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COMBINATORIAL THEORY OF PERMUTATION-INVARIANT

RANDOM MATRICES I:

PARTITIONS, GEOMETRY AND RENORMALIZATION.

by

Franck Gabriel

E-mail: franck.gabriel@normalesup.org

Abstract. — In this article, we define and study a geometry on the set of partitions of an
even number of objects. One of the definitions involves the partition algebra, a structure
of algebra on the set of such partitions depending on an integer parameter N . Then we
emulate the theory of random matrices in a combinatorial framework: for any parameter
N , we introduce a family of linear forms on the partition algebras which allows us to define
a notion of weak convergence similar to the convergence in moments in random matrices
theory.

A renormalization of the partition algebras allows us to consider the weak convergence
as a simple convergence in a fixed space. This leads us to the definition of a deformed
partition algebra for any integer parameter N and to the definition of two transforms: the
cumulants transform and the exclusive moments transform. Using an improved triangular
inequality for the distance defined on partitions, we prove that the deformed partition
algebras, endowed with a deformation of the linear forms converge as N go to infinity.
This result allows us to prove combinatorial properties about geodesics and a convergence
theorem for semi-groups of functions on partitions.

At the end we study a sub-algebra of functions on infinite partitions with finite support :
a new addition operation and a notion of R-transform are defined. We introduce the set of
multiplicative functions which becomes a Lie group for the new addition and multiplication
operations. For each of them, the Lie algebra is studied.

The appropriate tools are developed in order to understand the algebraic fluctuations
of the moments and cumulants for converging sequences. This allows us to extend all the
results we got for the zero order of fluctuations to any order.
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1. Introduction

This article is the first of a self-contained set of three articles [8], [9] and [10] on
a combinatorial method in random matrices theory based on a geometry on partitions
and a new point of view on usual/free cumulants based on dualities between groups and
sub-algebras of partitions. This general method allows to work with random matrices
which are invariant by conjugation by the symmetric group instead of the unitary or
orthogonal group, besides, no more assumption about the factorization of moments is
needed. The first article is about the combinatorial framework based on the partition
algebra. In the second article we will apply this framework to random matrices, and the
third one will put the emphasis on the random walks on the symmetric group and the
link with the S∞-Yang-Mills measure.

This set of articles has to be considered as the continuation of what could be called
the Gauge Theory School in random matrices. The article of F. Xu [18] is one of the
pioneer work about this point of view on random matrices. Later, this point of view was
developed by A. Sengupta [17], then highly improved by T. Lévy [12], [13], then it was
used by two students of T. Lévy: A. Dahlqvist in [7] and G. Cébron [5], [4].

We wrote these articles as a lesson for graduate students with the intention that no
special requirement is needed to understand them. The reader will find a new presenta-
tion and introduction to the random matrices theory. To achieve this, we only used the
Gauge Theory School’s papers, the seminal article for partition algebras [11], and the
book [16] which, in some sense, we tried partially to generalize. Another point of view
on random matrices which are invariant by conjugation by the symmetric group was
given first by C. Male in his paper on traffics [14]. Yet, the goal was to develop the ideas
of the Gauge Theory School and thus we did not use this article. In the forthcoming
article [6], the author and his coauthor build connections between the notions developed
here and the notions developped in [14]. In some sense, these articles can be seen also a
bridge to go from the book [16] to the traffic interpretation of [14], traffics which have
shown their importance in the study of random graphs [15]. At the moment the author
was finishing these articles, he was informed of M. Capitaine and M. Casalis’s work, [3],
on their Schur-Weyl’s interpretation of non-commutative free cumulants for unitary and
orthogonal invariant random matrices.

The point of view developed in the three articles [8], [9] and [10] allows us to recover
in a very simple way some famous theorems. The reader will also find in these articles
a simple tool box in order to prove new convergences of random matrices (for example
random walks on the symmetric group). He will also find the tools in order to under-
stand the algebraic fluctuations of moments of random matrices. Besides, this point of
view allows to define a general notion of freeness for matrices which are invariant by
conjugation by the symmetric group and we construct the first non-commutative mul-
tiplicative Lévy processes for this notion of freeness. We will formulate two equivalent
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definitions of this freeness: one based on cumulants, and the other on moments. This
freeness notion is linked with a new R-transform which generalizes the old known R-
transform. A Kreweras complement is defined for partitions: this generalizes the notion
already set for permutations. Amongst others, we will state a matricial Wick’s theorem,
which allows to recover the Wick law for Gaussian Hermitian or symmetric matrices. We
will also recover theorems about convergence of Hermitian Lévy processes proved in [2],
[1] and unitary Lévy processes proved in [4]: we extend them to the symmetric and the
orthogonal case. A new central limit theorem will be stated, which generalizes the non-
commutative and the commutative central limit theorem. In the article [9], convergences
of random walks on the symmetric group will be proved, and will be used in order to
show that the Wilson loops of the SN -Yang-Mills measure converge in probability when
N goes to infinity. This will imply the first result known about convergence of ramified
coverings on the disk. We will also see how to inject the usual theory of probabilities in
this framework. This last assertion shows that one could, in this framework, study the
probabilistic fluctuations.

1.1. Renormalization and a physical point of view. — In this article, we emulate
the theory of random matrices in a combinatorial framework. Given a partition p of a
number of points, and an integer N , we consider (p,N) as a physical system involving
N particles. When the number of points is even, by polarizing the points in two sets, we
can consider (p,N) as a discrete time transformation operation. A partition p can be
seen as an elementary evolution of a system of size N : we can define the composition of
two partitions. Later in the paper, we consider these discrete-time transformations also
as the Hamiltonian of continuous time transformations.

An evolution of a system of size N is a linear combination of elementary evolutions
of size N . Thus, every transformation is uniquely characterized by a size N and by a
finite number of coefficients which, as we will see in the article, are bare quantities. Two
questions arise: how to describe a system of infinite size and how to renormalize the
bare quantities. As one does for perturbative renormalization, the important idea is to
consider observables: we define some observables, one for each partition. In Theorem 4.1,
we show how the bare coefficient must be renormalized in order to have finite observables
at the limit N = ∞.

Then, we show that, by using the same renormalization, the composition of two
evolutions converge also: this is proved in Theorems 6.1 and 7.1. In Theorem 7.2, we
consider continuous-time evolution transformations: we show that if the Hamiltonian is
renormalized as we did for discrete time transformations, then the evolution converges.
In Theorem 10.2, we characterize the Hamiltonian so that the factorization property of
large N holds.

We study also the development in power of 1/N of systems of size N which converge
to a continuous system.

The main novelty is to show that, even if one knows how to renormalize the bare
constants, it does not seem interesting to define a vector space of infinite systems since
all systems considered are defined in the same vector space whose basis is the set of
partitions of 2k elements. In order to have an interesting space of infinite systems, one
has to consider a renormalization of the algebras in which are defined the N -dimensional
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systems: the limit defines a non-trivial algebra in which one can study continuous evo-
lutions of continuous systems.

Let us remark that a consequence of our results is that, in our toy-model, given a con-
tinuous system, one has canonically a sequence of approximations by systems involving
N particles.

1.2. Layout of the article. — Using the set Pk of partitions of 2k elements as basis,
one can define an algebra known as the partition algebra which definition depends on a
parameter N ∈ N: the partition algebra C[Pk(N)]. For a comprehensive study of this
algebra, we recommend the article [11]. The main definitions are set in Section 2.

In Section 3, we define a geometry on the set of partitions of 2k elements which gen-
eralizes a well-known geometry on the symmetric group Sk. Using this new geometry,
in Section 4 we define two notions of convergence of sequences which are shown to be
equivalent. We define the notion of coordinate numbers, normalized moments, exclusive
coordinate numbers and exclusive normalized moments. One of the results that we prove
is that exclusive coordinate numbers and exclusive normalized moments are equal. In
Section 5, a new deformed partition algebra is defined: C[Pk(N,N)]. These algebras
are shown to converge to a new algebra: this is obtained by an improvement of the
triangle inequality proved in Section 6 for the distance defined on the set of partitions of
2k elements. Let us remark that we define in the same section a Kreweras complement
for partitions which generalizes the notion for permutations. We use these results in
Section 7 in order to show that the multiplication is continuous for the notion of con-
vergence of elements of

∏

N∈N C[Pk(N)]. We also study the convergence of semi-groups
in
∏

N∈N C[Pk(N)]. In Section 8, using the convergence of sequences defined in Section
4, we show how one can prove combinatorial results, for exemple, a new proof of the
improved triangle inequality is given.

In Section 9, we develop the notion of algebraic fluctuations, and extend the results
already proved for the zero order of fluctuations to any order.

In Section 10, we construct an algebra E[P] which elements are functions on ∪k∈NPk.
This algebra can be endowed with two special laws: ⊞ and ⊠. We study two subgroups
of E[P] associated with the operations ⊞ and ⊠, the group of multiplicative invertible
elements. These groups are Lie groups, the Lie algebras of these groups are studied. We
also define the RA-transform, which generalizes the usual R-transform and we define
two others transformations linked with the notion of exclusive moments. To finish the
article, we extend these definitions to the setting of higher order fluctuations.

1.3. Acknowledgements. — This work has been realized during my PhD at the
LPMA which offered me the necessary liberty to complete this article. Many thanks
to the researchers and administrative staff of the LPMA. I am grateful to my PhD
advisor Thierry Lévy for supporting this research, for his helpful comments and correc-
tions which led to improvements in this manuscript and for the useful discussions about
mathematics and other subjects. I would like to express my special gratitude to Terence
Tao, particularly for his blog which, during a period of doubts, made me enjoy maths
again. This project began when I wanted to understand the link between the work of T.
Lévy and the formulation given at the Pims summer school by David Brydges of Wick’s
theorem, I am really thankful to him for this. Also many thanks are due to Antoine
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Dahlqvist who explained me the duality between permutations and partitions. I would
like to thank Tom Halverson and Arun Ram for answering my questions about parti-
tions. I am also grateful to Guillaume Cébron since I learned a lot thanks to his papers.
Thanks to Patrick Gabriel for his interest in my work and the discussions related to this
work that we had together, Marie-Françoise Gabriel and Catherine Lam for trying to
correct the English in this manuscript. At last, a thought to all the people which are
supporting researchers and whose names never appear in the acknowledgements.

2. Partition algebra

2.1. First definitions. — Let k and N be two integers. We will consider three
different algebras C [Sk] ,C [Bk(N)] ,C [Pk(N)]: respectively the symmetric algebra, the
Brauer algebra, and the partition algebra. These algebras satisfy the inclusions:

C [Sk] ⊂ C [Bk(N)] ⊂ C [Pk(N)] .

Thus, we will first construct C [Pk(N)] and we will see the two others algebras as
sub-algebras of C [Pk(N)]. The reference article for the partition algebra is the article
[11] of T.Halverson and A.Ram.

Let us consider 2k elements which we denote by: 1, . . . , k and 1′, . . . , k′. We define Pk

as the set of set partitions of {1, . . . , k} ∪ {1′, . . . , k′}. If k = 0, we consider Pk = {∅}.
Let p be an element of Pk. We will denote by p1, . . . , pr the blocks in p. The number of
connected components nc(p), the propagating number pn(p) and the length l(p) of p are
defined respectively by:

nc(p) = r,

pn(p) = #
{

i, pi contains both an element of {1, . . . , k} and one of {1′, . . . , k′}
}

,

l(p) = k.

Any partition p ∈ Pk can be represented by a graph. For this we consider two rows:
k vertices are in the top row, labeled by 1 to k from left to right and k vertices are
in the bottom row, labeled from 1′ to k′ from left to right. Any edge between two
vertices means that the labels of the two vertices are in the same block of the partition
p. Examples are given in Figure 1 and 2.

Figure 1. Partition p1 =
{

{1′, 1}{2′}{2, 3′, 5′}{3, 4, 4′}{5}
}

.

The notion of tensor product of partitions will be also very useful.

Definition 2.1. — Let k and l be two integers. Let p be an element of Pk and let p′

be an element of Pl. Let us consider two diagrams: one associated with p, another with
p′. Let p⊗ p′ be the partition in Pk+l associated with the diagram where one has put the
diagram associated with p on the left of the diagram associated with p′.
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Figure 2. Partition p2 =
{

{1′, 2′}{1, 2, 3′, 5}{3}{4′, 4}{5′}
}

.

Figure 3. Partition p1 ⊗ p2.

Let k be an integer. Let p1 and p2 be two elements of Pk. We say that p1 is coarser
than p2 if any two elements which are in the same block of p2 are also in the same block
of p1. This order is directed: for any partitions p1 and p2 in Pk there exists a third
partition p3 which is coarser than p1 and p2: for example, one can consider the partition
p1 ∨ p2 defined as follows.

Definition 2.2. — Let k be an integer. Let p1 and p2 be two elements of Pk. We define
p1 ∨ p2 as the partition in Pk such that for any i, j ∈ {1, . . . , k } ∪ {1′, . . . , k′ }, i and
j are in the same block of p1 ∨ p2 if and only if there exists i = x0, x1, . . . , xl = j with
xn ∈ {1, . . . , k } ∪ {1′, . . . , k′ } such that xn and xn+1 are in the same block of p1 or p2
for any n ∈ {0, . . . , l − 1}.

It is always interesting to have a graphical representation for the operations defined
on partitions. One can recover a diagram representing p1 ∨ p2 by putting a diagram
representing p2 over one representing p1.

Figure 4. Two diagrams which represent p1 ∨ p2 = {{1, 1′, 2, 2′, 3′, 5, 5′}, {3, 4, 4′ }}.

Let us play a little with the graphical representation of p1 and p2 in order to define
other natural operations on the set of partitions.

We will use later the transposition of a partition: it is the partition obtained by
permuting the role of {1, . . . , k} and {1′, . . . , k′}. For example if k = 3, let p =
{

{1, 1′, 3′}, {2, 3}, {2′}
}

, then tp =
{

{1′, 1, 3}, {2′ , 3′}, {2}
}

. For every diagram asso-
ciated with p, the diagram obtained by flipping it according to a horizontal axis is a
diagram associated with tp. One can find an example in Figure 5

An other thing we can do is to put one diagram representing p2 above one diagram
representing p1. Let us identify the lower vertices of p2 with the upper vertices of p1.
We obtain a graph with vertices on three levels, then erase the vertices in the middle
row, keeping the edges obtained by concatenation of edges passing through the deleted
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Figure 5. Partition tp2

vertices. Any connected component entirely included in the middle row is then removed.
Let us denote by κ(p1, p2) the number of such connected components. We obtain an
other diagram associated with a partition denoted by p1 ◦ p2. For any elements p1 and
p2 of Pk, the partition p1 ◦ p2 does not depend on the choice of diagrams representing
the partitions p1 and p2.

p

p

1

2

p
1
p
2

o

Figure 6. Partition p1 ◦ p2.

The set of Brauer elements and the set of partitions will be stable by this operation
of concatenation.

Definition 2.3. — The set of Brauer elements Bk is the set of pair partitions in Pk.
The set of permutation Sk is the set of pair partitions in Pk whose propagating number
is equal to k.

For any p1 and p2 in Bk (resp. Sk), p1 ◦ p2 ∈ Bk (resp. Sk). Let us define the three
algebras C [Sk] ,C [Bk(N)] and C [Pk(N)].

Definition 2.4. — Let k and N be two integers. The partition algebra C [Pk(N)] is
the associative algebra over C with basis Pk endowed with the multiplication defined by:

∀p1, p2 ∈ Pk, p1p2 = Nκ(p1,p2)(p1 ◦ p2).

The Brauer algebra C [Bk(N)] (resp. symmetric algebra C [Sk]) is the sub-algebra of
C [Pk(N)] generated by the elements of Bk (resp. the elements of Sk).

Notation 2.1. — In all the paper, Ak will stand either for Pk or Bk or Sk. Thus for
any N ∈ N, C[Ak(N)] will stand for C[Pk(N)], C[Bk(N)] or C[Sk(N)].

Let us remark that actually, the algebra C[Sk(N)] does not depend on N . We can see
any permutation σ ∈ Sk as a bijection from {1, . . . , k} to itself: for any i ∈ {1, . . . , k}
there exists a unique j ∈ {1′, . . . , k′} such that {i, j′} ∈ σ, we set σ(i) = j. For any
permutations σ1 and σ2, the bijection associated with σ1σ2 is the composition of the two
bijections associated with σ1 and σ2.

We can extend the operations of transposition, tensor product and multiplication on
the partition algebra, by linearity or bi-linearity.
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=  N

Figure 7. Example of a product which involves the counting of loops.

The sub-algebra C[Sk] is not only stable for the ◦ operation. It also satisfies the
following property which can be proved by looking at the propagating number.

Lemma 2.1. — Let p, p′ ∈ Pk, if p ◦ p
′ ∈ Sk then p and p′ are in Sk.

Besides, for any partition σ ∈ Sk and any p ∈ Ak, κ(σ, p) = κ(p, σ) = 0. Let us
remark that, for any integer N , the algebras C[Ak(N)] have the same neutral element,
denoted by idk or id, for the product operation:

idk =
{

{i, i′}, i ∈ {1, . . . , k}
}

,

whose diagram for k = 5 is drawn in figure 8. A consequence of Lemma 2.1 is that, as
idk ∈ Sk, the only invertible elements of Ak(N), for the multiplication operation, are
the permutations. The inverse of a permutation σ is σ−1 = tσ.

Figure 8. The neutral element id5.

We will later need some special permutations.

Definition 2.5. — Let k be an integer. Let I ⊂ {1, . . . , k}: I = {i1, . . . , il} with
i1 < · · · < il. We define σI the permutation which sends ij on j for any j ∈ {1, . . . , l}
and i /∈ I on l + i−#{n, in < i}. This is the partition:

σI =
{

{ij , j
′}, j ∈ {1, . . . , l}

}

∪
{

{i, (l + i−#{n, in < i})′}, i /∈ I
}

.

Definition 2.6. — The transposition (1, 2) is the partition σ{2} in P2 defined by:

(1, 2) =
{

{1, 2′}, {2, 1′}
}

.

The Weyl contraction is the Brauer element in P2 defined by:

[1, 2] =
{

{1, 2}{1′, 2′}
}

.

These partitions are drawn in Figure 9.



PARTITIONS AND GEOMETRY 9

1 21 2

Figure 9. The transposition (1, 2) and the Weyl contraction [1, 2].

Definition 2.7. — Let k be an integer. Let i, j be two distinct integers in {1, . . . , k}.
The transposition (i, j) in Sk is:

(i, j) = σ−1
{i,j}

(

(1, 2) ⊗ Idk−2

)

σ{i,j} = {{i′, j}, {i, j′}} ∪ {{l, l′}, l /∈ {i, j}}.

The set of transpositions on k elements is:

Tk =
{

(i, j), i, j ∈ {1, . . . , k}, i 6= j
}

.

The Weyl contraction [i, j] in Bk is:

[i, j] = σ−1
{i,j}

(

[1, 2] ⊗ Idk−2

)

σ{i,j} = {{i, j}, {i′ , j′}} ∪ {{l, l′}, l /∈ {i, j}}.

Due to the remark we made after Lemma 2.1, the product does not depend on which
C[Bk(N)] one considers to define the product. We denote by Wk the set of Weyl con-
tractions in Bk:

Wk =
{

[i, j], i, j ∈ {1, . . . , k}, i 6= j
}

.

A notion linked with the tensor operation, which will be central in the asymptotic
freeness results in the article [9], is the notion of irreducibility of partitions. Let k be an
integer. Let p ∈ Pk.

Definition 2.8. — A cycle of p is a block of p ∨ id. The set of cycles of p is denoted
by C(p). The number of cycles of p is denoted by c(p). The partition p is composed if
c(p) > 1. The partition p is irreducible if it is not composed. By convention, the empty
partition is irreducible.

Let us consider the set of irreducible partitions.

Definition 2.9. — For any integer k, we will denote by A
(i)
k the set of irreducible par-

titions of Ak.

It has to be noted that for any integer k:

S
(i)
k = {σ(1, . . . , k)σ−1, σ ∈ Sk}.

The partition p ∈ Pk is composed if and only if there exist p1 and p2 two partitions
non equal to the empty partition, and I a subset of {1, . . . , k} such that #I = l(p1),
l(p2) = k −#I and:

σ−1
I (p1 ⊗ p2)σI = p.

Let us define the decomposition of p into two partitions.
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Definition 2.10. — The set of decompositions of p into two partitions is:

F2(p) =
{

(p1, p2, I) , σ
−1
I (p1 ⊗ p2)σI = p

}

.

Let us remark that for any partition, even the irreducible partitions, F2(p) 6= ∅. For
example, if p is irreducible:

F2(p) = {(p, ∅, {1, . . . , k}), (∅, p, ∅)}.

Let also remark that F2(∅) = { (∅, ∅, ∅)}.
We will need a notion of weak irreducibility later: this is based on the notion of

extraction and restriction. For any partition p we have a lot of choice in order to
represent p as a graph: the complete graph which represents p is the graph such that i
and j, two elements of {1, ..., k} ∪ {1′, ..., k′} are linked if and only if i and j are in the
same block of p.

Definition 2.11. — Let k be an integer, let p be in Pk. Let J be a subset of {1, . . . , k}∪
{1′, . . . , k′}. Let us denote by Js the symmetrization of J :

Js = J ∪ {j ∈ {1′, . . . , k′},∃i ∈ J ∩ {1, . . . , k}, j = i′} ∪ {i ∈ {1, . . . , k}, i′ ∈ J}.

We define:

– The extraction of p to J , denoted pJ . Let us take the complete graph which repre-
sents p, let us erase all the vertices which are not in Js and all the edges which are
not from two vertices in Js and at last let us label, from left to right the vertices.
This is the graph of pJ .

– The restriction of p to J , denoted p|J . Let us take the complete graph which repre-
sents p, let us erase all the edges which are not from two vertices in J and let us
connect each i /∈ J with i′. This is the graph of p|J .

By convention, if Js = {1, . . . , k} ∪ {1′, . . . , k′}, then pJ = ∅ and p|J = id.

Definition 2.12. — The support of p is:

S(p) = {1, . . . , k} \ {i ∈ {1, . . . , k}, {i, i′} ∈ p}.

The partition p is weakly irreducible if pS(p) is irreducible. In particular Idk is weakly
irreducible.

2.2. Partitions and representation. — In this section, we define a natural action
of the partition algebra (and by restriction of the Brauer and of the symmetric algebra)

on
(

C
N
)⊗k

. This action will be useful in order to translate combinatorial properties into
linear algebraic properties.

Let N and k be two integers.

Definition 2.13. — For any p ∈ Pk and any k-uples (i1, . . . , ik) and (i1′ , . . . , ik′) of
elements of {1, . . . , N}, we set:

pi1,...,iki1′ ,...,ik′
=







1, if for any two elements r and s ∈ {1, . . . , k} ∪ {1′, . . . , k′} which
are in the same block of p, one has ir = is,

0, otherwise.
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Let k and N be any integers. We can now define the action of the partition algebra

C[Pk(N)] on
(

C
N
)⊗k

. Let (e1, . . . , eN ) be the canonical basis of CN .

Definition 2.14. — The action of the partition algebra C[Pk(N)] on
(

C
N
)⊗k

is defined

by the fact that for any p ∈ Pk, for any (i1, . . . , ik) ∈ {1, . . . , N}k:

p.(ei1 ⊗ · · · ⊗ eik) =
∑

(i1′ ,...,ik′)∈{1,...,N}k

pi1,...,iki1′ ,...,ik′
ei1′ ⊗ · · · ⊗ eik′ .

This action defines a representation of the partition algebra C[Pk(N)] on
(

C
N
)⊗k

which we denote by ρPk

N :

ρPk

N : C[Pk(N)] 7→ End
(

(

C
N
)⊗k
)

.

Let us define Ej
i be the matrix which sends ej on ei. Let p be a partition in Pk. We can

write the matrix of ρPk

N (p) in the basis (ei1 ⊗ · · · ⊗ eik)(il)kl=1∈{1,...,N}k :

ρPk

N (p) =
∑

(i1,...,ik,i1′ ,...,ik′)/p
i1,...,ik
i
1′

,...,i
k′
=1

E
i1′
i1

⊗ . . .⊗ E
ik′
ik

.(1)

For example, if p is the transposition (1, 2), then:

ρP2
N ((1, 2)) =

N
∑

a,b=1

Eb
a ⊗ Ea

b .

We think that this presentation allows to understand, in an easier way, the representation

ρPk

N . We illustrate in Figure 10, how to find the partition which representation is given
by a sum of the form (1). The partition p1 used in Figure 10 is the partition drawn in
Figure 1.

E
i

i

1

1

E
i

i

3

2

E
i

i

4

3

E
i

i

4

4

E
i

i

51

3

Figure 10.
∑

i1,i2,i3,i4,i5
Ei1

i1
⊗ Ei3

i2
⊗ Ei4

i3
⊗ Ei4

i4
⊗ Ei5

i3
= ρP5

N (p1).

Let us suppose that N ≥ 2k. Using the Theorem 3.6 in [11], the application ρPk

N is
injective. Actually, if one considers only its restriction to the symmetric algebra or the
Brauer algebra, it is enough to ask for N ≥ k. For N = k − 1 this result does not hold,
this is a consequence of the Mandelstam’s identity which asserts that:

∑

σ∈Sk

(−1)ǫ(σ)ρPk

k−1(σ) = 0,

where ǫ(σ) is the signature of σ.

Let us remark that the natural action of C[Pk(N)] on
(

C
N
)⊗k

behaves well under the
operation of product tensor.
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Lemma 2.2. — Let k and k′ be two integers. Let p ∈ C[Pk] and p′ ∈ C[Pk′ ]. We have
for any integer N :

ρ
Pk+k′

N (p⊗ p′) = ρPk

N (p)⊗ ρPk

N (p′).

2.3. The exclusive basis of C[Pk]. — The basis used to define the partition algebra
is quite natural, yet, it is not always very easy to work with. Indeed, if we look at the

representation ρPk

N of a partition, we see that the condition we used to define the delta
function is not exclusive. It means that we did not use the following exclusive delta
function:

(pi1,...,iki1′ ,...,ik′
)ex =







1, if for any two elements r and s ∈ {1, . . . , k} ∪ {1′, . . . , k′},
ir = is if and only if r and s are in the same block of p,

0, otherwise.

By changing in Definition 2.14 the delta function defined in Definition 2.13 by this
new exclusive delta function, we define a new function:

ρ̃kN : C[Pk(N)] → End
(

(

C
N
)⊗k
)

.

Does it exist, for any partition p ∈ Pk an element pc ∈ C[Pk] such that for any integer

N , ρPk

N (pc) = ρ̃Pk

N (p) ? The answer is given by the following definition, as explained by
Equation (2.3) of [11].

Definition 2.15. — For any k ∈ N. We define the family (pc)p∈Pk
as the only family

of elements in C[Pk] defined by the relation:

p =
∑

p′ coarser than p

p′c.

The notion of being coarser defines a partial order on Pk: the relation can be inverted.
The family (pc)p∈Pk

is well defined and it is a basis of the partition algebra C[Pk]. We
will call (pc)p∈Pk

the exclusive partition basis, it satisfies the following proposition.

Proposition 2.1. — For any integers k and N , for any partition p ∈ Pk,

ρPk

N (pc) = ρ̃Pk

N (p).

3. Geometry on the set of partitions

Let k be an integer. In this section, we define a new geometry on the set of partitions
Pk which generalizes some well-known geometry on the symmetric group. We will see
three ways to construct a distance on Pk: one will allow us to work with linear algebra,
another to compute the distance in a combinatorial way, and the last one will use a
graph which we will consider as the generalized Cayley graph of Pk.

Depending on the context, we will consider a partition either as an element of Pk

or as an element of End
(

(

C
N
)⊗k
)

via the action defined in Definition 2.14. We re-

mind the reader that (e1, . . . , eN ) is the canonical base of CN . The family {ei1 ⊗ · · · ⊗

eik , (i1, . . . , ik) ∈ {1, . . . , N}k} is a basis of
(

C
N
)⊗k

: let Trk be the trace with respect
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to this canonical basis. We do not renormalize it, thus Trk
(

Id
(CN )⊗k

)

= Nk. We can

define the trace of a partition.

Definition 3.1. — Let k and N be two integers, let p be a partition in Pk. We define:

TrN (p) = Trk
(

ρPk

N (p)
)

.

For any integer N , we extend TrN by linearity to C[Pk(N)].

Let us remark that, if one does not want to use the representation ρPk

N , one could have
also define the trace by defining for any partition p ∈ Pk,

TrN (p) = Nnc(p∨id).(2)

We can now define a distance on Pk.

Proposition 3.1. — Let k and N be two integers, let p and p′ be two elements of Pk.
The number:

d(p, p′) = −logN

(

TrN (tpp′)
√

TrN (tpp)TrN (tp′p′)

)

does not depend on N : it is called the distance between p and p′.

The fact that d(p, p′) does not depend on N is a consequence of Lemma 3.1. Actually
we have not prove yet that it is a distance, even if it is fairly easy to see that it satisfies
the strict positivity property: it is a consequence of the Cauchy-Schwarz’s inequality.

The easiest way to prove that d(p, p′) does not depend on N is to show that it is a
combinatorial object.

Lemma 3.1. — Let k and N be two integers, for any p and p′ in Pk:

d(p, p′) =
1

2

(

nc(p) + nc(p′)
)

− nc(p ∨ p′).

Proof. — This is a consequence of the following equality which holds for any p and p′

in Pk and any positive integer N :

TrN ( tpp′) = Nnc(tp◦p′∨id)+κ(tp,p′) = Nnc(p∨p′),(3)

which is a consequence of Equality 2 and the combinatorial equality:

nc(tp ◦ p′ ∨ id) + κ(tp, p′) = nc(p ∨ p′).

This latter equality can be understood by flipping the diagram of tp over the one of
p′: the flip transposes tp thus we get the two diagrams of p and p′ one over the other.
By definition, the diagram constructed by putting a diagram representing p′ over one
representing p is associated with p ∨ p′.

It remains to show that d satisfies the triangular inequality on the set of partitions
Pk. For that we will show that it is a geodesic distance on a graph.

Definition 3.2. — Let k be an integer. We define the weighted graph Gk = (Vk,Ek, wk)
such that:

– the set of vertices Vk is Pk,
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– there exists an edge e in Ek between p and p′ two elements of Pk if and only if:
• one can go from one to the other by gluing two blocks. Let us suppose that
we can go from p to p′. If p is the partition {p1, . . . , pr} then there exist i
and j, distinct, such that p′ = {ps, s ∈ {1, . . . , r} \ {i, j}} ∪ { pi ∪ pj}. The
weight of the edge e is set to 0.5: wk(e) = 0.5.

• one can go from one to the other by permuting two elements of {1, . . . , k} ∪
{1′, . . . , k′} which are in distinct blocks. Let us suppose that we can go from p
to p′ by permuting two elements. In this case, if p is the partition {p1, . . . , pr},
there exist s, t ∈ {1, . . . , k, 1′, . . . , k′} distinct and i, j ∈ {1, . . . , r} distinct,
such that s ∈ pi, t ∈ pj and p′ = {ps, s ∈ {1, . . . , r} \ {i, j}} ∪ {(pi \ {s}) ∪
{t}, (pi \ {t}) ∪ {s}}. The weight of the edge e is set to 1: wk(e) = 1.

Remark 3.1. — The graph Gk plays the role of the Cayley graph of Pk. Actually,
if one considers the subgraph Sk obtained by restraining it to the vertices which are
permutations, one really obtains the Cayley graph of the symmetric group Sk. The
Cayley graph Bk of Bk is defined as the restriction of Gk to the vertices which are in Bk.

We gave this definition so that the reader can understand easily why this graph is a
generalization of the usual Cayley graph. Yet, there is an other graph which will be used
in Proposition 3.2. Let us define G

′
k = (V′

k,E
′
k, w

′
k) such that:

– the set of vertices V′
k is Pk,

– there exists an edge in E
′
k between p and p′ two elements of Pk if and only if one

can go from one to the other by gluing two blocks,
– the weight function w′

k is constant equal to 1/2.

Figure 11. The graph G′
2
.

The graphs Gk and G
′
k are interesting as they allow us to better understand the

distance d.

Proposition 3.2. — Let k be an integer. Let p and p′ be two elements of Pk. Let us
define CGk

(p, p′) (resp. CG′
k
(p, p′)) the set of paths π in Gk (resp. G

′
k) which begin in p
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and finish in p′. Let us define the geodesic distance on Gk and on G
′
k between p and p′

by:

dGk
(p, p′) = min

π∈CGk
(p,p′),π=e1...el

w(e1) + · · ·+ w(el),

dG′
k
(p, p′) = min

π∈C
G′
k
(p,p′),π=e1...el

w(e1) + · · ·+ w(el).

We have the equalities:

d(p, p′) = dGk
(p, p′) = dG′

k
(p, p′).

Proof. — Let p and p′ be two elements of Pk. It is enough to prove that dGk
(p, p′) =

dG′
k
(p, p′) and d(p, p′) = dG′

k
(p, p′).

First, let us show that dGk
(p, p′) = dG′

k
(p, p′). This assertion comes from the fact that

one can permute two elements of {1, . . . , k} ∪ {1′, . . . k′} in the partition p by gluing two
blocks of p and then splitting one block of the resulting partition. Indeed, let us suppose
that p = {p1, . . . , pr}. Let s, t ∈ {1, . . . , k, 1′, . . . , k′}, distinct, and let i, j ∈ {1, . . . , r},
distinct, such that s ∈ pi and t ∈ pj. Then

p′ = {ps, s ∈ {1, . . . , r} \ {i, j}} ∪ {(pi \ {s}) ∪ {t}, (pi \ {t}) ∪ {s}}

can be obtained by:

1. gluing pi and pj,
2. splitting pi ∪ pj in two: (pi \ {s}) ∪ {t} and (pi \ {t}) ∪ {s}.

The weight of this path is equal to 0.5+0.5 = 1. Thus, to compute the distance dGk
(p, p′),

it is enough to look only at paths in G
′
k: dGk

(p, p′) = dG′
k
(p, p′).

Then, let us show that d(p, p′) = dG′
k
(p, p′). For this, let us see what happens to the

distance d(p, p′) between p and p′ when one moves from p′ to one neighborhood of p′ in
G

′
k. Suppose first that we glue two blocks of p′, then nc(p) is constant, nc(p′) decreases

by 1 and nc(p∨ p′) stays constant or decreases by 1. In this case d(p, p′) will increase or
decrease by 0.5. If we cut one block of p′, then nc(p) is constant, nc(p′) increases by 1
and nc(p ∨ p′) stays constant or increases by 1. In this case d(p, p′) will also increase or
decrease by 0.5.

Thus a gluing/cutting can at most increase the value of d(p, p′) by 0.5. It implies that
d(p, p′) ≤ dG′

k
(p, p′). We have to show now that dG′

k
(p, p′) ≤ d(p, p′). Let us remark that

p∨p′ is coarser than p: we can go from p to p∨p′ by doing nc(p)−nc(p∨p′) gluing of blocks
of p. The same holds for p′: we can go from p′ to p∨p′ by doing nc(p′)−nc(p∨p′) gluing
of blocks of p′. Thus one can go from p to p∨p′ and then from p∨p′ to p in nc(p)+nc(p′)−
2nc(p ∨ p′) steps in G

′
k. Thus dG′

k
(p, p′) ≤ 1

2 [nc(p
′) + nc(p′)− 2nc(p ∨ p′)] = d(p, p′).

The function dG′
k
is a geodesic distance on a graph: it is thus a distance. As we have

just shown that d = dG′
k
, the next corollary is immediately proved.

Corollary 3.1. — The function d : Pk × Pk → R
+ is a distance.

Lemma 3.2. — The restriction of d to the permutation group is quite usual:

d(σ, σ′) = k − nc(σ−1σ′),
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for any σ, σ′ ∈ Sk. This distance is in fact the geodesic distance on the Cayley graph Sk

of Sk.
By Lemma 6.26 of [12], the restriction of the distance d to Bk is also the geodesic

distance on the Cayley graph Bk of Bk.

Using this distance, we can define a notion of set-geodesic for any of the three sets of
partitions we are interested in. We remind the reader that the notation Ak was settled
in Notation 2.1.

Definition 3.3. — Let p ∈ Ak, the set-geodesic [id, p]Ak
is defined by:

[id, p]Ak
=
{

p′ ∈ Ak, d(id, p) = d(id, p′) + d(p′, p)
}

.

A geodesic in a graph between two vertices p and p′ is a path in this graph which length
is equal to the geodesic distance. Using Proposition 3.2 and Lemma 3.2, one shows that
for any p ∈ Ak, the set-geodesic [id, p]Ak

is the union of the geodesics between id and p
in the Cayley graph of Ak.

The distance on Ak allows to define a new partial order on Ak.

Definition 3.4. — Let p and p′ be elements of Ak, we write that p ≤ p′ if and only if
d(id, p) = d(id, p′) + d(p, p′).

This is a partial order as the restriction of d to Ak×Ak is a distance. In the following
lemma, we show that the geodesic in the Cayley graph of Pk between two permutations
either stay in the set of permutations or intersect Pk \ Bk. Using the fact that [id, p]Ak

is the union of the geodesics between id and p in the Cayley graph of Ak, we get an
equality between [id, σ]Bk

and [id, σ]Sk
.

Lemma 3.3. — Let k be an integer. Let σ ∈ Sk, then:

[id, σ]Bk
= [id, σ]Sk

.

Proof. — Let k be an integer. We will do a proof by contradiction. Let S ⊂ Sk be the
set of permutations such that:

[id, σ]Bk
6= [id, σ]Sk

.

Let σ ∈ S be a permutation such that d(id, σ) = minσ′∈S d(id, σ′).
Let b be an element of Bk \ Sk such that b ∈ [id, σ]Bk

. There exists a geodesic in
Bk which goes through b and goes from id to σ. Thus, there exists b′ ∈ Bk such that
d(id, b′) = 1 and b′ ∈ [id, σ]Bk

. The element b′ can not be a permutation. Indeed, if b′

was a permutation, then [b′, σ]Bk
6= [b′, σ]Sk

and thus, [id, b′−1σ]Bk
6= [id, b′−1σ]Sk

. Yet
d(id, b′−1σ) = d(b′, σ) = d(id, σ) − 1. This would contradict the fact that d(id, σ) =
minσ′∈S d(id, σ

′).
Thus b′ must be an element of Bk\Sk. As d(id, b

′) = 1, there exist i and j in {0, . . . , k}
such that:

b′ = [i, j],
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where [i, j] is the Weyl contraction in Bk. Thus there exist i and j in {0, . . . , k} such
that [i, j] ∈ [id, σ]Bk

. Recall that c(σ) is the number of cycles of σ. We have:

d(id, [i, j]) + d([i, j], σ) − d(id, σ)

= nc([i, j]) + nc(id ∨ σ)− nc([i, j] ∨ id)− nc([i, j] ∨ σ)

= k + c(σ)− (k− 1)− nc([i, j] ∨ σ)

= 1 + c(σ) − c(σ) + δi and j not in the same cycle of σ

= 1 + δi and j not in the same cycle of σ > 0.

Thus [i, j] /∈ [id, σ]Bk
: this yields the contradiction.

This lemma is the key point which will allow us to explain in the second article [9]
why processes on U(N) and O(N) have the same limit when one only considers usual
moments.

The last property, known in theSk and Bk case, is still true for Pk: a geodesic between
id and p1 ⊗ p2 must be the tensor product of the geodesic between id and p1 and the
geodesic between id and p2.

Lemma 3.4. — Let p ∈ Ak, we have:

[id, p]Ak
≃

∏

C∈C(p)

[

id#C
2
, pC

]

A#C
2

.

In particular if p1 and p2 are two partitions, p1 ∈ Ak1 and p2 ∈ Ak2, then p′ ∈ [id, p1 ⊗
p2]Ak1+k2

if and only if there exist p′1 ∈ Ak1 and p′2 ∈ Ak2 such that p′ = p′1 ⊗ p′2.

Let us finish this section with two propositions on geodesics. Let us define a notion
of default in order to simplify the proofs.

Definition 3.5. — Let p and p′ be two elements of Ak. We define the default of p′ not
being on the geodesic [id, p]Ak

by:

df(p′, p) = d(id, p′) + d(p′, p)− d(id, p).

A simple but useful lemma is the following.

Lemma 3.5. — Let k be an integer, let p ∈ Pk and p′ ∈ Pk such that p is coarser than
p′. Then:

df(p′, p) = nc(p′)− nc(p′ ∨ id)− nc(p) + nc(p ∨ id).

Proof. — This is a simple calculation, where one has to use the fact that nc(p ∨ p′) =
nc(p) since p is coarser than p′.

Proposition 3.3. — Let p and p′ be two partitions in Pk. Then p′ ∈ [id, p]Ak
if and

only if nc(p ∨ p′ ∨ id) = nc(p ∨ id) and p′ ∈ [id, p ∨ p′]Ak
.

One can see this proposition as a direct consequence of the forthcoming Theorem
10.4, by considering the element of E[A] which is equal to p, with p ∈ Pk. Yet, we give a
direct proof: the proof is simple yet, without Theorem 10.4, it would have been trickier
to guest the following proposition.
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Proof of Proposition 3.3. — Let p and p′ be two partitions in Pk. Using the Lemma
3.4, we see that p′ ∈ [id, p]Pk

if and only if nc(p ∨ p′ ∨ id) = nc(p ∨ id) and p′ ∈ [id, p]Pk
,

thus, if and only if nc(p ∨ p′ ∨ id) = nc(p ∨ id) and:

df(p′, p) = nc(p′)− nc(p′ ∨ id)− nc(p ∨ p′) + nc(p ∨ id) = 0,

which is equivalent to nc(p ∨ p′ ∨ id) = nc(p ∨ id) and:

df(p′, p ∨ p′) = nc(p′)− nc(p′ ∨ id)− nc(p ∨ p′) + nc(p ∨ p′ ∨ id) = 0,

which is again equivalent to nc(p ∨ p′ ∨ id) = nc(p ∨ id) and p′ ∈ [id, p ∨ p′]Pk
.

For the last geometric proposition, we need to define the left and right parts of a
partition p.

Definition 3.6. — Let k and l be two integers. Let p ∈ Ak+l, we denote by pgk the

extraction of p to {1, ..., k} and pdk the extraction of p to {k+1, ..., k + l}. The partition

pgk is in Pk and pdk is in Pl.

Proposition 3.4. — Let k1 and k2 be two positive integers and let k = k1 + k2. Let p
be an element of Pk. Let p1 and p2 be respectively in Pk1 and Pk2 . We have equivalence
between:

1. p is coarser than p1 ⊗ p2 and p1 ⊗ p2 ∈ [id, p]Pk
,

2. pgk1 is coarser than p1, p1 is in [id, pgk1 ]Pk1
, pdk1 is coarser than p2, p2 is in

[id, pdk2 ]Pk2
and pgk1 ⊗ pdk1 ∈ [id, p]Pk

.

Proof. — Let k1 and k2 be two positive integers and let k = k1+k2. Let p be an element
of Pk. Let p1 and p2 be respectively in Pk1 and Pk2 .

First of all, it is easy to see that p is coarser than p1 ⊗ p2 if and only if pgk1
is coarser than p1 and pdk1 is coarser than p2.
Let us suppose that p is coarser than p1⊗p2, let us show that p1⊗p2 ∈ [id, p]Ak

if and
only if p1 ∈ [id, pgk1 ]Pk1

, p2 ∈ [id, pdk1 ]Pk2
and pgk ⊗ pdk ∈ [id, p]Ak

. Since for any partitions
the default between two partitions is always positive, this is equivalent to show that:

df(p1 ⊗ p2, p) = df(p1, p
g
k) + df(p2, p

d
k) + df(pgk ⊗ pdk, p).

Yet, using Lemme 3.5:

df(p1 ⊗ p2, p)− df(p1, p
g
k)− df(p2, p

d
k)− df(pgk ⊗ pdk, p)

= nc(p1 ⊗ p2)− nc((p1 ⊗ p2) ∨ id)− nc(p) + nc(p ∨ id)

− nc(p1) + nc(p1 ∨ id) + nc(plk)− nc(pgk ∨ id)

− nc(p2) + nc(p2 ∨ id) + nc(prk)− nc(pdk ∨ id)

− nc(pgk ⊗ pdk) + nc((pgk ⊗ pdk) ∨ id) + nc(p)− nc(p ∨ id)

= 0,
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since:

nc(p1 ⊗ p2) = nc(p1) + nc(p2),

nc((p1 ⊗ p2) ∨ id) = nc(p1 ∨ id) + nc(p2 ∨ id),

nc(pgk ⊗ pdk) = nc(pgk) + nc(pdk),

nc((pgk ⊗ pdk) ∨ id) = nc(pgk ∨ id) + nc(pdk ∨ id)

This ends the proof.

4. Convergence of elements of
∏

N∈N C [Pk(N)]

4.1. Coordinate numbers and moments. —

4.1.1. Definitions. — Let k be an integer, recall the notation Ak defined in Notation 2.1.
For each integer N , we have defined an algebra C[Ak(N)]. Let (EN )N∈N be a sequence
such that for any integer N , EN ∈ C[Ak(N)]. For each integer N , the algebra C[Ak(N)],
seen as a vector space has the same basis Ak. Thus, we could study the convergence of
(EN )N∈N only from the vector space point of view by saying that the sequence (EN )N∈N

converges if and only if the coordinates of EN in the basis Ak converge. Actually, this
convergence forgets the fact that C[Ak(N)] is an algebra which depends on an integer
N . In order to define a better definition of convergence, we have to define the coordinate
numbers of E in C[Ak(N)].

Definition 4.1. — Let N be an integer. Let E be an element of C[Ak(N)]. We define
the numbers

(

κp(E)
)

p∈Ak
as the only numbers such that:

E =
∑

p∈Ak

κp(E)

N
−k+nc(p)

2
+d(id,p)

p.

The family (κp(E))p∈Ak(N) is called the coordinate numbers of E.

After Definition 4.4, we will explain how we get this definition, and why this definition
is in fact the most natural thing one can do. We will need to use the following equality:
for any integer k, for any p ∈ Ak,

−k + nc(p)

2
+ d(id, p) = nc(p)− nc(p ∨ id).(4)

This implies the following remark.

Remark 4.1. — For any integer k, any integer N , for any E ∈ C[Pk(N)]:

E =
∑

p∈Ak

κp(E)

Nnc(p)−nc(p∨id)
p.

We will consider the coordinate numbers as linear applications from C[Ak(N)] to R:

κp : C[Ak(N)] → R

E 7→ κp(E).
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The notion of coordinate numbers allows us to define a strong convergence for any
sequence (EN )N∈N ∈

∏

N∈N
C[Ak(N)].

Definition 4.2. — Let (EN )N∈N be an element of
∏

N∈N C[Ak(N)]. The sequence
(EN )N∈N converges strongly if the coordinate numbers of EN converges when N goes
to infinity: for any p ∈ Ak, κ

p(EN ) converges when N goes to infinity.

The goal now is to give a dual definition of convergence. We have seen in Definition

2.14 that any element of C[Ak(N)] can be seen as an element of End
(

(

C
N
)⊗k
)

and

we defined in Definition 3.1 the trace of any element C[Ak(N)]. Using this trace and
the structure of algebra of C[Ak(N)], we define, for any element of C[Ak(N)] and any
element p ∈ Ak, the p-normalized moment of E.

Definition 4.3. — Let N ∈ N, let p ∈ Ak and E ∈ C[Ak(N)]. The p-normalized
moment of E is:

mp(E) =
1

TrN (p)
TrN (Etp).

Using these normalized moments, we can define a weak notion of convergence for any
sequence (EN )N∈N ∈

∏

N∈N
C[Ak(N)].

Definition 4.4. — The sequence (EN )N∈N converges in moments if the normalized
moments of EN converges when N goes to infinity: for any p ∈ Ak, mp(EN ) converges
when N goes to infinity.

4.1.2. Coordinate numbers-moments transformation. — We can now explain how we
ended up with Definition 4.1 and we had the idea to define the distance on the set of
partitions. The idea behind these definitions is that we want to know, given a sequence
of EN ∈ C[Ak(N)], how the usual coordinates of EN in the basis Ak must scale so that
for any p ∈ Ak, mp(EN ) converges when N goes to infinity. Let N be an integer, we
have EN =

∑

p∈Ak
apNp. Thus

mp0(EN ) =
∑

p∈Ak

TrN (p tp0)

TrN (p0)
apN .

Thus the vector mN = (mp0(EN ))p0 and aN = (apN )p are linked by the relation mN =

MNaN where MN =
(

TrN (p tp0)
TrN (p0)

)

p0,p
.

There are then two possible possibilities: to invert MN for N big enough. This is
the usual way, which leads to the Weingarten function. Or, one can make the following
Ansatz: if we write the system, we see that for any p, (aN )p is going to be multiplied by
(MN )p0,p for any p0 ∈ Ak. Thus we make the assumption that (mN )p must grow as the

inverse of the maximum of (MN )p0,p over p0. That is a
p
N ∼ apN−η(p), where ηp is given

by:

ηp = sup
p0

lim
N→∞

logN

(

TrN (p tp0)

TrN (p0)

)

.
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The goal now is to know in which p0 the supremum is obtained. It is more than
tempting, seeing the scalar product TrN (p0

tp) to write what is inside the logN as:

TrN (p tp0)

TrN (p0)
=

TrN (p tp0)
√

TrN (p tp)TrN (p0 tp0)

√

TrN (p0 tp0)TrN (p tp)

TrN (p0)

=
TrN (p tp0)

√

TrN (p tp)TrN (p0 tp0)

√

TrN (p0 tp0)TrN (idk tidk)

TrN (p0 tidk)

√

TrN (p tp)

TrN (idk tidk)
.

We recognize thus the distance that we defined. In fact the intuition that is should be
a distance comes from the fact that one can write:

ηp = sup
p0

[−d(p, p0) + d(p0, idk)] +
1

2
(−k + nc(p)).

If d was a distance, then by the triangle inequality, for any p0,

d(p0, idk)− d(p0, p) ≤ d(p, idk).

This shows that the supremum is obtained at p0 = p, and thus the Ansatz tells us that:

apN ∼ apN−[ 12 (−k+nc(p))+d(id,p)],

to be compared with the Definition 4.1.
The first main result is given by Theorem 4.1 which shows the equivalence between

strong and weak convergence.

Theorem 4.1. — Let (EN )N∈N be a sequence such that for any N ∈ N,

EN ∈ C[Ak(N)].

It converges strongly if and only if it converges in moments. Let us suppose that (EN )N∈N

converges in moments or strongly, for any p ∈ Ak:

lim
N→∞

mp(EN ) =
∑

p′∈[id,p]Ak

lim
N→∞

κp
′
(EN ).(5)

Proof. — Let (EN )N∈N be an element of
∏

N∈N
C[Ak(N)], let p ∈ Ak and let N be an in-

teger. Using the coordinate numbers of EN , we can calculate the p-normalized moments
of E:

mp(EN ) =
1

TrN (p)
TrN (EN

tp) =
1

TrN (p)
TrN





∑

p′∈Ak(N)

κp
′
(EN )

N
−k+nc(p′)

2
+d(id,p′)

p′ tp





=
∑

p′∈Ak

κp
′
(EN )

TrN (p′ tp)

TrN (p)N
−k+nc(p′)

2
+d(id,p′)

.

Using the definition of the distance, in Proposition 3.1, one has:

TrN (p′ tp) = N−d(p,p′)+
nc(p)+nc(p′)

2 ,

T rN (p) = N−d(id,p)+
nc(p)+k

2 .
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Thus:

mp(EN ) =
∑

p′∈Ak

κp
′
(EN )N−d(p,p′)+

nc(p)+nc(p′)
2

+d(id,p)−
nc(p)+k

2
+

k−nc(p′)
2

−d(id,p′).

Hence:

mp(EN ) =
∑

p′∈Ak

κp
′
(EN )Nd(id,p)−d(id,p′)−d(p,p′).(6)

Let us suppose that (EN )N∈N converges strongly. The triangular inequality for d shows
that for any p ∈ Ak(N) converges when N goes to infinity. Besides, it allows us to write
that for any p ∈ Ak(N):

lim
N→∞

mp(EN ) =
∑

p′∈[id,p]Ak

lim
N→∞

κp
′
(EN ).

Now, let us suppose that it converges in moments. We can write (6) as:

mN = GNκN ,

where:

mN = (mp(EN ))p∈Ak(N) ,

κN = (κp(EN ))p∈Ak(N) ,

GN =
(

Nd(id,p)−d(id,p′)−d(p,p′)
)

p,p′∈Ak(N)
.

Thus the sequence (GN )N∈N converges to the matrix of the partial order ≤ defined in
Definition 3.4:

lim
N→∞

GN = G,

where Gp,p′ = δp≤p′ . This last matrix is invertible, thus κN = G−1
N mN converges to

G−1m where m = (limN→∞mp(EN ))p∈Ak
.

Let us take some notations in order to simplify our up-coming discussions.

Notation 4.1. — Let (EN )N∈N be an element of
∏

N∈N
C[Ak(N)]. From now on, we will

say that (EN )N∈N converges if and only if it converges either strongly or in moments.
Besides, let suppose that (EN )N∈N converges, then we will set, for any partition p ∈ Ak

and any P ⊂ Ak:

mp(E) = lim
N→∞

mp(EN ),

κp(E) = lim
N→∞

κp(EN )

κP (E) =
∑

p∈P

κp(E).
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4.2. Consequences of Theorem 4.1.— We have already an interesting corollary of
Theorem 4.1.

Theorem 4.2. — For this theorem, let us suppose that A is equal either to S or B.
Let (EN )N∈N be an element of

∏

N∈N
C[Ak(N)] which converges in moments, then for any

p ∈ Pk, the limit of mp(EN ) exists. Besides, for any p ∈ Pk, the following equality holds:

mp(E) =
∑

p′∈Ak,p′∈[id,p]Pk

κp
′
(E).

In the case where A = B, one can also prove that, under some hypothesis, the conver-
gence of the S-moments is equivalent to the convergence of the S-coordinate numbers.

Theorem 4.3. — Let (EN )N∈N be an element of
∏

N∈N
C[Bk(N)] and let us suppose that

for any p ∈ Bk, (mp(EN ))N∈N is bounded.
The following assertions are equivalent:

– for any σ ∈ Sk, κ
σ(EN ) converges when N goes to infinity,

– for any σ ∈ Sk, mσ(EN ) converges when N goes to infinity.

and if one of the condition is satisfied, then for any σ ∈ SN ,

mσ(E) =
∑

σ′∈[id,σ]Sk

κσ
′
(E).

Proof. — Let (EN )N∈N be an element of
∏

N∈N
C[Bk(N)] which satisfies the hypothesis of

the theorem. First of all, using the same notations of the proof of Theorem 4.1, we know
that, for N big enough κN = G−1

N mN . As the sequence (mN )N∈N is bounded and as G−1
N

converges to G−1 when N goes to infinity, we deduce that (κN )N∈N is also bounded.
Let σ ∈ Sk. Using the Equation (6), for any integer N ,

mσ(EN ) =
∑

p′∈Bk

κp
′
(EN )Nd(id,σ)−d(id,p′)−d(σ,p′).

Yet, if p′ ∈ Bk \Sk, using Lemma 3.3, d(id, σ) − d(id, p′)− d(σ, p′) < 0.

Let us suppose that for any σ′ ∈ Sk, κ
σ′
(EN ) converges, then mσ(EN ) converges as

N goes to infinity, and:

lim
N→∞

mσ(EN ) =
∑

p′∈[id,σ]Sk

κp
′
(EN ).

Let us suppose now that for any σ ∈ Sk, mσ(EN ) converges when N goes to infinity,

then for any increasing sequence (iN )N∈N of integers such that for any σ′ ∈ Sk, κ
σ′
(EiN )

converges, we have:

lim
N→∞

mσ(EN ) =
∑

p′∈[id,σ]Sk

lim
N→∞

κp
′
(EiN ).
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Hence, for any p′ ∈ Sk, limN→∞ κp
′
(EiN ) does not depend on the sequence (iN )N∈N:

this shows that for any σ′ ∈ Sk, κ
p′(EN ) converges when N goes to infinity. Again we

get also:

lim
N→∞

mσ(EN ) =
∑

p′∈[id,σ]Sk

κp
′
(EN ).

This finishes the proof.

4.3. Exclusive coordinate numbers and exclusive moments. —

4.3.1. Exclusive coordinate numbers. — In Section 2.3, we defined an other basis of
C[Pk], namely the exclusive basis. In the case we are working with an element E ∈
C[Ak(N)] we can also define the exclusive coordinate numbers.

Definition 4.5. — Let k and N be two integers. Let E be an element of C [Ak(N)].
We define the numbers

(

κpc(E)
)

p∈Pk
as the only numbers such that:

E =
∑

p∈Pk

κpc(E)

Nd(id,p)+
−k+nc(p)

2

pc =
∑

p∈Pk

κpc(E)

Nnc(p)−nc(p∨id)
pc.

The family (κpc(E))p∈Pk
is called the exclusive coordinate numbers of E.

The next proposition shows that one can choose to work either with the exclusive
basis or with the usual basis of C[Pk] in order to study the convergence of (EN )N∈N ∈
∏

N∈N
C[Ak(N)].

Theorem 4.4. — Let k be an integer. Let (EN )N∈N be an element of
∏

N∈N
C[Ak(N)].

The exclusive coordinate numbers (κpc(EN ))p∈Ak
converge as N goes to infinity if and

only if (EN )N∈N converges. Besides, if (EN )N∈N converges then for any p ∈ Pk, κ
p
c(EN )

converges as N goes to infinity, and for any p ∈ Pk:

lim
N→∞

κpc(EN ) =
∑

p′∈Ak,p′ finer than p,p′∈[id,p]Pk

lim
N→∞

κp′(EN )

Proof. — Let k be an integer, let (EN )N∈N be an element of
∏

N∈N
C[Ak(N)]. Then for

any integer N :

EN =
∑

p∈Ak

κp(EN )

Nnc(p)−nc(p∨id)
p =

∑

p∈Ak

κp(EN )

Nnc(p)−nc(p∨id)

∑

p′ coarser than p,p′∈Pk

p′c

=
∑

p∈Ak,p′ coarser than p,p′∈Pk

κp(EN )N−nc(p)+nc(p∨id)+nc(p′)−nc(p′∨id) p′c

Nnc(p′)−nc(p′∨id)
,

and using Lemma 3.5:

EN =
∑

p′∈Pk





∑

p∈Ak,p finer than p′

κp(EN )N−df(p,p′)





p′c

Nnc(p′)−nc(p′∨id)
.
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Thus, for any integer N , for any p′ ∈ Pk

κp
′

c (EN ) =
∑

p∈Ak,p finer than p′

κp(EN )N−df(p,p′).(7)

The result follows from this equality, and the usual arguments already explained in
Theorem 4.1.

Let us remark that, using the Equality (7), one has the following proposition.

Proposition 4.1. — Let A be either S or B. Let N be an integer, let E ∈ C[Ak(N)],
for any p ∈ Ak:

κpc(E) = κp(E).

Proof. — This is a consequence of Equality (7) and the fact that p′ in Pk is finer than
p′ ∈ Ak implies that p′ /∈ Ak.

4.3.2. Exclusive moments. — As we did for the coordinate numbers, one can define
exclusive normalized moments.

Definition 4.6. — Let N ∈ N, let p ∈ Pk and E ∈ C[Ak(N)]. The p-exclusive nor-
malized moment of E is:

mpc(E) =
1

TrN (p)
TrN (E t(pc)).

One can also give a combinatorial definition of the p-exclusive normalized moment.

Lemma 4.1. — Let p and p′ be in Pk, then:

TrN (p t(p′c)) = δp′ coarser than p
N !

(N − nc(p′))!
.

The easiest way to prove this lemma is to do it graphicaly: we see that p′ must be
coarser than p, if not the trace is equal to zero, and if p′ is coarser than p, it is equal to

N !
(N−nc(p′))! .

Definition 4.7. — Let p and p′ be in Pk. We say that p′ is coarser-compatible than p
if and only if p′ is coarser than p and nc(p ∨ id) = nc(p′ ∨ id) and p′ is coarser than p.

The condition p′ coarser compatible with p just means that one can glue only blocks
of p which are in the same cycle in order to get p′. Similarly to what we proved for
coordinate numbers, we prove the following proposition. Let us consider (EN )N∈N ∈
∏

N∈N C[Ak(N)].

Proposition 4.2. — The sequence (EN )N∈N converges in exclusive normalized mo-
ments if and only if for any p ∈ Pk, (mpc(EN ))N∈N converges. Besides, if (EN )N∈N

converges in normalized moments then for any p ∈ Pk:

lim
N→∞

mp(EN ) =
∑

p′∈Pk ,p′ coarser-compatible than p

lim
N→∞

mp′c(EN ).
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Proof. — It is enough to consider (EN )N∈N an element of
∏

N∈NC[Pk(N)]. By compu-
tation:

mp(EN ) =
∑

p′coarser than p

Nnc(p′∨id)−nc(p∨id)mp′c(EN ).

We are in the same setting as for the proof of Theorem 4.1: we can write this equality
as:

mN = GNmc,N ,

where (mN )p = mp(EN ), (mc,N)p = mpc(EN ) and GN converges to the matrix of the
partial order of being coarser-compatible. With the same arguments than in the proof
of Theorem 4.1, we get that mN converges to infinity if and only if mc,N converges to
infinity: the sequence (EN )N∈N converges in Pk−exclusive normalized moments if and
only if it converges in normalized moments and in that case:

lim
N→∞

mp(EN ) =
∑

p′ coarser-compatible than p

lim
N→∞

mp′c(EN ).

This finishes the proof.

4.3.3. In the exclusive world, coordinate numbers and moments are equal. — We will
prove that the limit of exclusive normalized moments are in fact equal to the limit of
the exclusive coordinate numbers. Let (EN )N∈N ∈

∏

N∈NC[Ak(N)].

Theorem 4.5. — Let us suppose that (EN )N∈N converges in normalized moments.
Then, for any p ∈ Pk,

lim
N→∞

mpc(EN ) = lim
N→∞

κpc(EN ).

Proof. — We will prove that for any integer N , any p ∈ Ak, seen as an element of
C[Ak(N)], for any p′ ∈ Pk,

κp
′

c (p) =





nc(p′)−1
∏

i=0

(

N

N − k

)



mp′c(p).

Indeed by the Equality 7, we get that for any p′ ∈ Pk:

κp
′

c (p) = δp′ coarser than pN
nc(p′)−nc(p′∨id).(8)

Let p′ ∈ Pk, by Lemma 4.1:

mp′c(p) =
1

Nnc(p′∨id)
TrN (p t(p′c)) = δp′ coarser than p

N !

(N − nc(p′))!
N−nc(p′∨id).

The theorem is now a simple consequence of a linearity argument and taking N going
to infinity.

Let us remark that one can prove Theorem 4.5 also by a purely combinatorial argument
using Proposition 3.3, we give the proof below.
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Combinatorial proof of 4.5. — It is enough to show that limN→∞ κp(EN ) satisfies the
Equality in Proposition 4.2: for any p ∈ Pk,

lim
N→∞

mp(EN ) =
∑

p′∈Pk ,p′ coarser-compatible than p

lim
N→∞

κp
′

c (EN ).

Using the fact that for any p ∈ Pk:

lim
N→∞

κpc(EN ) =
∑

p′∈Ak,p′ finer than p,p′∈[id,p]Pk

lim
N→∞

κp′(EN ),

we only have to prove that for any p ∈ Pk:

lim
N→∞

mp(EN )=
∑

p′∈Pk ,p′′∈Ak,p′ coarser-compatible than p,p′′ finer than p′,p′′∈[id,p′]Pk

lim
N→∞

κp
′′
(EN ).

Using a slight modification of Proposition 3.3, there exists p′ ∈ Pk coarser than p ∨ p′′,
coarser compatible than p and such that p′′ ∈ [id, p′]Pk

if and only if p′′ ∈ [id, p]Pk
. Thus

we only have to prove that for any p ∈ Pk:

lim
N→∞

mp(EN ) =
∑

p′′∈Ak,p′′∈[id,p]Pk

lim
N→∞

κp
′′
(EN ).

Using the Theorem 4.2, we can conclude.

Using Theorem 4.5, Theorem 4.4 and Proposition 4.1, one can give an expression of
the exclusive moments which involves the coordinate numbers, and one can link the
exclusive normalized moments with the coordinate numbers.

Theorem 4.6. — Let (EN )N∈N ∈
∏

N∈NC[Ak(N)]. Let us suppose that (EN )N∈N con-
verges in normalized moments. Then, for any p ∈ Pk,

lim
N→∞

mpc (EN ) =
∑

p′∈Ak,p′ finer than p,p′∈[id,p]Pk

lim
N→∞

κp′(EN ).

Besides, let us suppose until the end of the theorem that A is equal either to S or B,
then for any N ∈ N and any p ∈ Ak:

κp(EN ) =





nc(p′)−1
∏

i=0

(

N

N − k

)



mpc(EN ).

In particular, for any p ∈ Ak:

lim
N→∞

κp(EN ) = lim
N→∞

mpc(EN ).

At the beginning of this section, we have argued that the simplest notion of conver-
gence of elements of

∏

N∈N
C[Ak(N)] was not interesting as it did not take into account the

fact that C[Ak(N)] is an algebra which depends on the parameter N . In the following
section, we will slightly modify the product defined on C[Ak(N)] in order to define a
new algebra C[Ak(N,N)]. In this new algebra the strong convergence will be the usual
notion of convergence in vector spaces.
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5. The deformed partition algebra

Let us define a deformation of the partition algebra by modifying the multiplication
which was set in Definition 2.4.

Definition 5.1. — Let k and N be two integers. We define the application:

MN
k : Ak → Ak

p 7→
1

Nd(id,p)+−k+nc(p)
2

p.

This application can be extended as an isomorphism of vector spaces from C[Ak] to itself.

Let k and N be two integers. Seen as a vector space, the algebra C[Ak(N)] is isomor-
phic to C[Ak]. Thus, we can see MN

k as an isomorphism of vector spaces from C[Ak]
to C[Ak(N)]. Let us endow C[Ak] with a structure of associative algebra by taking the
pullback of the structure of algebra of C[Ak(N)] by MN

k : for any p1, p2 in Ak the new
product of p1 with p2 is given by:

p1.Np2 =
(

MN
k

)−1 [
MN

k (p1)M
N
k (p2)

]

.

This is the deformed algebra C[Ak(N,N)]. Using the definition of MN
k , one gets the

following proposition.

Proposition 5.1. — Let N be an integer. The deformed algebra C[Ak(N,N)] is the
associative algebra over C with basis Pk, endowed with the multiplication defined by the
fact that for any p1, p2 ∈ Ak:

p1.Np2 = Nκ(p1,p2)Nd(id,p1◦p2)−d(id,p1)−d(id,p2)+
k+nc(p1◦p2)−nc(p1)−nc(p2)

2 (p1 ◦ p2).

One can write the exponent in an other form so that it looks like a triangle inequality.

Lemma 5.1. — Let p and p′ in Ak, let N be an integer. We have the equality:

d(id, p ◦ p′)− d(id, p) − d(id, p′) +
k + nc(p ◦ p′)− nc(p)− nc(p′)

2
+ κ(p, p′)

= d(tp′, p)− d(id, p) − d(id, p′) + k + nc(p ◦ p′)− nc(p)− nc(p′) + 2κ(p, p′).

Proof. — For this, we consider N to the power to the r.h.s and the l.h.s. and we use
the following equality:

N−d(tp′,p) =
Tr(pp′)

N
nc(p)+np(p′)

2

= Nκ(p,p′) Tr(p ◦ p′)

N
nc(p)+np(p′)

2

= Nκ(p,p′)N
−d(id,p◦p′)+

k+nc(p◦p′)
2

N
nc(p)+np(p′)

2

.

This allows to prove Lemma 5.1.

Using the definition of the deformed algebra C[Ak(N,N)], we have the straightforward
proposition.

Proposition 5.2. — Let k and N be two integers. The application MN
k can be extended

as an isomorphism of algebra from C[Ak(N,N)] to C[Ak(N)]. Its extension will be also
denoted by MN

k .
For any integer N , the deformed algebra C[Ak(N,N)] is isomorphic to C[Ak(N)].
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Actually, the application MN
k is not only compatible with the multiplication, but also

with the ⊗ operation defined in Definition 2.1.

Lemma 5.2. — Let k, k′ and N be any integers. Let p ∈ Ak and p′ ∈ Ak′ . The
following equality holds:

MN
k+k′(p ⊗ p′) = MN

k (p)⊗MN
k′ (p

′).(9)

The definition of the morphism MN
k was not chosen randomly: it was set so that the

following lemma holds.

Lemma 5.3. — Let E ∈ C[Ak(N)], we have:

(MN
k )−1(E) =

∑

p∈Ak

κp(E)p.

Thus, one can see that we will be able to formulate the strong convergence in
∏

N∈N C[Ak(N)] by using the morphisms (MN
k )N∈N and the usual notion of convergence

in vector spaces. Indeed, for any integers N and k, any element in C[Ak(N,N)] can be
considered as an element of C[Ak]. This allows to state the following lemma.

Lemma 5.4. — Let (EN )N∈N be an element of
∏

N∈N
C[Ak(N)]. The sequence (EN )N∈N

converges strongly if and only if:

(MN
k )−1(EN )

converges when N goes to infinity in C[Ak] for the usual convergence in finite dimensional
vector spaces.

6. Refined geometry of the partition algebra

In the last section, we defined the deformed algebra C[Ak(N,N)] and we explained
that the strong convergence can be seen as the natural notion of convergence in finite
dimensional vector space as soon as one works in the deformed algebra. In this section,
we will study the convergence of the algebras C[Ak(N,N)].

The core of Section 3 was to prove the triangular inequality for the function d defined
on Ak in Definition 3.1. The study of the convergence of the algebras C[Ak(N,N)] will
use intensively the following improved triangular inequality for Ak.

Proposition 6.1. — Let k be an integer. Let p and p′ be two elements of Pk. We have
the following improved triangular inequality:

d(p′, p) ≤ d(p′, id) + d(p, id) − k − nc(p ◦ tp′) + nc(p) + nc(p′)− 2κ(p, tp′).

The restriction of the improved triangle inequality to the permutations is obvious as
it is a consequence of the usual triangle inequality. Indeed, for any permutations σ and
σ′, nc(σ) = 0 and κ(p, p′) = 0. Yet, this is indeed an improved triangular inequality as
soon as one considers elements on Bk: let us suppose that p and p′ are equal to the Weyl
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contraction [1, 2]. The triangular inequality asserts that 0 ≤ 2, since d(id, [1, 2]) = 1.
Yet, in this case:

d(p′, id) + d(p, id) − k − nc(p ◦ tp′) + nc(p) + nc(p′)− 2κ(p, tp′) = 0.

The improved triangular inequality asserts thus the stronger fact that 0 ≤ 0.
In fact, we can see this improved triangular inequality as a consequence of the usual

triangular inequality and an inequality between d(p, p ◦ p′) and d(id, p′). If we consider
p and p′ in the symmetric group, then we know that d(p, p ◦ p′) = d(p, pp′) = d(id, p′).
Yet, this equality does not hold any more in the general case, we only get the following
inequality.

Proposition 6.2. — Let k be an integer. Let p and p′ in Pk. We have the following
inequality:

d(p, p ◦ p′) ≤ d(id, p′)−
k + nc(p ◦ p′)− nc(p)− nc(p′)

2
− κ(p, p′).

Proof. — Let k be an integer. Let p and p′ in Pk. Let us define τ ∈ Sk:

τk = (1, k + 1)(2, k + 2) . . . (k, 2k).

Let us apply the triangular inequality:

d
(

p⊗ idk,
(

(p ◦ p′)⊗ idk
)

τ
)

≤ d(p⊗ idk, p⊗ p′) + d
(

p⊗ p′,
(

(p ◦ p′)⊗ idk
)

τ
)

.(10)

The goal is to understand each of these three terms. The term d(p⊗ idk, p⊗p′) is simple:

d(p⊗ idk, p ⊗ p′) = d(id, p′).

Let us study d (p⊗ idk, ((p ◦ p
′)⊗ idk) τ). Using the definition of the distance in Propo-

sition 3.1, and the Equality 3:

N−d(p⊗idk,((p◦p
′)⊗idk)τ) =

TrN
[

(p ⊗ idk)
t(((p ◦ p′)⊗ idk) τ)

]

N
nc(p)+k

2 N
nc(p◦p′)+k

2

,

since nc(p⊗idk) = nc(p)+k and nc(((p ◦ p′)⊗ idk) τ) = nc((p◦p′)⊗idk) = nc((p◦p′)+k.
Yet:

TrN
[

(p⊗ idk)
t
((

(p ◦ p′)⊗ idk
)

τ
)]

= TrN
[

p t(p ◦ p′)
]

.

Thus, using again Proposition 3.1:

d
(

p⊗ idk,
(

(p ◦ p′)⊗ idk
)

τ
)

= d(p, p ◦ p′) + k.

Let us consider d (p⊗ p′, ((p ◦ p′)⊗ idk) τ). Using the same arguments:

N−d(p⊗p′,((p◦p′)⊗idk)τ) =
TrN

(

pp′ t(p ◦ p′)
)

N
nc(p)+nc(p′)

2 N
nc(p◦p′)+k

2

.

Using the definition of κ(p, p′) and the Equality 3:

N−d(p⊗p′,((p◦p′)⊗idk)τ) = Nκ(p,p′) TrN
(

p ◦ p′ t(p ◦ p′)
)

N
nc(p)+nc(p′)

2 N
nc(p◦p′)+k

2

= Nκ(p,p′)+ 1
2
[nc(p◦p′)−nc(p)−nc(p′)−k].
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Thus:

d
(

p⊗ p′,
(

(p ◦ p′)⊗ idk
)

τ
)

= −κ(p, p′)−
1

2
[nc(p ◦ p′)− nc(p)− nc(p′)− k].

Let us come back to the triangular inequality 10. This shows that:

d(p, p ◦ p′) + k ≤ d(id, p′)− κ(p, p′)−
1

2
[nc(p ◦ p′)− nc(p)− nc(p′)− k],

and thus:

d(p, p ◦ p′) ≤ d(id, p′)−
nc(p ◦ p′) + k − nc(p)− nc(p′)

2
− κ(p, p′).

This is the inequality we wanted to prove.

Proof of Proposition 6.1. — Let k be an integer. Let p and p′ be two elements of Ak.
Using the triangular inequality:

d(id, p ◦ p′) ≤ d(id, p) + d(p, p ◦ p′).

And an application of Proposition 6.2 implies that:

d(id, p ◦ p′) ≤ d(id, p) + d(id, p′)−
k + nc(p ◦ p′)− nc(p)− nc(p′)

2
− κ(p, p′).(11)

And using Lemma 5.1:

d(tp′, p) ≤ d(id, p) − d(id, p′) + k + nc(p ◦ p′)− nc(p)− nc(p′) + 2κ(p, p′).

The result follows then from the fact that nc(tp′) = nc(p′).

We can generalize the inequality (11) to a n-uple of elements of Ak.

Lemma 6.1. — Let k be an integer. For any integer n, for any (pi)
n
i=1 ∈ An

k :

d(id, ◦ni=1pi)≤
n
∑

i=1

d(id, pi)−
1

2

[

(n− 1)k + nc(◦ni=1pi)−
n
∑

i=1

nc(pi)

]

−
n−1
∑

i=1

κ(pi, pi+1),

where we have used the notation ◦ni=1pi = p1 ◦ . . . ◦ pn.

In fact, the best way to understand the improved triangular inequality is to work with
the equivalent inequality (11). This formulation of the improved triangular inequality
leads us to the next notion.

Definition 6.1. — Let p and p′ be two elements of Ak. We will say that p ≺ p ◦ p′ if
and only if:

d(id, p ◦ p′)− d(id, p) − d(id, p′) +
k + nc(p ◦ p′)− nc(p)− nc(p′)

2
+ κ(p, p′) = 0.

Let p0 ∈ Ak. We will write that p ≺ p0 if there exists p′ ∈ Ak such that p0 = p ◦ p′ and
p ≺ p ◦ p′.

Definition 6.2. — Let us suppose that p ≺ p0. We define for any p ≺ p0:

Kp0(p) = {p′ ∈ Ak, p ◦ p
′ = p0}.
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Let us suppose that p ≺ p ◦ p′. We recall that:

d(id, p ◦ p′) ≤ d(id, p) + d(p, p ◦ p′)

≤ d(id, p) + d(id, p′)−
k + nc(p ◦ p′)− nc(p)− nc(p′)

2
− κ(p, p′).

Thus, if the first term and the third one are equal, then p ∈ [id, p◦p′]Ak
. We have shown

the following lemma.

Lemma 6.2. — Let k be an integer. Let p and p0 in Ak. If p ≺ p0 then there exists
p′ ∈ Ak such that p0 = p ◦ p′ and

p ∈ [id, p0]Ak
.

Let us remark that {σ′ ∈ Sk, σ
′ ≺ σ} = [id, σ]Sk

. This is due to the fact that
κ(σ, σ′) = 0 for any couple of permutations, the fact that nc is constant on the set of
permutations and the fact that any permutation is invertible. Using Lemma 2.1 one can
have the better result.

Lemma 6.3. — Let k be an integer. Let σ ∈ Sk, then:

{p ∈ Pk, p ≺ σ} = [id, σ]Sk
.

Let us state a consequence of Lemma 6.2: the factorization property for ≺.

Lemma 6.4. — Let k and l be two integers. Let a ∈ Pk and b ∈ Pl. For any p ∈ Pk+l

such that p ≺ a⊗ b, there exist p1 ≺ a and p2 ≺ b such that p = p1 ⊗ p2.

This lemma is a consequence of Lemma 6.2 and the factorization property for the
geodesics stated in Lemma 3.4.

Let p and p0 in Ak such that p ≺ p0. Let us have a little discussion on Kp0(p): by
definition this is not empty but it is not reduced to a unique partition. For example,
one can show that if p = {{1, 2, 1′, 2′}} and p0 = {{1′, 2′}, {1}, {2}} then:

Kp0(p) =
{{

{1}, {2}, {1′}, {2′}
}

,
{

{1}, {2}, {1′ , 2′}
}}

.

Let k be an integer. Let (1, . . . , k) be the k-cycle in Sk. It is well-known that the
set of non-crossing partition over {1, . . . , k} is isomorphic to [id, (1, . . . , k)]Sk

. From

now on, we will consider any non-crossing partition over {1, . . . , k} as an element of
[id, (1, .., k)]Sk

. The following lemma is straightforward.

Lemma 6.5. — The notion of Kp0(p) generalizes the notion of Kreweras complement
for non-crossing partitions over {1, . . . , k} and p0 = (1, . . . , k).

We are going now to see one of the main results of the paper, namely the fact
that the improved triangle inequality implies the convergence of the deformed algebras
(

C[Ak(N,N)])
)

N∈N
stated in the forthcoming Theorem 6.1. Before doing so, we need

to define the notion of convergence of algebras.

Definition 6.3. — Let C be a finite set of elements. For any N ∈ N∪ {∞}, let LN be
an algebra such that C is a linear basis of LN . For any elements x and y of C, for each
N ∈ N ∪ {∞}, we denote the product of x with y in LN by x.Ny.
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We say that LN converges to the algebra L∞ when N goes to infinity if for any x and
y in C,

x.Ny −→
N→∞

x.∞y in C[C],

for the usual notion of convergence in finite dimensional linear spaces.

Let us state the convergence of the deformed algebras
(

C[Ak(N,N)])
)

N∈N
.

Theorem 6.1. — As N goes to infinity, the deformed algebra C[Ak(N,N)] converges
to the deformed algebra C[Ak(∞,∞)] which is the associative algebra over C with basis
Ak endowed with the multiplication defined by:

∀p, p′ ∈ Pk, pp′ = δp≺p◦p′ p ◦ p
′.

Proof. — Let k be an integer. For any N ∈ N ∪{∞}, Ak is a linear basis of C[Ak(N,N)].
By bi-linearity of the product, it is enough to prove that for any p and p′ in Ak, p.Np′

converges to δp≺p◦p′p ◦ p
′.

Let p and p′ be two elements of P. We have:

p.Np′ = Nd(id,p◦p′)−d(id,p)−d(id,p′)+ k+nc(p◦p′)−nc(p)−nc(p′)
2

+κ(p,p′)(p ◦ p′).

By the version of the improved triangle inequality stated in Proposition 6.1 or in the
inequality (11), we have:

d(id, p ◦ p′)− d(id, p) − d(id, p′) +
k + nc(p ◦ p′)− nc(p)− nc(p′)

2
+ κ(p, p′) ≤ 0.

According to Definition 6.1, we have p.Np′ −→
N→∞

δp≺p◦p′ p ◦ p
′.

To conclude this section, let us remark that for any integer k, we have the inclusion
of algebras:

C[Sk(∞,∞)] ⊂ C[Bk(∞,∞)] ⊂ C[Pk(∞,∞)].

7. Consequences of the convergence of the deformed algebras.

7.1. Convergence of a product. — Let k be an integer. As usual, let Ak be Sk, Bk

or Pk. Let us give the first consequence of Theorem 6.1 for the product of two elements
of
∏

N∈N
C[Ak(N)]. Recall the Notation 4.1.

Theorem 7.1. — Let (EN )N∈N, (FN )N∈N be elements of
∏

N∈N
C[Ak(N)]. Let us sup-

pose that (EN )N∈N and (FN )N∈N converge, then the sequence
(

ENFN

)

N∈N
converges.

Besides, for any p0 ∈ Ak:

κp0(EF ) =
∑

p∈Ak,p≺p0

κp(E)κKp0 (p)(F ),(12)

mp0(EF ) =
∑

p∈Ak,p∈[id,p0]Ak

κp(E)mtp◦p0(F ).(13)
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Proof. — Let (EN )N∈N, (FN )N∈N elements of
∏

N∈N
C[Ak(N)]. Let us suppose that

(EN )N∈N and (FN )N∈N converge. We have by definition:

(MN
k )−1(ENFN ) = (MN

k )−1(EN ).N (MN
k )−1(FN ).

We know, by Lemma 5.4, that (MN
k )−1(EN ) and (MN

k )−1(FN ), seen as elements
of C[Ak], converge when N → ∞. Besides, the algebra C[Ak(N,N)] converges to
C[Ak(∞,∞)], as it was proved in Theorem 6.1. Thus (MN

k )−1(ENFN ) converges when
N goes to infinity. Again, by Lemma 5.4 and Theorem 4.1, this shows that (ENFN )N∈N
converges.

Besides, using Lemma 5.3, we have:

(MN
k )−1(ENFN ) =

∑

p∈Ak

κp0(ENFN )p0,

(MN
k )−1(EN ).N (MN

k )−1(FN ) =
∑

p∈Ak,p′∈Ak

κp(EN )κp
′
(FN )p.Np′.

Using the formula for the limit of .N shown in Theorem 6.1, for any p0 ∈ Pk:

κp0(EF ) =
∑

p∈Ak,p≺p0

κp(E)κKp0 (p)(F ).

For the second equality, one could use the link, between Ak-moments and coordinate
numbers when N → ∞ given by Equality (5). Yet, this happens to be more difficult
than a direct proof. Indeed, by bi-linearity, we have only to show that the equality (13)
holds when, for any integer N :

EN =
1

N
−k+nc(p)

2
+d(id,p)

p.

Let N be an integer, let us suppose that EN is of this form. Let p0 ∈ Ak, we have:

mp0(ENFN ) =
1

N
−k+nc(p)

2
+d(id,p)

Tr(FN
tp0p)

Tr(p0)

=
Nκ( tp0,p)

N
−k+nc(p)

2
+d(id,p)

Tr(FN
tp0 ◦ p)

Tr(p0)

=
Nκ( tp0,p)

N
−k+nc(p)

2
+d(id,p)

Tr( tp ◦ p0)m tp◦p0(FN )

Tr(p0)

=
1

N
−k+nc(p)

2
+d(id,p)

Tr( tpp0)

Tr(p0)
m tp◦p0(FN ).

We remind the reader that, for any p and p0 in Ak:

1

N
−k+nc(p)

2
+d(id,p)

Tr( tpp0)

Tr(p0)
= Nd(id,p0)−d(id,p)−d(p,p0).

This equality allows to finish the proof, as:

mp0(ENFN ) = Nd(id,p0)−d(id,p)−d(p,p0)m tp◦p0(FN ).
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Using the triangular inequality, one gets finally that mp0(ENFN ) converges when N goes
to infinity to δp∈[id,p0]Ak

m tp◦p0(FN ).

Remark 7.1. — We can show the similar result that, under the same assumptions:

mp0(EF ) =
∑

p∈Ak,p∈[id,p0]Ak

mp0◦tp(E)κp(F ).(14)

7.2. Semi-groups. — Let k be an integer. In this subsection, we will study conver-
gence of sequences of semi-groups in C[Ak(N)]. Semi-groups in different algebras will
appear in the paper: for this paper, a family (at)t≥0 is a semi-group if there exists h,
called the generator, such that for any t0 ≥ 0:

d

dt |t=t0
at = hat0 .

If we consider the algebra
∏

N∈N C[Ak(N)], we are led to the next definition.

Definition 7.1. — The family
(

(EN
t )N

)

t≥0
is a semi-group in

∏

N∈NC[Ak(N)] if there

exists (HN )N∈N ∈
∏

N∈N C[Ak(N)], called the generator, such that for any t ≥ 0, for
any integer N :

d

dt |t=t0
EN

t = HNEN
t0 .

From now on, let us suppose that
(

(EN
t )N

)

t≥0
is a semi-group in

∏

N∈NC[Ak(N)]

whose generator is (HN )N∈N. Let us define the convergence for semi-groups in
∏

N∈N C[Ak(N)].

Definition 7.2. — The semi-group
(

(EN
t )N

)

t≥0
converges if and only if for any t ≥ 0,

EN
t converges as N goes to infinity.

The next theorem, one of the main theorems of the paper, shows that a semi-group
in
∏

N∈NC[Ak(N)] converges if the initial condition and the generator converge. Recall
the Notation 4.1.

Theorem 7.2. — The semi-group
(

(EN
t )N

)

t≥0
converges if the sequences (EN

0 )N∈N and

(HN )N∈N converge as N goes to infinity.
Besides, we have the two differential systems of equations:

∀p ∈ Ak,∀t0 ≥ 0,
d

dt |t=t0
κp(Et) =

∑

p1∈Ak,p1≺p

κp1(H)κKp(p1)(Et0).(15)

∀p ∈ Ak,∀t0 ≥ 0,
d

dt |t=t0
mp(Et) =

∑

p1∈[id,p]Ak

κp1(H)mtp1◦p(Et0).(16)

Proof. — Let us suppose that (HN )N∈N converges. For any integer N and any t ≥ 0,
we define:

ẼN
t = (MN

k )−1(EN
t ),

H̃N = (MN
k )−1(HN ).
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As for any integer N , MN
k is a morphism of algebra, the family

(

(ẼN
t )N∈N

)

t≥0
is a

semi-group in
∏

N∈N
C[Ak(N,N)] and its generator is

(

H̃N

)

N∈N
. An application of Lemma

5.3 allows us to write the condition of semi-group in the basis Ak ; for any t0 ≥ 0:

d

dt |t=t0

∑

p0∈Ak

κp0(EN
t )p0 =

(

∑

p∈Ak

κp(HN )p

)

.N

(

∑

p′∈Ak

κp
′
(EN

t0 )p
′

)

.

Then the following equality must hold for any integer N , any t0 ≥ 0 and any p0 ∈ Ak:

d

dt |t=t0
κp0(EN

t )

=
∑

p,p′∈Ak,p◦p′=p0

κp(HN )κp
′
(EN

t )Nd(id,p◦p′)−d(id,p)−d(id,p′)+ k+nc(p◦p′)−nc(p)−nc(p′)
2

+κ(p,p′).

Let us take N going to infinity. Because of the hypothesis and because of the improved
triangular inequality, this differential system converges: κp(EN

t ) must converge for any
p ∈ Ak and any real t ≥ 0. Besides, we get for any t0 ≥ 0:

∀p ∈ Ak,
d

dt |t=t0
κp(Et) =

∑

p1∈Ak,p1≺p

κp1(H)κKp(p1)(Et0).

Since the semi-group converges, using the usual notations, we can write that for any
p ∈ Ak and any t0 ≥ 0:

d

dt |t=t0
mp(Et) = mp (HEt0) ,

and using equality (13), one has:

lim
N→∞

mp(HNEN
t0 ) =

∑

p1∈[id,p]Ak

κp1(H)mtp1◦p(Et0).

Hence we recover the second system of differential equations.

Of course one also has, by using equality (14) instead of (13), that for any p ∈ Pk and
any t0 ≥ 0:

d

dt |t=t0
mp0(Et) =

∑

p∈[id,p0]Ak

mp0◦tp(H)κp(Et0).

Moreover, Theorem 7.2 can be very easily generalized for any semi-group with time
dependent generator. In order to finish the section, let us prove a consequence of Lemma
3.3.

Theorem 7.3. — Let
(

(EN
t )N

)

t≥0
be a semi-group in

∏

N∈N C[Bk(N)]. Let us suppose

that the sequence (EN
0 )N∈N converges as N goes to infinity. Let us suppose that for any

σ ∈ Sk, κσ(HN ) converges when N goes to infinity. Then for any σ ∈ Sk, for any
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positive real t, κσ(EN
t ) converges as N goes to infinity. Besides for any σ ∈ Sk and any

t0 ≥ 0:

d

dt |t=t0
κσ(Et) =

∑

σ∈Sk,σ1≺σ

κσ1(H)κKσ(σ1)(Et0).(17)

Proof. — Let
(

(EN
t )N

)

t≥0
be a semi-group in

∏

N∈NC[Bk(N)] which satisfies the hy-

pothesis of the theorem. Let σ ∈ Sk and let N be an integer. We have seen in the last
proof that for any t0 ≥ 0:

d

dt |t=t0
κσ(EN

t )

=
∑

p,p′∈Bk,p◦p′=σ

κp(HN )κp
′
(EN

t0 )N
d(id,p◦p′)−d(id,p)−d(id,p′)+

k+nc(p◦p′)−nc(p)−nc(p′)
2

+κ(p,p′).

Yet, by Lemma 2.1, if p ◦ p′ = σ, then p and p′ are in Sk. Thus,

d

dt |t=t0
κσ(EN

t ) =
∑

p,p′∈Sk,p◦p′=σ

κp(HN )κp
′
(EN

t0 )N
d(id,p◦p′)−d(id,p)−d(id,p′).

Thus, we see that
(

(κσ(EN
t ))σ∈Sk

)

t≥0
satisfies a linear differential system whose coeffi-

cients converge by hypothesis. Thus, for any σ ∈ Sk, for any positive real t, κσ(EN
t )

converges as N goes to infinity. The Equation 17 is obtained by taking N going to
infinity in the last equation.

8. A new way to get combinatorial properties

In Section 6, we showed new inequalities on the set of partitions Pk. The proofs were
quite combinatorial, and used only the notion of distance. In this section, we want to
show that one can prove new inequalities or equalities, by using Theorem 4.1 as a black
box.

8.1. Geometric consequences of Theorem 4.1. — First, let us give a new proof
of the improved triangular inequality.

Proof of Proposition 6.1. — Let k be an integer. Let p and p′ be two elements of Ak.
Let us consider (pN )N∈N and (p′

N )N∈N such that for any integer N :

pN = MN
k (p),

p′
N = MN

k (p′).

Using Lemma 5.4, (pN )N∈N and (p′
N )N∈N converge strongly. Let N be an integer.

Applying the equality (9), we have:

pN ⊗ p′
N = MN

2k(p⊗ p′).

Thus, using Lemma 5.4, pN ⊗ p′
N converges strongly when N goes to infinity. An

application of Theorem 4.1 shows that it converges in moments: for any p̃ ∈ A2k,

mp̃(pN ⊗ p′
N ) converges when N → ∞.
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For any partition p̃ ∈ Ak, we define P (p̃) be the partition in A2k:

P (p̃) = (p̃ ⊗ idk)(1, k + 1)(2, k + 2) . . . (k, 2k).

Then for any E ∈ C[Ak(N)] and F ∈ C[Ak(N)], and any p0 ∈ Ak, we have:

mP (p0)(E ⊗ F ) = mp0(EF ).

Thus for any p0 ∈ Ak, mp0(pNp′
N ) which is equal to mP (p0)(pN ⊗ p′

N ) converges as N
goes to infinity. Using again the Theorem 4.1, we have that pNp′

N converges strongly
as N goes to infinity. It implies, because of Lemma 5.4 that (MN

k )−1(pNp′
N ) converges

in C[Ak] when N goes of infinity. We can calculate this last expression:

(MN
k )−1(pNp′

N ) = (MN
k )−1(MN

k (p)MN
k (p′))

= p.Np′

= Nd(tp′,p)−d(id,p)−d(id,p′)+k+nc(p◦p′)−nc(p)−nc(p′)+2κ(p,p′)(p ◦ p′),

where we used Lemma 5.1. Thus we must have that for any p and p′ in Ak:

d(tp′, p) ≤ d(id, p) + d(id, p′)− k − nc(p ◦ p′) + nc(p) + nc(p′)− 2κ(p, p′).

The improved inequality is just a consequence of the last inequality as soon as we see
that for any p ∈ Ak, nc(

tp) = nc(p), and d(id, p) = d(id, tp).

Again, using the same ideas, one can show the following interesting property.

Proposition 8.1. — Let p0, p1 and p2 be three partitions in Ak. Let τ be the partition
in A2k defined by:

τ = (1, k + 1)(2, k + 2) . . . (k, 2k).

We have:

δp1⊗p2∈[id,(p0⊗idk)τ ]A2k
= δp1◦p2∈[id,p0]Ak

δp1≺p1◦p2 .

Proof. — Let p0, p1 and p2 be three partitions in Ak. Let us consider (p1
N )N∈N and

(p2
N )N∈N such that for any integer N , p1

N = MN
k (p1) and p2

N = MN
k (p2).

Using Lemma 5.4, (p1
N )N∈N and (p2

N )N∈N converge strongly. Thus, (p1
N ⊗ p2

N )N∈N

converges strongly, and by Theorem 4.1 it converges in moments.
Let us calculate, using two ways, the limit of m(p0⊗idk)τ

[

p1
N ⊗ p2

N

]

, where τ = (1, k+
1)(2, k + 2) . . . (k, 2k).

First, using Theorem 4.1 and the Equation (5), we get that:

lim
N→∞

m(p0⊗idk)τ

[

p1
N ⊗ p2

N

]

=
∑

p∈[(p0⊗idk)τ ]A2k

lim
N→∞

κp
[

p1
N ⊗ p2

N

]

.

Yet, for any p ∈ A2k, κ
p
[

p1
N ⊗ p2

N

]

= δp=p1⊗p2 , thus:

lim
N→∞

m(p0⊗idk)τ

[

p1
N ⊗ p2

N

]

= δp1⊗p2∈[id,(p0⊗idk)τ ]A2k
.
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Then, using the fact that m(p0⊗idk)τ

[

p1
N ⊗ p2

N

]

= mp0

[

p1
Np2

N

]

, and using again The-
orem 4.1 and the Equation (5):

lim
N→∞

m(p0⊗idk)τ

[

p1
N ⊗ p2

N

]

=
∑

p∈[id,p0]Ak

lim
N→∞

κp
[

p1
Np2

N

]

.

Let p ∈ Ak, κ
p
[

p1
Np2

N

]

is the coefficient of p in the expression
(

MN
k

)−1
(p1

Np2
N ). Let us

remark that
(

MN
k

)−1
(p1

Np2
N ) =

(

MN
k

)−1
(MN

k (p1)M
N
k (p2)) = p1.Np2 which converges

in C[Ak] to δp1≺p1◦p2p1 ◦ p2. Thus,

lim
N→∞

κp
[

p1
Np2

N

]

= δp1≺p1◦p2δp=p1◦p2 .

This implies that:

lim
N→∞

m(p0⊗idk)τ

[

p1
N ⊗ p2

N

]

= δp1≺p1◦p2δp1◦p2∈[id,p0]Ak
.

Using the two ways to compute limN→∞m(p0⊗idk)τ

[

p1
N ⊗ p2

N

]

, we get:

δp1⊗p2∈[id,(p0⊗idk)τ ]A2k
= δp1◦p2∈[id,p0]Ak

δp1≺p1◦p2 .

which was the desired equality.

In fact, one can always prove the results by a combinatorial argument: the ideas we
present are more an automatic way to get combinatorial results that one can prove after
by combinatorial means. For exemple, let us consider Definition 9.1. Using Proposition
8.1, one can now expect that df(p1 ⊗ p2, (p ⊗ idk)τ) = df(p1 ◦ p2, p) + η(p1, p2). Indeed,
we have the following proposition.

Proposition 8.2. — Let p0, p1 and p2 be three partitions in Ak. Let τ be the partition
in A2k defined by:

τ = (1, k + 1)(2, k + 2) . . . (k, 2k).

We have:

df(p1 ⊗ p2, (p0 ⊗ idk)τ) = df(p1 ◦ p2, p0) + η(p1, p2).

Proof. — The proof is only based on calculations. Let p and p′ be two partitions in Ak,
then:

df(p′, p) = nc(p′)− nc(p′ ∨ id)− nc(p′ ∨ p) + nc(p ∨ id),

and η(p, p′) is equal to:

nc(p) + nc(p′)− nc(p ◦ p′)− nc(p ∨ id)− nc(p′ ∨ id) + nc(p ◦ p′ ∨ id)− κ(p, p′).

Thus:

df(p1 ◦ p2, p0) + η(p1, p2)− df(p1 ⊗ p2, (p0 ⊗ idk)τ)

= nc(p1 ◦ p2)−nc((p1 ◦ p2) ∨ id)−nc((p1 ◦ p2) ∨ p0)+ nc(p0 ∨ id)+ nc(p1)+ nc(p2)

− nc(p1 ◦ p2)− nc(p1 ∨ id)− nc(p2 ∨ id) + nc((p1 ◦ p2) ∨ id)− κ(p1, p2)

− nc(p1 ⊗ p2) + nc((p1 ⊗ p2) ∨ id) + nc([(p0 ⊗ idk)τ ] ∨ [p1 ⊗ p2])

− nc([(p0 ⊗ idk)τ ] ∨ id2k).
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Using the following equalities:

nc(p1 ⊗ p2) = nc(p1) + nc(p2),

nc([p1 ⊗ p2] ∨ id) = nc(p1 ∨ id) + nc(p2 ∨ id),

we get:

df(p1 ◦ p2, p0) + η(p1, p2)− df(p1 ⊗ p2, (p0 ⊗ idk)τ)

= −nc((p1 ◦ p2) ∨ p0) + nc(p0 ∨ id)− κ(p1, p2)

+ nc([(p0 ⊗ idk)τ ] ∨ [p1 ⊗ p2])− nc([(p0 ⊗ idk)τ ] ∨ id2k).

The equalities:

TrN (p0) = TrN ((p0 ⊗ idk)τ),

Nκ(p1,p2)TrN ((p1 ◦ p2)
tp0) = TrN ((p1p2)

tp0) = TrN ((p1 ⊗ p2)
t[(p0 ⊗ idk)τ ]),

allow us to prove, as an application of Equations (2) and (3), that:

nc(p0 ∨ id) = nc([(p0 ⊗ idk)τ ] ∨ id2k),

nc((p1 ◦ p2) ∨ p0) + κ(p1, p2) = nc([(p0 ⊗ idk)τ ] ∨ [p1 ⊗ p2]).

Thus df(p1 ◦ p2, p0) + η(p1, p2)− df(p1 ⊗ p2, (p0 ⊗ idk)τ) = 0.

8.2. Combinatorial consequences of Theorem 4.1. — Let us remark the following
important, yet simple theorem.

Theorem 8.1. — Let (mp)p∈Ak
be a family of complex numbers. There exists a se-

quence (EN )N∈N ∈
∏

N∈N C[Ak(N)] which converges and such that:

lim
N→∞

mp (EN ) = mp.

Proof. — Let us consider (mp)p∈Ak
a family of complex numbers. Let us consider

(κp)p∈Ak
, the unique family of real such that for any p ∈ Ak:

mp =
∑

p′∈[id,p]Ak

κp
′
.

Let us consider then:

EN = MN
k





∑

p∈Ak

κpp



 .

According to Lemma 5.4, (EN )N∈N ∈
∏

N∈N C[Ak(N)] converges strongly. Thus, by
Theorem 4.1 it converges in moments and for any p ∈ Ak:

lim
N→∞

mp(EN ) =
∑

p′∈[id,p]Ak

lim
N→∞

κp
′
(EN ).

Yet, using Lemma 5.3, κp
′
(EN ) is equal to κp. Thus:

lim
N→∞

mp(EN ) =
∑

p′∈[id,p]Ak

κp
′
= mp.

This concludes the proof.



PARTITIONS AND GEOMETRY 41

This theorem is very important, as actually, it shows that, in order to understand
the transformation between moments and coordinate numbers, we have an approx-
imation setting in which one can work with: the space of convergent sequences in
∏

N∈N C[Ak(N)]. Let us show some exemples of propositions that one can get using
this point of view. For this, we need the notion of cumulants and exclusive moments.
Let us consider (mp)p∈Ak

a family of complex numbers.

Definition 8.1. — The cumulants of (mp)p∈Ak
is the unique family of complex numbers

(κp)p∈Ak
such that for any p ∈ Ak:

mp =
∑

p′∈[id,p]Ak

κp
′
.

The exclusive moments of (mp)p∈Ak
is the only family (mpc)p∈Pk

of complex numbers
such that:

mp =
∑

p′∈Pk ,p′ coarser-compatible than p

mp′c .

Let us consider the cumulants (κp)p∈Ak
and the exclusive moments (mpc)p∈Pk

of
(mp)p∈Ak

.

Proposition 8.3. — Let p and p0 be two elements of Ak. Then:

δp∈[id,p0]Ak
mtp◦p0 =

∑

p′∈[id,p0]Ak

δp≺p′κ
Kp′(p).

where for any P ⊂ Ak, κ
P =

∑

p∈P κp.

By specifying p = id in Proposition 8.4, we get back the Equation (5). Besides, one
can get a similar formula for mp0◦ tp(E) by using the Equation (14). Using Theorem
8.1, the last proposition is a consequence of Proposition 8.4.

Proposition 8.4. — For any integer N , let us consider EN an element of C[Ak(N)].
Let us suppose that (EN )N∈N converges. Let p and p0 be two elements of Ak. Then:

δp∈[id,p0]Ak
mtp◦p0(E) =

∑

p′∈[id,p0]Ak

δp≺p′κ
Kp′(p)(E).

Proof. — Let p and p0 be two elements of Ak. Let us consider for any N , MN
k (p) ∈

C[Ak(N)]. The sequence
(

MN
k (p)

)

N∈N
∈
∏

N∈N C[Ak(N)] converges by Lemma 5.4.

Let us apply the Theorem 7.1 to the product MN
k (p)EN . We remind the reader that

κp
′
(MN

k (p)) = δp=p′ .
From Theorem 7.1, Equation (12), we know that

lim
N→∞

κp
′
(MN

k (p)EN ) = δp≺p′κ
Kp′ (p)(E).

Let us use the Equation (5):

lim
N→∞

mp0(M
N
k (p)EN ) =

∑

p′∈[id,p0]Ak

δp≺p′κ
Kp′(p)(E).
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Yet, according to Equation (13),

lim
N→∞

mp0(M
N
k (p)EN ) = δp∈[id,p0]Ak

mtp◦p0(E),

hence the equality stated in Proposition 8.4.

Let us show one more exemple. Using Theorem 8.1, one can translate Theorem 4.6.

Theorem 8.2. — For any p ∈ Ak:

mpc =
∑

p′ finer than p,p′∈[id,p]Ak

κp′ .

8.3. Convergence of the modified observables. — In Section 5, we have defined
a deformed partition algebra, by deforming the multiplication. Yet, we have not defined
any deformed linear form mp on the algebra C[Ak(N,N)]. In fact, on C[Ak(N,N)], for
any p ∈ Pk we define:

mN
p : C[Ak(N,N)] → C

E 7→ mp

(

MN
k (E)

)

.

A consequence of Theorem 4.1 is that for any E ∈ Ak, for any p ∈ Pk, mN
p (E)

converges as N goes to infinity: let us denote the limit by m∞
p (E). We already know

that the algebra C[Ak(N,N)] converges to C[Ak(∞,∞)] when N goes to infinity. Thus,
we have that:

Theorem 8.3. — For any integer k,
(

C[Ak(N,N)], (mN
p )p∈Pk

)

converges to

(

C[Ak(∞,∞)], (m∞
p )p∈Pk

)

as N goes to infinity. This means that:

1. the algebra C[Ak(N,N)] converges to C[Ak(∞,∞)] as N goes to infinity,
2. for any E ∈ C[Ak(N,N)], for any p ∈ Pk, m

N
p (E) converges to m∞

p (E) as N goes
to infinity, where m∞

p (E) is defined below.

Besides, let E =
∑

p∈Ak
Epp and F =

∑

p∈Ak
Fpp in C[Ak(∞,∞)], then

EF =
∑

p1,p2∈Ak

Ep1Fp2δp1≺p1◦p2p1 ◦ p2.

And if p0 ∈ Ak:

m∞
p0(E) =

∑

p∈Ak

δp∈[id,p0]Ak
Ep.

In fact, this theorem has to be read in the other way: given the algebra with
linear forms (C[Ak(∞,∞)], (m∞

p )p∈Pk
), one can find an approximation given by

(

C[Ak(N,N)], (mN
p )p∈Pk

)

.
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9. Algebraic fluctuations

In this section, we generalize Sections 4, 5 and 7 in order to study the asymptotic
developments of the coordinate numbers and normalized moments. The proofs will be
either omitted or simplified as they will use the same arguments as we have seen in
Sections 4, 5 and 7.

In order to study the asymptotic developments, we need to introduce two notions of
default. One already seen is linked with the triangular inequality and the other to the
improved triangular inequality. Let k be an integer.

Definition 9.1. — Let p and p′ be two elements of Ak. We define the default of p′ not
being on the geodesic [id, p]Ak

by:

df(p′, p) = d(id, p′) + d(p′, p)− d(id, p).

We define also the default η(p, p′) that p ≺ p ◦ p′ is not satisfied by:

d(id, p) + d(id, p′)− d(id, p ◦ p′)−
k + nc(p ◦ p′)− nc(p)− nc(p′)

2
− κ(p, p′).

We warn the reader that, in general:

df(p, p ◦ p′) 6= η(p, p′),

even if this equality is true when one considers p, p′ ∈ Sk. Let us remark that if p and
p0 are elements of Ak, p ≺ p0 holds if and only if there exists p′ such that p0 = p ◦p′ and
η(p, p′) = 0.

Let us define the N -development algebra of order m of Ak. This algebra is the good
setting in order to study fluctuations of the coordinate numbers and moments.

Definition 9.2. — Let N, k and m be integers, let X be a formal variable. The N -
development algebra of order m of Ak, C(m)[Ak(N)], is the associative algebra generated
by the elements of the form:

p

Xi
,

where p ∈ Ak and i ∈ {0, . . . ,m}. The product is defined such that, for any p and p′ in
Ak, and any i and j in {0, . . . ,m}:

p

Xi
.
p′

Xj
=

1

Nmax(i+j+η(p,p′)−m,0)

p ◦ p′

Xmin(i+j+η(p,p′),m)
.

This product is well defined: indeed the improved triangle inequality, Proposition 6.1
or Lemma 6.1, assert that for any p, p′ ∈ Ak, η(p, p

′) ≥ 0, thus, for any i, j ∈ {0, . . . ,m},
any p, p′ ∈ Ak, we have min(i+ j + η(p, p′),m) ≥ 0. This implies that:

p ◦ p′

Xmin(i+j+η(p,p′),m)

is an element of the canonical basis of the N -development algebra of order m of Ak.
There is an important remark to be done: once one has defined the N -development

algebra of order m of Ak, we will not have any energy to speend in oder to get interesting
results.

Let us also remark that for any integers k, N and m in N, C(m)[Sk(N)] ⊂
C(m)[Bk(N)] ⊂ C(m)[Pk(N)], where these inclusions are inclusions of algebras.
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9.1. Coordinate numbers. — Let us remark that for any integer N , the N -
development algebra of order 0 of Ak is canonically isomorphic to C[Ak(N,N)].

Lemma 9.1. — Let N be an integer, the application:

LN
k : Ak → C(0)[Ak(N)]

p 7→
p

X0

can be extended as an isomorphism of algebra between C[Ak(N,N)] and C(0)[Ak(N)].

Proof. — Let us show that for any p, p′ in Ak, L
N
k (p.Np′) = LN

k (p)LN
k (p′). As for any

p, p′ ∈ Ak, η(p, p
′) ≥ 0, LN

k (p)LN
k (p′) is equal to:

p

X0

p′

X0
=

1

Nη(p,p′)

p ◦ p′

X0
=

1

Nη(p,p′)
LN
k (p ◦ p′).

Yet, looking at the definition of η(p, p′) given in Definition 9.1, for any integer N the
following equation holds in C[Ak(N,N)]:

p.Np′ =
1

Nη(p,p′)
p ◦ p′.

This allows to conclude.

Using this remark, we define, for any i ≤ m, the coordinate numbers of order i of any
element of C(m)[Ak(N)] as following.

Definition 9.3. — Let N and m be two integers. Let E ∈ C(m)[Ak(N)]. The co-

ordinate numbers of E up to the order m are the elements (κpi (E))i∈{0,...,m},p∈Pk
such

that:

E =
∑

p∈Ak

m
∑

i=0

κpi (E)
p

Xi
.

Let p ∈ Ak and i ≤ m. The number κpi (E) is the coordinate number of E on p of order i.

We define also a notion of convergence for (EN )N∈N ∈
∏

N∈NC(m)[Ak(N)]. In order to
do so, we must not forget that, when m = 0, C(m)[Ak(N)] is isomorphic to the deformed
algebra C[Ak(N,N)] and not the algebra C[Ak(N)].

Definition 9.4. — Let m ∈ N. The sequence (EN )N∈N converges if and only if for any
i ∈ {0, . . . ,m − 1}, and any p ∈ Ak, κ

p
i (EN ) is independent of N , and for any p ∈ Ak,

κpm(EN ) converges when N goes to infinity.

Notation 9.1. — Let (EN )N∈N ∈
∏

N∈N C(m)[Ak(N)]. Let us suppose that (EN )N∈N

converges as N goes to infinity. We denote, for any i ∈ {0, . . . ,m}, and any p ∈ Ak:

κpi (E) = lim
N→∞

κpi (EN ).
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9.2. Convergences: C(m)[Ak(N)] and multiplication. — Using Lemma 9.1, The-
orem 6.1, as the algebra C[Ak(N,N)] is isomorphic to C(0)[Ak(N)] by an isomorphism
which sends the canonical base of the first algebra on the canonical base of the second
algebra, we know that the algebra C(0)[Ak(N)] converges as N tends to infinity. In fact,
the result holds for any m ∈ N.

Definition 9.5. — Let N, k and m be three integers. Let X be a formal variable. The
∞-development algebra of order m of Ak, denoted by C(m)[Ak(∞)] is the associative
algebra generated by the elements of the form:

p

Xi
,

where p ∈ Ak and i ∈ {0, . . . ,m}. The product is defined such that, for any p and p′ in
Ak, and any i and j in {0, . . . ,m},

p

Xi

p

Xj
= δi+j+η(p,p′)≤m

p ◦ p′

Xi+j+η(p,p′)
.

Let us recall Definition 6.3, where we defined the convergence of algebras. We then
have the following proposition.

Proposition 9.1. — Let k and m be two integers. When N goes to infinity, the N -
development algebra of order m of Ak, C(m)[Ak(N)] converges to the ∞-development
algebra of order m of Ak, namely C(m)[Ak(∞)].

Proof. — Let k be an integer. The algebras C(m)[Ak(N)] have, for any integer N , the

same linear basis
( p
Xi

)

i∈{0,...,m},p∈Ak
. Since for any p, p′ ∈ Ak, any i, j ∈ N:

p

Xi

p′

Xi′
=

1

Nmax(i+j+η(p,p′)−m,0)

p ◦ p′

Xmin(i+j+η(p,p′),m)
−→
N→∞

δi+j+η(p,p′)≤m
p ◦ p′

Xi+j+η(p,p′)
,

where the first product is seen in C(m)[Ak(N)], the algebra C(m)[Ak(N)] converges to
C(m)[Ak(∞)] as N goes to infinity.

Let us write the first easiest consequence of the Proposition 9.1, which can be proved
by using a bi-linearity argument, Proposition 9.1 and Definition 9.4.

Proposition 9.2. — Let m be an integer, let (EN )N∈N and (FN )N∈N be elements of
∏

N∈N C(m)[Ak(N)]. Let us suppose that the two sequences (EN )N∈N and (FN )N∈N con-
verge. The sequence (ENFN )N∈N converges and, using Notations 9.1, for any i0 ∈
{0, . . . ,m} and for any p0 ∈ Ak:

κp0i0 (EF ) =
∑

p,p′∈Ak,η(p,p′)≤i0,p◦p′=p0

∑

i∈{0,...,i0−η(p,p′)}

κpi (E)κp
′

i0−η(p,p′)−i(F ).

As for Section 7.2, the good behavior of the product, given by Proposition 9.2, implies
a criteria for the convergence of semi-groups in

∏

N∈NC(m)[Ak(N)].

Definition 9.6. — Let m and k be two integers. Let
(

(EN
t )N

)

t≥0
be a semi-group in

∏

N∈N C(m)[Ak(N)]. The semi-group
(

(EN
t )N

)

t≥0
converges if and only if for any t ≥ 0,

(

EN
t

)

N∈N
converges.
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We have the following proposition, whose proof relies on the ideas behind the proof
of Proposition 9.2.

Proposition 9.3. — Let m ∈ N. Let us consider
((

EN
t

)

N

)

t≥0
a semi-group in

∏

N∈NC(m)[Ak(N)] which generator is denoted by (HN )N∈N. It converges if the se-

quences (EN
0 )N∈N and (HN )N∈N converge. Besides, using Notation 9.1, for any p ∈ Ak,

for any t0 ≥ 0 and any i ∈ {0, . . . ,m},

d

dt |t=t0
κp0i0 (Et) =

∑

p,p′∈Ak,η(p,p′)≤i0,p◦p′=p0

∑

i∈{0,...,i0−η(p,p′)}

κpi (H)κp
′

i0−η(p,p′)−i(Et0).

In order to finish this section, let us introduce the evaluation morphism: it is a
morphism which allows to inject an element from C(m)[Ak(N)] in C[Ak(N)]. Let N and
m be two integers. The function evalN is defined by:

evalN(m) : C(m)[Ak(N)] → C[Ak(N)]

∑

p∈Ak

m
∑

i=0

κpi (E)
p

Xi
7→
∑

p∈Ak

m
∑

i=0

κpi (E)
1

N i

p

N− k
2
+ nc(p)

2
+d(id,p)

.

Lemma 9.2. — For any integers N and m, evalN(m) is a morphism of algebra.

Proof. — Let N and m be two integers, let i, j ∈ {0, . . . ,m} and p, p′ ∈ Ak. Then:

evalN(m)

(

p

Xi

p′

Xj

)

= evalN(m)

(

1

Nmax(i+j+η(p,p′)−m,0)

p ◦ p′

Xmin(i+j+η(p,p′),m)

)

=
1

N i+j+η(p,p′)− k
2
+

nc(p◦p′)
2

+d(id,p◦p′)
p ◦ p′

=

(

1

N i

p

N− k
2
+

nc(p)
2

+d(id,p)

)

(

1

N j

p′

N− k
2
+ nc(p′)

2
+d(id,p′)

)

= evalN(m)

( p

Xi

)

evalN(m)

( p

Xj

)

.

The other properties are easily verified.

The function evalN(m) has an inverse if and only if m = 0. This will motivate us

in order to define a notion of convergence up to order m of fluctuations for sequences
in
∏

N∈NC[Ak(N)]. Then, given a linear or multiplicative problem in C[Ak(N)], one
can try to find a similar problem in C(m)[Ak(N)], solve this last problem, and push by

evalN(m) the solution on a solution of the first problem.

9.3. Convergence at any order of fluctuations in
∏

N∈N C[Ak(N)]. — We are
interested in elements in C[Ak(N)] and we want to define a notion of strong convergence
up to the mth order of fluctuations.

Definition 9.7. — Let m be an integer, let (EN )N∈N ∈
∏

N∈N C[Ak(N)]. The sequence

(EN )N∈N converges strongly up to the mth order of fluctuations if and only if there exist
two families of real (κpi )i∈{0,...,m−1},p∈Ak

and (κpm,N )p∈Ak,N∈N such that:
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– ∀p ∈ Ak, κp(EN ) =
∑m−1

i=0
κp
i

N i +
κp
m,N

Nm ,

– ∀p ∈ Ak, κ
p
m,N converges as N goes to infinity.

The families (κpi )i∈{0,...,m−1},p∈Ak
and (κpm,N )p∈Ak

are uniquely defined.

For any p ∈ Ak, any integer N and any i ∈ {0, . . . ,m − 1}, κpi is the coordinate
number of EN on p of order i, and κpm,N is the coordinate number of EN on p of order
m.

Notation 9.2. — Let m be an integer. Let (EN )N∈N in
∏

N∈NC[Ak(N)] such that

(EN )N∈N converges strongly up to the mth order of fluctuations. From now on, the
coordinate numbers of EN on p of order i will be denoted by κpi (EN ). For any p ∈ Ak

and any i ∈ {0, . . . ,m}, we will define:

κpi (E) = lim
N→∞

κpi (EN ).

When one works in
∏

N∈N C[Ak(N)], one has to be aware that the coordinate numbers
of higher order of fluctuations are only defined for a sequence (EN )N∈N which converges
strongly. Thus, one must not forgot that the notation κpi (EN ) means that we are looking
at the coordinate numbers of EN seen as an element of the sequence (EN )N≥0.

The Definition 9.7 might seem strange as it only uses once the notion of convergence.
Yet, it is easy to see that an equivalent definition is the following one.

Let m be an integer, let (EN )N∈N ∈
∏

N∈N C[Ak(N)]. It converges strongly up to the

mth order of fluctuations if and only if there exists a family (κpi )i∈{0,...,m},p∈Ak
of real

numbers such that for any i ∈ {0, . . . ,m},

N i



κp(EN )−
i−1
∑

j=0

κpj
N j



 −→
N→∞

κpi ,

with the convention
−1
∑

j=0

κp
j

Nj = 0. This definition explains why the families (κpi )i∈{0,...,m−1},p∈Ak

and (κpm,N )N∈N,p∈Ak
defined in Definition 9.7 are uniquely defined.

The next lemma makes a link between the convergence of elements of
∏

N∈N C(m)[Ak(N)]

and the convergence up to the mth order of fluctuations of elements of
∏

N∈N C[Ak(N)].

Lemma 9.3. — Let m ∈ N. Let (EN )N∈N ∈
∏

N∈NC(m)[Ak(N)]. Let us suppose that

(EN )N∈N converges. Then
(

evalN(m)(EN )
)

N∈N
converges strongly up to the mth order of

fluctuations.

The notion of strong convergence to the mth order of fluctuations allows to inject
canonically an element of

∏

N∈NC[Ak(N)] which converges strongly up to the mth order
of fluctuations into

∏

N∈N C(m)[Ak(N)].

Definition 9.8. — Let m be an integer, let (EN )N∈N ∈
∏

N∈NC[Ak(N)]. Let us sup-

pose that (EN )N∈N converges strongly up to the mth order of fluctuations. For any
p ∈ Ak, any integer N , let (κpi )i∈{0,...,m−1} and κpm,N be the coordinate numbers of EN
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on p. We define the lift of the sequence (EN )N∈N as (ẼN )N∈N ∈
∏

N∈NC(m)[Ak(N)]
defined by:

ẼN =
∑

p∈Ak

((

m−1
∑

i=0

κpi
p

Xi

)

+ κpm,N

p

Xm

)

.

The following lemma is then straightforward.

Lemma 9.4. — Let m ∈ N, let (EN )N∈N ∈
∏

N∈NC[Ak(N)] and let us suppose that

(EN )N∈N converges strongly up to the mth order of fluctuations. Let (ẼN )N∈N be its

canonical lift in
∏

N∈NC(m)[Ak(N)]. Then (ẼN )N∈N converges as N goes to infinity

and for any N ∈ N, one has evalN(m)(ẼN ) = EN .

We are going to define a weak notion of convergence up to themth order of fluctuations
and we will show that this notion is equivalent to the strong convergence notion we
defined in Definition 9.7.

Definition 9.9. — Let m be an integer, let (EN )N∈N ∈
∏

N∈N C[Ak(N)]. The sequence

(EN )N∈N converges in moments up to the mth order of fluctuations if and only if there
exist two families (mi

p)i∈{0,...,m−1},p∈Ak
and (mm

p,N)N∈N,p∈Ak
such that:

– ∀p ∈ Ak, mp(EN ) =
∑m−1

i=0
mi

p

N i +
mm

p

Nm ,

– ∀p ∈ Ak, m
m,N
p converges as N goes to infinity.

The families (mi
p)i∈{0,...,m−1},p∈Ak

and (mm
p,N )N∈N,p∈Ak

are uniquely defined.

For any p ∈ Ak, any integer N , and any i ∈ {0, . . . ,m − 1}, mi
p is the ith-order

fluctuations of the p-normalized moment of EN , and mm
p,N is the mth-order fluctuations

of the p-normalized moment of EN .

Notation 9.3. — Let m be an integer. Let (EN )N∈N ∈
∏

N∈N C[Ak(N)] such that

(EN )N∈N converges in moments up to the mth order of fluctuations. From now on, the
ith-order fluctuations of the p-normalized moment of EN will be denoted by mi

p(EN ).
For any p ∈ Ak and any i ∈ {0, . . . ,m}, we define:

mi
p(E) = lim

N→∞
mi

p(EN ).

We can state a remark for the fluctuations of the p-normalized moments of EN similar
to the one explained just after Notation 9.2 about the coordinate numbers of EN on p
of order i.

The next theorem shows that the strong convergence up to the mth order of fluctua-
tions is equivalent to the convergence in moments up to the mth order of fluctuations.

Theorem 9.1. — Let m ∈ N, let (EN )N∈N ∈
∏

N∈NC[Ak(N)]. The sequence (EN )N∈N

converges strongly up to the mth order of fluctuations if and only if it converges in
moments up to the mth order of fluctuations. We will say that (EN )N∈N converges up
to the mth order of fluctuations.
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Let us suppose that (EN )N∈N ∈
∏

N∈NC[Pk(N)] converges up to the mth order of
fluctuations. Using Notations 9.2 and 9.3 and the Definition 9.1, we have that, for any
i0 ∈ {0, . . . ,m} and any p ∈ Ak:

mi0
p (E) =

∑

p′∈Ak,df(p′,p)≤i0

κp
′

i0−df(p′,p)(E).(18)

Proof. — Let m be an integer and let (EN )N∈N ∈
∏

N∈NC[Ak(N)]. Let us consider p
in Ak.

Let us suppose that (EN )N∈N converges strongly up to the mth order of fluctuations.
The coordinate numbers of EN are defined up to order m of fluctuations and:

EN =
∑

p∈Ak

m
∑

i=0

κpi (EN )

N i

p

N− k
2
+ nc(p)

2
+d(id,p)

.

Besides, for any p ∈ Ak and any i ≤ m− 1, κpi (EN ) does not depend on N and κpm(EN )
converges when N goes to infinity.

We can compute the p-normalized moments of EN , using the same arguments as for
the proof of Theorem 4.1. For any N ∈ N and any p ∈ Ak:

mp(EN ) =
1

TrN (p)
TrN (EN ) =

∑

p′∈Ak

m
∑

i=0

κp
′

i (EN )
1

N i+df(p′,p)

=

m−1
∑

j=0





∑

(p′,i)∈Ak×{0,...,m−1},i+df(p,p′)=j

κp
′

i (EN )





1

N j

+





∑

(p′,i)∈Ak×{0,...,m},i+df(p,p′)≥m

κp
′

i (EN )

N i+df(p,p′)−m





1

Nm
.

Let us define for any N ∈ N, any j ∈ {0, . . . ,m− 1} and any p ∈ Ak:

mj
p(EN ) =

∑

(p′,i)∈Ak×{0,...,m−1},i+df(p,p′)=j

κp
′

i (EN )

and

mm
p (EN ) =

∑

(p′,i)∈Ak×{0,...,m},i+df(p,p′)≥m

κp
′

i (EN )

N i+df(p,p′)−m
,

so that, for any p ∈ Ak and any N ∈ N:

mp(EN ) =

m−1
∑

j=0

mi
p(EN )

N j
+

mm
p (EN )

Nm
.

For any p ∈ Ak and any i ≤ m− 1, mi
p(EN ) does not depend on N and for any p ∈ Ak,

κpm(EN ) converges when N goes to infinity. Thus mm
p (EN ) converges when N goes to

infinity to
∑

p′∈Ak,df(p′,p)≤m

κp
′

m−df(p′,p)(E).
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By Definition 9.9, this shows that (EN )N∈N converges in moments up to the mth order
of fluctuations and the Equation (18) holds.

Let us suppose now that (EN )N∈N converges in moments up to the mth order of
fluctuations. Then, by Theorem 4.1, it converges strongly up to order 0 of fluctuation.
Let us suppose that (EN )N∈N converges strongly up to order l of fluctuations with l < m.
Thus, the coordinate numbers of EN up to order l of fluctuations are well defined and
we can write:

EN =
∑

p∈Pk





l−1
∑

j=0

κpj (E)

N j
+

κpl (EN )

N l



 p,

where, for any p ∈ Pk, κ
p
l (EN ) is converging when N goes to infinity to a number κpl (E).

We can use the computation, that we already did, of the normalized moments of EN .
For any partition p ∈ Ak:

mp(EN ) =
l−1
∑

j=0





∑

(p′,i)∈Ak×{0,...,l−1},i+df(p,p′)=j

κp
′

i (E)





1

N j

+





∑

(p′,i)∈Ak×{0,...,l},i+df(p,p′)≥l

κp
′

i (EN )

N i+df(p,p′)−l





1

N l
.

Thus, using the same notations than those used in the first part of the proof, we get:

mp(EN ) =

l
∑

j=0

mj
p(E)

N j
+

∑

p′∈Ak,df(p,p′)=0

κp
′

l (EN )− κp
′

l (E)

N l

+
∑

(p′,i)∈Ak×{0,...,l},i+df(p,p′)−l=1

κp
′

i (EN )

N l+1
+ o

(

1

N l+1

)

.

Let us use the fact that (EN )N∈N converges in moments up to the order l+ 1 of fluctu-
ations: for any p ∈ Ak,

N l+1



mp(EN )−
l
∑

j=0

mj
p(E)

N j





converges as N goes to infinity. This implies that for any p ∈ Ak,
∑

p′∈[id,p]Ak

N(κp
′

l (EN )− κp
′

l (E))

converges as N goes to infinity. We are thus in the same setting as for the order 0 of
fluctuations: for any p ∈ Ak,

N(κp
′

l (EN )− κp
′

l (E))

converges as N goes to infinity: this is equivalent to say that (EN )N∈N converges strongly
up to order l + 1 of fluctuations. This implies by recurrence that (EN )N∈N converges
strongly up to order m of fluctuations.
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9.4. Multiplication and convergence of fluctuations in
∏

N∈NC[Ak(N)]. — The
results in Section 9.3 were only algebraic: we will now give the similar results for elements
in
∏

N∈N C[Ak(N)]. The main ingredients used in order to do so are Lemma 9.2, Lemma

9.3 and Lemma 9.4 which respectively assert that evalN(m) is a morphism of algebra,

compatible with the strong convergence notion and, in some sense, can be inverted.

Theorem 9.2. — Let m ∈ N. Let (EN )N∈N and (FN )N∈N be elements of
∏

N∈N C[Ak(N)].

Let us suppose that the sequences (EN )N∈N and (FN )N∈N converge up to the mth order
of fluctuations. Then, the sequence (ENFN )N∈N converges up to the mth order of
fluctuations.

Besides, using the Notations 9.2 and 9.3, for any i0 ∈ {0, . . . ,m} and for any p0 ∈ Ak:

κp0i0 (EF ) =
∑

p,p′∈Ak,η(p,p′)≤i0,p◦p′=p0

i0−η(p,p′)
∑

i=0

κpi (E)κp
′

i0−η(p,p′)−i(F ).(19)

mi0
p0(EF ) =

∑

p1∈Ak

∑

i+j+df(p1,p0)=i0

κp1i (E)mj
tp1◦p0

(F ).(20)

Proof. — Let (EN )N∈N and (FN )N∈N be elements of
∏

N∈NC[Ak(N)]. Let us suppose
that the sequences (EN )N∈N and (FN )N∈N converge strongly or in moments up to the
mth order of fluctuations.

By Lemma 9.4, let us consider the canonical lifts of (EN )N∈N (resp. (FN )N∈N) in
∏

N∈N C(m)[Ak(N)]: (ẼN )N∈N (resp. (F̃N )N∈N). The two sequences (ẼN )N∈N and

(F̃N )N∈N converge. According to Proposition 9.2, the sequence (ẼN F̃N )N∈N converges.
For any i0 ∈ {0, . . . ,m} and for any p0 ∈ Ak:

κp0i0 (ẼF̃ ) =
∑

p,p′∈Ak,η(p,p′)≤i0,p◦p′=p0

∑

i∈{0,...,i0−η(p,p′)}

κpi (Ẽ)κp
′

i0−η(p,p′)−i(F̃ ).(21)

An application of Lemma 9.3 shows that the sequence
(

evalN(m)(ẼN F̃N )
)

N∈N
converges

up to the mth order of fluctuations. As evalN(m) is a morphism of algebra, Lemma 9.2,

for any N ∈ N,

evalN(m)(ẼN F̃N ) = evalN(m)(ẼN )evalN(m)(F̃N ) = ENFN .

We deduce that (ENFN )N∈N converges strongly up to the mth order of fluctuations. The
equality (19) is deduced from (21).

In order to prove the equality (20), the best way is to come back to the definitions,
and do a proof similar to the one for (13) in Theorem 7.1.

Let us consider the implication of Proposition 9.3 for the semi-groups in
∏

N∈N C[Ak(N)].

From now on, let us suppose that
((

EN
t

)

N

)

t≥0
is a semi-group in

∏

N∈NC[Ak(N)]

whose generator is (HN )N∈N. We would like to state a theorem for the fluctuations of
((

EN
t

)

N

)

t≥0
similar to Theorem 7.2. For this, we need the following definition.
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Definition 9.10. — Let m ∈ N. The semi-group
((

EN
t

)

N

)

t≥0
converges to the mth

order of fluctuations if and only if for any t ≥ 0,
(

EN
t

)

N∈N
converges up to the mth

order of fluctuations.

We can now state the theorem about the convergence to themth order of fluctuations of
a semi-group in

∏

N∈NC[Ak(N)]. The proof will not be given, as it is a direct consequence
of Proposition 9.3 with a lift-argument as for the last proof.

Theorem 9.3. — Let m ∈ N. The semi-group
((

EN
t

)

N

)

t≥0
converges to the mth order

of fluctuations if the sequences (EN
0 )N∈N and (HN )N∈N converge up to the mth order of

fluctuations.
Besides, we have the two differential systems of equations:

∀p0 ∈ Ak,∀t0 ≥ 0,∀i0 ∈ {0, . . . ,m},

d

dt |t=t0
κp0i0 (Et) =

∑

p,p′∈Ak,η(p,p′)≤i0,p◦p′=p0

∑

i∈{0,...,i0−η(p,p′)}

κpi (H)κp
′

i0−η(p,p′)−i(Et0).

∀p0 ∈ Ak,∀t0 ≥ 0,∀i ∈ {0, . . . ,m},

d

dt |t=t0
mi0

p0(Et) =
∑

p1∈Ak

∑

i+j+df(p1,p0)=i0

κp1i (Ht)m
j
tp1◦p

(Et0).

10. An introduction to the general R-transform

10.1. The zero order. — Up to now, we only worked with partitions which have
a fixed length: we worked in Ak for a fixed integer k. Yet, we could have worked
with A∞ = ∪k∈NAk endowed with the product: pp′ = δl(p)=l(p′)pp

′ where we recall that
l(p) is the length of p. With this definition, we see that all the results hold when one
changes k by k = ∞. For example C[A∞(N,N)] converges when N goes to infinity to an
algebra C[A∞(∞,∞)]. We could have studied this algebra, yet, in the theory of random
matrices, we will see that the first elements E ∈ C[A∞(∞,∞)] we naturally obtain are
the elements which, seen as elements of C[A∞], are invariant and such that E0 = 1. The
invariance of E means that for any integer k and any σ ∈ Sk:

σEkσ
−k = Ek,

where Ek is the restriction of E on Ak. This definition allows to make the link with the
usual theory of R-transform. In fact, we will not use the invariance by S in most of
what we will do. Yet, we prefered to write it like this since it is the setting in which one
works when one consider the limit of one sequence of random matrices (AN )N∈N. Yet,
we will need similar results in [9] for the non-conjugation invariant case and we will use
them by refering to the theorem proved in the conjugation invariant case.
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10.1.1. Order zero: general definitions and Lie algebras. — Recall that A is either S,
B or P.

Definition 10.1. — Let us define the algebra:

Eg[A] =
∞
∏

k=0

C
S [Ak(∞,∞)] ,

where, for any integer k, C
S [Ak(∞,∞)] is the algebra of elements of C [Ak(∞,∞)]

which, seen as elements of C[Ak] are invariant by conjugation by any element of Sk.
Actually, two subspaces of Eg[A] will be interesting for us:

E[A] = {E ∈ Eg[A], E∅ = 1},

e[A] = {E ∈ Eg[A], E∅ = 0}.

Any element E ∈ Eg[A] is of the form:




∑

p∈Ak

(Ek)pp





k∈N

.

In order to simplify the notations, we will use the following convention: for any integer
k, for any p ∈ Ak,

Ep = E(p) = (Ek)p ,

and for any positive integer k:

Ek =
∑

p∈Ak

Epp.

The algebra Eg[A] is naturally endowed with a natural addition and multiplication
given, for any E,F ∈ Eg[A] and any k ∈ N

∗ by:

(E + F )k = Ek + Fk

(E ⊠ F )k = EkFk.

By convention (E ⊠ F )∅ = E∅F∅. Besides, one can construct an other law on Eg[A].

Definition 10.2. — Let E and F be two elements of Eg[A]. We denote by E ⊞ F the
element of Eg[A] such that for any p ∈ Al(p):

(E ⊞ F )p =
∑

(p1,p2,I)∈F2(p)

E(p1)F (p2),

where F2(p) was defined in Definition 2.10.

In fact, the two operations ⊠ and ⊞ are convolution operations.

Remark 10.1. — The sets E[A] and e[A] are stable by the ⊞ and ⊠ operations. Besides,
E[A] is an affine space whose underlying vector space is e[A].
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The operation ⊞ on E[A] is commutative, it defines a structure of group on E[A]. The
neutral element 0E is the only element in E[A] such that for any positive integer k, any
p ∈ Ak, (0E)p = 0.

The operation ⊠ is not commutative and the set of invertible elements in E[A] is the
set of elements E such that Eidk 6= 0 for any k ≥ 1, we denote it by GE[A]. We denote
by 1E the neutral element for ⊠ which is the only element such that for any k ≥ 1,
(1E)k = idk.

Let us consider an interesting sub-vector space of Eg[A]: the sub-vector space of
irreducible partitions.

Definition 10.3. — Recall the notation A
(i)
k was defined in Definition 2.9. We denote

by C
S
[

A
(i)
k

]

the vector space of elements of C
[

A
(i)
k

]

which, seen as elements of C
[

A
(i)
k

]

are invariant by conjugation by any element of Sk. We define:

E(i)
g [A] =

∞
∏

k=0

C
S
[

A
(i)
k

]

.

Actually, two subspaces of Eg[A] will be interesting for us:

E(i)[A] = E(i)
g [A] ∩ E[A],

e(i)[A] = E(i)
g [A] ∩ e[A].

When A = S, we have already seen after Definition 2.9 that:

A
(i)
k = {σ(1, . . . , k)σ−1, σ ∈ Sk}.

Proposition 10.1. — The affine space E(i)[S] can ben identified, by the following iso-
morphism, with the affine space C1[[z]] of formal power series which constant term is
equal to 1:

E(i)[S] → C1[[z]]

E 7→
∑

k∈N

E(1,...,k)z
k.

Any element E in Eg[A] can be restricted in order to obtain an element of E
(i)
g [A]

that we denote by E|Ei[A]. Conversely, given an element of E
(i)
g [A], one can inject it

non-trivially in Eg[A] in a natural way. Recall the definition of the extraction of p in
Definition 2.11, and the definition of cycles given in Definition 2.8. We only consider the
injection of an element of E(i)[A] in E[A].

Definition 10.4. — For any E ∈ E(i)[A], we denote by M(E) the unique element of
E[A] such that for any integer k, any p ∈ Ak,

(M(E))p =
∏

C∈C(p)

EpC .
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Any element of the image of the application:

M : E(i)[A] → E[A]

E 7→ M(E)

is called multiplicative and we denote ME[A] = M [E[A]] .

Let us remark that 0E and 1E are multiplicative elements. This is not the only property
satisfied by ME[A].

Theorem 10.1. — The set ME[A] is stable by the operations ⊞ and ⊠.

Proof. — Let E and F be two elements of M(E). Let us show that E⊞F is multiplica-
tive. Let p1 and p2 be two partitions, we have to show that:

(E ⊞ F )p1⊗p2 = (E ⊞ F )p1(E ⊞ F )p2 .(22)

Yet, by definition:

(E ⊞ F )p1⊗p2 =
∑

(a1,a2,I)∈F2(p1⊗p2)

Ea1Fa2 ,

and:

(E ⊞ F )p1(E ⊞ F )p2 =
∑

(a11,a
1
2,I

1)∈F2(p1),(a21,a
2
2,I

2)∈F2(p2)

Ea11
Ea21

Fa12
Fa22

.

Using the fact that E and F are multiplicative, that E∅ = 1 = F∅ and using the fact that
for any (a1, a2, I) ∈ F2(p1 ⊗ p2), a1 and a2 can be decomposed into two parts in order
to get two 3-tuples (a11, a

1
2, I

1) ∈ F2(p1) and (a21, a
2
2, I

2) ∈ F2(p2), one gets the equality
(22).

Let us show that E⊠F is multiplicative. Let p1 and p2 be two partitions, we have to
show that:

(E ⊠ F )p1⊗p2 = (E ⊠ F )p1(E ⊠ F )p2 .

By definition:

(E ⊠ F )p1⊗p2 =
∑

a,b/a◦b=p1⊗p2,a≺p1⊗p2

EaFb.

Yet, using Lemma 6.4, any partition a such that a ≺ p1⊗p2 can be decomposed as a1⊗a2
such that a1 ≺ p1 and a2 ≺ p2. Then if b is a partition such that a1 ⊗ a2 ◦ b = p1 ⊗ p2,
b can be also decomposed as b = b1 ⊗ b2 with a1 ⊗ b1 = p1 and a2 ⊗ b2 = p2. Using the
multiplicative property of E and F , one gets:

(E ⊠ F )p1⊗p2 =
∑

a1,a2,b1,b2/a1◦b1=p1,a2◦b2=p2,a1≺p1,a2≺p2

Ea1Ea2Fb1Fb2

=
∑

a1,b1/a1◦b1=p1,a1≺p1

Ea1Fb1

∑

a2,b2/a2◦b2=p2,a2≺p2

Ea2Fb2

= (E ⊠ F )p1 (E ⊠ F )p2 .

This ends the proof.
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Let us justify our notation ⊞. If we consider the pull-back of the ⊞ operation from
ME[A] to E(i)[A] and if one consider only the coefficients for the non-empty partitions,

one simply obtains the usual additive law on E(i)[A]. We will also see in the article [9]
that ⊞ is the natural operation which appears when one is working with sum of free
elements.

We believe that the inverse of a multiplicative element for the ⊞ and ⊠ is still multi-
plicative, but we have not yet written the proof. It is natural to wonder, as we have two
semi-groups (ME[A],⊞) and (ME[A] ∩ GEA,⊠) on which one can define differentiable
one-parameter semi-groups, what are the “Lie algebras” of these two semi-groups. Let
us remark that ME[A]∩GEA is only the set of elements E of ME[A] such that Eid1 6= 0.

We need to define two ways to inject e(i)[A] in e[A], the first of which is the natural
injection.

Definition 10.5. — For any E ∈ e(i)[A], we denote by I(E) the unique element of e[A]
such that, for any positive integer k, any irreducible p ∈ Ak,

(I(E))p = Ep,

and for any non-irreducible p ∈ Ak, (I(E))p = 0. We define me⊞[A] = I(E(i)[A]).

The second injection uses the notion of support of a partition and the notion of weakly
irreducible partitions defined in Definition 2.12. Recall also the notion of extraction
defined in Definition 2.11.

Definition 10.6. — For any E ∈ e(i)[A], we denote by J(E) the unique element of e[A]
such that, for any integer k, any weakly irreducible p 6= idk in Ak:

(J(E))p = E(pS(p)),

and (J(E))idk = k (J(E))id1 and for any other p ∈ Ak, (J(E))p = 0. We define me⊠[A] =

J(E(i)[A]).

This might look strange that we change the definition for (J(E))idk . It is easier to
understand it by using an other equivalent definition of the weakly irreducible notion.
The partition p is weakly irreducible if there exist p0 irreducible and I ⊂ {1, . . . , k} such
that p = σ−1

I (p0 ⊗ Idk−l(p0))σI . The partition p0 is unique if and only if p 6= idk. If p0 is

unique then (J(E))p = E(p0). If p = idk, then idk = σ−1
{l}(id1⊗ idk−1)σ{l} for any integer

l ∈ {1, . . . , k}. We do not choose and we prefer to sum all the values: (J(E))idk = kEid1 .

Due to the definitions, it is obvious that the sets me⊠[A] and me⊞[A] are vector spaces.
Let us define the exponentiation of any element of e[A] associated with the operation ⊞.

Definition 10.7. — Let E ∈ e[A]. The ⊞-semi group associated with E is the family
(etE

⊞
)t≥0 of elements of E[A] such that for any t0 ≥ 0:

d

dt |t=t0
etE
⊞

= E ⊞ et0E
⊞

,

e0E
⊞

= 0E.

Due to the commutativity of ⊞, one has that for any E,F ∈ e[A], eE
⊞
⊞ eF

⊞
= eE⊞F

⊞
.

Let us define the exponentiation associated with the operation ⊠.
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Definition 10.8. — Let E ∈ e[A]. The ⊠-semi group associated with E is the family
(etE

⊠
)t≥0 of elements of E[A] such that for any t0 ≥ 0:

d

dt |t=t0
etE⊠ = E ⊠ et0E

⊠
,

e0E⊠ = 1E.

We defined etE
⊞

and etE
⊠

as a one-parameter semi-group for two reasons: it will appear
later in this formulation, and it allows to have a Lie group/Lie algebra formalism. An
equivalent definition is given by the next proposition.

Proposition 10.2. — Let E ∈ e[A]. For any t ∈ R
+,

etE⊞ =

∞
∑

n=0

tn

n!
E⊞n and etE⊠ =

∞
∑

n=0

tn

n!
E⊠n,

where E⊞0 = 0E and E⊠0 = 1E.

Actually, we will use implicitely this fact when we will have to compute a element of
the form etE

⊞
in the article [9]. Besides, if one wants to make everything explicits, for

example this implies that for any t ∈ R
+, any positive integer k, any p ∈ Ak and any

E ∈ e[A],

(

etE
⊠

)

p
=

∞
∑

n=0

tn

n!

∑

(p1,...,pn)∈Ak ,p1≺p1◦p2≺...≺p1◦...◦pn/p1◦...◦pn=p

Ep1Ep2 ...Epn .

The next theorem shows that me⊞[A] and me⊠[A] are the Lie algebras of respectively
(ME[A],⊞) and (ME[A] ∩GEA,⊠).

Theorem 10.2. — Let E ∈ me⊞[A]. For any t ≥ 0,

etE
⊞

∈ ME[A].

Besides for any differentiable one-parameter semi-group (Et)t≥0 in (ME[A],⊞) such that
E0 = 0E, there exists E ∈ me⊞[A] such that for any t ≥ 0,

etE⊞ = Et.

Let E ∈ me⊠[A]. For any t ≥ 0,

etE⊠ ∈ ME[A].

Besides for any differentiable one-parameter semi-group (Et)t≥0 in (ME[A],⊠) such that
E0 = 1E, there exists E ∈ me⊠[A] such that for any t ≥ 0,

etE
⊠

= Et.

Proof. — Let (Et)t≥0 be a differentiable family of elements of E[A] such that E0 = 0E
or E0 = 1E. In order to prove that Et ∈ ME[A] for any real t ≥ 0, it is enough to show

that (Et)t≥0 and
(

M

(

Et
|E(i)[A]

))

t≥0
satisfy the same differential linear equations.

Besides, let (Et)t≥0 be a differentiable one-parameter semi-group for the ⊞ operation
(resp. ⊠ operation), which is in ME[A] and which starts at 0E (resp. 1E). In order to
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prove that there exists E ∈ me⊞[A] (resp. E ∈ me⊠[A]) such that for any t ≥ 0, etE
⊞

= Et

(resp. etE
⊠

= Et), it is enough to show that:

(Et)t≥0 and



e
tI

(

(

d
dt |t=0

Et

)

|E(i)[A]

)

⊞





t≥0
(

resp. (Et)t≥0 and



e
tJ

(

(

d
dt |t=0

Et

)

|E(i)[A]

)

⊠





t≥0

)

satisfy the same differential linear equations.
Let E ∈ me⊞[A]. For any t ≥ 0 we consider Et = etE

⊞
. Let n be an integer and let us

consider n irreducible partitions p1, . . . , pn in ∪k∈NA
(i)
k . For any real t0 ≥ 0, we have:

d

dt |t=t0
Et

p1⊗···⊗pn =
(

E ⊞Et0
)

p1⊗...⊗pn

=
∑

(p′1,p
′
2,I)∈F2(p1⊗...⊗pn)

E(p′1)E
t0(p′2).

Yet, we must not forget that E is in me⊞[A]: for any integer k, any p ∈ Pk, if p is not
irreducible or if p = ∅, then E(p) = 0. Thus the sum we are considering can be taken
over the (p′1, p

′
2, I) ∈ F2(p1⊗ . . .⊗ pn) such that p′1 is irreducible and not equal to ∅: this

means in particular that p′1S(p′1)
is one of the (pi)

n
i=1. Thus:

d

dt |t=t0
Et

p1⊗...⊗pn =
n
∑

i=1

E(pi)E
t0
p1⊗···⊗pi−1⊗pi+1⊗···⊗pn .

On the other hand,

d

dt |t=t0

(

Et
p1 . . . E

t
pn

)

=

n
∑

i=1

(

d

dt |t=t0
Et

pi

)

∏

j 6=i

Et0
pj

=

n
∑

i=1

E(pi)
∏

j 6=i

Et0
pj .

This allows to conclude that Et ∈ ME[A] for any real t ≥ 0.
Let (Et)t≥0 be a differentiable one-parameter semi-group for the ⊞ operation which

is in ME[A] and such that E0 = 0E. Then using the same calculation that we did, for

any integer n and any irreducible partitions p1, . . . , pn in ∪k∈NA
(i)
k , for any real t0 ≥ 0,

we have:

d

dt |t=t0
(Et

p1⊗...⊗pn) =
d

dt t=t0
(Et

p1 ...E
t
pn) =

n
∑

i=1

(

d

dt |t=t0
Et

pi

)

∏

j 6=i

Et0
pj .
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Yet pi is irreducible, thus
d
dt |t=t0

Et
pi =

((

d
dt |t=0

Et
)

⊞ Et0
)

pi
= d

dt |t=0
Et

pi , and thus:

d

dt |t=t0
(Et

p1⊗...⊗pn) =
n
∑

i=1

(

d

dt |t=0
Et

pi

)

∏

j 6=i

Et0
pj

=

(

I

(

(

d

dt |t=0
Et

)

|E(i)[A]

)

⊞ Et0

)

p1⊗...⊗pn

and thus there exists E ∈ me⊞[A] such that for any t ≥ 0, etE
⊞

= Et.
Now, let E ∈ me⊠[A]. For any t ≥ 0 we consider Et = etE

⊠
. Let n be an integer and

let us consider n irreducible partitions p1, . . . , pn in ∪k∈NA
(i)
k . For any real t0 ≥ 0, we

have:

d

dt |t=t0
Et

p1⊗...⊗pn =
(

E ⊠ Et0
)

p1⊗...⊗pn

=
∑

a,b/a◦b=p1⊗···⊗pn,a≺p1⊗···⊗pn

EaE
t0
b .

Yet, we must not forget that E is in me⊠[A]: for any integer k, any p ∈ Pk, if p is not
weakly irreducible then E(p) = 0. Thus the sum we are considering can be taken over
the (a, b) ∈ F2(p1 ⊗ · · · ⊗ pn) such that a is weakly irreducible. Besides, Eidl = lEid1 for
any integer l. Thus:

Eid∑n
i=1

l(pi)
Et0

p1⊗···⊗pn =

n
∑

i=1

Eidl(pi)
Et0

p1⊗···⊗pn .

Thus, we get:

d

dt |t=t0
Et

p1⊗...⊗pn =

n
∑

i=1

∑

a,b/a◦b=pi,a≺pi

EaE
t0
p1⊗···⊗pi−1⊗b⊗pi+1⊗···⊗pn

.

On the other hand,

d

dt |t=t0

(

Et
p1 . . . E

t
pn

)

=

n
∑

i=1

(

d

dt |t=t0
Et

pi

)

∏

j 6=i

Et0
pj

=

n
∑

i=1

∑

a,b/a◦b=pi,a≺pi

EaE
t0
b

∏

j 6=i

Et0
pj .

This allows to conclude that Et ∈ ME[A] for any real t ≥ 0.
Let (Et)t≥0 be a differentiable one-parameter semi-group for the ⊠ operation which

is in ME[A] and such that E0 = 1E. Then using the same calculation that we did, for

any integer n and any irreducible partitions p1, . . . , pn in ∪k∈NA
(i)
k , for any real t0 ≥ 0,

we have:

d

dt |t=t0
(Et

p1⊗...⊗pn) =
d

dt t=t0
(Et

p1 ...E
t
pn) =

n
∑

i=1

(

d

dt |t=t0
Et

pi

)

∏

j 6=i

Et0
pj .
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Yet pi is irreducible, thus
d
dt |t=t0

Et
pi =

∑

a,b/a◦b=pi,a≺pi
d
dt |t=0

Et
piE

t0
b , and thus:

d

dt |t=t0
(Et

p1⊗...⊗pn) =
n
∑

i=1





∑

a,b/a◦b=pi,a≺pi

d

dt |t=0
Et

piE
t0
b





∏

j 6=i

Et0
pj

=

(

J

(

(

d

dt |t=0
Et

)

|E(i)[A]

)

⊠ Et0

)

p1⊗...⊗pn

and thus there exists E ∈ me⊠[A] such that for any t ≥ 0, etE
⊠

= Et.

Remark 10.2. — In fact, e[A] is endowed with two structures of Lie algebras. Indeed,
it is a vector space for the addition and multiplication by a scalar, and we can define
two Lie brackets on it, one named [., .]⊞ which comes from the ⊞ operation and the
other named [., .]⊠ which comes from the ⊠ operation. In order to know which bracket
is considered on e[A], we will denote it either by e⊞[A] or by e⊠[A].

Since the operation ⊞ is commutative, the bracket [., .]⊞ is trivial. Thus me⊞ is a
sub-Lie algebra of e⊞.

Since the operation ⊠ is not commutative, the bracket [., .]⊠ is not trivial and for any
E and F in e⊠[A],

[E,F ]⊠ = E ⊠ F − F ⊠ E.

Then, it is not difficult to see directly that me⊠[A] is a sub-Lie algebra of e⊠[A].

10.1.2. The RA-transform. — We will define the notion of RA-transform. This appli-
cation will be defined as the inverse of the MA-transform whose definition lies on the
Equation (5).

Definition 10.9. — The MA-transform is the application:

MA : E[A] → E[A]

E → MA(E)

such that for any E ∈ E[A], for any integer k, any p ∈ Ak:

(MA(E))p =
∑

p′∈[id,p]Ak

Ep′ .

This application is a bijection. Thus we can consider its inverse.

Definition 10.10. — The RA-transform is the inverse of the MA-transform:

RA = M−1
A .

We will often forget about the indices A when we will work with the R-transforms.
One can show that the RA-transform is a bijection from ME[A] to itself.

Proposition 10.3. — The RA-transform is a bijection from ME[A] to itself.



PARTITIONS AND GEOMETRY 61

Proof. — We recall that the RA-transform is, by definition, a bijection from E[A] to
itself. Let E ∈ ME[A], we have to show that MA[E] ∈ ME[A] and RA[E] ∈ ME[A].
Let k and l be any integers. Let p1 ∈ Pk and p2 ∈ Pl.

Let us show that MA[E] ∈ ME[A]. Using Lemma 3.4 and the multiplicative property
of E, we have:

(MA[E])p1⊗p2
=

∑

p′∈[id,p1⊗p2]Ak

Ep′ =
∑

p′1∈[id,p1]Ak
,p′2∈[id,p2]Ak

Ep′1⊗p′2

=
∑

p′1∈[id,p1]Ak
,p′2∈[id,p2]Ak

Ep′1
Ep′2

=
∑

p′1∈[id,p1]Ak

Ep′1

∑

p′2∈[id,p2]Ak

Ep′2

= (MA[E])p1 (MA[E])p2 .

Now, let us show that RA[E] ∈ ME[A]. Let us consider (Ẽp)p∈
⋃

k∈N

A
(i)
k

such that for

any integer k, any p ∈ A
(i)
k ,

Ep =
∑

p′∈[id,p]Ak

∏

c∈C(p′)

Ẽpc .

Using the multiplicativity of E, and Lemma 3.4, we see that E being in ME[A], the

family (Ẽp)p∈
⋃

k∈N

A
(i)
k

satisfies in fact that for any integer k, any p ∈ Ak:

Ep =
∑

p′∈[id,p]Ak

∏

c∈C(p′)

Ẽpc .

Thus
∏

c∈C(p′) Ẽpc is equal to (RA[E])p′ and thus RA[E] ∈ ME[A].

We can also translate the Lemma 3.3 in terms of R-transform. For this, we need the
restriction function defined for any integer k by:

r : C[Bk] → C[Sk]
∑

b∈Bk

f(b)b 7→
∑

σ∈Sk

f(σ)σ.

Proposition 10.4. — The following diagram is commutative:

E[B]
RB //

r

��

E[B]

r

��

E[S]
RS // E[S]
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Proof. — It is only a consequence of the fact that:

E[B]

r

��

E[B]

r

��

MB

oo

E[S] E[S]
MS

oo

is commutative. Indeed, using Lemma 3.3, if E ∈ E[B], and if σ ∈ Sk:

r [MB (E)] (σ) = (MB (E)) (σ) =
∑

p∈[id,σ]Bk

Ep =
∑

p∈[id,σ]Sk

Ep = [MS ◦ r(E)] (σ).

This concludes the proof.

It is well-known in the literature that there exists a transformation on C1[[z]] which
we will call the Ru-transform. In order to finish this section, we make the link between
our RA-transform and the Ru-transform.

Definition 10.11. — Let M(z) be a formal power serie in C1[[z]], that is a formal
power serie of the form:

M(z) = 1 +

∞
∑

n=1

anz
n.

Let C(z) be the formal power serie C(z) = 1 +
∑∞

n=1 knz
n such that C[zM(z)] = M(z).

The Ru-transform of M is C.

The RA-transform is a generalization of the usual Ru-transform. Indeed, we have the
following theorem.

Theorem 10.3. — Using the identification E(i)[S] ≃ C1[[z]] explained in Proposition
10.1, the following diagram is commutative:

E(i)[S]
Ru //

M

��

E(i)[S]

M

��

E[S]
RS // E[S]

Proof. — Let E be an element of E(i)[S] ≃ C1[[z]]. Using Theorem 2.7 of [16], and using
the bijection between non-crossing partitions of k elements and the set [id, (1, . . . , k)]Sk

,
we know that Ru(E) is characterized by the fact that for any integer k > 0:

E(1,...,k) =
∑

p∈[id,(1,...,k)]Sk

∏

c cycle of p

Ru(E)(1, . . . ,#c).

Or, with our notations:

E(1,...,k) =
∑

p∈[id,(1,...,k)]Sk

M [Ru(E)] .
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By the factorization property of the geodesics, Lemma 3.4, for any σ ∈ Sk:

[M (E)] (σ) =
∑

σ′∈[id,σ]Sk

M[Ru(E)](σ).

This is equivalent to the fact that RS [M (E)] = M[Ru(E)].

10.1.3. Transformations linked with the exclusive moments. — We only consider the
case where A = P.

Definition 10.12. — The Mc→-transform is the application:

Mc→ : E[P] → E[P]

E 7→ Mc→(E),

such that for any E ∈ E[P], for any integer k, any p ∈ Pk:

(Mc→(E))p =
∑

p′ coarser-compatible than p

Ep′ .

This application is a bijection, it is the application which transforms exclusive mo-
ments in moments. Thus we can consider its inverse. The Mc-transform is the inverse
of the Mc→-transform: Mc = (Mc→)−1. Using the same arguments than Proposition
10.3, one can proof that the Mc is a bijection from ME[P] to itself.

Let us remark that this last proposition holds since, if p′ is coarser-compatible than
p1 ⊗ p2 this means that there exists p′1 and p′2 such that p′ = p′1 ⊗ p′2 and such that p′1
(resp. p′2) is coarser-compatible than p1 (resp. p2). Thus, if one has defined Mc→(E)
by replacing the coarser-compatibility order by the coarser order then this proposition
(and other good properties) would not have hold.

Let us define a last transformation on E[P].

Definition 10.13. — The M→c-transform is the application:

M→c : E[P] → E[P]

E 7→ M→c(E),

such that for any E ∈ E[P], for any integer k, any p ∈ Pk:

(M→c(E))p =
∑

p′ finer than p,p′∈[id,p]Pk

Ep′

This is again a bijection. The applications defined above are actually linked.

Theorem 10.4. — The following diagram is commutative.

E[P]
M→c

//

MP ""F
F

F

F

F

F

F

F

E[P]

Mc→

��

E[P]

Proof. — This is a straithforward application of Proposition 8.2.
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10.2. Higher order. — In Definition 9.5, we defined the ∞-development algebra of
order m of Ak. Thus, one can also define a higher order R-transform: we will only give
definitions in this section. Let m ∈ N be the higher order of fluctuations which we are
working with.

Definition 10.14. — Let us define the algebra:

Eg,(m)[A] =

∞
∏

k=0

C
S
(m)[Ak(∞)]

where, for any integer k, CS
(m) [Ak(∞)] is the algebra of elements of C(m) [Ak(∞)] which,

seen as elements of C[Ak], are invariant by conjugation by any element of Sk. We also
consider the subspace of Eg,(m)[A] defined by:

E(m)[A] = {E ∈ Eg,(m)[A], E∅,0 = 1, E∅,i = 0,∀i ≥ 1}.

Let us remark that E(0)[A] = E[A]. Any element E ∈ E[A] is of the form:





∑

p∈Ak,i∈{0,...,m}

(Ek)p,i
p

Xi





k∈N

.

Again, in order to simplify the notations, we will use the following convention: for any
p ∈ ∪∞

k=0Ak and any i ∈ {0, . . . ,m}:

Ep,i = Ei(p) = (El(p))p,i,

and for any integer k:

Ek =
∑

p∈Ak,i∈{0,...,m}

Ep,i
p

Xi
.

As for Eg[A], the algebra Eg,(m)[A] is naturally endowed with a natural addition and
multiplication given, for any E,F ∈ Eg,(m)[A], by:

(E + F )k = Ek + Fk,

(E ⊠ F )k = EkFk.

Besides, we can also construct an other law on Eg,(m)[A].

Definition 10.15. — Let E and F be two elements of Eg,(m)[A]. We denote by E⊞F
the element of Eg,(m)[A] such that for any positive integer k, any p ∈ Ak and any
i ∈ {0, . . . ,m}:

(E ⊞ F )i(p) =
∑

(p1,p2,I)∈F2(p)

i
∑

i1=1

Ei1(p1)F
i−i1(p2),

where F2(p) was defined in Definition 2.10.
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Again, the subset E(m)[A] is stable by the ⊠ and ⊞ operations. Besides, E(m)[A] is an
affine space.

The operation ⊞ is commutative, it defines a structure of group on E(m)[A]. The
neutral element is the element 0E(m)

∈ E(m)[A] such that, for any positive integer k, any

p ∈ Ak and any i ∈ {0, . . . ,m}, (E)p,i = 0.
The operation ⊠ is not commutative and the set of invertible elements in E(m)[A] is

the set of elements E such that Eidk ,0 6= 0 for any k ≥ 1. We denote by 1E(m)
the neutral

element for ⊠ which is the only element in E(m)[A] such that for any k ≥ 1, (Ek)k = idk
X0 .

We can also define a R
(m)
A -transform. For this, we need to define the M

(m)
A -transform

whose definition lies on Equality (18).

Definition 10.16. — The general M
(m)
A transform is the application:

M
(m)
A : E(m)[A] → E(m)[A]

E → M
(m)
A (E)

such that for any E ∈ E(m)[A], for any positive integer k, any p ∈ Ak and any i ∈
{0, . . . ,m}:

(

M
(m)
A (E)

)

p,i
=

∑

p′∈Ak,df(p′,p)≤i

Ep′,i−df(p′,p).

This application is a bijection: we can consider its inverse.

Definition 10.17. — The R
(m)
A -transform is the inverse of the MA-transform:

R
(m)
A =

(

M
(m)
A

)−1
.

11. Conclusion

We have defined a geometry on partitions, and new notions of convergence for elements
of
∏

N∈NC[Ak(N)]. Using Schur-Weyl’s duality and similar results, we will link the study
of random matrices with the study of elements in

∏

N∈N C[Ak(N)] and in E[A]. In the
article [9], we apply the results proved in this article to the theory of random matrices
invariant in law by conjugation by the symmetric group. We also study additive and
multiplicative unitary or orthogonal invariant Lévy processes. In the article [10], we
apply the results of the first two articles to the study of random walks on the symmetric
group and the study of the S∞-Yang-Mills theory.
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[12] T. Lévy. The master field on the plane. arxiv.org/abs/1112.2452.
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