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Introduction

A (finite) structure A is an alter-ego of an algebra A, if both have the same underlying set A and each operation, each relation and each partial operation of A is compatible with all operations of A. We also add the discrete topology to A.

Under this assumption, given B ∈ QVar A (that is, B is a subalgebra of a power of A), the set Hom(B, A) of all homomorphisms B → A is a closed subset of A B and is stable under each operation of A. We denote the corresponding substructure of A B by B * .

Similarly, given U a closed substructure of A X (for some nonempty set X), the set Hom(U, A) of all continuous homomorphisms U → A is a subalgebra of A U . We denote the corresponding subalgebra of A B by U + .

The evaluation map is the map e B : B → B * + defined by e B (x)(f ) = f (x) for all x ∈ B and all f ∈ Hom(B, A).

The evaluation map is always an embedding of algebras. The alter-ego A dualizes A if e B is an isomorphism for each B ∈ QVar A. An algebra A is dualizable if there exists an alter-ego A that dualizes A.

Independently Zádori in [START_REF] Zádori | Natural duality via a finite set of relations[END_REF], and Davey, Heindorf, and McKenzie in [START_REF] Davey | Near unanimity: an obstacle to general duality theory[END_REF] prove the following characterization of dualizable algebras in congruence-distributive varieties (see also [4, 10.2.2]).

Theorem (Zádori, Davey, Heindorf, and McKenzie). A finite algebra, generating a congruence-distributive variety, is dualizable if and only if it has a near-unanimity term.

Moreover Maróti proves in [START_REF] Maróti | The existence of a near-unanimity term in a finite algebra is decidable[END_REF] that the existence of a near-unanimity term in a finitely generated variety is decidable. He concludes that the dualizibility of finite algebras generating congruence-distributive varieties is decidable. The equivalent problem for finite algebras generating congruence-modular varieties is still open. However several results are known.

Abelian groups are dualizable (finite discrete case of Pontryagin duality). Quackenbush and Szabó prove in [START_REF] Quackenbush | Nilpotent groups are not dualizable[END_REF] that non-Abelian nilpotent groups are inherently non-dualizable (any group containing a non-Abelian nilpotent subgroup is not dualizable). Nickodemus finally proved in [START_REF] Nickodemus | Natural dualities for finite groups with abelian Sylow subgroups[END_REF] that groups with only Abelian Sylow subgroups are dualizable. This give the following characterization of dualizable groups.

Theorem (Nickodemus, Quackenbush, and Szabó). A finite group is dualizable if and only if all its Sylow subgroups are Abelian.

Bentz and Mayr prove in [START_REF] Bentz | Supernilpotence prevents dualizability[END_REF] that supernilpotent non-Abelian algebras are inherently non-dualizable. Bentz and Mayr also gave an example of a nilpotent, non-supernilpotent, non-Abelian, dualizable algebra.

A natural question, and the next step in the characterization of dualizable algebras in congruence-modular varieties, is the case of Abelian algebras. Several example are already known. Kearnes and Szendrei prove that finite modules are dualizable. A finite module, with an additional constant operation for each element, is dualizable (unpublished result by Bentz and Mayr) In this paper we extend both results by proving that every finite Abelian algebra, generating a congruence-modular variety, is dualizable. This solves a problem asked by Bentz and Mayr [START_REF] Bentz | Supernilpotence prevents dualizability[END_REF]Problem 6.1]. This also characterize supernilpotent dualizable algebras (exactly the Abelian algebras). Note that Kearnes and Szendrei have recently proved in [START_REF] Kearnes | Dualizable algebras with parallelogram terms[END_REF] that Abelian algebras are dualizable. However the proof of this paper yields an explicit bound on the arities of relations in the dualizing structure.

Note that the author, with Bentz and Sequeira in [START_REF] Bentz | Finite Abelian algebras are fully dualizable[END_REF], extend the result to prove that finite Abelian algebras are strongly dualizable.

Basic concept

We refer to [START_REF] Clark | Natural dualities for the working algebraist[END_REF] for basic definitions and results on duality theory. Given a set A, we denote by |A| the cardinality of A, and by P(A) the set of all subsets of A. Given a map f :

A → B we set graph f = {(a, f (a)) | a ∈ A}. Note that if f is an operation on A of arity n, then graph f is a relation of arity n + 1.
Let F be a set of operations and relations over a set A. We say that F entails an operation f (resp., a relation R), if for each integer n > 0, each map p : A n → A compatible with each element of F is also compatible with f (resp. R). Let G be a set of operations and relations. We say that F entails G if F entails each relations and each operations in G.

In this paper we only use the following classical entailment results.

Lemma 2.1. Let A be a set.

(1) Let (R i ) i∈I be a family of k-ary relations on A.

Then {R i | i ∈ I} entails i∈I R i . (2)
Let F be a family of operations on A. Let R be a k-ary relation on A and let p 1 , . . . , p k : A n → A be terms in F. We consider the n-ary relation on A defined by

S = { x ∈ A n | (p 1 ( x), p 2 ( x), . . . , p k ( x)) ∈ R} .
Then {R} ∪ F entails S. (3) Let R be an n-ary relation. Set S = {(x 1 , . . . , x n , x n ) | (x 1 , . . . , x n ) ∈ R}.

Then {S} entails R.

(4) Let f : A n → A then {graph f } entails f .
We also use the classical brute-force and compactness argument summarized here.

Theorem 2.2. Let A be a finite algebra. Let F be a finite set of operations and relations compatible with A. Assume that F entails each relation compatible with A. Then A; F dualizes A.

We only consider Abelian algebras generating congruence-modular varieties. Definition 2.3. A term of an algebra A is affine if there is an Abelian group A; +, -, 0 . Such that (1) t(x, y, z) = x -y + z for all x, y, z ∈ A.

(2) t is compatible with all terms of A. That is, f ( x-y+ z) = f ( x)-f ( y)+f ( z) for all n-ary terms f of A and all x, y, z in A n . An algebra is affine if it has an affine term.

Remark 2.4. The group operations +, -and the constant 0 are not in general terms of A. These operations might not be compatible with operations of A, and might not be compatible with morphisms.

The Abelian group yielding an affine structure is not unique. If c is any element of A then we can assume that c is the neutral element of +. In fact (x, y) → x + c y = t(x, c, y) is an Abelian group operation (cf. [START_REF] Freese | Commutator theory for congruence modular varieties[END_REF]Lemma 5.6]). However the term map, induced by t, is unique. Lemma 2.5. Let t(x, y, z) be an affine term. Let u 1 , . . . , u n be integers such that n k=1 u k = 1, then n k=1 u k x k is a term in t. Conversely any term in t is equivalent to a term of this form.

The following characterization of Abelian algebras in congruence-modular varieties is due to Herrmann [START_REF] Herrmann | Affine algebras in congruence modular varieties[END_REF], a complete proof is given in [5, Corollary 5.9]. Theorem 2.6 (Herrmann). The Abelian algebras generating congruence-modular varieties are the affine algebras.

In the sequel of the paper, whenever we have an congruence-modular variety of Abelian algebras, we fix a term t giving each algebra an affine structure. We also implicitly fix an Abelian group operation + for each considered Abelian algebra (note that we only consider Abelian algebras in congruence-modular varieties).

Congruences induced by subalgebras

In this section, we construct a correspondence between subalgebras of an Abelian algebra, and some of its congruences.

Most results are generalizations of the corresponding result for Abelian groups. As there is no natural origin/zero element in an Abelian algebra the formulations and proofs are a little different.

We denote by Sub A the set of all underlying set of (nonempty) subalgebras of A. Given B ∈ Sub A, we denote by B the corresponding subalgebra of A. Definition 3.1. Let A be an Abelian algebra. Let B ∈ Sub A. The congruence generated by B, denoted by Θ B , is the smallest congruence of A which identifies all pairs of elements in B.

Remark 3.2. Some congruences of A might not be of the form Θ B with B ∈ Sub A. For example, if A has at least two different constant operations, then the identity congruence of A cannot be written as Θ B .

We might have Θ B = Θ C with B = C in Sub A. For example, if the only operation of A is t, and A has a nontrivial subalgebra B, then taking c ∈ A \ B, we can see that

C = c + B = {c + b | b ∈ B} ∈ Sub A and B = C, however Θ B = Θ C .
In the following lemma, we know that there always exists such a term t. The equation (3.1) and (3.2) could be taken for definition of Θ B . In particular, we see that it does not depend on the choice of t. Lemma 3.3. Let A be an Abelian algebra. Let t be an affine term of A. Let B ∈ Sub A. The following equalities hold

Θ B = {(x, y) ∈ A | ∀b ∈ B , t(x, y, b) ∈ B} (3.1) = {(x, y) ∈ A | ∃b ∈ B , t(x, y, b) ∈ B} . (3.2) 
Proof. We fix an Abelian group structure on A such that t(x, y, z) = x -y + z, for all x, y, z ∈ A. We set:

Θ ′ B = {(x, y) ∈ A | ∀b ∈ B , t(x, y, b) ∈ B} , (3.3) 
Θ ′′ B = {(x, y) ∈ A | ∃b ∈ B , t(x, y, b) ∈ B} . (3.4) Let (x, y) ∈ Θ ′′ B . Let b ′ ∈ B such that t(x, y, b ′ ) ∈ B. Let b ∈ B. As B is stable under t, it follows that t(t(x, y, b ′ ), b ′ , b) ∈ B, however: t(t(x, y, b ′ ), b ′ , b) = x -y + b ′ -b ′ + b = x -y + b = t(x, y, b) . So t(x, y, b) ∈ B for all b ∈ B, that is, (x, y) ∈ Θ ′ B . Hence Θ ′′ B ⊆ Θ ′ B .
The other containment follows from the fact that B is not empty.

We now prove that

Θ ′ B is a congruence of A. Let x ∈ A, let b ∈ B, then t(x, x, b) = b ∈ B, therefore (x, x) ∈ Θ ′ B . Let (x, y) ∈ Θ ′ B . Let b ∈ B. Set b ′ = t(x, y, b). Then b ′ ∈ B, moreover the following equalities hold t(y, x, b ′ ) = t(y, x, t(x, y, b)) = y -x + x -y + b = b. (3.5) As b ∈ B, it follows that (y, x) ∈ Θ ′ B . Let x, y, z in A such that (x, y) ∈ Θ ′ B and (y, z) ∈ Θ ′ B . Let b ∈ B, then t(x, y, b) ∈ B and t(y, z, b) ∈ B. Therefore t(t(x, y, b), b, t(y, z, b)) ∈ B.
Moreover the following equalities hold:

t(t(x, y, b), b, t(y, z, b)) = x -y + b -b + y -z + b = x -z + b = t(x, z, b) . (3.6) Therefore t(x, z, b) ∈ B, it follows that (x, z) ∈ Θ ′ B . Let λ be an n-ary operation of A. Let x 1 , . . . , x n , y 1 , . . . , y n in A such that (x i , y i ) ∈ Θ ′ B for all 1 ≤ i ≤ n. Let b ∈ B, we have t(x i , y i , b) ∈ B , for all 1 ≤ i ≤ n. (3.7)
However t preserves λ and B is stable under λ, hence: 

t(λ(x 1 , . . . , x n ), λ(y 1 , . . . , x n ), λ(b, . . . , b)) ∈ B . (3.8) Moreover λ(b, . . . , b) ∈ B, therefore (λ(x 1 , . . . , x n ), λ(y 1 , . . . , x n )) ∈ Θ ′ B . Hence Θ ′ B is a congruence of A. Moreover, given x, y ∈ B, note that t(x, y, y) = x ∈ B, hence (x, y) ∈ Θ ′ B . Therefore Θ B ⊆ Θ ′ B . Let (x, y) ∈ Θ ′ B . Let b ∈ B, hence t(x,
C(α, B) = {x ∈ A | ∃b ′ ∈ B , (x, b ′ ) ∈ α} .
(3.9) This proves the following equivalence:

Proof. Let x ∈ A and b ′ ∈ B such that (x, b ′ ) ∈ α. Let b ∈ B. Note that (b ′ , b) ∈ Θ B ⊆ α. Hence (x, b) ∈ α for all b ∈ B, that is, x ∈ C(α, B). The other containment is immediate as B is not empty. Let b ∈ B. As (b, b) ∈ α, it follows that b ∈ C(α, B), therefore B ⊆ C(α, B). Let λ be an n-ary operation of A. Let x 1 , . . . , x n in C(α, B). Let b ∈ B. Note that (x i , b) ∈ α for all 1 ≤ i ≤ n, therefore (λ(x 1 , . . . , x n ), λ(b, . . . , b)) ∈ α. However λ(b, . . . , b) ∈ B, hence λ(x 1 , . . . , x n ) ∈ C(α, B).
(x, y) ∈ α ⇐⇒ (t(x, y, b), b) ∈ α .
(3.10)

The following equivalences hold:

(x, y) ∈ Θ C(α,B) ⇐⇒ t(x, y, b) ∈ C(α, B) By Lemma 3.3. ⇐⇒ (t(x, y, b), b) ∈ α By Lemma 3.4. ⇐⇒ (x, y) ∈ α By (3.10). So Θ C(α,B) = α, that is, (1) holds. Fix X ∈ Sub A such that X ⊇ B. Let x in A, let b ∈ B. x ∈ C(Θ X , B) ⇐⇒ (x, b) ∈ Θ X ⇐⇒ x = t(x, b, b) ∈ X .
That is, (2) holds. We can see from the definition, that if X ⊇ Y , then Θ X ⊇ Θ Y . In particular X → Θ X is an isotone map from S to C.

Similarly if α ⊆ β then C(α, B) ⊆ C(β, B). The conclusion follows from Lemma 3.5.

It follows that a quotient of an Abelian algebra by a meet-irreducible subalgebra is subdirectly irreducible. That is, the following statement holds.

Corollary 3.7. Let A be an Abelian algebra. Let B ∈ Sub A. If B is a meetirreducible, then A/Θ B is subdirectly irreducible.

The following corollary expresses that a completely meet-irreducible subalgebra of an Abelian algebra is a "kernel" of a morphism into a subdirectly irreducible algebra.

Corollary 3.8. Let A be an Abelian algebra, let B ∈ Sub A be completely meetirreducible. Then there exists a subdirectly irreducible algebra S in the variety generated by A, a morphism of algebras f : A → S and an element c ∈ S such that:

(1)

B = {x ∈ A | f (x) = c}.
(2) c is preserved by all operations of S, equivalently {c} is the underlying set of a subalgebra of S. Proof. Assume that A and B are Abelian groups. Given 1 ≤ i ≤ k, denote by A i the p i -Sylow subgroup of A. That is, A i is the set of all element of A of order a power of p i . Similarly denote by B i the p i -Sylow subgroup of B. Note that

|A i | = p αi i and |B i | = p βi i . Let F i be a generating set of A i such that |F i | = α i . Given a ∈ F i and f ∈ Hom(A, B), the element f (a) of B is of order a power of p i hence f (a) ∈ B i .
Therefore the following map is well-defined:

ϕ : Hom(A, B) → B F1 1 × B F2 2 × • • • × B F k k f → (f ↾ F 1 , f ↾ F 2 , . . . , f ↾ F k ) .
As A is generated by

F 1 ∪ F 2 ∪ • • • ∪ F k , the map ϕ is injective. Moreover ϕ is a morphism of groups. Therefore Hom(A, B); + is isomorphic to a subgroup of B F1 1 × B F2 2 × • • • × B F k k . So | Hom(A, B)| divides |B F1 1 × B F2 2 × • • • × B F k k |.

Moreover the following equalities hold

|B F1 1 × B F2 2 × • • • × B F k k | = (p β1 1 ) |F1| × (p β2 2 ) |F2| × • • • × (p β k k ) |F k | = (p α1β1 1 ) × (p α2β2 2 ) × • • • × (p α k β k k ) .
We now only assume that A and B are Abelian algebras. Note that Hom(A, B) is the underlying set of a sub-algebra of B; t

A . Set H = Hom(A, B) and H = H; t .

Pick a ∈ A. We can assume that the neutral element of the Abelian group operation + on A, inducing the affine structure of A, is a. That is, x+ y = t(x, a, y) for all x, y ∈ A. Similarly, pick b ∈ B, we can assume that x + y = t(x, b, y) for all x, y ∈ B.

We consider K = Hom( A; + , B; + ) and K = K; t . That is, we only consider the affine structure on the set of group morphisms A; + → B; + .

Given f ∈ Hom(A, B), we consider ψ(f

) : A → B, x → f (x) -f (a). The following equalities hold ψ(f )(x + y) = f (x + y) -f (a) = f (x -a + y) -f (a) = f (x) -f (a) + f (y) -f (a) = ψ(f )(x) + ψ(f )(y) . Hence ψ(f ) is a morphism of groups, hence ψ ∈ K. Let f, g, h ∈ H. Let x ∈ A.
The following equalities hold

ψ(f -g + h)(x) = (f -g + h)(x) -t(f -g + h)(a) = f (x) -g(x) + h(x) -(f (a) -g(a) + h(a)) = f (x) -f (a) -(g(x) -g(a)) + h(x) -h(a) = ψ(f )(x) -ψ(g)(x) + ψ(h)(x) . That is, ψ(t(f, g, h)) = ψ(f -g + h) = ψ(f ) -ψ(g) + ψ(h) = t(ψ(f ), ψ(g), ψ(h)). Therefore ψ : H → K is a morphism. Moreover H → B; t , f → f (a) is a morphism. Thus the following map defines a morphism σ : H → K × B; t f → (ψ(f ), f (a)) . Let f, g ∈ H such that σ(f ) = σ(g). That is, f (a) = g(a) and ψ(f ) = ψ(g). Let x ∈ A, note that ψ(f )(x) = ψ(g)(x), hence f (x) -f (a) = g(x) -g(a), so f (x) = g(x), hence f = g. Therefore σ is an embedding. Thus |H| divides |K × B|. Moreover from the group case |K| divides p α1β1 1 p α2β2 2 . . . p α k β k k . Therefore |H| divides p α1β1 1 p α2β2 2 . . . p α k β k k p β1 1 p β2 2 . . . p β k k .
Lemma 4.2. Let A be an Abelian group (resp., an Abelian algebra). Assume that |A| = p α1 1 p α2 2 . . . p α k k , where p 1 , . . . , p k are distinct primes. Then A has a family of generators with max 1≤i≤k (α i ) elements (resp., 1 + max 1≤i≤k (α i ) elements).

Proof. Set N = max 1≤i≤k (α i ).

If A is an Abelian group. It follows from the fundamental theorem on finitely generated Abelian groups that A is isomorphic to

Z u1 × • • • × Z uq , where 1 < u 1 | u 2 | • • • | u q . Let i such that p i | u 1 , so p q i | u 1 . . . u q = |A| = p α1 1 p α2 2 . . . p α k k .
Hence q ≤ α i ≤ N . Therefore A has a family of generators with q ≤ N elements.

If A is an Abelian algebra. Denote by + an Abelian group operation on A, yielding the affine structure of A. Denote by a 0 the neutral element of +. Let a 1 , . . . , a N be a generating family of A; + . As x + y = t(x, a 0 , y) for all x, y ∈ A, it follows that a 0 , . . . , a N generate A.

Kearnes gives in [START_REF] Kearnes | Residual bounds for varieties of modules[END_REF] an upper bound to subdirectly irreducible algebras in a finitely generated, congruence-modular variety satisfying the congruence-extension property, this result applies in particular for Abelian algebras. Indeed Kearnes points that this case corresponds to modules. 

Main

We want to find a finite set of compatible relations which entails the set of all compatible relations. The following lemma expresses that we can restrict our problem to completely meet-irreducible compatible relations.

Lemma 5.1. Let A be a finite Abelian algebra. Let n be a positive integer. Denote by F the set of all n-ary completely meet-irreducible relations compatible with A. Let R be an n-ary relation compatible with A. Then F entails R.

Proof. Let B be a subalgebra of A n . Note that B is the intersection of all underlying sets of completely meet-irreducible subalgebras of A n containing B. However this set is finite (as A is finite), and is contained in F. We can conclude with Lemma 2.1(1) that F entails R.

As an immediate consequence of Theorem 2.2 and Lemma 5.1 Corollary 5.2. Let A be an algebra. Let R be a finite set of relations compatible with A. If R entails each meet-irreducible subalgebras of A n for each n ∈ N, then A; R dualizes A. Notation 5.3. Let A and S be Abelian algebras, let k : A → S be a morphism.

(

) Set H k (A 2 , S) = {f : A 2 → S | ∀x ∈ A , f (x, x) = k(x)}. (2) Let f : A 2 → S, let a ∈ A. We set f a : A → S, x → f (a, x). 1 
We refer to Remark 2.4 for the various definitions of +.

Lemma 5.4. Let A and S be Abelian algebras, let k : A → S be a morphism. The following statements hold:

(1) The set H k (A 2 , S) is the underlying set of a subalgebra of Hom(A 2 , S); t .

(2) The map k : A 2 → S, (x, y) → k(y), belongs to H k (A 2 , S).

(3) Pick a ∈ A. Then the following map

Ψ : H k (A 2 , S); + k → Hom( A; + a , S; + k(a) ); + k f → f a ,
is an embedding of groups. (4) Let j : A → S. Denote j : A 2 → S, (x, y) → j(y). Then H k (A 2 , S);

+ k is isomorphic to H j (A 2 , S); + j . Proof. Let f, g, h ∈ H k (A 2 , S). Let x ∈ A, the following equalities hold t(f, g, h)(x, x) = t(f (x, x), g(x, x), h(x, x)) = t(k(x), k(x), k(x)) = k(x) . Hence t(f, g, h) ∈ H k (A 2 , S), that is, H k (A 2 , S)
is the underlying set of a subalgebra of Hom(A 2 , S); t . Therefore (1) holds.

Set k : A 2 → S, (x, y) → k(y). First note that k :

A 2 → S is a morphism. Moreover, given x ∈ A, we have k(x, x) = k(x), hence k ∈ H k (A 2 , S). That is, (2) holds.
Pick a ∈ A. Note that f : A 2 → S and A → S, x → a, preserve t, therefore f a preserves t, moreover f a (a) = f (a, a) = k(a), thus f a preserves the neutral element. Therefore Ψ(f ) = f a : A; + a → S; + k(a) is a morphism of groups.

Let f, g ∈ H k (A 2 , S). Let x ∈ A. The following equalities hold (f + k g) a (x) = (t(f, k, g)) a (x) , by definition of + k . = t(f, k, g)(a, x) , by definition of (t(f, k, g)) a .

= t(f (a, x), k(a, x), g(a, x)) , by definition of t(f, k, g).

= t(f a (x), k(x), g a (x)) , by definition of k, f a , and g a .

= t(f a , k, g a )(x) , by definition of t(f a , k, g a ).

= (f a + k g a )(x) , by definition of + k .

Therefore Ψ(f + k g) = Ψ(f ) + k Ψ(g), so Ψ is a morphism of groups. We now prove that the kernel of Ψ is reduced to {k}.

Let f ∈ H k (A 2 , S) such that Ψ(f ) = k, that is f (a, x) = k(x) , for all x ∈ A.
(5.1)

Therefore the following equalities hold

f (x, y) = f (t(a, a, x), t(y, x, x)) = t(f (a, y), f (a, x), f (x, x)) ,
as f compatible with t.

= t(k(y), k(x), k(x)) , by (5.1) and as f (x, x) = k(x).

= k(y)

= k(x, y)

So f = k. Therefore Ψ is an embedding. Hence (3) holds.

Let j : A → S. Set j : A 2 → S, (x, y) → j(y). We consider

Φ : H k (A 2 , S) → H j (A 2 , S) f → t(f, k, j) .
Given f ∈ H k (A 2 , S), the map t(f, k, j) is a composition of morphisms, and so is a morphism. Moreover, given x ∈ A, the following equalities hold t(f, k, j)(x, x) = t(f (x, x), k(x, x), j(x, x)) = t(k(x), k(x), j(x)) = j(x) .

Therefore Φ(f ) = t(f, k, j) belongs to H j (A 2 , S). Also note that t and constant maps are all compatible with t, thus Φ is compatible with t. Moreover Φ(k) = t(k, k, j) = j, that is, Φ maps the neutral element of + k to the neutral element of + j . Therefore Φ : H k (A 2 , S); + k → H j (A 2 , S); + j is a morphism of groups.

Similarly H j (A 2 , S);

+ j → H k (A 2 , S); + k , f → t(f, j, k
) is a morphism, which is the inverse of Φ. Thus (4) holds.

Remark 5.5. From Lemma 5.4(4) we see that the group H k (A 2 , S); + k does not depend on the choice of k. This group is well-defined (up to isomorphism) if there exists at least one morphism k : A → S, in this case we denote this group H(A 2 , S).

The following corollary is a consequence of Lemma 5.4(3) and Lemma 4. Morphisms of a large enough power of A to S can be factorized through a smaller power, moreover the factorization is through a morphism that can be expressed with t. Note that, if there is a morphism A n → S, then H(A 2 , S) is well-defined. Lemma 5.7. Let A and S be algebras in a congruence-modular variety of Abelian algebras. Let N be positive integer such that H(A 2 , S) has a family of generators with N elements. Let n ≥ 1 be an integer. Let f : A n → S be a morphism. There exist a morphism g : A N +1 → S and terms p 1 , . . . , p N +1 : A n → A in t such that f ( x) = g(p 1 ( x), p 2 ( x), . . . , p N +1 ( x)), for all x ∈ A n .

Proof. Let h 1 , . . . , h N be a family generating H(A 2 , S). Given 1 ≤ i ≤ n, we consider the morphism f i defined by f i : A 2 → S (x, y) → f (y, . . . , y, x, y, . . . , y) , where x appears at position i.

We also define k : A → S, x → f (x, . . . , x), and k : A 2 → S, (x, y) → k(y).

We can assume that H(A 2 , S) = H k (A 2 , S); + k . Note that f i (x, x) = k(x) for all x ∈ A, so f i ∈ H k (A 2 , S) for all 1 ≤ i ≤ n. Thus there are integers u i 1 , . . . , u i N such that

f i = N j=1
u i j h j , for all 1 ≤ i ≤ n.

As p 1 , . . . , p n are terms in t, it follows from Lemma 2.1(2) that {B, t} entails R, and so R N +1 ∪ {t} entails R. Therefore R N +1 ∪ {t} entails the set of all completely meet-irreducible relation compatible with A. It follows from Lemma 5.1 that R N +1 ∪ {t} entails R. Note that graph t is a relation of arity 4, hence by Lemma 2.1(3) F entails graph t. It follows from Lemma 2.1(4) that F entails t. So F entails all relations compatible with A. Therefore it follows from Theorem 2.2 that A; F dualizes A.

  y, b) ∈ B. Therefore b and t(x, y, b) are identified by Θ B , hence t(t(x, y, b), b, y) and t(b, b, y) are identified by Θ B . However t(t(x, y, b), b, y) = x-y +b-b+y = x and t(b, b, y) = b-b+y = y, thus (x, y) ∈ Θ B . Therefore Θ B = Θ ′ B . Given a congruence α of A, there might not exist a corresponding space B such that α = Θ B , however if α ⊇ Θ B , we can assign a set C(α, B) = {x ∈ A | ∀b ∈ B , (x, b) ∈ α}. Lemma 3.4. Let A be an Abelian algebra. Let B ∈ Sub A. Let α be a congruence of A containing Θ B . Then B ⊆ C(α, B) ∈ Sub A, and:

Lemma 3 . 5 . 1 )

 351 Let A be an Abelian algebra. Let B ∈ Sub A. The following statements hold:(Let α ⊇ Θ B be a congruence of A. Then Θ C(α,B) = α. (2) Let X ⊇ B in Sub A. Then C(Θ X , B) = XProof. We fix a group operation + on A, such that t, defined by t(x, y, z) = x-y +z is a term of A. Let x, y in A. Let b ∈ B. Assume that (x, y) ∈ α, note that (y, y) ∈ α and (b, b) ∈ α, hence, form the compatibility of α with t, it follows that (t(x, y, b), b) = (t(x, y, b), t(y, y, b)) ∈ α. Conversely if (t(x, y, b), b) ∈ α, then (x, y) = (t(t(x, y, b), b, y), t(b, b, y)) ∈ α .

Theorem 3 . 6 .

 36 Let A be an Abelian algebra. Let B ∈ Sub A. Then X → Θ X and α → C(α, B) are mutually inverse isomorphisms of lattices between subalgebras of A containing B and congruences of A containing Θ B . Proof. Denote by S = {X ∈ Sub A | X ⊇ B} the lattice of all subalgebras of A containing B, and by C = {α ∈ Con A | α ⊇ Θ B } the lattice of all congruences of A containing Θ B .

Proof.. 1 p α2β2 2 .

 12 Set S = A/Θ B . Denote by f : A → S the canonical projection. By Corollary 3.7 the algebra S is subdirectly irreducible. Let b ∈ B, note that f (b) = b/Θ B = {x ∈ A | (x, b) ∈ Θ B } = C(Θ B , B) = B, we denote by c this element of S. Hence {x ∈ A | f (x) = c} = B. Moreover, given b ∈ B and λ an operation of A, we have λ(b, . . . , b) ∈ B, hence λ(b, . . . , b)/Θ B = B = c, that is, λ(c, . . . , c) = c. 4. Counting morphisms Lemma 4.1. Let A and B be Abelian algebras in a congruence-modular variety. Assume that |A| = p α1 1 p α2 2 . . . p α k k and |B| = p β1 1 p β2 2 . . . p β k k , where p 1 , . . . , p k are distinct primes. Then the following statement holds | Hom(A, B)| divides p Moreover, if A and B have a group structure then | Hom(A, B)| divides p α1β1 . . p α k β k k .

Lemma 4 . 3 (

 43 Kearnes). Let A be a finite Abelian algebra, let S be a subdirectly irreducible algebra in Var A. Then |S| divides | Hom( A; + , A; + )|.As an immediate consequence of Kearnes result and of Lemma 4.1 we obtain the following corollary.

Corollary 4 . 4 .

 44 Let A be an Abelian algebra in a congruence-modular variety. Assume that |A| = p α1 1 p α2 2 . . . p α k k , where p 1 , . . . , p k are distinct primes. Let S be a subdirectly irreducible algebra in Var A. Then |S| divides p

2 . 5 . 6 . 1 .

 2561 Corollary Let A and S be Abelian algebras. Assume that |A| = p α1 1 . . . p α k k and |S| = p β1 1 . . . p β k k , where p 1 , . . . , p k are distinct primes. Then |H(A 2 , S)| divides p α1β1 . . p α k β k k , in particular H(A 2 , S) has a generating family with max 1≤i≤k (α i β i ) elements.

Theorem 5 . 9 .

 59 Let A be a finite Abelian algebra in a congruence-modular variety. Assume that |A| = p α1 1 p α2 2 . . . p α k k , where p 1 , . . . , p k are distinct primes. Set N = max(4, 1 + max 1≤i≤k (α 3 i )). Denote by F the set of all N -ary relations compatible with A. Then A; F dualizes A. Proof. Denote by V the variety generated by A. Let S be a subdirectly irreducible algebra in V. It follows from Corollary 4.4 that |S| divides p by Corollary 5.6 H(A 2 , S) has a generating family of size max 1≤i≤k (α 3 i ). Hence by Lemma 5.8, it follows that F ∪ {t} entails all relations compatible with A.

Note that the sum might not be a term in t. However k is the neutral element, hence

By Lemma 2.5, the sum in (5.2) is a term in t, therefore the following equality holds for all x, y ∈ A and all 1 ≤ i ≤ n.

(u i j h j (x, y) -u i j k(x, y)) + k(x, y) .

Note that k(x, y) = k(y) = f j (y, y) = h j (y, y). Therefore

(u i j h j (x, y) -u i j h j (y, y)) .

(5.3)

Given 1 ≤ i ≤ n, z ∈ A, and x ∈ A n , the following equalities hold

Inductively we deduce that

In particular for z = x 1 we obtain

Given 1 ≤ j ≤ N , we consider p j defined by

It follows from Lemma 2.5 that p j is a term in t, in particular p j is a morphism. Given x ∈ A n and z ∈ A, the following equalities hold

Therefore the following equality holds

Define g by

Note that g is a morphism. Denote by p :

The following equalities hold

, by definition of g.

Lemma 5.8. Let A be an Abelian algebra. Let N be a positive integer such that, for all subdirectly irreducible algebras S in Var A, the group H(A 2 , S) has a generating family with N elements. We denote by R n the set of n-ary relation compatible with

Proof. Let n ≥ 1. Let R be a n-ary completely meet-irreducible compatible relation with A. That is, R is the underlying set of R a completely meet-irreducible subalgebra of A n . Therefore it follows from Corollary 3.8 that there exist a subdirectly irreducible algebra S ∈ Var A, a morphism of algebras f : A n → S, and an element c ∈ S such that {c} is the underlying set of a subalgebra of S, and

From Lemma 5.7 there is a morphism g : A N → S and terms p 1 , . . . , p N +1 :