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Crossover Equation of State Models Applied to the
Critical Behavior of Xenon

Y. Garrabos · C. Lecoutre · S. Marre · R. Guillaument ·
D. Beysens · I. Hahn

Abstract The turbidity (τ ) measurements of Güttinger and Cannell (Phys Rev A 24:3188–
3201, 1981) in the temperature range 28 mK ≤ T − Tc ≤ 29 K along the critical isochore
of homogeneous xenon are reanalyzed. The singular behaviors of the isothermal compress-
ibility (κT ) and the correlation length (ξ ) predicted from the master crossover functions
are introduced in the turbidity functional form derived by Puglielli and Ford (Phys Rev
Lett 25:143–146, 1970). We show that the turbidity data are thus well represented by the
Ornstein–Zernike approximant, within 1 % precision. We also introduce a new crossover
master model (CMM) of the parametric equation of state for a simple fluid system with
no adjustable parameter. The CMM model and the phenomenological crossover parametric
model are compared with the turbidity data and the coexisting liquid–gas density difference
(�ρLV ). The excellent agreement observed for τ , κT , ξ , and �ρLV in a finite temperature
range well beyond the Ising-like preasymptotic domain confirms that the Ising-like critical
crossover behavior of xenon can be described in conformity with the universal features esti-
mated by the renormalization-group methods. Only 4 critical coordinates of the vapor–liquid
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critical point are needed in the (pressure, temperature, molecular volume) phase surface of
xenon.

Keywords Critical crossover function · Parametric equation of state · Turbidity · Xenon

1 Introduction

In their experimental paper devoted to a first unambiguous evaluation of the corrections-to-
scaling in the susceptibility of xenon using turbidity measurements along the critical isochore,
Güttinger and Cannell (GC) [1] (reference also labeled as I herein) concluded that any theo-
retical progress, which would effectively reduce the number of adjustable parameters, would
be extremely valuable. Moreover, it seems that the GC turbidity data are the last published
data studying a critical one-component fluid with the required experimental precision on
Earth’s gravity. It is thus the main objective of the present paper to show that the present
theoretical status of the critical point phenomena can predict the GC turbidity data near the
xenon liquid–gas critical point without adjustable parameter. The theoretical estimation can
also be extended to any other one-component fluid for which the experimental location of its
liquid–gas critical point is known in the p, V, T phase surface.

Indeed, it is now well-established (see, for example Ref. [2]). that the asymptotic singu-
larity of the field and density properties of the one-component fluids can be described by

the classical-to-critical crossover functions provided by the
(
φ2

)2
field theory framework

(see, for example Ref. [3]). Asymptotically close to the liquid–gas critical point, each one-
component fluid exhibits the universal features predicted for the complete {d = 3, n = 1}
universality class of the three-dimensional (3D), symmetrical, Ising like systems, where d is
the space dimension and n is the dimension of the order parameter. Moreover, recent theo-
retical improvements [4,5] have extended the applicability range of the crossover functions
far from the critical point. Nevertheless, their fundamental interest remains their conformity
with the accurate Ising-like universal values of the critical (leading and lowest confluent)
exponents and (leading and first confluent) amplitude combinations [6], only valid very close

to the
(
φ2

)2
singular point. Consequently, only the crossover description within the so-called

Ising-like preasymptotic domain (PAD) [4] can be precisely characterized by a limited num-
ber (3) of free, system-dependent, nondimensional parameters. In addition, this description
in terms of field and density variables needs to define the energy and length scale units to
make any physical properties in a dimensionless form, requiring thus the introduction of
the measurable physical critical parameters such as the critical temperature Tc, the critical
pressure pc, the critical density ρc, etc. The subscript c refers to a critical quantity. In that
dimensionless scheme where the uniqueness of the length unit is essential [7], the Ising-like
singular behaviors within the PAD are then characterized by two leading amplitudes and
one-confluent amplitude of the two-term Wegner like expansions [8]. This three-parameter
characterization results from universal scaling laws and universal amplitude combinations
with three independent universal exponents (two leading exponents and the lowest expo-
nent � of the confluent singularities) and, correlatively, the same number (three) of related
fluid-dependent amplitudes.

In general, a renormalizable theory cannot predict the location of the critical point or
estimate the true extension of the fluid PAD. Therefore, experiments remain the only way to
validate the Ising-like behavior and to estimate the limited number of readily independent
parameters that (i) localize the critical point and (ii) characterize the crossover phenomena.



This challenging situation introduces a crucial difficulty in analyzing the experimental data
obtained at “finite” distance to the critical point, i.e., in a field (and/or a density) range
that can overpass the unknown extension of the PAD. Indeed, beyond the PAD, many other
correction terms can also contribute to a Wegner-like expansion at any order beyond the first
order term of the confluent corrections to scaling, leading to a non-conclusive Ising-like fluid
characterization.

However, the thermodynamic information contained in the experimental location of the
isolated liquid–vapor critical point on the experimental phase surface of equation of state
p (T, V, N ) = (

∂ A
∂V

)
T,N , permits to overcome the above challenge, as proposed in Refs.

[9–11]. The total Helmholtz free energy A is here expressed in terms of its three natural
variables, namely, the temperature T , the total volume V , and the total number of particles
N . After the normalization of the fluid description per constitutive particle, it is then thermo-
dynamically equivalent to define a minimal number (four) of finite critical coordinates of the

critical point location in the particle phase surface of equation of state p
(
T, vp

) =
(

∂ap
∂vp

)

T
and to introduce a limited number (five) of asymptotic system-dependent parameters in a
renormalizable theory [12,13]. ap = A(T,V,N )

N is the Helmholtz free energy of the fluid par-
ticle, vp = V

N is the volume occupied by the fluid particle and the subscript p̄ then refers to
a particle quantity. Then, the term-to-term mapping of the physical and theoretical singular
behaviors within the PAD completes the critical thermodynamic description by introduc-
ing three well-defined “master” (i.e., constant) numbers for all the one-component fluids,
which provides the master crossover functions [14], especially for the crossover behaviors
of the isothermal compressibility κT (�τ ∗,�ρ̃ = 0) and the coexisting liquid–gas density

difference �ρ̃LV (|�τ ∗| ,�ρ̃ = 0), along the critical isochore. Here κT = − 1
V

(
∂V
∂p

)

T,N
,

�τ ∗ = T −Tc
Tc

, �ρ̃ = ρ−ρc
ρc

, and �ρ̃LV = ρL−ρV
2ρc

, where ρL and ρV are the coexisting
liquid and vapor densities. We are thus able to estimate the PAD extension of any critical
fluid, only using its four well-defined critical coordinates. In addition, while the correla-
tion length ξ remains a non-explicit physical parameter in a thermodynamic description,
we emphasize that this master description can also provide access to the crossover function
ξ (�τ ∗,�ρ̃ = 0). In the above procedure, the xenon behaves as a standard (non-quantum)
Ising-like fluid [13,15]. Accordingly, the comparison between the predicted master crossover
behaviors (without adjustable parameters) and the experimental measurements of the turbid-
ity of xenon are of basic interest.

Another well-developped approach in representing thermodynamic fluid-properties by a
crossover formulation is provided by the crossover parametric model (CPM) [16]. The latter
model is issued from a transformed Landau expansion for the Helmholtz energy density,
so-called the crossover Landau model (CLM), originally formulated by Chen et al. [17,18].
In such a phenomenological crossover approach, Chen et al. have implemented a match-
point method proposed by Nicoll et al. [19–21]. The resulting crossover formulation also
incorporates the accurate universal features of the Ising-like systems close to their critical
point. It is then of importance for the renormalization-group methods to provide accurate
matching for the Ising-like description within the preasymptotic domain, as well using the
above master crossover functions as using the symmetrical CPM functional form. According
to the Ising-like similarity, we can also define the crossover master model (CMM) of the
one-component-fluid subclass, where the free Ising-like parameters in the CPM model are
now calculated from the four well-defined critical coordinates of each pure fluid. Therefore,
the comparison with the measured singular behaviors of xenon is important to validate the
results predicted from symmetrical CMM. This basic comparison can also provide access to



the thermodynamic description of the complete phase surface surrounding the vicinity of the
liquid–gas critical point of any one-component fluid. If the correlation length is estimated
without any supplementary adjustable parameter, we will then open a new route for the
complete crossover description of the singular behaviors of the one-component fluid subclass,
which will be expected valid for any point in the vicinity of the liquid–vapor critical point of
the fluid phase surface.

We shall proceed as follows. In Sect. 2, we provide the main characteristic parameters
of the GC experiment and we discuss the conditions to perform theoretical analysis of the
turbidity in conformity with the two-scale-factor universality. In Sect. 3, we give the master
theoretical estimation of the Ising-like singular behaviors1 of ξ and κT only using the four
critical coordinates that localize the gas–liquid critical point of xenon. We define precisely
the temperature range of the PAD extension where the three-parameter characterization of
the fluid is made in accordance with the universal features of the {d = 3, n = 1} universality
class. After a brief presentation in Sect. 4 of the fluid turbidity calculated from the Ornstein–
Zernike (OZ) theory [22,23], we apply in Sect. 5 the Puglielli and Ford functional form [24]
to estimate the xenon turbidity. From a detailed analysis of the asymptotic turbidity behavior
when �τ ∗ → 0, we show that, at large temperature distance from Tc, the contribution
due to the confluent corrections to scaling provides the agreement with the experimental
measurements within the claimed experimental uncertainty. We compare also ξ and κT to the
previous literature results along the critical isochore. In Sect. 6, we extend the comparison to
the results predicted by the crossover master model of the equation of state (EOS), especially
for the top-shape of the density coexistence curve, by introducing the master-consistent
estimation of the adjustable CPM critical parameters. We conclude in Sect. 7.

2 Güttinger and Cannell Experiment

The following analysis is focused on ξ and κT obtained analyzing the optical (diffusion and
transmission) responses of a xenon critical cell illuminated by a laser beam. Indeed, the GC
experiment provides very accurate measurements of the turbidity, i.e., the light attenuation
intensity by transmission through a xenon layer of 19.5 mm thickness, and the light scattering
intensity at θ = 13◦ scattering angle. The reduced temperature range was 9.607 × 10−5 ≤
�τ ∗ ≤ 1.001×10−1 (i.e., 28 mK ≤ T −Tc ≤ 29 K). The turbidity differences τ (T )−τ (Tor)

from a selected turbidity value τ (Tor) at a reference temperature Tor are given as a function
of �τ ∗ in Table I of Ref. [1]. This table also reports the data of the relative susceptibility per
mass unit ( χρ

χρ(Tor)
) obtained from light scattering intensity measurements. To define χρ , we

consider a system maintained at constant total volume V , characterized by the Helmholtz
free energy per volume unit a

(
T, n p̄

) = A(T,V,N )
V . In such a thermodynamic description,

the chemical potential per particle μ p̄ =
(

∂a
∂n p̄

)

T
and the chemical potential per mass unit

μρ =
(

∂a
∂ρ

)

T
= μ p̄

m p̄
are the conjugated variables to the particle number density n p̄ and the

mass density ρ = m p̄n p̄ , respectively. m p̄ is the particle mass. The subscript ρ now refers

to a specific quantity. Therefore, the inverse susceptibility per particle
(
χ p̄

)−1 =
(

∂μ p̄
∂n p̄

)

T
=

(
∂2a
∂n2

p̄

)

T
is associated to the particle number density while the inverse susceptibility per mass

1 Universal central values of the critical exponents used for ξ and κT in this work are ν = 0.6303875 and
γ = 1.2395935 (see Ref. [5]). Accordingly, � = 0.50189 is the lowest universal value of the confluent
exponent.



unit
(
χρ

)−1 =
(

∂μρ

∂ρ

)

T
=

(
∂2a
∂ρ2

)

T
is associated to the mass density, with χρ = (

m p̄
)2

χ p̄ ,

χ p̄ = (
n p̄

)2
κT and χρ = ρ2κT . Here, χ p̄ (or χρ) are expected symmetric around the critical

density to be compared with the magnetic-like susceptibility function of the O(1) vector of

the
(
φ2

)2
field theory.

In I, the χρ data at ρ = ρc were obtained by the authors using the Ornstein–Zernike (OZ)
theory [22,23] to approximate the light scattering intensity due to the local fluid density
fluctuations. It was simultaneously accounted for the singular behavior of the correlation

length. Consequently, τ (�τ ∗), ξ (�τ∗) and κT (�τ ∗) = χρ(�τ∗)
(ρc)

2 along the xenon critical

isochore were stated to conform to the OZ theory in spite of its questionable validity when
�τ ∗ → 0. Moreover, it is also noticeable that the universal features of the Ising-like systems
are not completely accounted for in their ξ (�τ ∗) and κT (�τ ∗) fitting functions, especially
at the first order of the confluent corrections-to-scaling.

Alternatively, in the present approach, all these Ising-like universal features can be pre-
cisely controlled without any adjustable parameter through the non-dimensional master
crossover functions ξ (�τ ∗) and κT (�τ ∗) given in Ref. [14] (see also Eqs. (1) and (2)
below). Therefore, ξ (�τ ∗) and κT (�τ ∗), (or χρ (�τ ∗) and χ p̄ (�τ ∗)), being known a pri-
ori, our following calculation of τ (�τ∗) is only depending on the theoretical functional form
that connects ξ and κT (or χρ , χ p̄) to the light scattering intensity I (θ) as a function of the
scattering angle θ .

In a general fluid theory assuming spatial isotropy, the magnitude and the spatial character
of the local density fluctuations are described in terms of the pair correlation function g (r)

or, equivalently, in terms of the static structure factor S (q), where q is the wavenumber
amplitude of the momentum transfer wave vector. S (q) is proportional to the intensity I (q)

of the scattered electromagnetic radiation by the transparent fluid f of refractive index n f , for

the Bragg condition q = 4πn f
λ

sin θ
2 at (generally small) angle θ (see, for example Ref. [25]).

The q-scattering experiments provide thus a distinction between light scattering experiments
(typical wavelength range λ ∼ 500–700 nm) and X-ray or neutron scattering experiments
(typical wavelength range λ ∼ 0.4–1 nm). Accordingly, S (q) is a measurable quantity for any
local fluid theory able to calculate the thermodynamic equilibrium from the representation
of the fluid microscopic structure by the radial distribution of the particles. We recall that
S (0) is a purely thermodynamic quantity proportional to the scattered intensity I (0) at zero-
angle (q = 0). In a one-component fluid description per particle, S (0) = n p̄kB T χ p̄ , since
the zeroth-moment of the pair correlation function is related to χ p̄ , due to the fluctuation-
dissipation theorem.

In a critical fluid theory, the normalization of S(q)
kB T appears essential in order to correctly

account for the physical dimension of the selected symmetrized susceptibility2 in pure fluids
(see Ref. [26]). As previously mentioned, when the susceptibility χ p̄ (or χρ) appears sym-
metric around the zero value of the related order parameter [27], the singular behaviors of a
one-component fluid very close to the liquid–gas critical point must behave similarly to the

ones of the O(1) vector model of the symmetric
(
φ2

)2
field theory and the simple cubic scalar

(N = 1) lattice model of 3D-Ising systems. In such an ideal Ising-like asymptotic description
which complies with the two-scale factor universality when T → Tc, the expected behav-
iors of the static structure factor [28–33], and the turbidity [32,33], must involve only three
asymptotic amplitude-exponent pairs (neglecting thus the contribution of the confluent sin-

2 A theoretical description of I
[
q, ξ

(
�τ∗, �n∗

p

)]
needs to generally assume symmetrized singular behav-

iors of the isothermal susceptibility and the correlation length around the critical isochore n p = n p,c .



gularities in the Wegner-like expansions). These three asymptotic amplitude-exponent pairs
are:

i)
{
�+

0 , γ
}

pair of the singular pure power law κT = �+
0 (�τ ∗)−γ describing the asymp-

totic temperature dependence of the physical isothermal compressibility,
ii)

{
ξ+

0 , ν
}

pair of the singular pure power law ξ = ξ+
0 (�τ ∗)−ν describing the asymptotic

temperature dependence of the physical correlation length, and

iii)
{
C+∞, η

}
universal pair describing the Ising-like asymptotic dependence G (x) = C+∞

x2−η

of the universal scaling function for x → ∞. G (x) = S[q,�τ∗,ξ(�τ∗)]
S[0,�τ∗,ξ(�τ∗)] only depends

on the single variable x = qξ (x is non-dependent of the normalization scheme of the
physical quantities), while η is the so-called Green–Fisher critical exponent [28,29].

In that asymptotic Ising limit, �+
0 and ξ+

0 are used as the fluid-dependent parameters. The
two-scale factor universality is accounted for by the universal scaling law γ = ν (2 − η) and

the universal amplitude combination Q3 = D̂ρ,0
(
ξ+

0

)2−η

ρ2
c �+

0
≡ C+∞ = χ(q)ξ2−η

χ(0)
= G (x) x2−η

[29–31,33], where:

i) γ and ν are the two leading critical exponents,
ii) �+

0 and ξ+
0 are the two entry physical amplitudes,

iii)
{

D̂ρ,0, η
}

is the resulting (physical) amplitude-(universal) exponent pair in the ther-

modynamic description per mass unit.

The critical point condition ξ ∼ ∞ at �τ ∗ = 0 and �ρ∗ = 0 is here labelled by the hat
decoration. Therefore, in momentum space at the critical point, the fluid-dependent amplitude

D̂ρ,0, of χρ (q, ξ = ∞) = D̂ρ,0

q2−η can be estimated unambiguously from γ , ν, �+
0 and ξ+

0 .
Moreover, as ξ and κT are hereafter predicted without any adjustable parameter, we are

also able to verify that the temperature range �τ ∗ ≥ 9.6 × 10−5 (T − Tc ≥ 28 mK) covered
by GC experiments is well beyond the upper PAD limit LXe

PAD 
 9×10−5 (T − Tc ≤ 26 mK,
see below). It is also easy to show that the light scattering experiments at θ = 13◦, i.e.,
q = 2.23 × 106 m−1, with λ0 = 632.8 nm and critical refractive index of xenon nXe,c =
1.1375 [34,35], are covering the range 2.0 × 10−3 ≤ qξ ≤ 0.14 (see below). The condition
qξ < 1 being satisfied, the truncated Taylor serie expansion of the universal scaling function
is expected similar to the OZ approximant [G (x)]−1 = 1 + x2. In such a situation, GC
measurements can then be analyzed introducing the complete Wegner expansion given by
a classical-to-critical crossover theory. As a final consequence, GC turbidity measurements
can demonstrate unambiguously that the deviation from the Ising-like turbidity is entirely
accounted for by the contribution of the confluent corrections to scaling.

3 Ising-Like Singular Behaviors of ξ and κT for Xenon Case

The estimation of ξ and κT following the method proposed in Ref. [14] only needs to know
4 critical parameters of xenon, namely, the critical temperature Tc, the critical pressure pc,

the critical mass density ρc, and the common critical slope γ
′
c =

[(
∂p
∂T

)

ρ=ρc
= dpsat

dT

]

T →T ±
c

of the critical isochore (T → T +
c ) and the saturation pressure psat (T ) curve (T → T −

c ).
Their values, given in Table 1 (see Refs. [15,36]), localize the vapor–liquid critical point of
xenon on the p, v p̄, T phase surface. v p̄ = m p̄

ρ
. Mmol = NAm p̄ is the molar mass of the

fluid. NA is the Avogadro’s number with R = NAkB . R is the ideal gas constant and kB is



Table 1 Critical coordinates and
physical quantities for xenon
(with
Mmol (Xe) = 131.29 g mol−1

and NA =
6.02214129 × 1023 mol−1), and
characteristic parameters for the
light transmission experiments of
GC (see also Refs. given in the
last column)

Xe Ref.

m p̄ 2.1805 × 10−25 kg

Tc 289.733 ± 0.015 K [15,36]

pc 5.84007 ± 0.00050 MPa [15]

ρc 1113 ± 3 kg m−3 “

γ
′
c 0.1197 ± 0.0006 MPa K−1 “

(βc)
−1 = kB Tc 4.0002 × 10−21 J “

αc =
(

kB Tc
pc

) 1
d 8.81498 × 10−10 m “

Yc = γ
′
c

Tc
pc

− 1 4.93846 “

Zc = pcm p̄
ρckB Tc

0.28602 “

nXe,c 1.1375 [34,35]

L Lc 10.5271 cm3 mole−1 “

A0kB (88.49 ± 0.30) J K−1 m−4 “

Tor − Tc 0.6677 K [1]

χρ (Tor) 2.42 × 10−7 kg2 J−1 m−3 “

k0 1.12944 × 107 m−1 “

τ (Tor) 4.1 m−1 “

τ0 7.975 × 10−4 m−1 “

the Boltzmann’s constant. From these critical coordinates we can calculate 4 unequivocal
values of the:

(i) energy unit (βc)
−1 = kB Tc;

(ii) length unit αc =
(

kB Tc
pc

) 1
d

with d = 3, where (αc)
d = kB Tc

pc
is the characteristic critical

volume of the molecular interaction cell [9–11];
(iii) first scale factor Yc = γ

′
c

Tc
pc

− 1 of the dimensionless thermal field �τ ∗ = T −Tc
Tc

;

(iv) second scale factor Zc = pcm p̄
ρckB Tc

of the dimensionless ordering field �μ∗
p =

(
μ p̄ − μ p̄,c

)
βc conjugated to the dimensionless order parameter density �n∗

p =
(
n p̄ − n p,c

)
(αc)

d . (Zc)
−1 = n p,c (αc)

d is the characteristic critical number of par-
ticles filling the molecular interaction cell [9–11].

We recall that �μ∗
p = Zc�μ̃ρ and �n∗

p = �ρ̃
Zc

, where �μ̃ρ = (
μρ − μρ,c

)
ρc
pc

and �ρ̃ =
ρ−ρc

ρc
are the practical conjugated ordering field and order parameter density, respectively

(for a fluid of mass unit). Accounting now for the extensive nature of the fluid susceptibility

as already made in Refs. [14,15], the dimensionless susceptibilities χ̃ =
(

∂�ρ̃
∂�μ̃ρ

)

�τ∗ =
χρ

pc

(ρc)
2 ≡ χ̃ρ (for a fluid of mass unit), and χ∗ =

(
∂�n∗

p
∂�μ∗

p

)

�τ∗
= χ p̄

(αc)
d

βc
≡ χ ∗̄

p (for

a fluid particle), with χ̃ρ = (Zc)
2 χ ∗̄

p , are related to the dimensionless order parameter
densities �ρ̃ and �n∗

p , respectively. We underline here the importance of the length and
energy normalizations for any thermodynamic description, which can then introduce the
non-dimensional scale factor Zc (in analytic powered forms) when another length unit or
energy unit is used in addition to αc and (βc)

−1. That is precisely the case for a quantity



decorated by a tilde, in spite of a similar non-dimensional potential density, since ãρ = a
pc

=
aβc (αc)

d = a∗.

Neglecting quantum effects [37] in xenon case, ξ∗
cal (�τ ∗) =

(
1
αc

)
× ξ (�τ ∗) and

κ∗
T,cal (�τ ∗) = pc × κT,cal (�τ ∗) are thus computed from the following equations

ξ∗
cal

(
�τ ∗) = �∗ (

T ∗) = 1

Z
{1 f }
ξ [�th (t)]−1

(1)

Zc × κ∗
T,cal

(
�τ ∗) = X ∗ (

T ∗) = 1

Z
{1 f }
χ [χth (t)]−1

(2)

with t = �{1 f }T ∗ = �{1 f }Yc�τ ∗ = ϑ�τ ∗, i.e., T ∗ = Yc�τ ∗ and ϑ = �{1 f }Yc. The
superscript {1 f } recalls for a constant quantity which characterizes the one-component
fluid subclass. In Eqs. (1) and (2), the master crossover functions �∗ (T ∗) and X ∗ (T ∗)
[14] correspond to the modifications of the theoretical crossover functions [�th (t)]−1 and
[χth (t)]−1 defined in Refs. [4,5]. These modifications only introduce three scale factors
�{1 f } = 4.288 10−3, �{1 f } = 1.74 10−4 and L f = 25.6988, to characterize the one-
component fluid subclass [14]. Accordingly, the master values of the prefactors appearing in

Eqs. (1) and (2) are Z
{1 f }
ξ ≡ L f = 25.6988 and Z

{1 f }
χ = (

L f
)d (

�{1 f })2 = 1950.70, while
the ones of the theoretical and master leading amplitudes of the related crossover functions

are
(
Z

+
ξ

)−1 = 0.471474, Z+
ξ = 0.5729,

(
Z

+
χ

)−1 = 0.269571 and Z+
χ = 0.11975, with

Z+
ξ Z

+
ξ =

[
L f

(
�{1 f })ν

]−1
and Z+

χ Z
+
χ =

[(
L f

)d (
�{1 f })2 (

�{1 f })γ
]−1

(the subscript +
refers to the homogeneous domain T > Tc).

Equations 1 and 2 can be written in their usual forms ξ = ξ+
0 (�τ ∗)−ν L� (�τ ∗) and

κT = �+
0 (�τ ∗)−γ K� (�τ ∗) where the asymptotic Ising power laws are corrected by the

confluent crossover functions L� (�τ ∗) and K� (�τ ∗). The subscript refers to the lowest

critical exponent � = 0.50189 [4,5]. Indeed, L� (�τ ∗) =
[

1 +
∞∑

i=1
ai,+
ξ (�τ ∗)i�

]
and

K� (�τ ∗) =
[

1 +
∞∑

i=1
ai,+
χ (�τ ∗)i�

]
are the resummations of the complete Wegner-like

expansions, so-called the �-contribution in the following (see details in Refs. [4,5]). The
confluent singularities of the classical-to-critical crossover are only due to �, with the uni-

versal ratio
a1,+
ξ

a1,+
χ

= Z
1,+
ξ

Z
1,+
χ

= Z1,+
ξ

Z1,+
χ

= 0.68. This universal ratio means that only a1,+
χ (or a1,+

ξ )

is the first-order amplitude characteristic of the fluid, which acts as a single crossover para-
meter. ξ and κT singular behaviors for xenon are then predicted from Eq. (1) and Eq. (2) to
be in accordance with the universal features of the three-dimensional Ising-like universality
class at the first-order of the confluent corrections (see Table 2).

Accordingly, ξ = αcξ
+ (�τ ∗)−ν with ξ+

0 = αcξ
+ = αc (Yc)

−ν Z+
ξ = 0.184531 nm,

(i.e., ξ+ = 0.209338) and pcκT = �+ (�τ ∗)−γ with �+ = (Zc)
−1 (Yc)

−γ Z+
χ =

0.0578238, (i.e., �+
0 = 9.901 MPa−1) (using standard notations and values of Ref. [5]).

The non-dimensional leading amplitude D̂ρ = ẐG
Zc

satisfies the universal amplitude com-

bination Q3 ≡ C+∞ = D̂ρ(ξ+)
2−η

�+ 
 0.92 [30,31]. Similarly, the non-dimensional leading

amplitude B = (Zc)
− 1

2 (Yc)
β ZM = 1.46762 involved in the power law �ρ̃LV = B (�τ ∗)β

satisfies the universal amplitude combination R+
C

(
R+

ξ

)−d = �+
B2

(
ξ+)−d = 2.92922. There-



Table 2 Estimated universal features in the master form (column 2) of the MR scheme and in the CPM
(column 3)

MR [4] CPM [16] R %

Exponents

γ 1.2395935 1.239 −0.048

β 0.3257845 0.3255 −0.087

α 0.1088375 0.110 1.07

ν 0.6303875 0.630 −0.061

η 0.033604 0.0333 −0.90

� 0.50189 0.52 3.6

Combinations

R+
C = �+

B2 A+ 0.0574 ± 0.0020 0.0580 1.05

R+
ξ = A+ (

ξ+) 1
d 0.2696 ± 0.0007 0.2659 −1.37

R+
C

(
R+

ξ

)−d = �+
B2

(
ξ+)−d

(2.92922) (3.0851) 5.32

ξ+
ξ− (1.96) (1.96) (0)

�+
�− 4.79 ± 0.010 4.94 3.13

A+
α

A−
α

= A+
A− 0.537 ± 0.019 0.524 −2.42

a+
ξ

a+
χ

0.68 ± 0.02 0.44 −35.3

a+
C

a+
χ

= A+
1

αa+
χ

8.68 ± 0.23 6.872 −20.7

aM

a+
χ

0.90±0.21
0.85 0.897 0.33

a+
ξ

a−
ξ

(1.1)

a+
χ

a−
χ

0.215 ± 0.029 0.195 −9.3

a+
C

a−
C

1.20±0.63
0.31 0.827 −31.1

Residuals R % = 100 ×
(

C P M
M R − 1

)
(column 4)

fore, considering the amplitude set ξ+, D̂ρ , �+ and B, any dimensionless amplitude value
(ξ+ and D̂ρ here above) can be estimated when two of them are known and selected as
independent (�+ and B in Ref. [15]), in agreement with the two-scale factor universality.

Relaying the GC conclusive sentence in I, the main interest of Eqs. (1) and (2) remains the
estimation of the confluent corrections-to-scaling at finite distance to Tc, only using a single
crossover parameter associated to �. In addition, the �-contribution can be computed for the
complete classical-to-critical crossover domain without any adjustable parameter, selecting
for example a1,+

χ as the independent first-order amplitude, which acts as a fluid crossover
parameter. Since the critical density of the xenon cell was well-controled at the level of the
illuminated volume under the field acceleration due to Earth’s gravity, Eqs. (1) and (2) can
be directly used to predict the GC results along the critical isochore and then to quantify the
�-contribution to ξ , κT , and τ (see below Sect. 4), in the covered experimental range.





in the range �τ ∗ ≤ 5 × 10−2, corresponds to γe computed from the GC fit

κT = 0.0577
(
�τ ∗)−1.241

[
1 + 1.29

(
�τ ∗)0.496 − 1.55

(
�τ ∗)0.992 + 1.9

(
�τ ∗)1.488

]

reported in I. The PAD curves show the exponent decrease only due to the first-order term
of the confluent singularities, strictly valid within the preasymptotic domain such as �τ ∗ ≤
LXe

PAD = L{1 f }
PAD

Yc(Xe) 
 9×10−5 (see the related arrow in lower axis and Ref. [14] for the estimation

of L{1 f }
PAD 
 4.43×10−4). The grey area, bracketed on the T −Tc (K) axis, corresponds to the

GC temperature range. The expected ξ -variation in I covers the range 63 nm ≥ ξ ≥ 0.9 nm
while the γe- and νe-variations remain such as γ < γe <

γ+γMF
2 
 1.12 and ν < νe <

ν+νMF
2 
 0.565. That includes the extended asymptotic domain �τ ∗ ≤ LXe

EAD 
 2 × 10−2

(see corresponding arrow in lower axis), which was already the object of a detailed analysis
in Refs. [15,40]. We have also reported in Fig. 1a the γe-values published from fitting κ∗

T
data obtained before GC work using an effective power law κ∗

T = �+
e (�τ ∗)−γe over a

finite, restricted temperature range 0 < �τ ∗
min ≤ �τ ∗ ≤ �τ ∗

max (see Appendix for the
data sources). In Fig. 1a, each γe value is shown as an horizontal i-segment of extension
�τ ∗

min − �τ ∗
max (with label i related to line #i of Table 6). The position of the (full) circle in

the segment corresponds to the geometrical mean value 〈�τ ∗
exp〉 = (

�τ ∗
min �τ ∗

max

) 1
2 . In the

Ising-like side of the crossover where γ ≤ γe < γ 1
2

(left part of Fig. 1a), the circle follows

the MR curve in a very satisfactory manner when
〈
�τ ∗

exp

〉
changes, at least for the extended

asymptotic domain �τ ∗ ≤ LXe
EAD 
 2 × 10−2 where the Ising-like nature of the crossover is

prominent.
The left half part of Fig. 1a illustrates the experimental status at the mid-80’s when was

performed the first crossover analysis [13] of xenon singular properties with only 3 adjustable
physical parameters, using the crossover functions [13] estimated from the MR scheme (see
also below line �5 of Table 4). In such initial situation refering to a single characteristic
scale factor ϑ associated to the critical isochoric line of xenon, the crossover behavior of any
effective exponent appeared certainly governed by the Ising-like nature of the singularity due
to the lowest confluent correction-to-scaling (anticipating then posterior analyses, see lines
�6 to �8 of Table 4, which have lead to similar conclusions independently of the theoretical
scheme at the origin of the crossover functions). Today, the master crossover prediction of the
Ising-like critical scaling for γe (�τ ∗) is made without adjustable parameter and complies
with the universal features of the MR crossover functions of Ref. [4].

However, the dotted lines labeled CO of Fig. 1 interpolating the γ+γMF
2 (or ν+νMF

2 ) and
γMF (or νMF) values, are also indicative of the abrupt experimental crossover, generally
observed in pure fluids far from the critical point. The related double arrow labeled �τ ∗

CO
in Fig. 1b, differenciates the high temperature range (right half part of Fig. 1) where a
mean-field approximation of a fluid theory is probably questionable. Indeed, the vertical
line labelled rLJ

e indicates the temperature distance where the calculated correlation length
behaves similar to the equilibrium position rLJ

e = 0.4 nm ≈ αc
2 between a pair of xenon

atoms interacting from a 12-6 Lennard-Jones form of the pairwise additive potential (with

rLJ
e = 2

1
6 σLJ and σ LJ = 0.3607 nm [39]). The related temperature T 
 550 K corresponds

to a reduced temperature T ∗ = kB T
εLJ ≈ 1.9 (i.e., �τ ∗ ≈ 0.9). However, for T ∗ ≥ 2, it

is well-known that treating the whole Lennard-Jones potential as a small perturbation of a
hard sphere appears as a more realistic approximation than the mean-field approximation
of the attractive molecular interaction, leading to expect the invalid physical meanning of
Eqs. (1) and (2) for �τ ∗ ∼ 0.3 − 1 [see for example the similar (master) Fig. 2 in Ref.



[40]). Therefore, it was clearly shown from Fig. 1 that the applicability range of the master
crossover functions corresponds to ξ � 2.5 nm (leading to ξ

αc
> 3 − 5, i.e., ξ

rLJ
e

> 6 − 10

and �τ ∗ � 0.02
(
 LXe

EAD

)
, typically, in the xenon case).

4 Fluid Turbidity from OZ Theory

The scattered light intensity is caused by the Rayleigh scattering from large density fluctua-
tions of size ξ . From OZ theory, it can be written as follows

IOZ(q) = Aτ κT sin2 �

1 + (qξ)2 (3)

where q = 4πn
λ0

sin θ
2 represents the amplitude of the transfer wave vector between incident

and scattering wave vectors. λ0 is the light wavelength in vacuum, n is the refractive index of
the fluid, and θ is the scattering angle. � is the angle between the polarization wave vector
of the incident light and the scattering wave vector.

Aτ = A0kB T ∼
[

energy
(length)4

]
, where kB is the Boltzmann constant and where A0 ∼

[
length

]−4, can be written as

A0 = π2

λ4
0

(

ρ
∂

(
n2

)

∂ρ

)2

T

= π2

λ4
0

[(
n2 − 1

) (
n2 + 2

)

3

]2

(4)

A0 accounts for geometrical factors and light-fluid scattering cross section calculated from
the Lorentz–Lorenz approximation of the effective local field, i.e., introducing the related

critical value L Lc = Mmol
ρc

n2
c−1

n2
c+2

for the density expansion of the Lorentz–Lorenz function.

The turbidity calculated by Puglielli and Ford [24] corresponds to the integral of Eq. (3)
over all the scattering angles and writes:

τPF = π A0kB Tc
(
1 + �τ ∗) κT F(a), (5)

where the universal function F (a) is given by the following equation

F (a) =
(

2a2 + 2a + 1

a3

)
ln (1 + 2a) − 2

(
1 + a

a2

)
(6)

with a = 2 (k0ξ)2 and k0 = 2πn
λ0

(k0 is the amplitude of the incident light wave vector of

order of 10−7 m−1 for λ0 ∼ 630 nm). The function F (a) reaches a constant value F (a) ∝ 8
3

for a � 1 (i.e., for ξ comparable or smaller than the range of the microscopic interaction
forces), leading to τPF ∝ T κT far away from the critical temperature. When a � 1, F (a) ∝
2[ln(2a)−1]

a . Therefore, the asymptotic singular turbidity predicted by Eq. (5) exhibits an
incorrect logarithmic singularity approaching Tc (see Ref. [32] and the dicussion below).

For the xenon case, all the quantities involved in the above calculation of the fluid turbidity
are given in Table 1, where the only differences with the GC’s analysis originate from the
critical coordinates of xenon. The evaluation of the error-bar attached to the quantities given
in Table 1 can be found in I.



5 Comparison with Xenon Data

5.1 GC Turbidity Measurements

The GC data points τexpt of xenon turbidity are plotted (full blue stars) in Fig. 2a as a function
of �τ ∗ in log–log scale. Our theoretical estimation of τPF using Eqs. (5) and (6), with ξ of
Eq. (1) and κT of Eq. (2), corresponds to the continuous black curve in Fig. 2a. The GC
fitting analysis is also given as the dotted red curve in Fig. 2a. The corresponding residuals
(expressed in %) are given in the log-linear plot of Fig. 2b. Our estimation of τPF without
adjustable parameter is in excellent agreement with the experimental measurements and
fitting analysis of GC.

When T → Tc, the very small increase of the residuals is mainly due to the small difference
in the respective values of the leading critical exponents ν and γ . In addition, the effect of the
uncertainty (
 0.5 mK) in the experimental determination of Tc,GC approaching the critical
temperature, is illustrated by the full blue squares in Fig. 2b, which correspond to the related
behaviors of the residuals due to a Tc,GC-change of +0.5 mK. We have also reported the new
residuals (full red triangles) due to a change of −0.00025 cm−1 (i.e., 
 −0.6 %) in the initial
calibration value (τ (Tor ) = 0.041 cm−1, see Table 1 and I).

In the temperature range T − Tc � 7 K of Fig. 2b, increasing of the residuals is due to
the significant decreasing of the xenon turbidity when T − Tc increases. Indeed, accurate
measurements of xenon turbidity in this temperature range require a xenon sample cell of
optical path larger than a few centimeters.

Nevertheless, we believe that the OZ approach of xenon turbidity with Eq. (5), incor-
porating the ξ and κT values obtained from theoretical Eqs. (1) and (2) without adjustable
parameter, is adequate in the T − Tc � 10 K range covered by the GC measurements.
The following section shows that the �-contribution to the turbidity behavior is the main
contribution in the GC temperature range.

5.2 Asymptotic Singular Behavior of Turbidity

The estimation of τ can now be revisited with the objective to illustrate the role of the
Ising-like parameters characterizing the asymptotic singular behavior within the PAD. Indeed,
for the Ising-like asymptotic limit �τ ∗ → 0, the contributions of the confluent singularities
associated to the lowest exponent � can be neglected, leading to L� (�τ ∗) ≈ 1, K� (�τ ∗) ≈
1, and T = Tc (1 + �τ ∗) ≈ Tc in the previous equations. Any theoretical asymptotic
approach (labelled X) estimating the fluid turbidity is then restricted to the knowledge of
ξ = ξ+

0 (�τ ∗)−ν and κT = �+
0 (�τ ∗)−γ and can only add the universal contribution of

the pair
{
C+∞, η

}
in order to satisfy the two-scale-factor universality (see above). Therefore,

Ising-like turbidity must take the general asymptotic form [32,33]

τas,X = τ0 (�τ ∗)−γ

y2
ν

Has,X (η, yν) (7)

Equation (7) introduces the universal quantity yν = k0ξ
+
0 (�τ ∗)−ν where the subscript ν

recalls for a Ising universal quantity only characterized by
{
ξ+

0 , ν
}
. The temperature inde-

pendent quantity τ0 = π A0kB Tc�
+
0 ∼ [

length
]−1 is a fluid dependent quantity, only pro-

portional to �+
0 . In Eq. (7), the universal scaling function Has,X (η, yν) accounts for the

explicit contribution of η �= 0 and depends on the used approximant form for the universal
scaling function G (x) ∼ C+∞xη−2 when x � 1 [32,33]. Now, the explicit derivation of the







where Has,PF (yν) = ln
[
(2yν)

2]−1 = L −1, with L = ln
[
(2yν)

2]. Now, Eq. (9) only needs
ξ and κT pure power laws, limiting the validity range of the calculated turbidity that behaves
asymptotically with the incorrect logarithmic singularity Has,PF (y) ∼ ln

(
y2
ν

)
approaching

Tc. In spite of this incorrect asymptotic behavior, the practical condition γ �= 2ν corresponds
to apply η �= 0 in the complete temperature range, leading to the explicit power law term
(�τ ∗)−γ+2ν = (�τ ∗)ην in Eq. (9).

It is then also useful to calculate the turbidity resulting from the exact OZ condition
γ = 2ν, i.e., the turbidity of the OZ-like fluid satisfying η = 0 in the complete temperature
range. In such a case, adding (1 + �τ∗) due to T , Eq. (10) provides the following reference
turbidity

τref,η=0 = τ0 (1 + �τ ∗)
(
k0ξ

+
0

)2 HPF (yν) (10)

where HPF (yν) is still calculated using ξ = ξ+
0 (�τ ∗)−ν , while κT follows the incor-

rect pure power law κT,OZ = �+
0 (�τ ∗)−2ν resulting from κT ∝ ξ2. In exact OZ the-

ory, as �+
0 is a function of ξ+

0 , the fluid turbidity is only characterized by the single
amplitude-exponent pair

{
ξ+

0 , ν
}
. τref,η=0 always presents the incorrect logarithmic sin-

gularity τas,η=0 = τ0(
k0ξ+

0

)2 (L − 1) ∼ ln
(
y2
ν

)
, similar to the one of τas,PF. The ratio

τas,η=0
τref,η=0

= L−1
HPF(yν )

→ 1 eliminates the logarithmic singularity when �τ ∗ → 0. This asymp-

totic result corresponds to the blue tireted curve labeled OZas in the diagram τ
τref,η=0

;�τ ∗

of Fig. 3. The horizontal axis τ
τref,η=0

= 1 corresponds to η = 0. For a true Ising-like fluid,
the respective contributions due to η �= 0 and � are then easy to illustrate in Fig. 3, at each
temperature distance to Tc.

For the Ising-like limiting range �τ ∗ ≤ 10−6 � LXe
PAD where the scaling law ην =

−γ + 2ν can be used to estimate η, τas,PF
τref,η=0

= (�τ ∗)−γ+2ν L−1
HPF(yν )

→ (�τ ∗)−γ+2ν (see
the black tireted curve PFas in Fig. 3). In this asymptotic range, the relative difference
between the OZas and PFas curves reveals that the amplitude of the contribution due to
η �= 0 is larger than 25 % and increases when �τ ∗ → 0. Indeed, if only the pure power
laws of ξ and κT are used for the complete �τ ∗ range, Eq. (8) takes the simplified form

τPF,ν,γ = τ0(1+�τ∗)
(
k0ξ+

0

)2 (�τ ∗)−γ+2ν HPF (yν) (labeled by the subscript PF, ν, γ ). Accordingly,
τPF,ν,γ

τref,η=0
= (�τ ∗)ην whatever �τ ∗, as illustrated by the black curve labeled PF2 in Fig. 3.

A pure fluid turbidity without contribution of the confluent singularities associated to � is
only characterized by both pairs

{
ξ+

0 , ν
}

and
{
�+

0 , γ
}
. The subscript 2 recalls for a fluid

characterized by only two leading amplitudes (ξ+
0 and �+

0 ) over the complete temperature
range. Consequently, as �τ ∗ decreases, the increasing difference between 1-axis and PF2

curve is a measure of η �= 0.
However, as mentioned previously, the above asymptotic singular behavior where the

turbidity is calculated from the PF functional form, involves a fluid characterization without
conformity with the two-scale factor universality. To illustrate the amplitude effect of the
asymptotic singular behavior of the true Ising-like turbidity, we use as a typical example
the Martin-Mayor et al’s turbidity results of Ref. [33] obtained by Monte Carlo simulation
of a simple cubic Ising lattice. Such results have validated the analytic derivation of the
saturated turbidity at Tc, ρc initially proposed by Ferrell [32]. Here using the functional

form Has,MM (η, yν) = 2C+∞
{
(4y2

ν )
η
2

[
η2+2η+8

η(η+2)(η+4)

]
− 1

η
+ K

C+∞

}
given by Eq. (34) in Ref.

[33], the asymptotic behavior of the corresponding ratio τas,MM
τref,η=0

= (�τ ∗)−γ+2ν Has,MM(η,yν )

HPF(yν )



is represented by the red tireted curve labelled MMas in Fig. 3 (using K = 0.16). When
�τ∗ → 0, the increasing difference from MMas and PFas curves reveals the increasing{
C+∞, η

}
-contribution to the turbidity of the Ising-like fluid which complies with the two-

scale factor universality.
Finally, it remains to illustrate the �-contribution to the fluid turbidity when the tem-

perature distance to the critical temperature increases well beyond the PAD, i.e., �τ ∗ >

10−5. Using Eqs. (1) and (2), τPF
τref,η=0

= (�τ ∗)ην K(�τ∗)
[L(�τ∗)]2

HPF(y)
HPF(yν )

, leading to the red

full curve labelled PF3 in Fig. 3. Now, the subscript 3 recalls for a fluid characterized
by two leading amplitudes (ξ+

0 and �+
0 ) and one first-order amplitude (a1,+

χ ) acting as
a single crossover parameter over the complete temperature range. As �τ ∗ increases,
the increase of the �-contribution is thus measured by the increasing difference from
PF3 and PF2 curves in Fig. 3. The agreement with

τexp
τref,η=0

obtained from GC turbid-
ity data (red squares in Fig. 3) is noticeable, demonstrating the interest of the present
work made without any adjustable parameter as a correct answer to the GC conclusive
sentence in I.

An additional remark can be formulated from a hypothetical turbidity measurement, 0.3 %
precision, performed at 1 mK temperature distance above Tc, i.e., �τ ∗ ∼ 3.45 × 10−6 in
xenon case (see red vertical line in Fig. 3). At such a finite temperature distance well-inside
the PAD extension, the �-contribution due to the confluent corrections to scaling is lower
than the experimental precision and can be certainly neglected. From Puglielli and Ford
result, τas,PF

τref,η=0
= 0.766 ± 0.019, i.e., ∼ ±2.5 % error-bar (with central value ν = 0.63

and accounting for the η-theoretical error-bar, η = 0.0336+0.00294
−0.00250). From Martin-Mayor

result, τas,MM
τref,η=0

= 0.774 ± 0.025 (increasing to ±3.5 % error-bar after adding ±1 % error-bar

from the theoretical estimation of C+∞). Therefore, when the two asymptotic power laws ξ =
ξ+

0 (�τ ∗)−ν and κT = �+
0 (�τ ∗)−γ are known, the agreement with the experimental value of

the turbidity at T −Tc = 1 mK is a significant probe of the related value η = 2− γ
ν

, whatever

the theoretical functional form of the turbidity. However, as the residual 100 ×
(

τas,MM
τas,PF

− 1
)

is only +1 %, the distinction between the contributions due to the respective ratios
�+

0(
k0ξ+

0

)2

(involved through the Puglielli and Ford Eq. (9)) and
�+

0(
k0ξ+

0

)2−η (involved through the Martin-

Mayor et al. Eq. (7)) remains not significant at such a small temperature distance. We note
that the difficulty can be partly solved when an additional singular property is measured,
especially the top-shape �ρ̃LV = B (�τ ∗)β of the coexistence curve, which gives access to

the ratio
�+

0(
ξ+

0

)3 through the non-dimensional amplitude combination
(
ξ+)−d �+

B2 . In Sect. 6, we

show that the two leading amplitudes �+ and B are thus well-adapted for the thermodynamic
characterization of the fluid, while the role of turbidity for the correlation characterization
of the fluid is discussed in Ref. [41], analyzing recent measurements of SF6 turbidity in the
close vicinity of its liquid–gas critical point.

5.3 Correlation Length

We have reported in the lines �1 to �8 of Table 3 the published amplitude/exponent values
of the leading power law ξ = ξ+

0 (�τ ∗)−ν , which have been used in the indirect fitting of
the results provided by (static and dynamic) Rayleigh–Brillouin methods [42–47]. Line �9



results from the GC fitting analysis of their turbidity data with fixed values of the
exponents in the following two-term Wegner expansion

ξ = ξ+
0

(
�τ ∗)−ν

[
1 + a1,+

ξ

(
�τ ∗)�

]
(11)

In addition, we have also given in lines �10 and �11 the ξ+
0 , ν values for two fixed pure

power laws. Indeed, such pure power laws are fixed in the fitting analyses of the shear
viscosity [48], the thermoacoustic boundary layers [36], and the bulk viscosity [49] of critical
xenon. i.e., experiments which cover the extended temperature range 5 × 10−7 ≤ �τ ∗ ≤
10−1. These applications then extend significantly the GC temperature range, especially
by two supplementary decades approaching the critical temperature. Finally, line �12 gives
the related values for the two-term form of Eq. (1), whose validity is restricted to the PAD
extension.

The log-lin plots of Fig. 4a, b show the corresponding residuals Rξ (%) = 100×
(

ξ
ξcal

− 1
)

(expressed in %) from reference to ξcal calculated using Eq. (1). The curves labeled 1 to 8 of
part (a) illustrate the significant dispersion (larger than 10 %) of the results (lines �1 to �8 of
Table 3) provided by using (static and dynamic) Rayleigh–Brillouin methods (including the
first fitting analysis [47] of the correlation length measurements made by using the precise
differential technique and apparatus). The residuals with the data measurements performed
by Smith et al. [42] are represented by the full black circles. This Fig. 4a gives clear evidence
that the highly correlated values of ν and ξ+

0 are not obtained with the required precision
from all these optical measurements performed at finite distance to Tc. In (magnified) part
(b) of Fig. 4, the lines (labeled 9 to 11) correspond to the residuals (then lowered at the
1 − 2 %-level) using Eq. (11) with the Ising-like parameters of lines �9 to �11 of Table
3). In spite of the questionable justification of the universal features related to the lowest
order of the Ising-like Wegner expansions at large distance from Tc, we note a satisfactory
agreement (within the experimental uncertainty of 8 %) in the reduced temperature range
7 × 10−5 ≤ �τ ∗ ≤ 2 × 10−2 
 LXe

EAD (Fig. 5).

Table 3 �1 to �11: Literature exponent-amplitude values for fitting Eq. (11) of xenon correlation length when
τ → 0 along the critical isochore (n.u.: not used)

� ν ξ+
0 (nm) a1,+

ξ

(
�τ∗)� Ref.

1 0.60 0.302 n.u. [43]

2 0.58 ± 0.05 0.3 ± 0.01 n.u. [42]

3 0.57 ± 0.03 0.307 n.u. [44]

4 0.64 ± 0.02 0.136 ± 0.006 n.u. [45]

5 0.63 0.2 n.u. [42,46]

6 0.63 0.167 n.u. [46]

7 0.58 0.232 n.u. [46]

8 0.62 0.193 n.u. [47]

9 0.63 0.184 ± 0.009 0.55
(
�τ∗)0.5 [1]

10 0.63 0.184 ± 0.009 n.u. [1,48]

11 0.63 0.1866 ± 0.0010 n.u. [1,36,49]

12 0.6303875 0.184531 0.55
(
�τ∗)0.50189 This work

�12: Corresponding asymptotic result from Eq. (1) restricted to the two-term contribution of Eq. (11)







above crossover function of Eq. (2) issued from the MR scheme. More generally, it was
already noted the inherent Ising-like similarity between the MR scheme and the approach
based on a phenomenological crossover transformation for a classical Landau expansion
of the singular contribution to a free energy density [17,18]. Both approaches account for
similar asymptotic universal features at the first-order of the confluent singularities, only
using three adjustable physical parameters. On such a theoretical basis, we are in position to
write the equations that close the unambiguous determination of the CPM free parameters,
using the scale factors of the master crossover functions as entry data. It is then expected
that the resulting crossover master model (CMM) works without any Ising-like adjustable
parameter. Therefore, our following section is focused on the phenomenological key points
of the crossover transformation of the equation of state in order to propose a new tool able
to estimate the fluid properties in the complete phase surface surrounding the vicinity of its
liquid–gas critical point, only knowing the four critical parameters previously introduced in
Sect. 3.

6 Master form of the Crossover Parametric Model

6.1 Main Characteristics of CPM

The CPM developped by Agayan et al [16] results from a generic approach based on a
phenomenological crossover transformation for a classical Landau expansion of the singular
contribution to a free energy density. This approach was at the origin of the so-called crossover
Landau model (CLM) [17,18], where the van der Waals equation was used to develop the
parametric form of the equation of state. Due to the initial implementing by Chen et al.
[17,18] of a match-point method proposed by Nicoll et al. [19–21], the CPM appears to be
conform with the so-called renormalization-group matching technique, while reproducing
now the known theoretical values for the universal amplitudes combinations of leading terms
of the scaling behaviors and first-order terms of the confluent singularities in Wegner-like
expansions.

In a parametric equation-of-state, any point of the phase surface close to the critical point
is characterized by the radial variable r , which measures the distance to the critical point
and the angular variable θ , which represents the density distance to the critical density on a
contour of constant r . The temperature distance and the density distance of the critical point
are thus related to r and θ by parametrics forms. In addition, these parametric forms contain
a crossover function able to represent the phenomenological crossover transformation for a
classical Landau expansion of the singular contribution of a free energy. Starting then far
from the critical point where it is observed the classical—so called mean field—behavior of
the singular energy, crossover occurs when approching the critical point, to finally observe
the critical—so called Ising-like—behavior of the singular energy very close to the critical
point. In the CPM model, this phenomenological crossover behavior is defined by a function
Y , formulated to satisfy the following equation

1 − (1 − ū) Y = ū

(
1 + �2

κ2

) 1
2

Y
ν

�s (13)

where κ is the inverse of the dimensionless correlation length ξ∗ and ν is the corresponding
universal critical exponent. �s (in Agayan et al’s notations) is identical to the lowest value
of the critical exponent � for the confluent singularities of the Wegner expansion (see for
example Eqs. (1) and (2)).



With a parametrization of κ as a function of r as

κ2(r) = ctrY
2ν−1
�s

the crossover function Y , like κ , are only linear functions of r and independent of θ . ct is
a non-dimensional (fluid-dependent) scale-factor for the reduced temperature distance to Tc

along the critical isochore. We note also that Y only depends on two crossover variables,
ū, and �

(ct )
1
2

, which determine the crossover shape and the crossover temperature scale,

respectively (see also below).
The non dimensional ordering field h1, the non dimensional non-ordering field h2, and

the critical part �� of the non dimensional thermodynamic potential can thus be described
by parametric representations in terms of the variables r and θ and by appropriate scaling
forms of Y , as follows

h1 = r
3
2 Y

2βδ−3
2�s l̃ (θ) (14)

h2 = rk (θ) (15)

�� = r2Y − α
�s w̃(θ) + 1

2
Bcrr2 (

1 − b2θ2) 2 (16)

where β, δ, and α are the critical exponents for the top shape of the coexistence curve, the
critical isotherm, and the heat capacity at constant volume, respectively. Among the ν, η,
γ , β, δ, and α exponents involved in this phenomenological description, only two remain
independent (using for example the additional hyperscaling laws dν = 2 − α, 2−η

d =
δ−1
δ+1 , and the scaling laws γ = ν (2 − η), γ = β (δ − 1), when ν and γ are selected as
independent). The above functional forms of Eqs. (14) to (16), also introduce the following
analytic functions of θ

l̃(θ) = l̃0θ
(
1 − θ2) (17)

k(θ) = 1 − b2θ2 (18)

w̃(θ) = m̃0l̃0
(
w0 + w1θ

2 + w2θ
4 + w3θ

6 + w4θ
8) (19)

and the fluctuation induced constant

Bcr = −2m̃0l̃0w0 < 0 (20)

where appear six universal parameters (b2 and wi , with i = {0, 4}) and two rescaled parame-

ters (m̃0 = m0gβ− 1
2 and l̃0 = l0gβδ− 3

2 ) accounting for the characterization of the physical
system. m0 and l0 are the two system-dependent parameters that determine the asymp-
totic critical amplitudes to be conform with the two-scale-factor universality (see below).

g = (ū�)2

ct
is the crossover parameter that combine the two previous crossover parameters ū

and �

(ct )
1
2

characterizing the crossover function Y . Here it is essential to note that the para-

meter b2 and the five coefficients wi of the parametrized CPM, were chosen such that the
asymptotic amplitude ratios between the asymptotic thermodynamic amplitudes A+

0 , A−
0 ,

�+
0 , �−

0 , B0, and D0 (in Agayan et al’s dimensionless notations), agree with the theoretical
predictions of the universal features of a Ising-like system [57,58]. Finally, among the six
universal asymptotic parameters b2 and wi , only two are independent.

To describe the one-component fluid crossover using the intensive variables p and T
associated to the molar density nmol = N

NA

1
V , the classical thermodynamic form of the CPM



assumes that the scaling fields h1 and h2 can be expressed in the linear combinations of
the dimensionless Gibbs energy density and temperature distances to their respective critical
value, i.e., h1 = �g∗ and h2 = �T ∗ + b2�g∗, where b2 is the mixing parameter that

measures the asymmetry in the slope of the coexistence curve. Here �T ∗ = 1− Tc
T = �τ *

1+�τ *

and �g∗ = g∗ − g∗
c . The definition of �g∗, which acts as a conjugated ordering field, needs

to recall that the density g (T, p) = G(T,p,N )
V of the Gibbs free energy (distinct from the

crossover parameter g) can be expressed as g (T, p) = n pμp = nmolμmol (T, p), introducing
then the molar chemical potential μmol (T, p) = NAμp (T, p). Obviously, �μmol = μmol −
μmol,c = NA�μp , where �μp = μp − μp,c. Moreover, in the related dimensionless form
of the CPM, the density of any thermodynamic potential (i.e., an energy per unit of volume)

is expressed in units of pc ≡ (βc)
−1

(αc)
d , while the density of the entropy is expressed in units of

pc
Tc

≡ kB

(αc)
d . Therefore, g∗ = nmol,cμmol

pc
and �g∗ = nmol,c

pc
�μmol (with nmol,c = n p,c

NA
). The

scaling field �g∗ can then be related to the previously introduced dimensionless ordering field
�μ∗

p (or �μ̃) by the equation �g∗ = 1
Zc

�μ∗
p (or �g∗ = �μ̃). In such a thermodynamic

representation, the thermodynamic potential � corresponds to the density J
V of the Grand

potential J = −pV and can be written as � = pV
V

1
pc

= j
pc

= p∗ in dimensionless units.
The singular thermodynamic potential is �� = � − �c = p∗ − 1. The corresponding

conjugated parameters to h1 and h2 are ϕ1 = −
(

∂��
∂h1

)

h2
= �ñmol − b2�̃s and ϕ2 =

−
(

∂��
∂h2

)

h1
= �̃s, respectively. We recall here that the order parameter �ñmol = nmol

nmol,c
− 1

is related to the previous order parameters by �ñmol = �ρ̃ = ρ
ρc

− 1 and �ñmol = 1
Zc

�n∗
p

(with ρ = nmol Mmol = n pm p). In addition, �̃s = s̃ − s̃c is the difference between the
dimensionless entropy density s̃ = S

V
Tc
pc

and its (arbitrary) value s̃c = Sc
V

Tc
pc

at the critical
point (with s̃ ≡ s∗ and �̃s ≡ �s∗, where the dimensionless variables with asterisk use
(βc)

−1 and αc as energy and length units). Once h1, h2 and �� = p∗ − 1 are defined in
terms of the parametric variables r and θ , thermodynamic quantities can then be derived
using well known thermodynamic relations.

However, in order to maintain Ising-like similarity with the symmetrical
(
φ2

)2
field theory,

we only consider here the CPM symmetrical form by fixing

b2 = 0

leading to

�ñmol = ϕ1 (21)

The xenon properties of present interest (molar isothermal susceptibility and liquid–gas
coexisting molar densities, see below), can be calculated from their dimensionless forms

(χ̃mol)
−1 =

(
∂h1

∂ϕ1

)

h2

=
(

∂�g∗

∂�ñmol

)

T

= n2
mol,c

pc

(
∂�μmol

∂�nmol

)

T
= n2

mol,c

pc
(χmol)

−1 , (22)

Equation (22) leads to χ̃mol = χ̃ρ =
(

∂�ρ̃
∂�μ̃

)

T
and then to χ̃mol = (Zc)

2 χ ∗̄
p . In

addition, χ̃mol =
(

∂ϕ1
∂h1

)

h2
=

(
∂2��

∂h2
1

)

h2

=
(

∂2(p∗−1)
∂(�g∗)2

)

h2
= pc

(nmol,c)
2

(
∂2 p

∂μ2
mol

)

T
with



(
∂p

∂μmol

)

T,V =Vmol
= (

∂ N
∂V

)
T,μ=μmol

= nmol (T, p). Using the previous relations between

densities expressed in units of mole, mass, and particle, the corresponding dimensional

susceptibilities are related by χmol = M2
molχρ = N 2

Aχp (with μmol =
(

∂a
∂nmol

)

T
and

(χmol)
−1 =

(
∂μmol
∂nmol

)

T
=

(
∂2a

∂n2
mol

)

T
).

Using our notations for the dimensionless amplitudes and Eqs. (22) and (12), it is thus
obtained [16]

�+ = 3.38317m0 (l0)
−1 (23)

for the leading amplitude of Eq. (12), and

a1,+
χ = g+

χ g−�s (1 − u) (24)

with g+
χ = 0.590 for the first order amplitude of the related confluent singularities of Eq. (12).

We introduce now the asymptotic two-term power law describing the symmetrized top-shape
of the liquid–vapor coexistence curve

�ρ̃LV = ρL − ρV

2ρc
= B

∣∣�τ ∗∣∣β
[
1 + a1,−

M

∣∣�τ ∗∣∣�
]

(25)

From Eqs. (21) and (25), it is thus obtained [16]

B = 3.28613m0 (26)

for the leading amplitude of Eq. (25), and

a1,−
M = g−

M g−�s (1 − u) (27)

with g−
M = 0.529 for the first order amplitude of the related confluent singularities of Eq. (25).

In a similar manner, the crossover behavior of the dimensionless correlation length is
specified through

(ξ∗)2

χ̃mol
= Y − ην

�s (ū�)−2ην a (θ, Y1) (28)

where Y1(r) = 1
�s

r
Y

dY
dr and a (θ, Y1) = (

a0 + a1θ
2
)

Y1 + (
a∗

0 + a∗
1θ2

)
(1 − Y1). The

parameters a0, a1, a∗
0 , and a∗

1 are the constants that can be determined to reproduce the-
oretical correlation-length amplitude ratios. They can be expressed with l0 and m0, as

a0 = 0.0643 (l0)
1
3 (m0)

− 5
3 , a1 = 0.0178 (l0)

1
3 (m0)

− 5
3 , a∗

0 = 0.0579 (l0)
1
3 (m0)

− 5
3 , and

a∗
1 = 0.0028 (l0)

1
3 (m0)

− 5
3 , leading to

ξ+ = 0.466287 (m0l0)
− 1

3 (29)

for the leading term amplitude of Eq. (11), and to

a1,+
ξ = g+

ξ g−�s (1 − u) (30)

with g+
ξ = 0.260 for the first term amplitude of the related confluent singularities of Eq. (11).



Finally, to carry out the CPM calculation in general, for given reduced temperature and
density, the parameters r and θ are first solved numerically. Then the scaling fields, the
thermodynamic potential and its derivatives can be calculated in terms of r and θ after
numerically solving the crossover equation for Y .

6.2 Ising-Like Parameters for the Crossover Formulation of the Parametric EOS

The generic approach based on a phenomenological crossover transformation for a classi-
cal Landau expansion of the singular contribution to a free energy density involves three
free parameters, i.e., two asymptotic scaling parameters (noted ct and cρ , in the more gen-
eral CLM approach) and one crossover parameter (noted g). Normally, from a field theory
framework introducing two asymptotic Ising-like scaling factors, any dimensionless criti-
cal crossover description of a 3D Ising-like system with finite cutoff contains at least two
other free crossover parameters [4], i.e., a reduced wave number � related to the cut-off
wavelength �0, and a reduced scaling factor u related to the coupling constant u4. For the
theoretical infinite-cutoff approximation in the field theory scheme, � → ∞, u → 0 and
u� remains finite. Due to the basic form of the singular part of the free energy density in
the CLM description, g is then necessarily related to the product u�. However, due to the
analytical Landau scheme expressed at the symmetrical fourth-order (with only two inde-
pendent critical coupling quantities), all the dimensionless quantities are canonical constants
(i.e. independent of the selected van der Waals fluid and the dimension of the system). An
implicit connection between � and u (or ct ) exists, yielding for example to the explicit

relation g = (u�)2

ct
. Moreover, a single scale unit is needed to reduce dimensional length

appearing in correlation and thermodynamic functions, independently of any hypothesis on
the microscopic structure of the interacting fluid particles. It also imposes � = constant
for CLM description of the Ising-like systems, leading to a possible arbitrarily choice for the
numerical value of the constant provided that u� remains finite. For example, in the case of
the 3D-Ising models where � = 1, a detailed application [59] of an asymptotic version of
CLM has studied the crossover behavior governed by the u dependence on the interaction
range. This study shows that a more complex, non-monotonic crossover behavior is possible
for a very short range of interactions (u > 1) in complex fluids. In case of the application of

the parametric form of the equation of state where g
1
2 = u�

(ct )
1
2

to a one-component fluid such

as xenon, the only way to monitor the CLM asymptotic critical crossover, is to change u,
or, equivalently, ct , via a single independent coupling quantity (see Ref. [16] for details). In
spite of the possible non-universal nature of the resulting complete crossover behavior, such
a fluid application offers the opportunity to match the Ising-like singular behaviors predicted
by the master crossover functions with the ones of the now called crossover master model
(CMM), as described in the following section. This CMM model requiring no adjustable
parameters is then for simple fluid systems where u < 1 is strongly correlated with �.

6.3 Crossover Master Model (CMM)

The above unknown scaling parameters l0 and m0 are explicitely involved in the determination
of the leading amplitudes of the singular properties, while, similarly, the known scale factors
Yc and Zc appear explicitely in the determination of these same leading amplitudes in the
master form of the MR scheme. Therefore, to provide the unequivocal link between the Yc;Zc

pair and the l0;m0 pair, we consider the isothermal compressibility and the coexistence curve
whose essential role was already mentionned for the singular thermodynamic characterization



of the fluid. The respective �+and B forms in the master description (see Table I in Ref. [14])
and in the CPM description (see Table III in Ref. [16]), lead to the matching equations:

�+ = Z+
χ �∗

qe (Zc)
−1 (Yc)

−γ = 3.38317m0l−1
0 (31)

and

B = ZM

(
�∗

qe

)−1
(Zc)

− 1
2 (Yc)

β = 3.28613m0 (32)

The CPM scaling parameters l0 and m0 can thus be calculated without adjustable parameter
using the two following relations,

l0 = 3.38317

Z+
χ

ZM

3.28613

(
�∗

qe

)−2
(Zc)

1
2 (Yc)

β+γ (33)

m0 = ZM

3.28613

(
�∗

qe

)−1
(Zc)

− 1
2 (Yc)

β (34)

Note that Eqs. (33) and (34) also account for quantum effect correction through �∗
qe [37]

(with �∗
qe = 1 in the non-quantum xenon case).

Moreover, the universality of the first-order correction-to-scaling scheme can also be
closed by identifying, for example, the CPM amplitude �+

1 = g+
χ g−�s (1 − u) with our

selected first-order amplitude a1,+
χ = Z1+

� (Yc)
� (see Table I in Ref. [14]). Using g+

χ =
0.590, �s = 0.52, and g = (u�)2

ct
(see Table III in [16]), we obtain

g+
χ

[
u�

(ct )
1
2

]−2�s

(1 − u) = Z1+
� (Yc)

� (35)

Equation (35) demonstrates that the fluid-dependent crossover parameter g
1
2 = u�

(ct )
1
2

intro-

duced in the phenomenological crossover transformation of the Landau expansion is well
related to our asymptotic scale parameter Yc, as already noted [40] in the case of several
non-quantum pure fluids by analyzing the crossover Landau model [17,18]. Equations (33),
(34), and (35) are the basic equations which define the master Ising-like nature of the CMM.

6.4 Comparison of the Calculated Isothermal Compressibility, Coexisting Densities,
Correlation Length and Turbidity of Xenon Using CPM and CMM

Using the arbitrary relation �

(ct )
1
2

= π initially adopted by the authors [16], the xenon values

of the CPM free parameters l0, m0 and u reported in column 2 of Table 5 are obtained from a
joint fitting of xenon isothermal compressibility (from Eq. (22) and experimental data of Ref.
[1]) and xenon coexistence curve (from Eq. (21) and experimental data of Refs. [60,61]). For
the CMM case, the calculated values of l0, m0, u and g using Eqs. (33), (34), (35) and similar
arbitrarily relation �

(ct )
1
2

= π , are given in column 3. We note the close agreement between

both parameter sets. This satisfactory agreement is confirmed in Figs. 6 and 7 showing the
results of the comparison between the experimental data and the two different calculations
with free and calculated parameter sets. Finally, the correlation length (from Eq. (23)) and
the turbidity (from Eq. (5)) can also be calculated and the corresponding results are illustrated
in Fig. 8 where the agreement remains always noticeable.









7 Conclusion

Only using the four critical coordinates of the liquid–gas critical point of xenon and the master
forms of the Ising-like crossover functions calculated from the massive renormalization
scheme for the critical isochore, we have estimated the singular behavior of xenon turbidity
in agreement with GC experimental data in the temperature range 28 mK ≤ T − Tc � 9 K
(10−4 � �τ ∗ � 3 × 10−2), contributing then to the expected theoretical progress in the
reduction to zero free parameter in the description of the Ising-like confluent singularities far
from the critical temperature. The critical xenon, the N = 1 simple cubic lattice model and

the O(1) symmetric
(
φ2

)2
field theory belong to the same universality class. In addition, we

have proposed a crossover master model by calculating the adjustable Ising-like crossover
parameters of the crossover parametric model to match the master singular behaviors of the
one-components fluids, which opens the route to estimate the singular properties for the
near-critical fluids without adjustable parameter.
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Isothermal Compressibility Data Source

Before the GC work, the isothermal compressibility data for xenon were generally fitted
using the following effective power law

κ∗
T = pcκT = �+

e

(
�τ ∗)−γe (36)

with adjustable effective (i.e., non-Ising) exponent γe and adjustable effective amplitude �+
e .

The corresponding γe and �+
e values are reported in Table 6, in addition with the related finite

extension �τ ∗
min −�τ ∗

max and mean position
〈
�τ ∗

exp

〉
= (

�τ ∗
min �τ ∗

max

) 1
2 of the experimental

temperature range.
The γe-results reported in Table 6 are ordered (see #i in column 1) from γ to γMF,

while column 2 indicates the measurement method (FI: Fraunhofer interferometry; LS: light
scattering; pV T : [p (V )]T measurements). Data reported in lines #1a and #1b are from
the interferometric measurements of Hocken and Moldover [50] in the reduced temperature
range 10−6 � �τ ∗ � 10−5, using a critical xenon cell subjected to the gravitational field
which generates Fraunhofer interferograms [50] related to the isothermal compressibility. The
initial fitting with free values of the exponent and amplitude has given γ = 1.23 and �+ =
0.062±0.006 [50] (line #1b), while a subsequent analysis made for fixed Ising value γ = 1.24

has given �+ = 0.058 ± 0.002 [51] (line #1a). Line #2 is from χρ =
(

∂�ρ
∂�μρ

)

T
values [62]

obtained after numerical integration of [p (ρ)]T data of Habgood and Schneider [63,64] to
obtain chemical potential difference �μρ and to validate antisymmetry of the

[
�μρ (�ρ)

]
T

supercritical isotherms (and then symmetry of
[
χρ (�ρ)

]
T ), as functions of �ρ = ρ−ρc (see

also Footnote 5). Data reported in line #3 are from dynamic light scattering data and complex
analysis of the xenon Brillouin spectra by Cannell and Benedek [43] covering the temperature
range 0.2 K ≤ T − Tc ≤ 20 K. Data reported in line #4 are from static light scattering data of
Smith et al. [42] covering the temperature range 0.045 K ≤ T −Tc ≤ 5.1 K. After calibration
of the isothermal compressibility at T = Tc + 1 K [66], the effective amplitude for Cannell
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Table 6 γe (column 3) and �e (column 4) values published before the date of I, from κ∗
T = �+

e
(
�τ∗)−γe -

fitting in a restricted temperature range �τ∗
min ≤ �τ∗ ≤ �τ∗

max along the critical isochore of xenon for
T > Tc (()� corresponds to a fixed value in the fit)

# γe �+
e �τ∗

min �τ∗
max

〈
�τ∗

exp

〉
Ref.

1a FI
(
γIsing = 1.24

)� 0.058 ± 0.002 10−6 10−5 3 × 10−6 [50,51]

1b FI 1.23 0.062 ± 0.006 10−6 10−5 3 × 10−6 [50]

2 pV T 1.211 (±0.025) 0.0743 (±0.015) 6.0 × 10−4 6.0 × 10−3 1.9 × 10−3 [62–64]

3 LS 1.21 0.076845 6.9 × 10−4 6.9 × 10−2 6.9 × 10−3 [43]

4 LS 1.21 ± 0.03 0.06742 1.553 × 10−4 1.76 × 10−2 1.653 × 10−3 [42]

5 LS 1.206 0.07551466 9.6 × 10−5 1.0 × 10−1 4.35 × 10−3 I and [15]

6 pV T
(
γe,eos = 1.190

)� 0.0793 5.0 × 10−4 3.0 × 10−2 3.873 × 10−3 [63–65,67]

7 pV T 1.1665 0.089 6.2 × 10−3 8.1 × 10−2 2.24 × 10−2 [11,67–72]

8 pV T

(
γ 1

2
= 1.12

)�

0.10 10−1 2.9 × 10−1 1.70 × 10−1 [66–72]

9 pV T (γMF = 1)� 0.11 0.38 0.72 5.2 × 10−1 [66,68–72]

# (column 1): ordered number of the segment in Fig. 1a (see text). Measurement method (column 2): pV T :

[p (V )]T analysis; LS: light scattering; FI: Fraunhofer interferometry. �τ∗
min-, �τ∗

max- and
〈
�τ∗

exp

〉
-values

(columns 5 to 7, respectively); References (column 8)

and Benedek’s data was lowered by 1.57 %, while the one for Smith et al’s data was increased
by 11.2 %, in agreement with around 
 14 % initial deviation between these two data set.
In spite of the importance (
 (10 − 20) %) of these amplitude corrections, the fitting results
confirm that the γe value is well in the range γe 
 1.20 − 1.21 for the restricted temperature
range of these experiments. Such results were confirmed by the data in line #5 obtained by
the effective power law fitting of the GC’s measurements of high relative precision in the
similar temperature range. As a matter of fact, GC have claimed that the correction to scaling
terms are important by demonstrating that the susceptibility deviates systematically from Eq.
36 with γe = 1.206. More precisely, Fig. 2 of I shows that γe 
 1.206 is the slope of the
tangent line to the rough experimental behavior of κ∗

T (�τ ∗) at �τ ∗
γe=1.206 
 4.35 × 10−3,

i.e., the temperature distance which corresponds to the minimum of the deviation curve in
this Fig. 2 (see also Fig. 5 in Ref. [15]). The finite value �τ ∗

γe=1.206 is clearly outside the
PAD extension (see the related circle in the segment 5 of Fig. 1a).

Now we note that the line #6 in Table 6 is also from directly fitting [65]3 [p (V )]T
measurements of Habgood and Schneider [63,64] and Michels et al. [67], using the well-
known restricted linear model of the scaled “universal” equation of state, where k (Xe) =
1.309, a (Xe) = 16.1 and γe,eos = 1.190 [65], leading to �+

e = k
a . In addition, the lines

#7 to #9 are from similar pV T analyses [66] using the [p (V )]T data measurements of
Michels et al. [67], Beattie et al. [68,69], and Rabinovich et al. [70–72]. Increasing thus the
covered temperature distance to Tc leads to observe the continuous decrease of γe in the
range 2 × 10−2 � �τ ∗ � 1 (see the corresponding segments 6 to 9 in Fig. 1a). Practically,
the �τ ∗ range where γe 
 γMF = 1 starts in the well-defined temperature range 400 <

T (K ) < 500 [66]. Therefore, the physical mean field limit �τ ∗ � 1 is reached after
crossing down the effective mean value γ 1

2
= γ+γMF

2 
 1.12 around �τ ∗ 
 0.14 [see Fig.

3 See Table 4.3.4, p. 144 in reference [65].



1a] and by following an abrupt γe decrease to γe 
 1, over a well-descrimined sharp domain
0.3 ≤ �τ ∗

CO ≤ 0.5 (see the double arrow in Fig. 1b). In Fig. 1a, this mean-field-like side
of the physical crossover is illustrated by the interpolating line labelled CO from γ 1

2
in the

MR curve and γe 
 γMF = 1 at
〈
�τ ∗

exp

〉

 0.5 in the segment 9. However, the predicted

mean-field-like side from the theoretical crossover function (right part of the figure) is not
compatible with these experimental results, which means that the physical crossover (curve
CO) is not accounted for by the MR approach (curve MR) of the classical-to-critical crossover
(see also Ref. [12,13]).
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