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Abstract. The decomposition of a two dimensional complex germ with non-isolated singular-
ity into semi-algebraic sets is given. This decomposition consists of four classes: Riemannian

cones defined over a Seifert fibered manifold, a topological cone over thickened tori endowed

with Cheeger-Nagase metric, a topological cone over mapping torus endowed with Hsiang-Pati
metric and a topological cone over the tubular neighbourhoods of the link’s singularities. In this

decomposition there exist semi-algebraic sets that are metrically conical over the manifolds con-

stituting the link. The germ is reconstituted up to bi-Lipschitz equivalence to a model describing
its geometric behavior.

1. Introduction

The purpose of this paper is to study the structure of a complex 2-dimensional surface germ at
the origin with one-dimensional singular locus (Σ, 0). Our main result gives a splitting of (X, 0) in
finite non-overlapping parts, except on the boundary. Let (X, 0) be a germ of surface singularities
and I : (X, 0) → (C3, 0) an embedding. The embeding determines two metrics. The so called
“outer metric”, which is the induced metric from the hermitian metric on C3

dout(x1, x2) = |I(x1)− I(x2)|,

and the “inner metric” which is the arc length metric

din(x1, x2) = inf
γ∈Γ

`(I ◦ γ), Γ = {γ|γ : [0, 1]→ X, γ(0) = x1, γ(1) = x2},

where `(I ◦ γ) is the length of the arc in C3.
Let the surface germ (X, 0) be defined by a complex analytic germ f : (C3, 0)→ (C, 0) and let

Bε be a ball, for the induced metric, of small radius ε centered at the origin. Let C(X ∩ Sε) be a
real cone over the boundary of the ball intersected with the germ, where Sε = ∂Bε is the 5-sphere.

In the case of isolated singularities J. Milnor showed a conical structure lemma [20]. The lemma
states that there exists a homeomorphism between the intersection X∩Bε and a real cone C(X∩Sε).
Then the Milnor conical structure lemma states a topological equivalence between the two pairs
(Bε, (X ∩ Bε) and (C(Sε), C(X) ∩ Sε)).

In 1972 D. Burghelea and A. Verona extended J. Milnor’s conical structure lemma to the case
of non-isolated singularities [7] using the Whitney pre-stratification of a germ [17, 29].

Lemma 1 ( Conic structure lemma). Let M be a complex three dimensional manifold, X ⊂ M
be a closed set and suppose that S is a Whitney pre-stratification of X. Assume the strata of S
are connected. Consider a Riemannian metric on M and let d be the induced distance function.
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There exists a sufficiently small ε0, 0 < ε0 � 1 such that for any ε, 0 < ε ≤ ε0, the pair (Bε, X∩Bε)
is homeomorphic to the real cone on the pair (Sε, X ∩ Sε).

The proof of this lemme used the Whitney pre-stratification of a germ [17, 29], and the fact
that any analytic set admits a Whitney pre-stratification. Let us recall the notion of the Whitney
pre-stratification.

Let M be a n-dimensional Cµ-manifold without boundary and let V1, V2 be a pair of Cµ-sub-
manifolds of M , such that for each p ∈ Vi there exists a coordinates chart (ϕi, Ui) of class Cµ such
that p ∈ Ui and ϕi(Vi ∩ Ui) = Rk ∩ ϕi(Ui) for a suitable coordinate subspace Rk ⊆ Rn.

Whitney condition [19, 29]. Let r = dimV1 and let y ∈ V2. The pair (V1, V2) satisfies the
Whitney condition at y ∈ V2 if given any sequence {xi} of point of V1 such that xi → y and {yi}
a sequence of points in V2, also converging to y. Suppose TV1xi

converges to some r-plane τ ⊂ Rn

and that xi 6= yi for all i and the secant (xiyi) to some ` ⊂ Rn. Then ` ⊂ τ .

The secant (xy) refers to the line in Rn which is parallel to the line joining x and y 6= x, and
passes through the origin.

Definition 1 (Whitney pre-stratification). Let M be a C1 manifold and X ⊂M be locally closed.
A cover S of X by pairwise disjoint C1 sub-manifolds is called a Whitney pre-stratification of X
if and only if :

(1) It is locally finite.
(2) If V ∈ S then (V − V ) ∩X is a union of strata.
(3) Vi, Vj ∈ S satisfies the Whitney condition.

Let Σ be the singular locus and we define by induction Σj = Σ(Σj−1) be the j-th singular locus
of the (j-1)-th-singular locus. The complex algebraic surfaces X defined by a polynomial f have
the following stratification :

V1 := X − Σ1,V2 := Σ1 − Σ2, . . . ,Vj := Σj−1 − Σj , . . . ,Vn := Σn−1 − Σn.

A natural question in the study of the singularities, is to determine whether the homeomorphism
defined in the conical structure lemma, ϕ :M = X ∩ Bε → N = C(X ∩ Sε), is bi-Lipschitz, i.e. :

1

K
dM(x1, x2) ≤ dN (ϕ(x1), ϕ(x2) ≤ KdM(x1, x2), K ≥ 1.

The condition which assures isomorphisms of metric spaces. In most of the cases the answer to this
question is negative. For weighted homogeneous isolated singularities only A1 and D4 singularities
have a bi-Lipschitz homeomorphism [1].

However, for isolated singularities it is possible to decompose a normal complex surface germ
into a union of germs of pure dimension 4. These germs are partitioned into two distinct fami-
lies (τ , τ) [3, 4], in a similar way of the decomposition introduced by Margulis [18] for symmetric
space and extended by Thurston [27] and Gromov [10].

The so-called thick part τ is such that the cone on its link C(τ ∩Sε) is bi-Lipschitz equivalent
to τ ∩ Bε for the inner metric on X.

The thin part τ of pure dimension 4 has a tangent cone of dimension strictly less than 4.
Components of the thin part depend on the topology of their link. Non-trivial closed curves in the
thin components have bounded lengths [9, 25]. As the curves move to zero in the thin parts, their
length reduces polynomially, while, for thick parts the length of closed curves reduces linearly.
In the case of singular surfaces of the type h(z3) = g(z1, z2), the classical tool to investigate
the isolated singularity is to use the carrousel [14, 15, 16] and the Puiseux data [16, 23]. This
Puiseux data has an incidence on the exponents defined in the metrics of the thin and thick parts.
We will briefly recall this procedure: let π : (z1, z2, z3) → (z1, z2) be a generic projection map

and Γ =
{
{h(z3) = g(z1, z2)} ∩

{
∂h
∂z3

= 0
}}

a curve that contains the singular locus of X. The

discriminant locus is π(Γ) = ∆ in the plane C2. The following definition and proposition are
devoted to define the genericity of maps.
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Definition 2. Let (X, 0) ⊂ (Cn, 0), with dim(X) = p. Consider the plane in the set of Grass-
mannian H ∈ G(n − p, n) such that 0 is an isolated point of the intersection between H and X.
Then there exists an open set Uof 0 in Cn such that X ∩H ∩U = {0} and such that the projection
π : X ∩ U → U ′ ⊂ H⊥ along H is k-sheeted, k ∈ N.

Proposition 1. Let f : (C3, 0)→ C be a complex germ and let H ∈ G(1, 3) . The multiplicity of
πH |X is equal to ord0(f) if and only if H ∩ C3(X, 0) = {0} where C3(X, 0) is the Zariski tangent
cone.

By a suitable change of coordinates we choose to have transversality of z1 = 0 with the curves
of ∆ in C2. Denote the equation of ∆ by q(z1, z2) =

∏
i≥1 qi(z1, z2).

Let qi(z1, z2) be an irreducible component of q(z1, z2). We consider the Puiseux developpement
of q−1

i (0) given by:

Φip(z) =
∑
k≥1

aikz
ηk , aik ∈ C, ηk ∈ Q.

Let v(qi) be the valuation of qi.

- If qi = 0 then v(qi) = −∞.
- If ∀k, aik 6= 0, k ∈ N∗ then qi does not have Puiseux pairs.
- If the precedent cases do not hold, let r1 = inf{ηk|aik 6= 0, ηk ∈ Q \ N}. The number
r1 = m1

n1
, with gcd(m1, n1) = 1 defines the first Puiseux pair: (m1, n1).

- Let rj+1 =
mj+1

n1·...nj+1
with gcd(mj+1, nj+1) = 1, nj+1 > 1. The pair (mj+1, nj+1) is the

(j + 1)-Puiseux pair of qi.
- The Puiseux characteristic exponents of qi are the rational numbers rj =

mj

n1·...·nj
where

1 < rj < rj+1 and j ∈ {1, 2, ..., s}.
The Puiseux characteristic data of q is the union of sets constituting the Puiseux characteristic

data of each irreducible component qi of q.

The Puiseux exponents allows to describe a Waldhausen splitting of the Milnor fiber by a
carousel diagram. Since we have Seifert-fibered spaces, we can have a decomposition as in Theorem
9.1.3 in [28]. Therefore, for a 2-dimensional compact oriented manifold Y , given a diffeomorphism
h on Y, one can define h as the monodromy of a fibration over a circle. To define a 3-manifold
fibered over a circle with monodromy h, we define the following mapping torus.

Definition 3 (Mapping torus). By mapping torus MY over the manifold Y we mean the quotient
topological space :

(1) MY := ([0, 1]× Y )/R,
such that

(1) h : Y → Y is an orientation preserving homeomorphism
(2) R is the equivalence relation given by : (1, x) ∼ (0, h(x)).

In a case of germs with non-isolated singularities, the thick/thin decomposition presents some
difficulties. The difficulties are due to presence of singularities on the link L and, contrarily to
the case of isolated singularities, the link L is not diffeomorphic to the boundary ∂F of its Milnor
fiber. In the case of non-isolated singularities we have follow two steps.

(1) Firstly, it is necessary to make a normalization of the ”non-normal” algebraic variety X.
The normalization map n : X → X allows to introduce the normal algebraic variety X,
which has at most an isolated singularity. If X has an isolated singularity, we assume,
without loss of generality, that the isolated singularity is at 0.

(2) Secondly, we perform a good resolution ρ : X̃ → X if X has an isolated singularity. By
good resolution we mean that exceptional divisor ρ−1(0) = ∪jEj , where Ej ∼= P1 are
the irreducible components and ρ−1(0) has normal crossings. We assume that the proper
transform of the singular locus Σ of X intersects ∪iEi transversely, outside the intersections
of the irreducible components Ei.
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Nevertheless, there exists some analogy between the boundary of the Milnor fiber ∂F and the
link L. Similarly to the decomposition proposed by Siersma [26] of the boundary of the Milnor
fiber into two parts: ∂F = ∂F1 ∪ ∂F2, one can decompose the link L = X ∩ Sε into two sets
L1,L2 [23],

(2) L = L1 ∪ L2.

The first set, L1 is the link without the interior of the tubular neighbourhoods of the singularities
of the link. The second set, L2 is the intersection of these tubular neighbourhoods with the link L.
The set L1 is equivalent to the boundary ∂F1, in Siersma’s decomposition of the Milnor fiber. The
existence of a plumbed graph manifold for L1 is obtained by the Nemethi-Szilard algorithm [23]
for the boundray ∂F1 and, hence, by equivalence between ∂F1 and L1, for L1. To precise the set
L2, we consider the decomposition of the singular locus of X in irreducible components Σk:

(3) Σ =

n⋃
k=1

Σn.

Hence the singular locus of the link L is

(4) σ =

n⋃
k=1

Σk ∩ L.

Let us consider an irreducible component σk = Σk∩L and denote the tubular neighbourhood
of σk by T k. Observe that one can consider the tubular neighbourhood T k as a total space with
base space σk of a fibration. The fiber will be determined by so-called transversal germs of Σk
defined at a point p ∈ Σk with the condition that p 6= 0. The transversal germ at each non
singular point p ∈ Σk, is obtained by intersecting (X, 0) by a linear space H, transverse to Σk. The
dimension of this linear space is : dim(H) = codim(Σk). This transversal germ will be denoted
by: (H, p). To define the fiber in the total space T k, one has to determine the Milnor fiber of f
restricted to the transversal slice (H, p) , i.e: φε,δ : Bε ∩ f−1|(H,p)(∂Bδ) → ∂Bδ, for δ < ε � 1.
This Milnor fiber does not depend on the point p neither on the radius δ. This Milnor fiber will

be denoted by Mk. Finally, the fibration: T k → σk has, up to homeomorphism equivalence, a
cone over ∂Mk as fiber.

The aim is to study, from a geometrical and topological point of view, the rate at which systoles,
contained in the link L converge to 0 in X ∩ Bε. The answer to this question leads to a splitting
of the neighbourhood of the origine: X ∩ Bε. The subspaces in X ∩ Bε are Riemannian manifolds
with metrics determining the rate of convergence of systoles. These Riemannian manifolds have,
topologically, the aspect of topological cones glued together by isometry. The proof will rely on
the conical structure lemma.

2. The decomposition model of (X, 0)

In this section, the singular spaces (X, 0) will be described in terms of a model. This model
provides a decomposition of X ∩Bε and enables to study the rates at which systoles in the bound-
ary X ∩ Bε converge to zero. These Riemannian manifolds are topological cones endowed with
Riemannian metrics.

Theorem 1 (Splitting thorem). Let (X, 0) ⊂ (C3, 0) be a two dimensional complex germ defined
by the form f : (C3, 0)→ (C, 0) with one-dimensional singular locus Σ. Let us assume that 0 ∈ Σ.
Then there exists a splitting of X ∩Bε into a finite family of compact and connected semi-algebraic
sets Ai:

(5) X ∩ Bε =

k⋃
i=1

Ai.

Each of these semi-algebraic sets is one of the following type:

(1) Riemannian cones defined over a Seifert fibered manifold with 0 < t ≤ ε.
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(2) Topological cones over thickened tori endowed with a Nagase metric.
(3) Topological cones over mapping torus endowed with a Hsiang-Pati metric.
(4) Topological cones over the tubular neighbourhoods of the link’s singularities

Corollary 1 (Semi-algebraic partition). Let (X, 0) ⊂ (C3, 0) be a two dimensional complex germ
with a one-dimensional singular locus Σ, with 0 ∈ Σ. There exists a decomposition of (X, 0) into
a finite family of semi-algebraic sets, which can be:

(1) Semi-algebraic germs which are a union of metrically conical sets, subsets in X ∩ Bε
(2) Semi-algebraic germs of pure dimension 4 which have a tangent cone of dimension strictly

less than 4.

Remark 1. This splitting of which we show the existence, holds for any complex analytic surface
germ with non-isolated singularities of complex dimension one. Somehow, if the surface is of type
f(z1, z2, z3) = h(z3) − g(z1, z2) = 0, where h is a polynomial function in z3 and g a polynomial
function in variables z1, z2, then the Puiseux exponents in the carousel decomposition play a role
in the determination of the rates in the metrics.

Remark 2. Let us come back to the notion of metrically conical. For semi-algebraic set J in the
germ (X, 0), consider a closed curve γ in J which represents a non-trivial element of π1(J −{0}).
Define the action on the semi-algebraic set J :

R∗+ × J → J : (t, γ) 7−→ tγ,

restricted to 0 ≤ t ≤ ε, with ε > 0 is small.
Let h be a homeomorphism between J ∩ Bε and the cone over the link C(J ∩ Sε). Suppose that

the length of the curve γ is of order tν , ν ≥ 1. If h is a bi-Lipschitz map, then h(tγ) has also length
of order tν . On the other side the R∗+ action on the cone induces a bound, say l, on the length of
the loop h(tγ). Since the distance given by the bi-Lipschitz constant is 1/K, therefore l · h(tγ) is
never closer to 0 than 1/K. So, if this condition is not fulfilled, the map is not bi-Lipschitz and
thus the semi-algebraic set is not metrically conical.

A topological cone R∗+ ×M over a Riemannian manifold (M, g) equipped with the metric :

(6) gc = dt2 + t2g,

is said metrically conical.
The metrically conical set we are interested in is a cone over the link M = X ∩Sε with induced

distance function bounded by ε > 0. A germ which is bi-Lipschitz equivalent to the cone over its
link is called metrically conical.

Non-metrically conical algebraic sets have the following property:

Proposition 2. Let Ξ be the intersection of the non-metrically conical semi-algebraic set with the
sphere Sε. Then, the fiber of Ξ→ S1 has diameter of order αεν , where α > 0 is a constant, ε0 ≥ ε
and ν > 1 is a rationnal number.

Corollary 2. Let Ai be a non-metrically conical semi-algebraic set, and let 0 < t ≤ ε. If there
exists a systole in the link of Ai, that is in Ξ, then this systole converges with order O(tν) to 0, as
t tends to 0.

Corollary 3. Let Ai ⊂ R × Rn and Ai,t := A ∩ ({t} × R4). For each non-metrically conical set
Ai there exists a Gromov-Hausdorff limit lim

t→0
(At, din(At)) where din is the arc length metric.

Recall that a systole of a compact metric space M is a metric invariant of M , defined to be the
least length of a free loops representing nontrivial conjugacy classes in the fundamental group of
M .

The proof follows from Bernig-Lytchak’s Theorem 1 in [2]. Let X ⊂ R × Rn be a 1-parameter
family of subsets of R4. Suppose that each fiber Xt := X ∩ ({t} × Rn) is connected. Then the
Gromov-Hausdorff limit lim

t→0
(Xt, din(Xt)) exists.
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3. Proof of the decomposition theorem

3.1. Idea of proof. To show that X∩Bε splits into a finite family of semi-algebraic sets which can
be classified along four types, we use the existence [7] of a homeomorphism h : X∩Bε → C(X∩Sε).
In the following part, we are interested in a small neighbourhood of 0 in X. For the sake of
simplicity, we denote by X the ε-neighbourhood instead of X ∩ Sε). Let us give the draft of the
proof:

(1) As was said before, we have to normalize X and solve the singularity of the normalized
surface X (if there exists an isolated singularity).

(2) Construct a well chosen tubular neighbourhood of the exceptional divisor ρ−1(0) = ∪jEj ,
where Ej are the irreducible components and ρ−1(0) has normal crossings.

(3) Apply Nagase and Hsiang-Pati procedure, on the tubular neighbourhood of the irreducible
components of ρ−1(0):
(a) On a neighbourhood of the irreducible components Ei, without the intersection points,

following [12], there exists a Hsiang-Pati metric. For each neighbourhood of Ei, up
to bi-Lipschitz, one can investigate the Hsiang-Pati metric on the manifold (0, 1] ×
[0, 1]× Y , where Y is a compact polygon in R2 with g̃ a standard metric:

(7) g
HP

= dt2 + t2dθ2 + t2ν g̃(y), where ν ≥ 1, (t, θ, y) ∈ (0, 1]× [0, 1]× Y.

(b) Concerning the neighbourhood of the intersection points of the Ei, there exists a
Cheeger-Nagase metric on (0, 1]× [0, 1]3:

(8) g
CN

= dt2 + t2dθ2 + t2ν(ds2 + h2(r, s)dΘ2), (t, θ, s,Θ) ∈ (0, 1]× [0, 1]3,

where h(r, s) is the product of smooth functions [21].
(4) Finally, it will be necessary to go back to the link of X, so as to characterize the splitting.

The procedure allows to recover the topological cone over the link L of X as a topological
cone on the quotient of the normalization’s link L of X by some equivalence relation.

3.2. Local metrics in the components of X. In this section, first we use a plumbing process to

choose a tubular neighbourhood of the exceptional divisor in X̃. An introduction of a continuous
function, defined on the neighbourhood of ρ−1(0), allows to construct metrics.

Consider the normal surface X with isolated singularity at 0. Take into account that, for a
surface with isolated singularity, the boundary of its Milnor fiber is diffeomorphic to its link L.
A description of the boundary of the Milnor fiber can be obtained taking the boundary of the

tubular neighbourhood of the exceptional divisor ρ−1(0) = ∪jEj ⊂ X̃ of X. More precisely, this
tubular neighbourhood is the boundary of a 4-manifold, obtained by plumbing together the tubular
neighbourhoods of each irreducible component Ej [6, 22, 24].

Take the tubular neighbourhood Ni of each irreducible components Ei ∼= P1. This tubular
neighbourhood is diffeomorphic to a disk-bundle (Ei,Fi, p, D

2) where Fi is the base space, Ei the
oriented total space, p the continuous surjection satisfying local triviality conditions. In addition,
we associate to this quadruplet its Euler number ei. Note that Fi is a compact surface of genus
g, with boundary components. For each pair (Ei, Ej) of intersecting irreducible components, it
is necessary to plumb the respective disk bundles. This procedure gives a tubular neighbourhood
of ρ−1(0). Let us recall the plumbing process. Consider two irreducible components Ei, Ej that
intersect at a point q and consider their respective disk-bundles (Ei,Fi, p, D

2) and (Ej ,Fj , p, D
2).

Let µ : Ei|D2
i
→ Ej|D2

j
, where the disks D2

i ⊂ Fi and D2
j ⊂ Fj , be a map between the restricted

total spaces of these bundles.
Let us introduce two trivializations of the restricted bundles fi : D2

i ×D2 → Ei|D2
i
, fj : D2

j ×
D2 → Ej|D2

j
. The way to obtain the plumbing of the two disk-bundles is to take the disjoint union

of the total spaces Ei and Ej and to identify the images of fi and fj .This identification is attained
by pasting the component D2

i ×D2 of Ei to the component D2
j ×D2 of Ej by the diffeomorphism

J = ( 0 1
1 0 ) : D2

i × D2 → D2
j × D2. So, the map µ : Ei|D2

i
→ Ej|D2

j
is, in other words, defined
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by the composition µ = fj ◦ J ◦ f−1
i : Ei|D2

i
→ Ej|D2

j
. By this procedure, the disk in the base

space and the fiber are exchanged. So, this identification, defines the plumbing. Applying this
procedure to all the intersection points of the irreducible components, one has the construction
of a neighbourhood of the exceptional divisor ρ−1(0). Thus, referring to [22, 24] one can describe
the link in terms of graph manifold. In the crudest sense, a graph manifold is a set of elementary
pieces homeomorphic to S1 × D2 or to S1 × (S2 \ tni=1D

2
i ) that are glued together along some

boundary components [5]. Moreover, it is worth stressing that to each graph manifold there exists
a corresponding plumbing diagram of the plumbed manifold. This plumbing diagram is a weighted
graph. The vertices correspond to the Seifert-fibered manifolds, the edges correspond to the gluing
tori and the weights are given by the Euler numbers ei.

The plumbed manifold is a four dimensional manifold with boundary. For an isolated singularity,
the boundary of the plumbed manifold is the graph manifold and defines the topology of the

link [22]. We will choose a closed neighbourhood of ρ−1(0) ⊂ X̃ such that its boundary is the
boundary of the graph manifold. On this neighbourhood, we will define a function R with range
[0,+∞). This function will be the key to define the metrics

Definition 4 (Nagase [21]). Let R be a function defined on a neighbourhood W ⊂ X̃ of ρ−1(0) =
∪j Ej and with range [0,+∞). We require that this function satisfies the following properties:

(1) R|ρ−1(0) = 0
(2) R|W\ρ−1(0) is smooth and positive

(3) W \ ρ−1(0) = R−1(0, 1]
(4) R−1(0, ε] = (0, ε]×R−1(ε)

The last property is defined using R and appropriate flow lines inW\ρ−1(0) . We split suitably
R−1(ε) = ∪iWi ∪j Vj into finite parts, which are non-overlapping except on the boundaries. These
parts parts will be classified into two types:

- the tubular neighbourhood of an irreducible component Ei, outside the intersection points
of the irreducible components, denoted by Wi.

- the neighbourhood, at the intersection points of the irreducible components, denoted by
Vj .

Using Property 4 of Definition 4, we split R−1(0, ε] = ∪iWi ∪j Vj into finite parts accordingly to
the previous decomposition of R−1(ε) . The part Wi corresponds, in the splitting of R−1(ε), to
the neighbourhood of the irreducible component Ei outside of the gluing tori. As for the part Vj ,
it corresponds to the gluing tori. There is a bi-Lipschitz map from each Wj with induced metric to
a model (0, ε]× [0, 1]×Y , where Y is a compact polygon in R2. This polygon carries a Riemannian
metric g̃. Moreover, this model has Hsiang-Pati metric (7). Whereas, each part Vj with induced
metric is bi-Lipschitz equivalent to (0, ε]× [0, 1]3 with a Cheeger-Nagase metric (8). The exponents
ν ≥ 1, in the metrics, correspond to the exponents in the divisor ρ−1(0).

In the graph manifold, each Seifert-fibered manifold has a well defined Riemannian metric. In
the case where there exists a generic map π : C3 → C2 defined over X, one can construct a
carousel decomposition. The Seifert-fibered manifolds in the link have topological data, given by
the Puiseux exponents, so it is the same for its metric. Finally, for Wi the metric will depend on
the Puiseux exponent, associated to Wj . For Vi, notice that, according to Lê’s description of the
Waldhausen decomposition, by means of the carousel [16], the Vi need to be defined over thickened
tori, i.e T× I where I = [a, b], b > a > 0 is an interval in R and T is a torus. The real cone over the
link L results then, from gluing the boundary of the Wj with the boundary of the neighbouring
topological cones Vi and by using isometry so as to keep consistency of the metrics. The order
in which they are glued depends on the order in which the manifolds Wj and Vi are glued in the
plumbing diagram.

A thickened torus is the Cartesian product of an annulus and a circle. Let A := {(r, ψ)|1 ≤ r ≤
2, 0 ≤ ψ ≤ 2π}, be an Euclidean annulus in polar coordinates, this annulus can be equipped of a
family of metric ga,b = (b− a)2dr2 + ((r − 1)b+ (2− r)a)2dψ2 and for o < a < b < 1 we can write
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a = tν
′
and b = tν for some t ∈ (0, 1], ν, ν′ > 1. We denote this metric by:

(9) gtν,ν′ := (tν − tν
′
)2dr2 + ((r − 1)tν + (2− r)tν

′
)2dψ2.

Notice that gtν,ν′ is isometric to the metric of an Euclidean annulus with inner radius tν
′

and

outer radius tν . The metric dt2 + t2dθ2 + gtν,ν′ on (0, 1] × S1 × A is bi-Lipschitz equivalent to a

Cheeger-Nagase metric on (0, 1]× [0, 1]3,

(10)

g
N

= dt2 + t2dθ2 + gtν,ν′ ,

= dt2 + t2dθ2 + t2ν(ds2 + (s+ tν−ν
′
)2dψ2), s = (r − 1)(1− tν

′−ν),

= dt2 + t2dθ2 + t2ν(ds2 + h(t, s)2dΘ2), h(t, s) =
s+ tν−ν

′

2π
, Θ ∈ [0, 1],

where, we call g
HP

= dt2 + t2dθ2 + gtν,ν′ the Cheeger-Nagase metric on (0, 1]× S1 ×A.
Secondly, let us define the Hsiang-Pati metric on Wj . The mapping torus MY which was

announced in the introduction, has a Riemannian metric gθ.
Let θ ∈ [0, 2π], then for a small δ:

(11) gθ :=

{
g0, if θ ∈ [0, δ]

h∗g0 if θ ∈ [2π − δ, 2π].

Therefore, for any t ∈ [0, 1], the metric on (0, 1]×MY is:

(12) g
N

:= dt2 + t2dθ2 + t2νgθ, t ∈ (0, 1].

The compactification of the metric structure (0, 1]×MY is done by adding the singleton {t = 0}.
Finally, we define a metric cone . Let (M, g) be a compact 3-manifold with a Riemannian metric

g. A metric cone on M can be obtained by defintion of a metric on [0, 1]×M. This metric is the
completion of the metric (6) g

c
= dt2 + t2g on t ∈ (0, 1]×M, by adding the singleton at {t = 0}.

Remark 3. Consider the mapping torus MY over Y . Fix t ∈ (0, 1] and θ ∈ [0, 2π]. Then the
diameter of {t} × {θ} × Y is of order tν . The rational number ν characterizes the rate at which
{t} × {θ} × Y shrinks as t tends to zero.

3.3. Local metrics on the subsets of X. In this section we show that the metrics defined for
L̄ hold for L. We assume that we have a plumbed graph obtained by the algorithm introduced
by Nemethi and Szilard in [23]. We will use the conditions showed in section 7.4 and Proposition
7.5.10, to show the splitting.

Proposition 3 (Nemethi-Szilard). Let L be the link of the normalized space. Then, there exists
an equivalence relation ∼ such that: L = L/ ∼.

A normalization of X is a normal surface X and a holomorphic map n : X → X such that :

(1) n : X → X is proper and has finite fibers.
(2) Let Σ = n−1(Σ), then X − Σ is dense in X and n|X−Σ is a bi-holomorphic map.

Recall that the normalized surface X is a disjoint union of irreducible components. So, the link
L of X is a disjoint union of the links of each of these irreducible components.

Using the normalization map, for every j, one can establish a correspondence between the strict
transform of Σj and a finite set {1, ..., k} of irreducible components in X which will be denoted
S1
j , ..., S

k
j .

Notice that property (1) of the normalization implies that the degree of the map n : Sij → Σj is

d. On the other hand Sj,i := Sij∩L is diffeomorphic to a circle. Therefore, for every j ∈ {1, 2, ..., n},
we define a degree d-map from Sj,i to a circle S1

j :

(13) µi : Sj,i → S1
j .
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Now we can define the equivalence relation as:

(14) x ∼ x′ ⇐⇒ ∃ x ∈ Sj,i, x′ ∈ Sj,l such that µi(x) = µl(x
′),

For more ample explanations of Proposition 3 we refer to Nemethi and Szilard [23].
Let us come back to the partition of L into a union of manifolds Wi and Vj , L = ∪jWj ∪i Vi.

Recall that we have defined topological cones over each of the non-overlapping parts. These
topological cones are labelled Wi and Vj . The equivalence relation leaves invariant a subset of L.
So, the topological cones Wi,Vj that are defined over the manifolds of the link, invariant under

the equivalence relation, are also defined in X.

Recall, from introduction, that L = L1 ∪ L2 where L1 := L \ ∪ni=1

◦
T i and

◦
T i is the interior of

the tubular neighbourhood. The second set L2 = (∪ni=1

◦
T i) ∩ L is the intersection of the tubular

neighbourhoods
◦
T i with the link L. Thus we consider the cone C(L) = C(L1∪L2). As was already

said, T i is a total space over Li = Σi ∩ Sε with fiber a cone over ∂Mi, where Mi is the Milnor
fiber of f restricted to (h, p) for Σi. Moreover, the tubular neighbourhood T i has the homotopy
type of Li.

Let us define the topological cone over the tubular neighbourhood of each singularity Li of the
link L.

Note that from section 7.4 in Nemethi-Szilard [23], there exists a normal crossing divisor
ρ′−1(Σi). Moreover, defining a small tubular neighbourhood V of the discriminant curve for each
point p ∈ Σi, p 6= 0, the resolution ρ′ restricted to ρ′−1(V ∩ ({x} ×C2)) is an embedded resolution
of the plane curve germ, at p.

Assume that the proper transform of Σi, intersects the union of irreducible components ∪j Ej
transversally and not in the intersection points of the irreducible components. In order to have
the link L, it will be necessary to apply the equivalence relation in Nemethi-Szilard’s proposition
and glue together the circles Si,j and Si,l, when the condition µi(Si,j) = µl(Si,l) is fulfilled. The

components Si,j in the dual graph defined in section 7.4 of [23], are situated on the irreducible
components Er, outside the intersection points of the irreducible components, in the resolution.
So, Si,j is on a Riemannian manifold with Hsiang-Pati metric. Thus, the metric of the topological
cone over the tubular neighbourhood T i is of Hsiang-Pati type, with exponent ν depending on
the exponent of the exceptional divisor. Indeed, consider the resolution of the normalized space
X and consider the irreducible component which contains the pre-images of the strict transform
of Σi. In order to define a type of Hsiang-Pati metric, take certain appropriate flow lines in the
neighbourhood of Si,k. Proceed to the gluing of the circles Si,k and Si,l that have same image
under µ. Then, outside S1

i the type of Hsiang-Pati metric will be conserved on the topological
cone defined over the tubular neighbourhood T iin L . The weight in the Hsiang-Pati metric of
the topological cone defined over T i is determined by the exponents in the resolution.

The boundary of this topological cone is glued to a boundary of the neighbouring Riemannian
manifold: a topological cone over a thickened torus. Indeed, the neighbouring manifolds of the
tubular neighbourhood T i are gluing tori. Let (Ctop(S1 × A), g

A
) and (Ctop(T i), g

T i ) be Rie-

mannian manifolds where Ctop denotes a topological cone. Let f : ∂Ctop(T i) → ∂Ctop(S1 ×A)
be a differentiable mapping and Ctop(T i) be a Riemannian manifold with metric tensor g

T i . The

reciprocal image f∗g
A

of g
A

is a 2-covariant symmetric tensor on ∂Ctop(T i) defined by:

(15) g
T i = (f∗g

A
)x(v, w) = (g

A
)y(f ′v, f ′w) ∀v, w ∈ Tx∂Ctop(T i).

3.4. The exponents in the metrics for h(z3) = g(z1, z2) surfaces. In this section we will use
the well known method of carousel. This method will be applied to the case of the normalized
surface X. We give an outline of the method.

Let ∆ be the discriminant curve in C2 and proceed to a Puiseux parametrization of each branch
of ∆. For each branch, it is necessary to truncate the Puiseux series in such a way that this
truncation does not change the topology of the curve. If one supposes that {z1 = ω}, then one
obtains a decomposition of the neighbourhood of ∆ in different regions, inversely proportional to
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the norm of the equation defining the singular locus. For each tangent line to ∆, {t = αix} we
proceed as follows. Suppose, without loss of generality, that there is only one tangent line {t = αx}
to ∆.

Let us restrain the study of this curve to a set, centered at the tangent line:

A := {(x, y)||x| ≤ ε, |y − αx| ≤ µ|x|} ⊂ C2.

Let νr be the biggest characteristic exponent in the truncated series. For each k ≤ r let
αk, βk, γk > 0 be positive constants, such that αk < βk.

The regions in A are:

- Υk :=

{
(x, y) : αk|xνk

∣∣∣∣≤ |y − k−1∑
i=1

aix
νi

∣∣∣∣ ≤ βk|xνk |, ∣∣∣∣y − k−1∑
i=1

aix
νk

∣∣∣∣ ≥ γk|xνk |} , ∀k ∈ {1, ...,m}.
- Ωi := (Υi−1 −Υi), i ∈ {2, ...,m}.

- Ω1 := (∂A−Υ1), i ∈ {2, ...,m}

- Λ := (A− ∪Ωi ∪Υi), i ∈ {1, ..., q} =
m+1
∪
i=1

Λi.

Consider the normalized surface X and π : X → C2 a generic projection with (π(Γ)) = ∆ ⊂ C2.
The regions Ω,Λ,Υ are lifted by π to the boundary of the Milnor fiber of the surface.
Moreover, there exists a bi-Lipschitz map between the regions Ωi,Υk,Λ and the topological

cones defined on the gluing tori and the mapping tori.

• Ωi is bi-Lipschitz equivalent to the topological cone over the gluing torus. The exponent
in the metric of this topological cone is determined by the Puiseux exponents νi and νi−1;
• Υk is bi-Lipschitz equivalent to the topological cone over the mapping torus defined over

a planar surface Y and with a finite order morphism h; The exponent in the metric is
determined by the Puiseux exponent νk.
• Λ is bi-Lipschitz equivalent to a topological cone over the mapping torus defined on the

manifold Y = D2. [4].

We will investigate the part of L, which is invariant under the equivalence relation (14). We
recall that this equivalence relation is defined such that: L = L/ ∼. Define the topological cones,
over the manifolds in L. Each topological cone carries a given metric with a given exponent ν. By
carousel method, there exists a correlation between the zones in the carousel and the manifolds
defining the link L. Moreover, a given Puiseux exponent gives a topological description of the
corresponding manifold.

Now take into consideration the topological cones with Puiseux exponents ν ≥ 1, defined over
the manifolds of L̄ and invariant under the equivalence relation (14). Then, from the invariance
of topological cones it follows that these manifolds are also defined on L. It is worth noticing that
the invariant part of L is the set of plumbed manifolds equivalent to ∂F1. In other words, the
topological cones defined over the manifolds in L1 exist in the link L.

Take into account that if the Puiseux exponents of the pieces in L1 are greater than one, then
the topological cones that are endowed with ν > 1 define non-metrically conical zones. In addition,
if, in a manifold of L1, there exists a non-trivial loop, this loop will shrink at a rate greater than
one. Thus we have defined a non-metrically conical zone in X.

As for the metrically conical zone, it corresponds to a Puiseux exponent ν = 1. So, the non-
trivial loops defined in the Seifert manifold with rate 1, shrink linearly, that is O(t) to 0.
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First of all, one has the following non-commutative diagram between the discriminants of the
normalized and non-normal surface:

X X

∆ ∆

π

n

π

Notice that the discriminant curves of X and X differ by their Puiseux exponents. Indeed, not all
of ∆’s Puiseux data is preserved during the normalization process. In order to have a description of

T i we consider first ∂F2,i. Recall that for each i, ∂F2,i is a graph manifold. To show this assertion,
it is sufficient to follow the Nemethi-Szilard algorithm [23]. The decomposition into Seifert-fibered
pieces of the three-manifolds ∂F2,i contains the data of f , restricted to the transversal slice germ
of Σi.

3.5. A property on the loops in ∂Li2. Now, we will examine loops in the boundary ∂Li2.
First, consider the set ∂Gβ := {z ∈ C3||K(z)|2 = β} where K(z) generates the ideal defining

the singular locus and let β be a positive, small enough constant. Let us consider the map:

(16) φ : (L := Sε ∩X) ∩ ∂Gβ → S1.

The fibers of this map are a set of m manifolds. These manifolds will be denoted Rj , j ∈
{1, 2, ...,m}. Assume that the surface is such that the intersection of a hyperplane with the singular
locus is transversal and contains 0. Let l be the projection operator onto the first coordinate axis
z1. Notice that in the case of l : Σ→ 0z1, one has a covering with finite multiplicity [13]. Then, for
a small c 6= 0, l−1(c) ∩ Σ consists of a set of m points that we will label {p1, p2, ..., pm}. Consider
the inverse image of these points {pi}mi=1 in the surface. Then, we call Rj the intersection of a
sphere of small radius η, centered at a point pj , and the pre-image of c in the surface.

Going back to the previous map (16), if β is sufficiently small then Sε ∩Gβ splits into a disjoint
union of sets that are neighbourhoods of Sε ∩Σi.Thus one has to consider Li := (L ∩ ∂Giβ) where

∂Gβ
i is a neighborhood of the Σi component.

Proposition 4. If i ∈ {1, ..., n}, then Li stratifies over a circle with fiber Ri

An interesting topological information is given by I. Iomdin [13]:

Proposition 5. ∀z ∈ Li ⊂ C3, i ∈ {1, ..., n}:
λ : Li → V3,3 , z 7→ [grad f, grad g, z]

where V3,3 is a complex Stiefel manifold.
Let λ : Li → V3,3 and let i : Ri → Li be an embedding. Let rj be the fundamental cycle of the

manifold Ri and s a generator of the first homology group H1(V3,3). Then ,

λ∗ ◦ i∗(ri) = κ · s,
where κ is an integer.

So, using this procedure, we have defined a splitting of the germ (X, 0) into a finite family of semi-
algebraic sets. Each of these sets correspond to a type of topological cone, endowed with Nagase,
modified Nagase or Hsiang-Pati type of metric over the elements of the link of the singularity.
Therfore this shows the existence of such a splitting of X ∩ Bε. �

Proof. Propostion 2. Let n : X → X be the normalization map and consider X \ Σ with normal-
ization X \ n−1(Σ). Recall that outside the singular locus, the map is bi-holomorphic. So, outside
the singular locus, the metric on L\n−1(Σ∩Sε) gives an equivalent metric, topologically speaking,
on: L \ (Σ∩Sε). For normal surfaces, the boundary of its Milnor fiber is diffeomorphic to its link.
The discriminant curve of X, provides the zones Ωk,Υi,Λ, delimited by the Puiseux-exponents of
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the discriminat curve. These zones give a filtration of the fibration: Bε ∩ f−1(∂Bη)→ ∂Bη, η < ε,

and provide a decomposition in terms of graph manifolds of the link L. We use the fact that
there exists a bi-Lipschitz map between the set Υk with Puiseux exponent νk, and the Reiman-
nian manifold defined as a topological cone over a preimage π−1(Υk), with Riemannian metric
dt2 + t2dθ + t2νkgθ, t ∈ (0, 1]. So, applying Cheeger-Kleiner theorem [8]: let π : Wj → Υj be a
Lipschitz map between metric spaces. We assume that for all r ∈ R+, if U ⊂ Υj and diam(U)≤ r,
then the r-components of π−1(U) have diameter at most Cr. It follows that if there exists a systol
in the manifold MY , which is a fiber of Ξ → S1 has diameter of order αtν , where α > 0 is a
constant and ν is a Puiseux exponent. Note that 0 < α <∞ by section 3 [2]. �

Proof. Corollary 2. Let Ξ be the region defined in the previous proposition. Ξ is the region in L
that corresponds to a zone of type Υ, defined by a Puiseux exponent ν. Thus, a systole, in this
region, has a diameter of order αtν . Recall that the metric on the Riemannian manifold is of type :
dt2 + t2dθ+ t2νkgθ, t ∈ (0, 1]. From a topological point of view, the topological cone can be studied
in terms of a compact 1-parameter family of subsets of Rn. That is, if Ai is the topological cone
over Ξ, Ai ⊂ R × Rn and we define Ai,t := Ai ∩ ({t} × R). Notice that this set is connected. So,
as t tends to 0, the systole shrinks at a rate of order O(tν). �

3.6. Example. Consider the complex germ defined by:

(17) f(z1, z2, z3) = z2
3 − (z3

1 − z2
2)2(z4

1 − z3
2) = 0,

with singular locus Σ = {z3 = 0, z3
1 − z2

2 = 0}. The map l : Σ → z1 has finite multiplicity 2.
So, the pre-image of w ∈ C1 is composed of two points p1 and p2. Hence, the intersection in X:
l−1(w) ∩X, has an isolated singularity at p1 and at p2. Let us now define the following manifolds
R1 := Sε(c1) ∩ l−1(w) ∩X and R2 := Sε(c2) ∩ l−1(w) ∩X. These two manifolds are diffeomorphic
since, p1 and p2 are in the same branch of the singular curve defined by Σ. We will denote this
manifold for short R. As it has been showed above, the set X ∩ Sε ∩ ∂Gβ stratifies over a circle
S1
γ , |z1| = γ with fiber corresponding to the manifold R.

Let n : X → X be the normalization map. The normalized space is defined by the following
equation:

(18) f̄ = z2
3 − z4

1 − z3
2 = 0.

By the Newton-Puiseux algorithm, one determines the characteristic Puiseux exponent of the
branch. In this example, the Puiseux characteristic exponent of the discriminant curve is 4/3. The
delimited regions in this examples are:

(1) let Υ1 := {(z1, z2)C2 : α|z
4
3
1 | ≤ |z2 − z

4
3
1 | ≤ β|z

4
3
1 |}, α ≤ β ∈ R

(2) A := {(z1, z2) ∈ C2||z1| ≤ ε, |z−2 z
|
1 ≤ µ|z1|} ⊂ C2

(3) Ω1 := (∂A−Υ1),

(4) Λ := (A− Ω1 ∪Υ1),= ∪2
k=1Λk

On the other side, applying Hirzebruch-Jung resolution of singularities, one obtains the reso-
lution of this singularity and hence its dual representation graph. On this graph there exists a
metrically conical zone, situated at the end vertex of the graph and a non-metrically zone, with
metric rate ν = 4

3 . In order to have the link of the non-isolated singularity, one must consider

the inverse image of the singular locus Σ ⊂ X by n in the link L. Then, apply the equivalence
relation in Proposition 3. In the neighbourhood of the glued points, we define a cone over the
boundary of Mj and take the topological cone over this manifold. Recall that Mj is the Milnor
fiber of f restricted to a transversal slice germ corresponding to z3

1 − z2
2 . This corresponds to the

L2 part of the link. In L, the adjacent manifolds are tori. These tori join L2 to the part L1. Notice
that L1 is equivalent to the invariant part of L under equivalence relation. Since the metric rate,
for the non-metrically conical part of the link, is 4/3, we have the four types of topological cones
in the splitting of (X, 0) : There exists a semi-algebraic set in (X, 0) which is metrically conical,
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a semi-algebraic set non-metrically conical with rate 4/3 and semi-algebraic set equivalent to a
topological cone defined over C∂Mj .
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