define the notion of convergence of algebras.

Definition 6.3. — Let C be a finite set of elements. For any N ∈ N∪ {∞}, let LN be
an algebra such that C is a linear basis of LN . For any elements x and y of C, for each
N ∈ N ∪ {∞}, we denote the product of x with y in LN by x.Ny.

We say that LN converges to the algebra L∞ when N goes to infinity if for any x and
y in C,

x.Ny −→
N→∞

x.∞y in C[C],

for the usual notion of convergence in finite dimensional linear spaces.

Let us state the convergence of the deformed algebras
(

C[Ak(N,N)])
)

N∈N
.

Theorem 6.1. — As N goes to infinity, the deformed algebra C[Ak(N,N)] converges
to the deformed algebra C[Ak(∞,∞)] which is the associative algebra over C with basis
Ak endowed with the multiplication defined by:

∀p, p′ ∈ Pk, p.∞p′ = δp≺p◦p′ p ◦ p
′.

Proof. — For any N ∈ N ∪ {∞}, Ak is a linear basis of C[Ak(N,N)]. By bi-linearity
of the product, it is enough to prove that for any p and p′ in Ak, p.Np′ converges to
δp≺p◦p′p ◦ p

′. Let p and p′ be two elements of P. We have:

p.Np′ = Nd(id,p◦p′)−d(id,p)−d(id,p′)+
k+nc(p◦p′)−nc(p)−nc(p′)

2
+κ(p,p′)(p ◦ p′).

By the version of the improved triangle inequality stated in Proposition 6.1 or in the
inequality (14), we have:

d(id, p ◦ p′)− d(id, p) − d(id, p′) +
k + nc(p ◦ p′)− nc(p)− nc(p′)

2
+ κ(p, p′) ≤ 0.

According to Definition 6.1, we have p.Np′ −→
N→∞

δp≺p◦p′ p ◦ p
′.

To conclude this section, let us remark that for any integer k, we have the inclusion
of algebras:

C[Sk(∞,∞)] ⊂ C[Bk(∞,∞)] ⊂ C[Pk(∞,∞)].
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7. Consequences of the convergence of the deformed algebras.

7.1. Convergence of a product. — Let k be an integer. As usual, let Ak be Sk, Bk

or Pk. Let us give the first consequence of Theorem 6.1 for the product of two elements
of
∏

N∈N
C[Ak(N)]. Recall the Notation 4.1.

Theorem 7.1. — Let (EN )N∈N and (FN )N∈N be two elements of
∏

N∈N
C[Ak(N)]. Let us

suppose that (EN )N∈N and (FN )N∈N converge, then the sequence
(

ENFN

)

N∈N
converges.

Besides,

– for any p0 ∈ Ak:

κp0(EF ) =
∑

p∈Ak,p≺p0

κp(E)κKp0 (p)(F ),(15)

– for any p0 ∈ Pk:

mp0(EF ) =
∑

p∈Ak,p≤p0

κp(E)mtp◦p0(F ).(16)

Proof. — Let (EN )N∈N and (FN )N∈N elements of
∏

N∈N
C[Ak(N)]. Let us suppose that

(EN )N∈N and (FN )N∈N converge. We have by definition:

(MN
k )−1(ENFN ) =

(

MN
k

)−1
(EN ).N

(

MN
k

)−1
(FN ).

We know, by Lemma 5.4, that
(

MN
k

)−1
(EN ) and

(

MN
k

)−1
(FN ), seen as elements of

C[Ak], converge when N goes to infinity. Besides, the algebra C[Ak(N,N)] converges to
C[Ak(∞,∞)], as it was proved in Theorem 6.1. Thus (MN

k )−1(ENFN ) converges when
N goes to infinity. Again, by Lemma 5.4 and Theorem 4.1, this shows that (ENFN )N∈N
converges. Besides, using Lemma 5.3, we have:

(MN
k )−1(ENFN ) =

∑

p∈Ak

κp0(ENFN )p0,

(

MN
k

)−1
(EN ).N

(

MN
k

)−1
(FN ) =

∑

p∈Ak,p′∈Ak

κp(EN )κp
′
(FN )p.Np′.

Using the formula for the limit of .N shown in Theorem 6.1, for any p0 ∈ Pk:

κp0(EF ) =
∑

p∈Ak,p≺p0

κp(E)κKp0 (p)(F ).

For the second equality, one could use the link, between Ak-moments and coordinate
numbers when N → ∞ given by Equality (7). Yet, this happens to be more difficult
than a direct proof. Indeed, by bi-linearity, we have only to show that the equality (16)
holds when, for any integer N :

EN =
1

N
−k+nc(p)

2
+d(id,p)

p,
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with p ∈ Ak. Let N be an integer, let us suppose that EN is of this form. Let p0 ∈ Pk,
we have:

mp0(ENFN ) =
1

Nnc(p)−nc(p∨id)

1

Nnc(p0∨id)
Tr(FN

tp0p)

= N−nc(p)+nc(p∨id)−nc(p0∨id)Nκ( tp0,p)Tr(FN
tp0 ◦ p)

= N−nc(p)+nc(p∨id)−nc(p0∨id)Nκ( tp0,p)+nc( tp◦p0∨id)m tp◦p0(FN )

= N−nc(p)+nc(p∨id)−nc(p0∨id)Nκ( tp0,p)+nc( tp0◦p∨id)m tp◦p0(FN ).

Yet, we have seen in the proof of Lemma 3.1, that:

nc(tp0 ◦ p ∨ id) + κ(tp0, p) = nc(p0 ∨ p),

thus:

mp0(ENFN ) = N−nc(p)+nc(p∨id)−nc(p0∨id)+nc(p0∨p)m tp◦p0(FN )

= N−df(p,p0)m tp◦p0(FN ).

One gets that mp0(ENFN ) converges when N goes to infinity to δp≤p0m tp◦p0(FN ).

Remark 7.1. — Under the same assumptions, one can prove that for any p0 ∈ Pk:

mp0(EF ) =
∑

p∈Ak,p≤p0

mp0◦tp(E)κp(F ).(17)

7.2. Semi-groups. — In this subsection, we will study convergence of sequences of
semi-groups in C[Ak(N)]. Semi-groups in different algebras will appear in the paper: for
this paper, a family (at)t≥0 is a semi-group if there exists h, called the generator, such
that for any t0 ≥ 0:

d

dt |t=t0
at = hat0 .

If we consider the algebra
∏

N∈NC[Ak(N)], we are led to the next definition.

Definition 7.1. — The family
(

(EN
t )N

)

t≥0
is a semi-group in

∏

N∈N C[Ak(N)] if there

exists (HN )N∈N ∈
∏

N∈NC[Ak(N)], called the generator, such that for any t ≥ 0, for
any integer N :

d

dt |t=t0
EN

t = HNEN
t0 .

From now on, let us suppose that
(

(EN
t )N

)

t≥0
is a semi-group in

∏

N∈N C[Ak(N)]

whose generator is (HN )N∈N. Let us define the convergence for semi-groups in
∏

N∈NC[Ak(N)].

Definition 7.2. — The semi-group
(

(EN
t )N

)

t≥0
converges if and only if for any t ≥ 0,

EN
t converges as N goes to infinity.

The next theorem shows that a semi-group in
∏

N∈NC[Ak(N)] converges if the initial
condition and the generator converge. Recall the Notation 4.1.
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Theorem 7.2. — The semi-group
(

(EN
t )N

)

t≥0
converges if the sequences (EN

0 )N∈N and

(HN )N∈N converge as N goes to infinity.
Besides, we have the two differential systems of equations:

∀p ∈ Ak,∀t0 ≥ 0,
d

dt |t=t0
κp(Et) =

∑

p1∈Ak,p1≺p

κp1(H)κKp(p1)(Et0).(18)

∀p ∈ Pk,∀t0 ≥ 0,
d

dt |t=t0
mp(Et) =

∑

p1∈Ak,p1≤p

κp1(H)mtp1◦p(Et0).(19)

Proof. — Let us suppose that (HN )N∈N converges. For any integer N and any t ≥ 0,
we define:

ẼN
t = (MN

k )−1(EN
t ),

H̃N = (MN
k )−1(HN ).

As for any integer N , MN
k is a morphism of algebra, the family

(

(ẼN
t )N∈N

)

t≥0
is a

semi-group in
∏

N∈N
C[Ak(N,N)] and its generator is

(

H̃N

)

N∈N
. An application of Lemma

5.3 allows us to write the condition of semi-group in the basis Ak ; for any t0 ≥ 0:

d

dt |t=t0

∑

p0∈Ak

κp0(EN
t )p0 =

(

∑

p∈Ak

κp(HN )p

)

.N

(

∑

p′∈Ak

κp
′
(EN

t0 )p
′

)

.

Then the following equality must hold for any positive integer N , any t0 ≥ 0 and any
p0 ∈ Ak:

d

dt |t=t0
κp0(EN

t )

=
∑

p,p′∈Ak,p◦p′=p0

κp(HN )κp
′
(EN

t )Nd(id,p◦p′)−d(id,p)−d(id,p′)+
k+nc(p◦p′)−nc(p)−nc(p′)

2
+κ(p,p′).

Let us take N going to infinity. Because of the hypotheses and because of the improved
triangle inequality, this differential system converges: κp(EN

t ) must converge for any
p ∈ Ak and any real t ≥ 0. Besides, we get for any t0 ≥ 0:

∀p ∈ Ak,
d

dt |t=t0
κp(Et) =

∑

p1∈Ak,p1≺p

κp1(H)κKp(p1)(Et0).

Since the semi-group converges, using the usual notations, we can write that for any
p ∈ Pk and any t0 ≥ 0:

d

dt |t=t0
mp(Et) = mp (HEt0) ,

and using Equality (16), one has:

lim
N→∞

mp(HNEN
t0 ) =

∑

p1∈Ak,p1≤p

κp1(H)mtp1◦p(Et0).

Hence we recover the second system of differential equations.
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Of course one also has, using Equality (17) instead of (16), that for any p ∈ Pk and
any t0 ≥ 0:

d

dt |t=t0
mp(Et) =

∑

p1∈Ak,p1≤p

mp◦tp1(H)κp1(Et0).

Moreover, Theorem 7.2 can be very easily generalized for any semi-group with time
dependent generator. In order to finish the section, let us prove a consequence of
Lemma 2.1.

Theorem 7.3. — Let
(

(EN
t )N

)

t≥0
be a semi-group in

∏

N∈N C[Bk(N)]. Let us suppose

that the sequence (EN
0 )N∈N converges as N goes to infinity. Let us suppose that for any

σ ∈ Sk, κσ(HN ) converges when N goes to infinity. Then for any σ ∈ Sk, for any
positive real t, κσ(EN

t ) converges as N goes to infinity. Besides for any σ ∈ Sk and any
t0 ≥ 0:

d

dt |t=t0
κσ(Et) =

∑

σ1∈Sk,σ1∈[id,σ]Sk

κσ1(H)κσ
−1
1 σ(Et0).(20)

Proof. — Let
(

(EN
t )N

)

t≥0
be a semi-group in

∏

N∈N C[Bk(N)] which satisfies the hy-

potheses of the theorem. Let σ ∈ Sk and let N be a positive integer. We have seen in
the last proof that for any t0 ≥ 0:

d

dt |t=t0
κσ(EN

t )

=
∑

p,p′∈Bk ,p◦p′=σ

κp(HN )κp
′
(EN

t0 )N
d(id,p◦p′)−d(id,p)−d(id,p′)+

k+nc(p◦p′)−nc(p)−nc(p′)
2

+κ(p,p′).

Yet, by Lemma 2.1, if p ◦ p′ = σ, then p and p′ are in Sk. Thus,

d

dt |t=t0
κσ(EN

t ) =
∑

p,p′∈Sk,p◦p′=σ

κp(HN )κp
′
(EN

t0 )N
−df(p,σ).

Thus, we see that
(

(κσ(EN
t ))σ∈Sk

)

t≥0
satisfies a linear differential system whose coeffi-

cients converge by hypothesis. Thus, for any σ ∈ Sk, for any positive real t, κσ(EN
t )

converges as N goes to infinity. The Equation (20) is obtained by taking N going to
infinity in the last equation.

8. Geometric and combinatorial consequences of Theorem 4.1

In Section 6, we showed new inequalities on the set of partitions Pk. The proofs were
quite combinatorial, and used only the notion of distance. In this section, we want to
show that one can prove new inequalities or equalities, by using Theorem 4.1 as a black
box.
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8.1. Geometric consequences of Theorem 4.1. — First, let us give a new proof
of the improved triangle inequality.

Proof of Proposition 6.1. — Let k be an integer. Let p and p′ be two elements of Ak.
Let us consider (pN )N∈N and (p′

N )N∈N such that for any integer N :

pN = MN
k (p),

p′
N = MN

k (p′).

Using Lemma 5.4, (pN )N∈N and (p′
N )N∈N converge strongly. Let N be an integer.

Applying the Equality (12), we have:

pN ⊗ p′
N = MN

2k(p⊗ p′).

Thus, using Lemma 5.4, pN ⊗ p′
N converges strongly when N goes to infinity. An

application of Theorem 4.1 shows that it converges in moments: for any p̃ ∈ A2k,

mp̃(pN ⊗ p′
N ) converges when N → ∞.

For any partition p̃ ∈ Ak, we define P (p̃) be the partition in A2k:

P (p̃) = (p̃⊗ idk)(1, k + 1)(2, k + 2) . . . (k, 2k).

Then for any E ∈ C[Ak(N)] and F ∈ C[Ak(N)], and any p0 ∈ Ak, we have:

mP (p0)(E ⊗ F ) = mp0(EF ).

Thus for any p0 ∈ Ak, mp0(pNp′
N ) which is equal to mP (p0)(pN ⊗ p′

N ) converges as N

goes to infinity. Using again the Theorem 4.1, we have that pNp′
N converges strongly

as N goes to infinity. It implies, because of Lemma 5.4 that (MN
k )−1(pNp′

N ) converges
in C[Ak] when N goes of infinity. We can calculate this last expression:

(MN
k )−1(pNp′

N ) = (MN
k )−1(MN

k (p)MN
k (p′))

= p.Np′

= Nd(tp′,p)−d(id,p)−d(id,p′)+k+nc(p◦p′)−nc(p)−nc(p′)+2κ(p,p′)(p ◦ p′),

where we used Lemma 5.1. Thus we must have that for any p and p′ in Ak:

d(tp′, p) ≤ d(id, p) + d(id, p′)− k − nc(p ◦ p′) + nc(p) + nc(p′)− 2κ(p, p′).

The improved inequality is just a consequence of the last inequality as soon as we see
that for any p ∈ Ak, nc(

tp) = nc(p), and d(id, p) = d(id, tp).

Again, using the same ideas, one can show the following interesting property, which
will be important in order to compute in Theorem 7.6 in [9] the law of the product of
two P-free families.

Proposition 8.1. — Let p0, p1 and p2 be three partitions in Ak. Let τ be the partition
in A2k defined by:

τ = (1, k + 1)(2, k + 2) . . . (k, 2k).

We have:

δp1⊗p2∈[id,(p0⊗idk)τ ]A2k
= δp1◦p2∈[id,p0]Ak

δp1≺p1◦p2 .
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Proof. — Let p0, p1 and p2 be three partitions in Ak. Let us consider (p1
N )N∈N and

(p2
N )N∈N such that for any integer N , p1

N = MN
k (p1) and p2

N = MN
k (p2). Using Lemma

5.4, (p1
N )N∈N and (p2

N )N∈N converge strongly. Thus, (p1
N ⊗p2

N )N∈N converges strongly,
and by Theorem 4.1 it converges in moments. Let us calculate, using two ways, the limit
of m(p0⊗idk)τ

[

p1
N ⊗ p2

N

]

, where τ = (1, k + 1)(2, k + 2) . . . (k, 2k).
First, using Theorem 4.1 and the Equation (7), we get that:

lim
N→∞

m(p0⊗idk)τ

[

p1
N ⊗ p2

N

]

=
∑

p∈[(p0⊗idk)τ ]A2k

lim
N→∞

κp
[

p1
N ⊗ p2

N

]

.

Yet, for any p ∈ A2k, κ
p
[

p1
N ⊗ p2

N

]

= δp=p1⊗p2 , thus:

lim
N→∞

m(p0⊗idk)τ

[

p1
N ⊗ p2

N

]

= δp1⊗p2∈[id,(p0⊗idk)τ ]A2k
.

Then, using the fact that m(p0⊗idk)τ

[

p1
N ⊗ p2

N

]

= mp0

[

p1
Np2

N

]

, and using again The-
orem 4.1 and the Equation (7):

lim
N→∞

m(p0⊗idk)τ

[

p1
N ⊗ p2

N

]

=
∑

p∈[id,p0]Ak

lim
N→∞

κp
[

p1
Np2

N

]

.

Let p ∈ Ak, κ
p
[

p1
Np2

N

]

is the coefficient of p in the expression
(

MN
k

)−1
(p1

Np2
N ). Let us

remark that
(

MN
k

)−1
(p1

Np2
N ) =

(

MN
k

)−1
(MN

k (p1)M
N
k (p2)) = p1.Np2 which converges

in C[Ak] to δp1≺p1◦p2p1 ◦ p2. Thus,

lim
N→∞

κp
[

p1
Np2

N

]

= δp1≺p1◦p2δp=p1◦p2 .

This implies that:

lim
N→∞

m(p0⊗idk)τ

[

p1
N ⊗ p2

N

]

= δp1≺p1◦p2δp1◦p2∈[id,p0]Ak
.

Using the two ways to compute limN→∞m(p0⊗idk)τ

[

p1
N ⊗ p2

N

]

, we get:

δp1⊗p2∈[id,(p0⊗idk)τ ]A2k
= δp1◦p2∈[id,p0]Ak

δp1≺p1◦p2 .

which was the desired equality.

In fact, one can always prove the results by a combinatorial argument: the ideas we
present are more an automatic way to get combinatorial results that one can prove after
by combinatorial means. For example, let us consider Definition 9.1 ; using Proposition
8.1, one can now expect that df(p1⊗ p2, (p0⊗ idk)τ) = df(p1 ◦p2, p0)+ η(p1, p2). Indeed,
we have the following proposition.

Proposition 8.2. — Let p0, p1 and p2 be three partitions in Ak. Let τ be the partition
in A2k defined by:

τ = (1, k + 1)(2, k + 2) . . . (k, 2k).

We have:

df(p1 ⊗ p2, (p0 ⊗ idk)τ) = df(p1 ◦ p2, p0) + η(p1, p2).
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Proof. — The proof is only based on calculations. Let p and p′ be two partitions in Ak,
then:

df(p′, p) = nc(p′)− nc(p′ ∨ id)− nc(p′ ∨ p) + nc(p ∨ id),

and η(p, p′) is equal to:

nc(p) + nc(p′)− nc(p ◦ p′)− nc(p ∨ id)− nc(p′ ∨ id) + nc(p ◦ p′ ∨ id)− κ(p, p′).

Thus:

df(p1 ◦ p2, p0) + η(p1, p2)− df(p1 ⊗ p2, (p0 ⊗ idk)τ)

= nc(p1 ◦ p2)−nc((p1 ◦ p2) ∨ id)−nc((p1 ◦ p2) ∨ p0)+ nc(p0 ∨ id)+ nc(p1)+ nc(p2)

− nc(p1 ◦ p2)− nc(p1 ∨ id)− nc(p2 ∨ id) + nc((p1 ◦ p2) ∨ id)− κ(p1, p2)

− nc(p1 ⊗ p2) + nc((p1 ⊗ p2) ∨ id) + nc([(p0 ⊗ idk)τ ] ∨ [p1 ⊗ p2])

− nc([(p0 ⊗ idk)τ ] ∨ id2k).

Using the following equalities:

nc(p1 ⊗ p2) = nc(p1) + nc(p2),

nc([p1 ⊗ p2] ∨ id) = nc(p1 ∨ id) + nc(p2 ∨ id),

we get:

df(p1 ◦ p2, p0) + η(p1, p2)− df(p1 ⊗ p2, (p0 ⊗ idk)τ)

= −nc((p1 ◦ p2) ∨ p0) + nc(p0 ∨ id)− κ(p1, p2)

+ nc([(p0 ⊗ idk)τ ] ∨ [p1 ⊗ p2])− nc([(p0 ⊗ idk)τ ] ∨ id2k).

The equalities:

TrN (p0) = TrN ((p0 ⊗ idk)τ),

Nκ(p1,p2)TrN ((p1 ◦ p2)
tp0) = TrN ((p1p2)

tp0) = TrN ((p1 ⊗ p2)
t[(p0 ⊗ idk)τ ]),

allow us to prove, as an application of Equations (2) and (3), that:

nc(p0 ∨ id) = nc([(p0 ⊗ idk)τ ] ∨ id2k),

nc((p1 ◦ p2) ∨ p0) + κ(p1, p2) = nc([(p0 ⊗ idk)τ ] ∨ [p1 ⊗ p2]).

Thus df(p1 ◦ p2, p0) + η(p1, p2)− df(p1 ⊗ p2, (p0 ⊗ idk)τ) = 0.

8.2. Combinatorial consequences of Theorem 4.1. — Let us remark the following
important, yet simple theorem.

Theorem 8.1. — Let (mp)p∈Ak
be a family of complex numbers. There exists a se-

quence (EN )N∈N ∈
∏

N∈NC[Ak(N)] which converges and such that:

lim
N→∞

mp (EN ) = mp.

Proof. — Let us consider (mp)p∈Ak
a family of complex numbers. Let us consider

(κp)p∈Ak
, the unique family of real such that for any p ∈ Ak:

mp =
∑

p′∈[id,p]Ak

κp
′
.
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Let us consider then:

EN = MN
k





∑

p∈Ak

κpp



 .

According to Lemma 5.4, (EN )N∈N ∈
∏

N∈N C[Ak(N)] converges strongly. Thus, by
Theorem 4.1 it converges in moments and for any p ∈ Ak:

lim
N→∞

mp(EN ) =
∑

p′∈[id,p]Ak

lim
N→∞

κp
′
(EN ).

Yet, using Lemma 5.3, κp
′
(EN ) is equal to κp. Thus:

lim
N→∞

mp(EN ) =
∑

p′∈[id,p]Ak

κp
′
= mp.

This concludes the proof.

This theorem shows that, in order to understand the transformation between moments
and coordinate numbers, we have an approximation setting in which one can work with:
the space of convergent sequences in

∏

N∈N C[Ak(N)]. Let us show some examples of
propositions that one can get using this point of view. For this, we need the notion
of cumulants and exclusive moments. Let us consider (mp)p∈Ak

a family of complex
numbers.

Definition 8.1. — The cumulants of (mp)p∈Ak
is the unique family of complex numbers

(κp)p∈Ak
such that for any p ∈ Ak:

mp =
∑

p′∈[id,p]Ak

κp
′
.

The exclusive moments of (mp)p∈Ak
is the only family (mpc)p∈Pk

of complex numbers
such that:

mpc =
∑

p′∈Sp(p)∩Ak

κp′ .

Let us consider the cumulants (κp)p∈Ak
and the exclusive moments (mpc)p∈Pk

of
(mp)p∈Ak

.

Proposition 8.3. — Let p and p0 be two elements of Ak. Then:

δp∈[id,p0]Ak
mtp◦p0 =

∑

p′∈[id,p0]Ak

δp≺p′κ
Kp′(p).

where for any P ⊂ Ak, κ
P =

∑

p∈P κp.

By specifying p = id in Proposition 8.4, we get back the Equation (7). Besides, one
can get a similar formula for mp0◦ tp(E) by using Equation (17). Using Theorem 8.1,
the last proposition is a consequence of Proposition 8.4.
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Proposition 8.4. — For any integer N , let us consider EN an element of C[Ak(N)].
Let us suppose that (EN )N∈N converges. Let p and p0 be two elements of Ak. Then:

δp∈[id,p0]Ak
mtp◦p0(E) =

∑

p′∈[id,p0]Ak

δp≺p′κ
Kp′(p)(E).

Proof. — Let p and p0 be two elements of Ak. Let us consider for any N , MN
k (p) ∈

C[Ak(N)]. The sequence
(

MN
k (p)

)

N∈N
∈
∏

N∈N C[Ak(N)] converges by Lemma 5.4.

Let us apply the Theorem 7.1 to the product MN
k (p)EN . We remind the reader that

κp
′
(MN

k (p)) = δp=p′ for any p′ ∈ Ak. Using the Equation (15) in Theorem 7.1, we know
that

lim
N→∞

κp
′
(MN

k (p)EN ) = δp≺p′κ
Kp′ (p)(E).

Let us use Equation (7):

lim
N→∞

mp0(M
N
k (p)EN ) =

∑

p′∈[id,p0]Ak

δp≺p′κ
Kp′(p)(E).

Yet, according to Equation (16),

lim
N→∞

mp0(M
N
k (p)EN ) = δp∈[id,p0]Ak

mtp◦p0(E),

hence the equality stated in Proposition 8.4.

8.3. Convergence of the modified observables. — In Section 5, we have defined
a deformed partition algebra, by deforming the multiplication. Yet, we have not defined
any deformed linear form mp on the algebra C[Ak(N,N)]. In fact, on C[Ak(N,N)], for
any p ∈ Pk we define:

mN
p : C[Ak(N,N)] → C

E 7→ mp

(

MN
k (E)

)

.

A consequence of Theorem 4.1 is that for any E ∈ Ak, for any p ∈ Pk, mN
p (E)

converges as N goes to infinity: let us denote the limit by m∞
p (E). We already know

that the algebra C[Ak(N,N)] converges to C[Ak(∞,∞)] when N goes to infinity. Thus,
we have that:

Theorem 8.2. — For any integer k,
(

C[Ak(N,N)], (mN
p )p∈Pk

)

converges to
(

C[Ak(∞,∞)], (m∞
p )p∈Pk

)

as N goes to infinity. This means that:

1. the algebra C[Ak(N,N)] converges to C[Ak(∞,∞)] as N goes to infinity,
2. for any E ∈ C[Ak(N,N)], for any p ∈ Pk, m

N
p (E) converges to m∞

p (E) as N goes
to infinity, where m∞

p (E) is defined below.

Besides, let E =
∑

p∈Ak
Epp and F =

∑

p∈Ak
Fpp in C[Ak(∞,∞)], then

EF =
∑

p1,p2∈Ak

Ep1Fp2δp1≺p1◦p2p1 ◦ p2.
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And if p0 ∈ Ak:

m∞
p0(E) =

∑

p∈Ak

δp∈[id,p0]Ak
Ep.

In fact, this theorem has to be read in the other way: given the algebra with
linear forms (C[Ak(∞,∞)], (m∞

p )p∈Pk
), one can find an approximation given by

(

C[Ak(N,N)], (mN
p )p∈Pk

)

.

9. Algebraic fluctuations

In this section, we generalize Sections 4, 5 and 7 in order to study the asymptotic
developments of the coordinate numbers and normalized moments. The proofs will be
either omitted or simplified as they will use the same arguments as we have seen in
Sections 4, 5 and 7.

In order to study the asymptotic developments, we need to introduce two notions
of defect. One already seen is linked with the triangle inequality and the other to the
improved triangle inequality. Let k be a positive integer, let p and p′ be two elements
of Ak. We recall that we defined in Definition 3.5 the defect of p′ from not being on the
set-geodesic [id, p]Pk

by:

df(p′, p) = d(id, p′) + d(p′, p)− d(id, p) = nc(p′)− nc(p′ ∨ id)− nc(p ∨ p′) + nc(p ∨ id).

Definition 9.1. — The defect η(p, p′) that p ≺ p ◦ p′ is not satisfied by:

d(id, p) + d(id, p′)− d(id, p ◦ p′)−
k + nc(p ◦ p′)− nc(p)− nc(p′)

2
− κ(p, p′).

We warn the reader that, in general:

df(p, p ◦ p′) 6= η(p, p′),

even if this equality is true when one considers p, p′ ∈ Sk. Let us remark that if p and
p0 are elements of Ak, p ≺ p0 holds if and only if there exists p′ such that p0 = p ◦p′ and
η(p, p′) = 0.

Let us define the N -development algebra of order m of Ak. This algebra is the good
setting in order to study fluctuations of the coordinate numbers and moments.

Definition 9.2. — Let N, k and m be integers, let X be a formal variable. The N -
development algebra of order m of Ak, C(m)[Ak(N)], is the associative algebra generated
by the elements of the form:

p

Xi
,

where p ∈ Ak and i ∈ {0, . . . ,m}. The product is defined such that, for any p and p′ in
Ak, and any i and j in {0, . . . ,m}:

p

Xi
.
p′

Xj
=

1

Nmax(i+j+η(p,p′)−m,0)

p ◦ p′

Xmin(i+j+η(p,p′),m)
.
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This product is well defined: indeed the improved triangle inequality, Proposition 6.1
or Lemma 6.1, assert that for any p, p′ ∈ Ak, η(p, p

′) ≥ 0, thus, for any i, j ∈ {0, . . . ,m},
any p, p′ ∈ Ak, we have min(i+ j + η(p, p′),m) ≥ 0. This implies that:

p ◦ p′

Xmin(i+j+η(p,p′),m)

is an element of the canonical basis of the N -development algebra of order m of Ak. Let
us remark that for any positive integers k, N and m, C(m)[Sk(N)] ⊂ C(m)[Bk(N)] ⊂
C(m)[Pk(N)], where these inclusions are inclusions of algebras.

9.1. Coordinate numbers. — Let N be a positive integer, the N -development alge-
bra of order 0 of Ak is canonically isomorphic to C[Ak(N,N)].

Lemma 9.1. — Let N be an integer, the application:

LN
k : Ak → C(0)[Ak(N)]

p 7→
p

X0

can be extended as an isomorphism of algebra between C[Ak(N,N)] and C(0)[Ak(N)].

Proof. — Let us show that for any p, p′ in Ak, L
N
k (p.Np′) = LN

k (p)LN
k (p′). As for any

p, p′ ∈ Ak, η(p, p
′) ≥ 0, LN

k (p)LN
k (p′) is equal to:

p

X0

p′

X0
=

1

Nη(p,p′)

p ◦ p′

X0
=

1

Nη(p,p′)
LN
k (p ◦ p′).

Yet, looking at the definition of η(p, p′) given in Definition 9.1, for any integer N the
following equation holds in C[Ak(N,N)]:

p.Np′ =
1

Nη(p,p′)
p ◦ p′.

This allows us to conclude.

Let m be a positive integer. We define, for any i ≤ m, the coordinate numbers of
order i of any element of C(m)[Ak(N)].

Definition 9.3. — Let E ∈ C(m)[Ak(N)]. The coordinate numbers of E up to the order

m are the elements (κpi (E))i∈{0,...,m},p∈Pk
such that:

E =
∑

p∈Ak

m
∑

i=0

κpi (E)
p

Xi
.

Let p ∈ Ak and i ≤ m. The number κpi (E) is the coordinate number of E on p of order i.

We define also a notion of convergence. In order to do so, we must not forget that,
when m = 0, C(m)[Ak(N)] is isomorphic to the deformed algebra C[Ak(N,N)] and not
the algebra C[Ak(N)]. Let (EN )N∈N ∈

∏

N∈NC(m)[Ak(N)].

Definition 9.4. — The sequence (EN )N∈N converges if and only if for any i ∈
{0, . . . ,m − 1}, and any p ∈ Ak, κpi (EN ) is independent of N , and for any p ∈ Ak,
κpm(EN ) converges when N goes to infinity.
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Notation 9.1. — Let us suppose that (EN )N∈N converges as N goes to infinity. We
denote, for any i ∈ {0, . . . ,m} and any p ∈ Ak: κpi (E) = lim

N→∞
κpi (EN ).

9.2. Convergences: C(m)[Ak(N)] and multiplication. — Using Lemma 9.1 and
Theorem 6.1, since the algebra C[Ak(N,N)] is isomorphic to C(0)[Ak(N)] by an isomor-
phism which sends the canonical base of the first algebra on the canonical base of the
second algebra, we know that the algebra C(0)[Ak(N)] converges as N tends to infinity.
In fact, the result holds for any m ∈ N. Let k and m be two integers. Let X be a formal
variable.

Definition 9.5. — The ∞-development algebra of order m of Ak, denoted by
C(m)[Ak(∞)] is the associative algebra generated by the elements of the form:

p

Xi
,

where p ∈ Ak and i ∈ {0, . . . ,m}. The product is defined such that, for any p and p′ in
Ak, and any i and j in {0, . . . ,m},

p

Xi

p

Xj
= δi+j+η(p,p′)≤m

p ◦ p′

Xi+j+η(p,p′)
.

Let us recall Definition 6.3, where we defined the convergence of algebras. We then
have the following proposition.

Proposition 9.1. — When N goes to infinity, the N -development algebra of order m
of Ak, C(m)[Ak(N)] converges to the ∞-development algebra of order m of Ak, namely
C(m)[Ak(∞)].

Proof. — The algebras C(m)[Ak(N)] have, for any integer N , the same linear basis
( p
Xi

)

i∈{0,...,m},p∈Ak
. Since for any p, p′ ∈ Ak, any i, j ∈ N:

p

Xi

p′

Xi′
=

1

Nmax(i+j+η(p,p′)−m,0)

p ◦ p′

Xmin(i+j+η(p,p′),m)
−→
N→∞

δi+j+η(p,p′)≤m
p ◦ p′

Xi+j+η(p,p′)
,

where the first product is seen in C(m)[Ak(N)], the algebra C(m)[Ak(N)] converges to
C(m)[Ak(∞)] as N goes to infinity.

Let us write the first easiest consequence of the Proposition 9.1, which can be proved
by using a bi-linearity argument, Proposition 9.1 and Definition 9.4.

Proposition 9.2. — Let (EN )N∈N and (FN )N∈N be elements of
∏

N∈NC(m)[Ak(N)].
Let us suppose that the two sequences (EN )N∈N and (FN )N∈N converge. The sequence
(ENFN )N∈N converges and, using Notations 9.1, for any i0 ∈ {0, . . . ,m} and for any
p0 ∈ Ak:

κp0i0 (EF ) =
∑

p,p′∈Ak,η(p,p′)≤i0,p◦p′=p0

∑

i∈{0,...,i0−η(p,p′)}

κpi (E)κp
′

i0−η(p,p′)−i(F ).

As for Section 7.2, the good behavior of the product, given by Proposition 9.2, implies
a criterion for the convergence of semi-groups in

∏

N∈NC(m)[Ak(N)].
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Definition 9.6. — Let
(

(EN
t )N

)

t≥0
be a semi-group in

∏

N∈NC(m)[Ak(N)]. The semi-

group
(

(EN
t )N

)

t≥0
converges if and only if for any t ≥ 0,

(

EN
t

)

N∈N
converges.

Proposition 9.3. — Let m ∈ N. Let us consider
((

EN
t

)

N

)

t≥0
a semi-group in

∏

N∈N C(m)[Ak(N)] which generator is denoted by (HN )N∈N. It converges if the se-

quences (EN
0 )N∈N and (HN )N∈N converge. Besides, using Notation 9.1, for any p ∈ Ak,

for any t0 ≥ 0 and any i ∈ {0, . . . ,m},

d

dt |t=t0
κp0i0 (Et) =

∑

p,p′∈Ak,η(p,p′)≤i0,p◦p′=p0

∑

i∈{0,...,i0−η(p,p′)}

κpi (H)κp
′

i0−η(p,p′)−i(Et0).

In order to finish this section, let us introduce the evaluation morphism: it is a
morphism which allows us to inject an element from C(m)[Ak(N)] in C[Ak(N)]. Let N
be a positive integer, the function evalN is defined by:

evalN(m) : C(m)[Ak(N)] → C[Ak(N)]

∑

p∈Ak

m
∑

i=0

κpi (E)
p

Xi
7→
∑

p∈Ak

m
∑

i=0

κpi (E)
1

N i

p

N− k
2
+

nc(p)
2

+d(id,p)
.

Lemma 9.2. — For any positive integer N , evalN(m) is a morphism of algebra.

Proof. — Let N be a positive integer, let i, j ∈ {0, . . . ,m} and p, p′ ∈ Ak. Then:

evalN(m)

(

p

Xi

p′

Xj

)

= evalN(m)

(

1

Nmax(i+j+η(p,p′)−m,0)

p ◦ p′

Xmin(i+j+η(p,p′),m)

)

=
1

N i+j+η(p,p′)− k
2
+ nc(p◦p′)

2
+d(id,p◦p′)

p ◦ p′

=

(

1

N i

p

N− k
2
+ nc(p)

2
+d(id,p)

)

(

1

N j

p′

N− k
2
+

nc(p′)
2

+d(id,p′)

)

= evalN(m)

( p

Xi

)

evalN(m)

( p

Xj

)

.

The other properties can be easily verified.

The function evalN(m) has an inverse if and only if m = 0. This will motivate us

in order to define a notion of convergence up to order m of fluctuations for sequences
in
∏

N∈N C[Ak(N)]. Then, given a linear or multiplicative problem in C[Ak(N)], one
can try to find a similar problem in C(m)[Ak(N)], solve this last problem, and push by

evalN(m) the solution on a solution of the first problem.

9.3. Convergence at any order of fluctuations in
∏

N∈NC[Ak(N)]. — We are
interested in elements in C[Ak(N)] and we want to define a notion of strong convergence
up to themth order of fluctuations. Letm be an integer, let (EN )N∈N ∈

∏

N∈N C[Ak(N)].

Definition 9.7. — The sequence (EN )N∈N converges strongly up to the mth order
of fluctuations if and only if there exist two families of real (κpi )i∈{0,...,m−1},p∈Ak

and

(κpm,N )p∈Ak,N∈N such that:
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– ∀p ∈ Ak, κp(EN ) =
∑m−1

i=0
κp
i

N i +
κp
m,N

Nm ,

– ∀p ∈ Ak, κ
p
m,N converges as N goes to infinity.

The families (κpi )i∈{0,...,m−1},p∈Ak
and (κpm,N )p∈Ak

are uniquely defined.

For any p ∈ Ak, any integer N and any i ∈ {0, . . . ,m − 1}, κpi is the coordinate
number of EN on p of order i, and κpm,N is the coordinate number of EN on p of order
m.

Notation 9.2. — Let us suppose that (EN )N∈N converges strongly up to the mth order
of fluctuations. From now on, the coordinate numbers of EN on p of order i will be
denoted by κpi (EN ). For any p ∈ Ak and any i ∈ {0, . . . ,m}, we will define:

κpi (E) = lim
N→∞

κpi (EN ).

When one works in
∏

N∈NC[Ak(N)], one has to be aware that the coordinate numbers
of higher order of fluctuations are only defined for a sequence (EN )N∈N which converges
strongly. Thus, one must not forgot that the notation κpi (EN ) means that we are looking
at the coordinate numbers of EN seen as an element of the sequence (EN )N≥0.

The Definition 9.7 might seem strange as it only uses once the notion of convergence.
Yet, it is easy to see that an equivalent definition is the following one. The sequence
(EN )N∈N converges strongly up to the mth order of fluctuations if and only if there exists
a family (κpi )i∈{0,...,m},p∈Ak

of real numbers such that for any i ∈ {0, . . . ,m},

N i



κp(EN )−
i−1
∑

j=0

κpj
N j



 −→
N→∞

κpi ,

with the convention
−1
∑

j=0

κp
j

Nj = 0. This equivalent definition explains why the families

(κpi )i∈{0,...,m−1},p∈Ak
and (κpm,N )N∈N,p∈Ak

defined in Definition 9.7 are uniquely defined.
The next lemma allows to make a link between the convergence of elements of

∏

N∈NC(m)[Ak(N)] and the convergence up to the mth order of fluctuations of elements
of
∏

N∈N C[Ak(N)].

Lemma 9.3. — Let us suppose that (EN )N∈N converges. Then
(

evalN(m)(EN )
)

N∈N

converges strongly up to the mth order of fluctuations.

The notion of strong convergence to the mth order of fluctuations allows us to inject
canonically an element of

∏

N∈N C[Ak(N)] which converges strongly up to the mth order
of fluctuations into

∏

N∈N C(m)[Ak(N)].

Definition 9.8. — Let us suppose that (EN )N∈N converges strongly up to the mth or-
der of fluctuations. For any p ∈ Ak, any integer N , let (κpi )i∈{0,...,m−1} and κpm,N be

the coordinate numbers of EN on p. We define the lift of the sequence (EN )N∈N as
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(ẼN )N∈N ∈
∏

N∈NC(m)[Ak(N)] defined by:

ẼN =
∑

p∈Ak

((

m−1
∑

i=0

κpi
p

Xi

)

+ κpm,N

p

Xm

)

.

The following lemma is then straightforward.

Lemma 9.4. — Let us suppose that (EN )N∈N converges strongly up to the mth order of

fluctuations. Let (ẼN )N∈N be its canonical lift in
∏

N∈N C(m)[Ak(N)]. Then (ẼN )N∈N

converges as N goes to infinity and for any N ∈ N, one has evalN(m)(ẼN ) = EN .

We are going to define a weak notion of convergence up to themth order of fluctuations
and we will show that this notion is equivalent to the strong convergence notion we
defined in Definition 9.7.

Definition 9.9. — The sequence (EN )N∈N converges in moments up to the mth

order of fluctuations if and only if there exist two families (mi
p)i∈{0,...,m−1},p∈Ak

and
(mm

p,N )N∈N,p∈Ak
such that:

– ∀p ∈ Ak, mp(EN ) =
∑m−1

i=0
mi

p

N i +
mm

p

Nm ,

– ∀p ∈ Ak, m
m,N
p converges as N goes to infinity.

The families (mi
p)i∈{0,...,m−1},p∈Ak

and (mm
p,N )N∈N,p∈Ak

are uniquely defined.

For any p ∈ Ak, any integer N , and any i ∈ {0, . . . ,m − 1}, mi
p is the ith-order

fluctuations of the p-normalized moment of EN , and mm
p,N is the mth-order fluctuations

of the p-normalized moment of EN .

Notation 9.3. — Let us suppose that (EN )N∈N converges in moments up to the mth

order of fluctuations. From now on, the ith-order fluctuations of the p-normalized mo-
ment of EN will be denoted by mi

p(EN ). For any p ∈ Ak and any i ∈ {0, . . . ,m}, we
define:

mi
p(E) = lim

N→∞
mi

p(EN ).

The same remark about the coordinate numbers of EN on p of order i, explained just
after Notation 9.2, can be made for the fluctuations of the p-normalized moments of EN .
The next theorem shows that the strong convergence up to the mth order of fluctuations
is equivalent to the convergence in moments up to the mth order of fluctuations. We
recall that m ∈ N and (EN )N∈N ∈

∏

N∈NC[Ak(N)].

Theorem 9.1. — The sequence (EN )N∈N converges strongly up to the mth order of
fluctuations if and only if it converges in moments up to the mth order of fluctuations.
We will say that (EN )N∈N converges up to the mth order of fluctuations.

Let us suppose that (EN )N∈N converges up to the mth order of fluctuations, then, seen
as an element of

∏

N∈N C[Pk(N)], it converges also up to the mth order of fluctuations
and for any i0 ∈ {0, . . . ,m} and any p ∈ Pk:

lim
N→∞

mi0
p (EN ) =

∑

p′∈Ak,df(p′,p)≤i0

κp
′

i0−df(p′,p)(E).(21)
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Proof. — We have already seen the arguments in order to prove the second assertion.
Let us prove that (EN )N∈N converges strongly up to the mth order of fluctuations if and
only if it converges in moments up to the mth order of fluctuations. Let us consider p in
Ak.

Let us suppose that (EN )N∈N converges strongly up to the mth order of fluctuations.
The coordinate numbers of EN are defined up to order m of fluctuations and:

EN =
∑

p∈Ak

m
∑

i=0

κpi (EN )

N i

p

Nnc(p)−nc(p∨id)
.

Besides, for any p ∈ Ak and any i ≤ m− 1, κpi (EN ) does not depend on N and κpm(EN )
converges when N goes to infinity. We can compute the p-normalized moments of EN ,
using the same arguments as for the proof of Theorem 4.1:

mp(EN ) =
1

TrN (p)
TrN (EN

tp) =
∑

p′∈Ak

m
∑

i=0

κp
′

i (EN )
1

N i+df(p′,p)

=
m−1
∑

j=0





∑

(p′,i)∈Ak×{0,...,m−1},i+df(p′,p)=j

κp
′

i (EN )





1

N j

+





∑

(p′,i)∈Ak×{0,...,m},i+df(p′,p)≥m

κp
′

i (EN )

N i+df(p′,p)−m





1

Nm
.

Let us define for any N ∈ N, any j ∈ {0, . . . ,m− 1} and any p ∈ Ak:

mj
p(EN ) =

∑

(p′,i)∈Ak×{0,...,m−1},i+df(p′,p)=j

κp
′

i (EN )

and

mm
p (EN ) =

∑

(p′,i)∈Ak×{0,...,m},i+df(p′,p)≥m

κp
′

i (EN )

N i+df(p′,p)−m
,

so that, for any p ∈ Ak and any N ∈ N:

mp(EN ) =

m−1
∑

j=0

mi
p(EN )

N j
+

mm
p (EN )

Nm
.

For any p ∈ Ak and any i ≤ m− 1, mi
p(EN ) does not depend on N and for any p ∈ Ak,

κpm(EN ) converges when N goes to infinity. Thus mm
p (EN ) converges when N goes to

infinity to
∑

p′∈Ak,df(p′,p)≤m

κp
′

m−df(p′,p)(E).

By Definition 9.9, this shows that (EN )N∈N converges in moments up to the mth order
of fluctuations and the Equation (21) holds.

Let us suppose now that (EN )N∈N converges in moments up to the mth order of
fluctuations. Then, by Theorem 4.1, it converges strongly up to order 0 of fluctuation.
Let us suppose that (EN )N∈N converges strongly up to order l of fluctuations with l < m.
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Thus, the coordinate numbers of EN up to order l of fluctuations are well defined and
we can write:

EN =
∑

p∈Pk





l−1
∑

j=0

κpj (E)

N j
+

κpl (EN )

N l



 p,

where, for any p ∈ Pk, κ
p
l (EN ) is converging when N goes to infinity to a number κpl (E).

We can use the computation of the normalized moments of EN that we already did in
order to show that for any partition p ∈ Ak:

mp(EN ) =
l−1
∑

j=0





∑

(p′,i)∈Ak×{0,...,l−1},i+df(p′,p)=j

κp
′

i (E)





1

N j

+





∑

(p′,i)∈Ak×{0,...,l},i+df(p′,p)≥l

κp
′

i (EN )

N i+df(p′,p)−l





1

N l
.

Thus, using the same notations than those used in the first part of the proof, we get:

mp(EN ) =

l
∑

j=0

mj
p(E)

N j
+

∑

p′∈Ak,df(p′,p)=0

κp
′

l (EN )− κp
′

l (E)

N l

+
∑

(p′,i)∈Ak×{0,...,l},i+df(p′,p)−l=1

κp
′

i (EN )

N l+1
+ o

(

1

N l+1

)

.

Let us use the fact that (EN )N∈N converges in moments up to the order l + 1 of fluctu-
ations: for any p′ ∈ Ak,

N l+1



mp(EN )−
l
∑

j=0

mj
p(E)

N j





converges as N goes to infinity. This implies that for any p ∈ Ak,

∑

p′∈[id,p]Ak

N(κp
′

l (EN )− κp
′

l (E))

converges as N goes to infinity. We are thus in the same setting as for the order 0 of
fluctuations: for any p ∈ Ak,

N(κp
′

l (EN )− κp
′

l (E))

converges as N goes to infinity: this is equivalent to say that (EN )N∈N converges strongly
up to order l + 1 of fluctuations. This implies by recurrence that (EN )N∈N converges
strongly up to order m of fluctuations.
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9.4. Multiplication and convergence of fluctuations in
∏

N∈NC[Ak(N)]. — The
results in Section 9.3 were only algebraic: we will now give the similar results for elements
in
∏

N∈NC[Ak(N)]. The main ingredients used in order to do so are Lemma 9.2, Lemma

9.3 and Lemma 9.4 which respectively assert that evalN(m) is a morphism of algebra,

compatible with the strong convergence notion and, in some sense, can be inverted.

Theorem 9.2. — Let (EN )N∈N and (FN )N∈N be elements of
∏

N∈NC[Ak(N)]. Let us

suppose that the sequences (EN )N∈N and (FN )N∈N converge up to the mth order of fluc-
tuations. Then, the sequence (ENFN )N∈N converges up to the mth order of fluctuations.

Besides, using Notations 9.2 and 9.3, for any i0 ∈ {0, . . . ,m}:

– for any p0 ∈ Ak:

κp0i0 (EF ) =
∑

p,p′∈Ak,η(p,p′)≤i0,p◦p′=p0

i0−η(p,p′)
∑

i=0

κpi (E)κp
′

i0−η(p,p′)−i(F ).(22)

– for any p0 ∈ Pk:

mi0
p0(EF ) =

∑

p1∈Ak

∑

i+j+df(p1,p0)=i0

κp1i (E)mj
tp1◦p0

(F ).(23)

Proof. — Let (EN )N∈N and (FN )N∈N be elements of
∏

N∈NC[Ak(N)]. Let us sup-
pose that the sequences (EN )N∈N and (FN )N∈N converge strongly or in moments up
to the mth order of fluctuations. By Lemma 9.4, let us consider the canonical lifts of
(EN )N∈N (resp. (FN )N∈N) in

∏

N∈NC(m)[Ak(N)]: (ẼN )N∈N (resp. (F̃N )N∈N). The two

sequences (ẼN )N∈N and (F̃N )N∈N converge. According to Proposition 9.2, the sequence

(ẼN F̃N )N∈N converges. For any i0 ∈ {0, . . . ,m} and for any p0 ∈ Ak:

κp0i0 (ẼF̃ ) =
∑

p,p′∈Ak,η(p,p′)≤i0,p◦p′=p0

∑

i∈{0,...,i0−η(p,p′)}

κpi (Ẽ)κp
′

i0−η(p,p′)−i(F̃ ).(24)

An application of Lemma 9.3 shows that the sequence
(

evalN(m)(ẼN F̃N )
)

N∈N
converges

up to the mth order of fluctuations. As evalN(m) is a morphism of algebra, Lemma 9.2,

for any N ∈ N,

evalN(m)(ẼN F̃N ) = evalN(m)(ẼN )evalN(m)(F̃N ) = ENFN .

We deduce that (ENFN )N∈N converges strongly up to the mth order of fluctuations. The
equality (22) is deduced from (24).

In order to prove the equality (23), the best way is to come back to the definitions,
and do a proof similar to the one for (16) in Theorem 7.1.

Let us consider the implication of Proposition 9.3 for semi-groups in
∏

N∈NC[Ak(N)].

From now on, let us suppose that
((

EN
t

)

N

)

t≥0
is a semi-group in

∏

N∈N C[Ak(N)]

whose generator is (HN )N∈N. We would like to state a theorem for the fluctuations

of
((

EN
t

)

N

)

t≥0
similar to Theorem 7.2. For this, we need the following definition.
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Definition 9.10. — The semi-group
((

EN
t

)

N

)

t≥0
converges to the mth order of fluc-

tuations if and only if for any t ≥ 0,
(

EN
t

)

N∈N
converges up to the mth order of fluctu-

ations.

Now we can state the theorem about the convergence to themth order of fluctuations of
a semi-group in

∏

N∈NC[Ak(N)]. The proof will not be given, as it is a direct consequence
of Proposition 9.3 with a lift-argument as for the last proof.

Theorem 9.3. — The semi-group
((

EN
t

)

N

)

t≥0
converges to the mth order of fluctua-

tions if the sequences (EN
0 )N∈N and (HN )N∈N converge up to the mth order of fluctua-

tions. Besides, we have the two differential systems of equations:

– for any p0 ∈ Ak, for any t0 ≥ 0, for any i0 ∈ {0, . . . ,m}:

d

dt |t=t0
κp0i0 (Et) =

∑

p,p′∈Ak,η(p,p′)≤i0,p◦p′=p0

∑

i∈{0,...,i0−η(p,p′)}

κpi (H)κp
′

i0−η(p,p′)−i(Et0).

– for any p0 ∈ Pk, for any t0 ≥ 0, for any i ∈ {0, ...,m}:

d

dt |t=t0
mi0

p0(Et) =
∑

p1∈Ak

∑

i+j+df(p1,p0)=i0

κp1i (Ht)m
j
tp1◦p

(Et0).

10. An introduction to the general R-transform

10.1. The zero order. — Up to now, we only worked with partitions which have a
fixed length: we worked in Ak for a fixed integer k. Yet, we could have worked with
A∞ = ∪k∈NAk endowed with the product: pp′ = δl(p)=l(p′)pp

′ where we recall that l(p) is
the length of p. With this definition, we see that all the results hold when one changes k
by k = ∞. For example C[A∞(N,N)] converges when N goes to infinity to an algebra
C[A∞(∞,∞)].

10.1.1. Order zero: general definitions and Lie algebras. — Recall that A is either S,
B or P.

Definition 10.1. — Let us define the algebra Eg[A] =
∏∞

k=0C [Ak(∞,∞)] . Two sub-
spaces of Eg[A] will be interesting for us:

E[A] = {E ∈ Eg[A], E∅ = 1} and e[A] = {E ∈ Eg[A], E∅ = 0}.

Any element E ∈ Eg[A] is of the form E =
(

∑

p∈Ak
(Ek)pp

)

k∈N
. In order to simplify

the notations, we will use the following conventions: for any integer k, for any p ∈ Ak,

Ep = E(p) = (Ek)p ,

and for any positive integer k:

Ek =
∑

p∈Ak

Epp.
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The algebra Eg[A] is naturally endowed with a natural addition and multiplication
given, for any E,F ∈ Eg[A] and any k ∈ N

∗ by:

(E + F )k = Ek + Fk

(E ⊠ F )k = EkFk.

By convention (E ⊠ F )∅ = E∅F∅. Besides, one can construct an other law on Eg[A].

Definition 10.2. — Let E and F be two elements of Eg[A]. We denote by E ⊞ F the
element of Eg[A] such that for any p ∈ Al(p):

(E ⊞ F )p =
∑

(p1,p2,I)∈F2(p)

E(p1)F (p2),

where F2(p) was defined in Definition 2.11.

In fact, the two operations ⊠ and ⊞ are convolution operations.

Remark 10.1. — The sets E[A] and e[A] are stable by the ⊞ and ⊠ operations. Besides,
E[A] is an affine space whose underlying vector space is e[A].

The operation ⊞ on E[A] is commutative, it defines a structure of group on E[A]. The
neutral element 0E is the only element in E[A] such that for any k ∈ N

∗, any p ∈ Ak,
(0E)p = 0.

The operation ⊠ is not commutative and the set of invertible elements in E[A] is the
set of elements E such that Eidk 6= 0 for any k ≥ 1, we denote it by GE[A]. We denote
by 1E the neutral element for ⊠ which is the only element such that for any k ≥ 1,
(1E)k = idk.

Let us consider an interesting sub-vector space of Eg[A]. Recall the notation A
(i)
k

defined in Definition 2.10.

Definition 10.3. — We define E
(i)
g [A] =

∏∞
k=0C

[

A
(i)
k

]

. Two subspaces of Eg[A] will

be interesting for us:

E(i)[A] = E(i)
g [A] ∩ E[A] and e(i)[A] = E(i)

g [A] ∩ e[A].

When A = S, we have already seen after Definition 2.10 that

A
(i)
k = {σ−1(1, . . . , k)σ, σ ∈ Sk}.

Let us consider (E(i)[A])S the set of elements of E(i)[A] which are invariant by conju-
gation by any permutation: this means that for any positive integer k and any σ ∈ Sk,
the following equality holds in C[Ak(N)] for any positive integer N :

σEkσ
−k = Ek,

Proposition 10.1. — The affine space (E(i)[S])S can ben identified with the affine
space C1[[z]] of formal power series which constant term is equal to 1 by the following
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isomorphism :

(E(i)[S])S → C1[[z]]

E 7→
∑

k∈N

E(1,...,k)z
k.

Any element E in Eg[A] can be restricted in order to obtain an element of E
(i)
g [A]

that we denote by E|Ei[A]. Conversely, given an element of E
(i)
g [A], one can inject it

non-trivially in Eg[A] in a natural way. Recall the definition of the extraction of p in
Definition 2.12, and the definition of cycles given in Definition 2.9. We only consider the
injection of an element of E(i)[A] in E[A].

Definition 10.4. — For any E ∈ E(i)[A], we denote by M(E) the unique element of
E[A] such that for any integer k, any p ∈ Ak,

(M(E))p =
∏

C∈C(p)

EpC .

Any element of the image of the application:

M : E(i)[A] → E[A]

E 7→ M(E)

is called multiplicative and we denote ME[A] = M [E[A]] .

Let us remark that 0E and 1E are multiplicative elements. This is not the only property
satisfied by ME[A].

Theorem 10.1. — The set ME[A] is stable by the operations ⊞ and ⊠.

Proof. — Let E and F be two elements of ME[A]. Let us show that E ⊞ F is multi-
plicative. Let p1 and p2 be two partitions, we have to show that:

(E ⊞ F )p1⊗p2 = (E ⊞ F )p1(E ⊞ F )p2 .(25)

Yet, by definition:

(E ⊞ F )p1⊗p2 =
∑

(a1,a2,I)∈F2(p1⊗p2)

Ea1Fa2 ,

and:

(E ⊞ F )p1(E ⊞ F )p2 =
∑

(a11,a
1
2,I

1)∈F2(p1),(a21,a
2
2,I

2)∈F2(p2)

Ea11
Ea21

Fa12
Fa22

.

Using the fact that E and F are multiplicative, that E∅ = 1 = F∅ and using the fact
that for any (a1, a2, I) ∈ F2(p1 ⊗ p2), a1 and a2 can be decomposed uniquely into two
parts in order to get two 3-tuples (a11, a

1
2, I

1) ∈ F2(p1) and (a21, a
2
2, I

2) ∈ F2(p2), one gets
the Equality (25).

Let us show that E⊠F is multiplicative. Let p1 and p2 be two partitions, we have to
show that:

(E ⊠ F )p1⊗p2 = (E ⊠ F )p1(E ⊠ F )p2 .
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By definition:

(E ⊠ F )p1⊗p2 =
∑

a,b/a◦b=p1⊗p2,a≺p1⊗p2

EaFb.

Yet, using Lemma 6.4, any partition a such that a ≺ p1⊗p2 can be decomposed uniquely
as a1 ⊗ a2 such that a1 ≺ p1 and a2 ≺ p2. Then if b is a partition such that a1 ⊗ a2 ◦ b =
p1 ⊗ p2, b can be also decomposed uniquely as b = b1 ⊗ b2 with a1 ⊗ b1 = p1 and
a2 ⊗ b2 = p2. Using the multiplicative property of E and F , one gets:

(E ⊠ F )p1⊗p2 =
∑

a1,a2,b1,b2/a1◦b1=p1,a2◦b2=p2,a1≺p1,a2≺p2

Ea1Ea2Fb1Fb2

=
∑

a1,b1/a1◦b1=p1,a1≺p1

Ea1Fb1

∑

a2,b2/a2◦b2=p2,a2≺p2

Ea2Fb2

= (E ⊠ F )p1 (E ⊠ F )p2 .

This ends the proof.

Let us justify our notation ⊞. If we consider the pull-back of the ⊞ operation from
ME[A] to E(i)[A] and if one consider only the coefficients for the non-empty partitions,

one simply obtains the usual additive law on E(i)[A]. We will also see in the article [9]
that ⊞ is the natural operation which appears when one is working with sum of free
elements.

We believe that the inverse of a multiplicative element for the ⊞ and ⊠ is still multi-
plicative, but we have not yet written the proof. It is natural to wonder, as we have two
semi-groups (ME[A],⊞) and (ME[A] ∩ GEA,⊠) on which one can define differentiable
one-parameter semi-groups, what are the “Lie algebras” of these two semi-groups. Let
us remark that ME[A]∩GEA is only the set of elements E of ME[A] such that Eid1 6= 0.

We need to define two ways to inject e(i)[A] in e[A], the first of which is the natural
injection.

Definition 10.5. — For any E ∈ e(i)[A], we denote by I(E) the unique element of e[A]
such that, for any positive integer k, any irreducible p ∈ Ak,

(I(E))p = Ep,

and for any non-irreducible p ∈ Ak, (I(E))p = 0. We define me⊞[A] = I(E(i)[A]).

The second injection uses the notion of support of a partition and the notion of weakly
irreducible partitions defined in Definition 2.13. Recall also the notion of extraction
defined in Definition 2.12.

Definition 10.6. — For any E ∈ e(i)[A], we denote by J(E) the unique element of e[A]
such that, for any integer k, any weakly irreducible p 6= idk in Ak:

(J(E))p = E(pS(p)),

and (J(E))idk = k (J(E))id1 and for any other p ∈ Ak, (J(E))p = 0. We define me⊠[A] =

J(E(i)[A]).
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Due to the definitions, it is obvious that the sets me⊠[A] and me⊞[A] are vector spaces.
Let us define the exponentiation of any element of e[A] associated with the operation ⊞.

Definition 10.7. — Let E ∈ e[A]. The ⊞-semi group associated with E is the family
(etE

⊞
)t≥0 of elements of E[A] such that for any t0 ≥ 0:

d

dt |t=t0
etE⊞ = E ⊞ et0E

⊞
,

e0E⊞ = 0E.

Due to the commutativity of ⊞, one has that for any E,F ∈ e[A], eE
⊞
⊞ eF

⊞
= eE⊞F

⊞
.

Let us define the exponentiation associated with the operation ⊠.

Definition 10.8. — Let E ∈ e[A]. The ⊠-semi group associated with E is the family
(etE

⊠
)t≥0 of elements of E[A] such that for any t0 ≥ 0:

d

dt |t=t0
etE⊠ = E ⊠ et0E

⊠
,

e0E
⊠

= 1E.

We defined etE
⊞

and etE
⊠

as a one-parameter semi-group for two reasons: it will appear
later in this formulation, and it allows us to have a Lie group/Lie algebra formalism. As
noticed by G. Cébron, an equivalent definition is given by the next proposition.

Proposition 10.2. — Let E ∈ e[A], for any t ∈ R
+,

etE⊞ =

∞
∑

n=0

tn

n!
E⊞n and etE⊠ =

∞
∑

n=0

tn

n!
E⊠n,

where E⊞0 = 0E and E⊠0 = 1E.

Actually, we will use implicitely this fact when we will have to compute a element of
the form etE

⊞
in the article [9]. Besides, if one wants to make everything explicits, for

example this implies that for any t ∈ R
+, any positive integer k, any p ∈ Ak and any

E ∈ e[A],

(

etE
⊠

)

p
=

∞
∑

n=0

tn

n!

∑

(p1,...,pn)∈Ak ,p1≺p1◦p2≺...≺p1◦...◦pn/p1◦...◦pn=p

Ep1Ep2 ...Epn .

The next theorem shows that me⊞[A] and me⊠[A] are the Lie algebras of respectively
(ME[A],⊞) and (ME[A] ∩GEA,⊠).

Theorem 10.2. — Let E ∈ me⊞[A], for any t ≥ 0,

etE⊞ ∈ ME[A].

Besides for any differentiable one-parameter semi-group (Et)t≥0 in (ME[A],⊞) such that
E0 = 0E, there exists E ∈ me⊞[A] such that for any t ≥ 0,

etE⊞ = Et.
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Let E ∈ me⊠[A]. For any t ≥ 0,

etE
⊠

∈ ME[A].

Besides for any differentiable one-parameter semi-group (Et)t≥0 in (ME[A],⊠) such that
E0 = 1E, there exists E ∈ me⊠[A] such that for any t ≥ 0,

etE⊠ = Et.

Proof. — Before doing the proof, let us give the two general ideas that we will use.

1. Let (Et)t≥0 be a differentiable family of elements of E[A] such that E0 = 0E or
E0 = 1E. In order to prove that Et ∈ ME[A] for any real t ≥ 0, it is enough to show

that (Et)t≥0 and
(

M

(

Et
|E(i)[A]

))

t≥0
satisfy the same differential linear equations.

2. Let (Et)t≥0 be a differentiable one-parameter semi-group for the ⊞ operation (resp.
⊠ operation), which is in ME[A] and which starts at 0E (resp. 1E). In order to
prove that there exists E ∈ me⊞[A] (resp. E ∈ me⊠[A]) such that for any t ≥ 0,
etE
⊞

= Et (resp. etE
⊠

= Et), it is enough to show that:

(Et)t≥0 and



e
tI

(

(

d
dt |t=0

Et

)

|E(i)[A]

)

⊞





t≥0
(

resp. (Et)t≥0 and



e
tJ

(

(

d
dt |t=0

Et

)

|E(i)[A]

)

⊠





t≥0

)

satisfy the same differential linear equations.

Let us prove Theorem 10.2. Let E ∈ me⊞[A]. For any t ≥ 0 we consider Et = etE
⊞
. Let

n be a positive integer and let us consider n irreducible partitions p1, . . . , pn in ∪k∈N∗A
(i)
k .

For any real t0 ≥ 0, we have:

d

dt |t=t0
Et

p1⊗···⊗pn =
(

E ⊞Et0
)

p1⊗...⊗pn

=
∑

(p′1,p
′
2,I)∈F2(p1⊗...⊗pn)

E(p′1)E
t0(p′2).

Yet, we must not forget that E is in me⊞[A]: for any integer k, any p ∈ Pk, if p is not
irreducible or if p = ∅, then E(p) = 0. Thus the sum we are considering can be taken
over the (p′1, p

′
2, I) ∈ F2(p1⊗ . . .⊗ pn) such that p′1 is irreducible and not equal to ∅: this

means in particular that p′1S(p′1)
is one of the (pi)

n
i=1. Thus:

d

dt |t=t0
Et

p1⊗...⊗pn =

n
∑

i=1

E(pi)E
t0
p1⊗···⊗pi−1⊗pi+1⊗···⊗pn .
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On the other hand,

d

dt |t=t0

(

Et
p1 . . . E

t
pn

)

=
n
∑

i=1

(

d

dt |t=t0
Et

pi

)

∏

j 6=i

Et0
pj

=
n
∑

i=1

E(pi)
∏

j 6=i

Et0
pj .

This allows us to conclude that Et ∈ ME[A] for any real t ≥ 0.
Let (Et)t≥0 be a differentiable one-parameter semi-group for the ⊞ operation which

is in ME[A] and such that E0 = 0E. Then using the same calculation that we did, for

any integer n and any irreducible partitions p1, . . . , pn in ∪k∈N∗A
(i)
k , for any real t0 ≥ 0,

we have:

d

dt |t=t0
(Et

p1⊗...⊗pn) =
d

dt |t=t0
(Et

p1 ...E
t
pn) =

n
∑

i=1

(

d

dt |t=t0
Et

pi

)

∏

j 6=i

Et0
pj .

Yet pi is irreducible, thus using the fact that d
dt |t=0

Et
∅ = 0, we get that d

dt |t=t0
Et

pi =
((

d
dt |t=0

Et
)

⊞ Et0
)

pi
= d

dt |t=0
Et

pi , and thus:

d

dt |t=t0
(Et

p1⊗...⊗pn) =
n
∑

i=1

(

d

dt |t=0
Et

pi

)

∏

j 6=i

Et0
pj

=

(

I

(

(

d

dt |t=0
Et

)

|E(i)[A]

)

⊞ Et0

)

p1⊗...⊗pn

and thus there exists E ∈ me⊞[A] such that for any t ≥ 0, etE
⊞

= Et.
Now, let E ∈ me⊠[A]. For any t ≥ 0 we consider Et = etE

⊠
. Let n be an integer and

let us consider n irreducible partitions p1, . . . , pn in ∪k∈N∗A
(i)
k . For any real t0 ≥ 0, we

have:
d

dt |t=t0
Et

p1⊗...⊗pn =
(

E ⊠ Et0
)

p1⊗...⊗pn

=
∑

a,b/a◦b=p1⊗···⊗pn,a≺p1⊗···⊗pn

EaE
t0
b .

Yet, we must not forget that E is in me⊠[A]: for any integer k, any p ∈ Pk, if p is not
weakly irreducible then E(p) = 0. Thus the sum we are considering can be taken over
the couples (a, b) such that a is weakly irreducible. Besides, Eidl = lEid1 for any integer
l. Thus:

Eid∑n
i=1

l(pi)
Et0

p1⊗···⊗pn =

n
∑

i=1

Eidl(pi)
Et0

p1⊗···⊗pn .

Thus, we get:

d

dt |t=t0
Et

p1⊗...⊗pn =
n
∑

i=1

∑

a,b|a◦b=pi,a≺pi

EaE
t0
p1⊗···⊗pi−1⊗b⊗pi+1⊗···⊗pn

.
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On the other hand,

d

dt |t=t0

(

Et
p1 . . . E

t
pn

)

=

n
∑

i=1

(

d

dt |t=t0
Et

pi

)

∏

j 6=i

Et0
pj

=

n
∑

i=1

∑

a,b|a◦b=pi,a≺pi

EaE
t0
b

∏

j 6=i

Et0
pj .

This allows us to conclude that Et ∈ ME[A] for any real t ≥ 0.
Let (Et)t≥0 be a differentiable one-parameter semi-group for the ⊠ operation which

is in ME[A] and such that E0 = 1E. Then using the same calculation that we did, for

any integer n and any irreducible partitions p1, . . . , pn in ∪k∈N∗A
(i)
k , for any real t0 ≥ 0,

we have:

d

dt |t=t0
(Et

p1⊗...⊗pn) =
d

dt t=t0
(Et

p1 ...E
t
pn) =

n
∑

i=1

(

d

dt |t=t0
Et

pi

)

∏

j 6=i

Et0
pj .

Yet for any i ∈ {1, ..., n}, d
dt |t=t0

Et
pi =

∑

a,b|a◦b=pi,a≺pi
d
dt |t=0

Et
piE

t0
b , and thus:

d

dt |t=t0
(Et

p1⊗...⊗pn) =

n
∑

i=1





∑

a,b/a◦b=pi,a≺pi

d

dt |t=0
Et

piE
t0
b





∏

j 6=i

Et0
pj

=

(

J

(

(

d

dt |t=0
Et

)

|E(i)[A]

)

⊠ Et0

)

p1⊗...⊗pn

and thus there exists E ∈ me⊠[A] such that for any t ≥ 0, etE
⊠

= Et.

Remark 10.2. — In fact, e[A] is endowed with two structures of Lie algebras. Indeed,
it is a vector space for the addition and multiplication by a scalar, and we can define
two Lie brackets on it, one named [., .]⊞ which comes from the ⊞ operation and the
other named [., .]⊠ which comes from the ⊠ operation. In order to know which bracket
is considered on e[A], we will denote it either by e⊞[A] or by e⊠[A].

Since the operation ⊞ is commutative, the bracket [., .]⊞ is trivial. Thus me⊞ is a
sub-Lie algebra of e⊞. Since the operation ⊠ is not commutative, the bracket [., .]⊠ is not
trivial and for any E and F in e⊠[A],

[E,F ]⊠ = E ⊠ F − F ⊠ E.

Then, it is not difficult to see directly that me⊠[A] is a sub-Lie algebra of e⊠[A].

An element E belongs to me⊞[A] or me⊠[A] if some conditions on its coordinates are
satisfied. It would be interesting to know that are the conditions on the moments of E
which allows us to know if E is in me⊞[A] or me⊠[A]. In the Section 10.2 of [9], we prove
the following theorem.
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Theorem 10.3. — Let E be in e[A]. Following the notations of Theorem 8.2, for any
positive integer k, any p ∈ Pk, we define:

m∞
p (E) =

∑

p′∈Ak

δp′∈[id,p0]Ak
Ep′ .

We have the following characterization of me⊞[A] and me⊠[A].

1. E ∈ me⊞[A] if and only if for any positive integer k and l, for any p1 ∈ Ak and
any p2 ∈ Al:

m∞
p1⊗p2 (E) = 0.

2. E ∈ me⊠[A] if and only if for any positive integer k and l, for any p1 ∈ Ak and
any p2 ∈ Al:

m∞
p1⊗p2(E) = m∞

p1(E) +m∞
p2(E).

10.1.2. The RA-transform. — We will define the notion of RA-transform. This appli-
cation will be defined as the inverse of the MA-transform whose definition lies on the
Equation (7).

Definition 10.9. — The MA-transform is the application:

MA : E[A] → E[A]

E → MA(E)

such that for any E ∈ E[A], for any integer k, any p ∈ Ak:

(MA(E))p =
∑

p′∈[id,p]Ak

Ep′ .

This application is a bijection. Thus we can consider its inverse.

Definition 10.10. — The RA-transform is the inverse of the MA-transform:

RA = M−1
A .

We will often forget about the indices A when we will work with the R-transforms.
One can show that the RA-transform is a bijection from ME[A] to itself.

Proposition 10.3. — The RA-transform is a bijection from ME[A] to itself.

Proof. — We recall that the RA-transform is, by definition, a bijection from E[A] to
itself. Let E ∈ ME[A], we have to show that MA[E] ∈ ME[A] and RA[E] ∈ ME[A].
Let k and l be two positive integers. Let p1 ∈ Pk and p2 ∈ Pl.
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Let us show that MA[E] ∈ ME[A]. Using Lemma 3.8 and the multiplicative property
of E, we have:

(MA[E])p1⊗p2
=

∑

p′∈[id,p1⊗p2]Ak

Ep′ =
∑

p′1∈[id,p1]Ak
,p′2∈[id,p2]Ak

Ep′1⊗p′2

=
∑

p′1∈[id,p1]Ak
,p′2∈[id,p2]Ak

Ep′1
Ep′2

=
∑

p′1∈[id,p1]Ak

Ep′1

∑

p′2∈[id,p2]Ak

Ep′2

= (MA[E])p1 (MA[E])p2 .

Now, let us show that RA[E] ∈ ME[A]. Let us consider (Ẽp)p∈
⋃

k∈N∗
A

(i)
k

such that for

any positive integer k, any p ∈ A
(i)
k ,

Ep =
∑

p′∈[id,p]Ak

∏

c∈C(p′)

Ẽpc .

Using the multiplicativity of E, and Lemma 3.8, we see that E being in ME[A], the

family (Ẽp)p∈
⋃

k∈N

A
(i)
k

satisfies in fact that for any integer k, any p ∈ Ak:

Ep =
∑

p′∈[id,p]Ak

∏

c∈C(p′)

Ẽpc .

Thus
∏

c∈C(p′) Ẽpc is equal to (RA[E])p′ and thus RA[E] ∈ ME[A].

We can also translate the Lemma 3.9 in terms of R-transform. Recall Definition 4.7.
We denote by R|S the restriction function from E[B] to E[S] such that for any E ∈ E[B],
for any k ∈ N,

(

R|S(E)
)

k
= (R|Sk

◦ EBk)(Ek).

Proposition 10.4. — The following diagram is commutative:

E[B]
RB //

R|S

��

E[B]

R|S

��

E[S]
RS // E[S]

Proof. — It is only a consequence of the fact that:

E[B]

R|S

��

E[B]

R|S

��

MB

oo

E[S] E[S]
MS

oo
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is commutative. Indeed, using Lemma 3.9, if E ∈ E[B], and if σ ∈ Sk:

R|S [MB (E)] (σ) = (MB (E)) (σ) =
∑

p∈[id,σ]Bk

Ep =
∑

p∈[id,σ]Sk

Ep =
[

MS ◦ R|S(E)
]

(σ).

This concludes the proof.

It is well-known in the literature that there exists a notion of R-transform on C1[[z]]
which we will call the Ru-transform. In order to finish this section, we make the link
between the RA-transform and the Ru-transform.

Definition 10.11. — Let M(z) be a formal power serie in C1[[z]], that is a formal
power serie of the form:

M(z) = 1 +
∞
∑

n=1

anz
n.

Let C(z) be the formal power serie C(z) = 1 +
∑∞

n=1 knz
n such that C[zM(z)] = M(z).

The Ru-transform of M is C.

The RA-transform is a generalization of the usual Ru-transform. Indeed, we have the
following theorem.

Theorem 10.4. — Using the identification (E(i)[S])S ≃ C1[[z]] explained in Proposi-
tion 10.1, the following diagram is commutative:

(E(i)[S])S
Ru //

M

��

(E(i)[S])S

M

��

E[S]
RS // E[S]

Proof. — Let E be an element of E(i)[S] ≃ C1[[z]]. Using Theorem 2.7 of [16], and using
the bijection between non-crossing partitions of k elements and the set [id, (1, . . . , k)]Sk

,
we know that Ru(E) is characterized by the fact that for any integer k > 0:

E(1,...,k) =
∑

p∈[id,(1,...,k)]Sk

∏

c cycle of p

Ru(E)(1, . . . ,#c).

Or, with our notations:

E(1,...,k) =
∑

p∈[id,(1,...,k)]Sk

M [Ru(E)] .

By the factorization property of the geodesics, Lemma 3.8, for any σ ∈ Sk:

[M (E)] (σ) =
∑

σ′∈[id,σ]Sk

M[Ru(E)](σ).

This is equivalent to the fact that RS [M (E)] = M[Ru(E)].
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10.1.3. Transformations linked with the exclusive moments. — For the sake of clarity,
we only consider the case where A = P.

Definition 10.12. — The Mc→-transform is the application:

Mc→ : E[P] → E[P]

E 7→ Mc→(E),

such that for any E ∈ E[P], for any integer k, any p ∈ Pk:

(Mc→(E))p =
∑

p′∈Glc(p)

Ep′ .

This application is a bijection, it is the application which transforms exclusive mo-
ments in moments. Thus we can consider its inverse. The Mc-transform is the inverse
of the Mc→-transform: Mc = (Mc→)−1. Using the same arguments than Proposition
10.3, one can proof that the Mc is a bijection from ME[P] to itself.

Let us remark that this last proposition holds since, if p′ is coarser-compatible than
p1 ⊗ p2 this means that there exists p′1 and p′2 such that p′ = p′1 ⊗ p′2 and such that p′1
(resp. p′2) is coarser-compatible than p1 (resp. p2). Thus, if one has defined Mc→(E)
by replacing the coarser-compatibility order by the coarser order then this proposition
(and other good properties) would not have hold.

Let us define a last transformation on E[P].

Definition 10.13. — The M→c-transform is the application:

M→c : E[P] → E[P]

E 7→ M→c(E),

such that for any E ∈ E[P], for any integer k, any p ∈ Pk:

(M→c(E))p =
∑

p′∈Sp(p)

Ep′

This is again a bijection. The applications defined above are actually linked.

Theorem 10.5. — The following diagram is commutative.

E[P]
M→c

//

MP ""F
F

F

F

F

F

F

F

E[P]

Mc→

��

E[P]

Proof. — This is a straithforward application of Theorem 3.3.

10.2. Higher order. — In Definition 9.5, we defined the ∞-development algebra of
order m of Ak. Thus, one can also define a higher order R-transform: we will only give
definitions in this section. Let m ∈ N be the higher order of fluctuations which we are
working with.
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Definition 10.14. — Let us define the algebra Eg,(m)[A] =
∏∞

k=0C(m)[Ak(∞)]. We
also consider the subspace of Eg,(m)[A] defined by:

E(m)[A] = {E ∈ Eg,(m)[A], E∅,0 = 1, E∅,i = 0,∀i ≥ 1}.

Let us remark that E(0)[A] = E[A]. Any element E ∈ E[A] is of the form:




∑

p∈Ak,i∈{0,...,m}

(Ek)p,i
p

Xi





k∈N

.

Again, in order to simplify the notations, we will use the following conventions: for any
p ∈ ∪∞

k=0Ak and any i ∈ {0, . . . ,m}:

Ep,i = Ei(p) = (El(p))p,i,

and for any integer k:

Ek =
∑

p∈Ak,i∈{0,...,m}

Ep,i
p

Xi
.

As for Eg[A], the algebra Eg,(m)[A] is naturally endowed with a natural addition and
multiplication given, for any E,F ∈ Eg,(m)[A], by:

(E + F )k = Ek + Fk,

(E ⊠ F )k = EkFk.

Besides, we can also construct an other law on Eg,(m)[A].

Definition 10.15. — Let E and F be two elements of Eg,(m)[A]. We denote by E ⊞F
the element of Eg,(m)[A] such that for any positive integer k, any p ∈ Ak and any
i ∈ {0, . . . ,m}:

(E ⊞ F )i(p) =
∑

(p1,p2,I)∈F2(p)

i
∑

i1=1

Ei1(p1)F
i−i1(p2),

where F2(p) was defined in Definition 2.11.

Again, the subset E(m)[A] is stable by the ⊠ and ⊞ operations. Besides, E(m)[A] is an
affine space.

The operation ⊞ is commutative, it defines a structure of group on E(m)[A]. The
neutral element is the element 0E(m)

∈ E(m)[A] such that, for any positive integer k, any

p ∈ Ak and any i ∈ {0, . . . ,m}, (E)p,i = 0.
The operation ⊠ is not commutative and the set of invertible elements in E(m)[A] is

the set of elements E such that Eidk ,0 6= 0 for any k ≥ 1. We denote by 1E(m)
the neutral

element for ⊠ which is the only element in E(m)[A] such that for any k ≥ 1, (Ek)k = idk
X0 .

We can also define a R
(m)
A -transform. For this, we need to define the M

(m)
A -transform

whose definition lies on Equality (21).
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Definition 10.16. — The general M
(m)
A transform is the application:

M
(m)
A : E(m)[A] → E(m)[A]

E → M
(m)
A (E)

such that for any E ∈ E(m)[A], for any positive integer k, any p ∈ Ak and any i ∈
{0, . . . ,m}:

(

M
(m)
A (E)

)

p,i
=

∑

p′∈Ak,df(p′,p)≤i

Ep′,i−df(p′,p).

This application is a bijection: we can consider its inverse.

Definition 10.17. — The R
(m)
A -transform is the inverse of the MA-transform:

R
(m)
A =

(

M
(m)
A

)−1
.

11. Conclusion

We have defined a geometry on partitions, and new notions of convergence for elements
of
∏

N∈N C[Ak(N)]. Using Schur-Weyl’s duality and similar results, we will link the study
of random matrices with the study of elements in

∏

N∈NC[Ak(N)] and in E[A]. In the
article [9], we apply the results proved in this article to the theory of random matrices
invariant in law by conjugation by the symmetric group. We also study additive and
multiplicative unitary or orthogonal invariant Lévy processes. In the article [10], we
apply the results of the first two articles to the study of random walks on the symmetric
group and the study of the S∞-Yang-Mills theory.
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Séminaire de Probabilités XLI, 1934:93–119, 2008.
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