method based on the IMPES method. Parallel computing can be performed using the standard domain decomposition method of OpenFOAM R .

Running time:

The Buckley-Leverett examples provided only take a few seconds to run.

Introduction

Simulation of multiphase fluid flow in heterogeneous porous media is of great importance in many areas of science and engineering including:

• hydrology and groundwater flow,

• oil and gas reservoirs,

• gas-liquid contactors,

• waste management, biodegradation, and so on.

In this work, only the common features of these different flows are considered, i.e. an isothermal and incompressible two-phase flow with capillary effects. Others physical features such as phase changes or compressibility of phases are not in the scope of this paper but are possible further developments of the presented toolbox. Due to the high complexity of the solid structure and possible large dimensions of the computational domain, the common strategy consists of defining volume averaged balance equations with effective properties such as permeabilities, porosity, etc., which take into account the microscopic flow morphology of the studied problem. With such an approach, a cell of the grid contains both fluid and solid. As usually done for the multiphase flow in porous media, the concept of ''saturation'' is defined as the volumic filling rate of a fluid phase (gas or liquid) with the void space of this cell and all properties, phase velocities, phase pressures, etc. are considered homogeneous within the computational cell. Readers interested in the averaging process can be referred to Das and Hassanizadeh [START_REF] Das | Upscaling multiphase flow in porous media: from pore to core and beyond[END_REF] where a state-of-the-art in modeling and experimental techniques to study multiphase flow phenomena in porous media has been done with a focus on upscaling.

In the last decade, several open-source simulators dedicated to porous media flows have been developed such as, for example, Dumu x [START_REF] Flemisch | Dumu x : Dune for multi-{phase, component, scale, physics, . . . } flow and transport in porous media[END_REF], MRST [START_REF] Lie | Opensource matlab implementation of consistent discretisations on complex grids[END_REF], OpenGeoSys [START_REF] Kolditz | Opengeosys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (thm/c) processes in porous media[END_REF] and PFlotran [START_REF] Lichtner | PFLOTRAN Web page[END_REF]. The opensource platform used in this work, OpenFOAM R [START_REF] Jasak | Error analysis and estimation for the finite volume method with applications to fluid flows[END_REF][START_REF] Weller | A tensorial approach to computational continuum mechanics using object-oriented techniques[END_REF], does not belong to this list since it has not been conceived as a specialized simulation tool but as a general toolbox for solving partial differential equations. However, with growing community and popularity, the use of OpenFOAM R to simulate flow through porous materials becomes more and more prevalent. In the usual OpenFOAM R solvers, porous medium flows are modeled by adding viscous and inertial resistance terms in the Navier-Stokes momentum equation to obtain, in the porous domain, the commonly called Darcy-Forchheimer law [START_REF] Forchheimer | Wasserbewegung durch boden[END_REF]. A mask function allows to define both ''porous'' areas with Darcy and Forchheimer coefficients, and ''free'' areas where the classical momentum equation is solved. The porous medium model is generic and can therefore easily be used to develop new OpenFOAM R solvers. It has been used, for example, to study compressible reacting flows [START_REF] Piscaglia | Multi-dimensional computation of compressible reacting flows through porous media to apply to internal combustion engine simulation[END_REF], mass transfer in solid oxide fuel cells [START_REF] Novaresio | An opensource library for the numerical modeling of mass-transfer in solid oxide fuel cells[END_REF] or interaction of waves and coastal porous structures [START_REF] Higuera | Three-dimensional interaction of waves and porous coastal structures using OpenFOAM R . Part I: Formulation and validation[END_REF][START_REF] Higuera | Three-dimensional interaction of waves and porous coastal structures using OpenFOAM R . Part II: Application[END_REF]. However, the current porous medium handling in OpenFOAM R does not allow to simulate the common features of multiphase flow in porous media, mainly because it lacks some essential elements to this modeling, such as, phase saturations, relative permeability models, capillarity models, and specific boundary conditions. With an efficiency demonstrated in many fields of fluid mechanics, it seems therefore an appealing possibility to develop, in the OpenFOAM R standards, a dedicated toolbox that could serve as a basis for the study of multiphase flow in porous medium.

In this paper, we present a toolbox to simulate multiphase flow in porous media. Instead of solving a modified Navier-Stokes system, we solve the mass conservation equations for each fluid where the phase velocities are expressed using a generalization of Darcy's law [START_REF] Muskat | Physical Principles of Oil Production[END_REF]. Comprehensive reviews of the numerical methods available to solve this kind of problem can be found in the literature (see for example Aziz and Settari [START_REF] Aziz | Petroleum reservoir simulation[END_REF], Gerritsen and Durlofsky [START_REF] Gerritsen | Modeling fluid flow in oil reservoirs[END_REF] or Chen et al. [START_REF] Chen | Computational Methods for Multiphase Flows in Porous Media[END_REF]). Two main methods can be retained to treat multiphase flow in porous media: (i) a sequential approach, IMplicit Pressure Explicit Saturation (IMPES) and (ii) a coupled approach, i.e. the ''fully-implicit''. The IMPES methodology treats all terms that depend on saturation, except the transient terms, as explicit functions of saturation. This allows saturation to be decoupled from the pressure, resulting in a smaller system of equations to be solved implicitly. This reduces significantly the computational effort. However, because IMPES involves some explicit terms, integration may be numerically unstable. As a result, the computational time saved by reducing the size of the system of nonlinear equations can be lost in small time stepping to solve saturations and could lead to numerical instabilities, or in some cases, to non-convergence. The ''fully-implicit'' approach solves the same equations as the IMPES method, except that it treats pressure and saturation variables implicitly. Thus, the ''fully-implicit'' method is unconditionally stable. One could refer to Cao [START_REF] Cao | Development of techniques for general purpose simulators[END_REF] to have a large overview of the different formulations.

Given the sequential nature of OpenFOAM R , we have adopted the IMPES method to develop a dedicated toolbox for multiphase flow in porous media. This package, called porousMultiphaseFoam, includes two solvers impesFoam and anisoImpesFoam (for iso-and anisotropic porous medium, see Section 2.1), the most widely used porous multiphase models for relative permeabilities and capillarities and a new boundary condition to impose phase velocities.

The paper is organized as follows. In Section 2, we present the mathematical model and its implementation in OpenFOAM R . Then in Section 3, we describe the content of the porousMultiphase-Foam package. Finally, in Section 4 the toolbox is validated over several tests and the parallel performance is evaluated on a cluster.

Mathematical model

Mass-momentum conservation equations

When considering porous medium at the macro-scale, the flow is governed by volume averaged equations. Each computational cell contains both solid and void space (or pore-space) which is represented at the macro-scale as the porosity

ε = V void V cell , (1) 
where V void is the volume occupied by the void space and V cell the volume of the cell. To deal with multiphase flow, we have to introduce the notion of saturation S i defining the filling rate of the phase i within the pore-space of a computational cell

S i = V i V void , (2) 
where V i represents the volume occupied by the i-phase within the computational cell. From their definitions, saturations vary in the range [0; 1]. In this work, we study the flow of a non-wetting phase a and wetting phase b through the porous medium. Saturations satisfy the following relationship for fluid saturated media

S a + S b = 1. (3)
Considering an incompressible multiphase flow in a porous medium, the macro-scale mass balance equation for each phase i reads:

ε ∂S i ∂t + ∇ • U i = q i , (4) 
where U i stands for the superficial velocity and q i is a source term, used for injection or extraction wells.

In the generalized Darcy's model [START_REF] Muskat | Physical Principles of Oil Production[END_REF], the superficial velocity of each phase i is computed as

U i = - K i µ i • (∇p i -ρ i g) , (5) 
where the apparent permeability K i is expressed as follows

K i = Kk ri (S b ). (6) 
K is the permeability tensor of the porous medium and k ri (S b ) is the relative permeability of the phase i, whose value between 0 and 1 depends on the local saturation of the wetting phase S b . This modeling suggests that the presence of another fluid reduces the pore space available, and therefore, reduces the permeability. The two most widely used relative permeability correlations (Brooks and Corey [START_REF] Brooks | Hydraulic Properties of Porous Media[END_REF], Van Genuchten [START_REF] Van Genuchten | A closed-form equation for predicting the hydraulic conductivity of unsaturated soils1[END_REF]) are detailed in the models' presentation (see Section 2.4) and implemented in the library. Two solvers are developed in the toolbox depending on the porous medium considered, isotropic or anisotropic. In the numerical validation, the porous medium is considered as isotropic which means that the tensor K can be replaced by a scalar K . Note that in both cases the permeability field can be heterogeneous, i.e. whose value vary in space (the permeability is defined as a tensor field K or a scalar field K ). Both solvers are useful as the isotropic solver requires less memory and computation time.

Due to capillary effects inside the porous medium, we do not have equality between averaged pressure fields of each phase. In classical multiphase porous medium approach, we generally define a macro-scale capillary pressure p c depending on the saturation S b [START_REF] Leverett | Capillary behavior in porous solids[END_REF] 

p c (S b ) = p a -p b .
The p c values depending on the considered flow and porous medium properties are usually obtained experimentally and then correlated on a capillary pressure model. The three most widely used capillary pressure correlations (Brooks and Corey [START_REF] Brooks | Hydraulic Properties of Porous Media[END_REF], Van Genuchten [START_REF] Van Genuchten | A closed-form equation for predicting the hydraulic conductivity of unsaturated soils1[END_REF] and linear model) are detailed in Section 2.5 and implemented in the library. The capillary pressure correlation eliminates an unknown of the system and the mass conservation equations read:

-ε ∂S b ∂t + ∇ • - Kk ra (S b ) µ a (∇p a -ρ a g) = q a , (7) 
ε ∂S b ∂t + ∇ • - Kk rb (S b ) µ b (∇p a -ρ b g -∇p c (S b )) = q b , (8) 
with p a and S b the system variables.

The IMPES method

The system described by the mass conservation equations ( 7) and ( 8) has strong non-linearities due to relative permeabilities and capillary pressure correlations. Then, the resolution of the coupled system requires the use of non-linear solver (Newton-Raphson method for example) and consequently involves substantial computation time. As explained in the introduction, the IMPES algorithm used in this work and proposed first by Sheldon et al. [START_REF] Sheldon | One-dimensional, incompressible, non-capillary, two-phase fluid flow in a porous medium[END_REF] is an alternative method consisting in a segregated resolution of the coupled equations. This method needs a new model formulation detailed below.

Model formulation

The mass conservation equations are reformulated into a pressure-saturation system by summing Eqs. ( 7) and (8). The system then reads:

∇ • - Kk ra (S b ) µ a (∇p a -ρ a g) + ∇ • - Kk rb (S b ) µ b (∇p a -ρ b g -∇p c (S b )) = q a + q b , (9) 
ε ∂S b ∂t + ∇ • U b = q b . ( 10 
)
The principle of this approach is to solve implicitly the global mass conservation, i.e. the pressure equation ( 9), while the saturation equation ( 10) is explicitly solved. The detailed algorithm as implemented in the toolbox is presented in Section 2.2.4.

Implemented formulation

To simplify the formulation, we define phase mobility M i and gravitational contribution L i as follows:

M i = Kk ri (S w ) µ i , (11) 
L i = Kk ri (S w ) µ i ρ i . ( 12 
)
Even if in the generalized Darcy's law the relation L i = ρ i M i is satisfied, we have found it convenient to separate each contribution. Actually, it must be noted that more complex models involving viscous resistance terms between phases for instance [START_REF] Raats | Transport in soils: the balance of momentum[END_REF][START_REF] Baveye | The operational significance of the continuum hypothesis in the theory of water movement through soils and aquifers[END_REF] could be written using this generic formulation. Therefore, the same solver basis could be used for further investigations with more sophisticated multiphase flow models. Moreover, assuming that the capillary pressure only depends on saturation, the capillary term ∇p c can be reformulated as

∇p c = ∂p c ∂S b ∇S b , (13) 
which allows to express the pressure equation ( 9) as a Poisson-type equation

∇ • ((M a + M b ) ∇p a ) = -∇ • (L a + L b ) g -M b ∂p c ∂S b ∇S b + q a + q b , (14) 
and the saturation equation as

ε ∂S b ∂t + ∇ • -M b ∇p a + L b g + M b ∂p c ∂S b ∇S b = q b . (15) 
To improve code readability, three fluxes depending on different contributions (pressure gradient, gravity and capillary pressure) are defined on each face of the computational grid:

φ p = M a,c→f + M b,c→f ∇p a • S f , (16) 
φ g = L a,c→f + L b,c→f g • S f , (17) 
φ p c = M b,c→f ∂p c ∂S b ∇S b c→f • S f , (18) 
where the operator c → f indicates that face-centered values are interpolated from cell-centered value using a numerical scheme detailed in Section 2.2.5. The global flux is computed as follows

φ = φ p + φ g + φ p c , (19) 
and the flux of phase b can be expressed

φ b = M b,c→f M a,c→f + M b,c→f φ p + L b,c→f L a,c→f + L b,c→f φ g + φ p c . ( 20 
)

Time-step limitations

To determine the time step for pressure equation, two conditions can be used in the provided solvers. The first limitation is directly inherited from the classical OpenFOAM R multiphase solvers [START_REF] Jasak | Error analysis and estimation for the finite volume method with applications to fluid flows[END_REF][START_REF] Rusche | Computational fluid dynamics of dispersed two-phase flows at high phase fractions[END_REF] and is related to the Courant number C o , defined for the incompressible phasei

Co i = max ∀cell      0.5 m f =0 |φ i | V cell      ∆t, (21) 
with m the number of neighbor faces f to the considered cell. The coefficient for time-step change is then expressed

c ∆t = Co fixed max (Co a , Co b ) . ( 22 
)
To avoid sudden and too large increases of the time-step which could lead to numerical instabilities, we define the time-step of pressure equation ( 9) as follows

∆t * p = min (min (c ∆t , 1 + 0.1c ∆t ) , 1.2) ∆t last , (23) 
that limits to a maximum increase of 20%. Several tests show that it is necessary to impose Co fixed ≦ 0.1 to ensure stability to the numerical simulations. The second possible limitations for pressure equation the most commonly used in the IMPES method is the CFL condition discussed by various authors [START_REF] Coats | IMPES stability: selection of stable timesteps[END_REF][START_REF] Coats | IMPES stability: The CFL limit[END_REF][START_REF] Preux | Study and approximation of IMPES stability: the CFL criteria, Finite[END_REF]. It has been implemented in the provided toolbox and is defined as follows

CFL = max ∀cell × ∆t εV cell 2 ∂p c ∂S b M a M b K (M a + M b ) m f =0 T f + ∂F b ∂S b m f =0 φ , (24) 
where F b is the fractional flow

F b = k rb µ b k ra µ a + k rb µ b , (25) 
and T f the transmissivity of the face f

T f = K f S f ∆x f , (26) 
where ∆x f is the distance between the centers of two neighboring cells. The coefficient for time-step change, used in Eq. ( 23), is then expressed

c ∆t = C max CFL , (27) 
with C max 1. Note that to ensure stability for the various test cases provided in the toolbox, C max is set to 0.75.

The stability for both conditions, CFL or Co, is not ensured if source/sink term are present since they are not take into account in these formulations. Moreover, if we consider further code developments in the conservation equations, stability will probably not be ensured. In anticipation of these potential changes, we added a limitation related to an user-defined maximal variation of saturation ∆S b,max . Then, the variation of S b between two time steps should satisfy ∆S b,n→n+1 ≤ ∆S b,max , [START_REF] Peaceman | Representation of a horizontal well in numerical reservoir simulation[END_REF] which can be reformulated as

∆t * S b = min       V c ∆S b,max ε - m f =0 U b • S f + V c q b       . ( 29 
)
Then, the global time-step for the next iteration is given by

∆t n = min ∆t * S b , ∆t * p . ( 30 
)

Algorithm

1. ∆t n+1 is computed from the two conditions (C o or CFL and ∆S b,max ).

Saturation S n+1

b is explicitly computed using the last known 4. Pressure field p n+1 is implicitly computed solving the pressure equation

flux field φ n b ε S n+1 b -S n b ∆t n+1 + ∇ • φ n b = q b . (31) 3 
-∇ • M n+1 a,c→f + M n+1 b,c→f ∇p n+1 + ∇ • φ n+1 g + ∇ • φ n+1 p c = q a + q b . (32) 
5. Then φ n+1 p and, therefore, φ n+1 and φ n+1 b can be updated for the next time step.

Numerical schemes

As the saturation has great influence on relative permeabilities and capillary pressure, it is necessary to use numerical schemes suitable to ensure robustness and stability to the segregated solver. In the provided solver impesFoam, each field (k ri , K and

∂p c ∂S b
) has a user-defined interpolation scheme that can be modified in the simulation configuration files. In the following numerical validation of the solver (Section 4), we use the classical numerical schemes of the IMPES method which are:

• Relative permeability k ri : first order upwind scheme for stability in the presence of a saturation front.

• Intrinsic permeability K : harmonic average for high heterogeneities.

• Derivative of the capillary pressure ∂p c ∂S b : linear interpolation.

We should note that the generic implementation of interpolated field in the impesFoam solver allows the use of all the numerical schemes proposed by OpenFOAM R (high order, TVD, NVD, etc. [START_REF] Jasak | Error analysis and estimation for the finite volume method with applications to fluid flows[END_REF][START_REF] Weller | A tensorial approach to computational continuum mechanics using object-oriented techniques[END_REF][START_REF] Rusche | Computational fluid dynamics of dispersed two-phase flows at high phase fractions[END_REF]).

Wellbore models

In this work, we do not focus on the wellbore modeling in porous media which is not trivial and has been discussed by several authors [START_REF] Aziz | Petroleum reservoir simulation[END_REF][START_REF] Peaceman | Representation of a horizontal well in numerical reservoir simulation[END_REF]. We set up a simple structure in the software to allow the subsequent development of more complex models. For that, we consider constant injection and extraction flow rates of wellbores in the developed solver. Two mask functions, defined in the domain, are used to set up the positions of injection and extraction points (1 indicates the presence of a wellbore, 0 the absence). The user-defined global flow rate is equally divided between all the computational cells occupied by the wellbores, depending on their volume. We consider that wellbores inject wetting phase and extract the two phases, depending on the mobility. Under these assumptions, the source-sink terms for each phase can be expressed as:

q a = - M a M a + M b Q extraction , ( 33 
)
q b = Q injection - M b M a + M b Q extraction . ( 34 
)

Relative permeability models

Two relative permeability models are provided in the developed library. Both models involve the notion of effective saturation, which is a normalized saturation of the wetting phase. The effective saturation reads

S b,eff = S b -S b,irr 1 -S a,irr -S b,irr , (35) 
where S a,irr and S b,irr are the user-defined irreducible (minimal) saturations of the phases a and b respectively. Both correlations depend on the effective saturation S b,eff , the power coefficient m, and the maximal relative permeabilities, k ra,max and k rb,max (set to 1 if not specified by the user).

Brooks and Corey Model [START_REF] Brooks | Hydraulic Properties of Porous Media[END_REF].

k ra S b,eff = k ra,max 1 -S b,eff m ( 36 
)
k rb S b,eff = k rb,max S m b,eff .

(

) 37 
Van Genuchten Model [START_REF] Van Genuchten | A closed-form equation for predicting the hydraulic conductivity of unsaturated soils1[END_REF].

k ra S b,eff = k ra,max 1 -S b,eff 1 2 1 -S b,eff 1 m 2m ( 38 
)
k rb S b,eff = k rb,max S 1 2 b,eff 1 -1 -S 1 m b,eff m 2
.

(39)

The capillary pressure models

As for the relative permeability models, the capillary pressure correlations are based on the notion of effective saturation. However, the macro-scale capillary pressure tends to infinity when saturation S b tends to S b,irr (and its derivative when S b tends to S b,max in the Van Genuchten model). To accept irreducible and maximal saturations in numerical simulations, we define the effective saturation for capillary pressure S b,p c as follows

S b,p c = S b -S p c ,irr S p c ,max -S p c ,irr , (40) 
where the minimal S p c ,irr is a user-defined parameter that should satisfy S p c ,irr < S b,irr .

For the Van Genuchten model, the maximal saturation S p c ,max should satisfy S p c ,max > S b,max .

(42) [START_REF] Brooks | Hydraulic Properties of Porous Media[END_REF]. The correlation for capillary pressure reads

Brooks and Corey Model

p c S b,p c = p c,0 S -α b,p c , (43) 
where p c,0 is the entry capillary pressure and 1 α the pore-size distribution index. Deriving the Eq. ( 43), the capillary term in the pressure [START_REF] Aziz | Petroleum reservoir simulation[END_REF] and saturation [START_REF] Gerritsen | Modeling fluid flow in oil reservoirs[END_REF] equations can be expressed

∂p c ∂S b,p c S b,p c = - αp c,0 S p c ,max -S p c ,irr S -α b,p c . ( 44 
)
Van Genuchten model [START_REF] Van Genuchten | A closed-form equation for predicting the hydraulic conductivity of unsaturated soils1[END_REF]. The correlation for capillary pressure reads

p c S b,p c = p c,0 S b,p c -1 m -1 1 n , ( 45 
)
where p c,0 is the entry capillary pressure and m the Van Genuchten coefficient. The coefficient n is generally correlated with m with the following relationship:

1 n = 1 -m. (46)
In the provided toolbox, this relationship is used to compute the n coefficient when it is not explicitly defined. Deriving the Eq. ( 45), the capillary term in the pressure [START_REF] Aziz | Petroleum reservoir simulation[END_REF] and saturation [START_REF] Gerritsen | Modeling fluid flow in oil reservoirs[END_REF] equations can be expressed as

∂p c ∂S b,p c S b,p c = - 1 -m m p c,0 S p c ,max -S p c ,irr × S b,p c -1 m -1 -m S b,p c -1+m m . ( 47 
)
Linear model. The linear model is also available with

p c S b,p c = p c,0 + 1 -S b,p c p c,max -p c,0 , (48) 
where p c,0 and p c,max respectively the minimal and maximal capillary pressure. The capillary term in pressure and saturation equations is then given as follows ∂p c ∂S b,p c S b,p c = -p c,max -p c,0 .

(49)

''Darcy velocity'' boundary condition

In the IMPES method, solving the pressure equation implies some limitations in terms of boundary conditions. For example, it is not straightforward to impose phase velocities on boundaries. To make it possible in the impesFoam solver, we developed a suitable Neumann boundary condition (called darcyGradPressure in the toolbox) for the pressure field. Assuming fixed phase velocities on the considered boundary, the total velocity can be expressed

U fixed = U a,fixed + U b,fixed = -(M a + M b ) ∇p a + (L a + L b ) g -M b ∂p c ∂S b ∇S b . ( 50 
)
we can expressed the Neumann boundary condition on the pressure field

n.∇p a = n. (M a + M b ) -1 U fixed -(L a + L b ) g + M b ∂p c ∂S b ∇S b , (51) 
n denotes the normal to the face boundary. A similar boundary condition called darcyGradPressureAniso is defined for the anisoImpesFoam solver. Note that in that case, the tensor K needs to be invertible. 

Description of software components

The global organization of the porousMultiphaseFoam toolbox is depicted in Fig. 1.

The toolbox is divided in 4 parts: porousModels, porous BoundaryConditions, impesFoam and tutorials.

porousModels

This block compiles the libporousModels.so library containing the relative permeability, capillary pressure and phase models (see Sections 2.4 and 2.5). Model parameters needed by the classes should be defined in the usual configuration file transportProperties. An example of a configuration file for a Brooks and Corey correlation is presented in Fig. 2.

porousBoundaryConditions

This block compiles libporousBoundaryConditions.so library containing two new boundary conditions as detailed in Sec-tion 2.6 and derived from the OpenFOAM R basic boundary condition fixedGradientFvPatchField. The boundary condition is called in the pressure file p as depicted in Fig. 3(left) while the velocities have usual Dirichlet boundary conditions (see an example of Ub file in Fig. 3(right)).

impesFoam

The solver impesFoam solves equations described in the Section 2.2 considering isotropic porous medium (permeability K is a scalar field). This solver is used in the numerical validation of the developed library. It can be used as a development basis to integrate other features of multiphase flow in isotropic porous media.

anisoImpesFoam

The solver anisoImpesFoam solves same equations described as the impesFoam except that the intrinsic permeability K is a tensor field. Two injection cases are available in the provided toolbox. It can be used as a development basis to integrate other features of multiphase flows in anisotropic porous media.

tutorials

This block contains the validation tests presented in the Section 4: Buckley-Leverett and capillary validation. An injection/ extraction test case is also provided to ensure the proper implementation of the source/sink terms.

Numerical validations

The toolbox is validated using the solver impesFoam, i.e. the isotropic version of the IMPES method. However, numerical methods are the same for anisotropic solver and two injection test cases are provided in the tutorials to show an example of the use of the anisotropic solver anisoImpesFoam.

Buckley-Leverett

We consider the simplified case of Buckley-Leverett, i.e. a twophase flow in a 1D domain (length L = 1 m, porosity ε = 0.5, intrinsic permeability K = 1 × 10 -11 m 2 , 400 computation cells) without capillary effects. This simplified case allows to develop a semi-analytical solution to get the shock saturation (saturation at the front), the front velocity and the saturation profile behind the front [START_REF] Buckley | Mechanism of fluid displacement in sands[END_REF].

In the following tests, three fluids are considered (air, water and oil) whose properties are summarized in Table 1. The domain is initially fully saturated with the non-wetting fluid (air or oil depending in this case, S b = S b,irr and S a = S a,max ,) and we inject the wetting fluid (water) with a fixed constant velocity

U b = 1 × 10 -5 m s -1 .
The numerical validation is performed for the two relative permeabilities models, considering a water-air system for the Brooks and Corey model and a water-oil system for the Van Genuchten model. Model and algorithm parameters are summarized in Table 1. The comparison between numerical and semi-analytical results is shown in Fig. 4. A good agreement is found with some minor numerical diffusion mainly due to the ''upwind'' scheme used for the relative permeability computation.

The case of the gravity regime is also studied, considering vertical injection of water in a air-saturated system for both models. Except the gravity contribution, the simulation parameters remain unchanged. In the gravity regime, i.e. when the flow rate injection is low, the front saturation is given by solving Water 1000

U b - Kk rb (S b,front ) µ b ρ b g y = 0, (52) 
1 × 10 -3
Oil 800

1 × 10 -1 (b) 
Model m

Brooks and Corey [START_REF] Brooks | Hydraulic Properties of Porous Media[END_REF] 3 Van Genuchten [START_REF] Van Genuchten | A closed-form equation for predicting the hydraulic conductivity of unsaturated soils1[END_REF] 0. The good agreement between numerical and analytical results is shown in Fig. 5.

Capillary-gravity equilibrium

We now consider a two-phase flow (air/water), with capillary pressure effects in a vertical 1D domain, similar to the previous 

The capillary pressure gradient can be therefore simply expressed in term of gravity contribution ∂p c ∂y = (ρ bρ a )g y .

(56) Algorithm parameters are identical to the previous test case (cf. Table 1) and the model parameters are summarized in Table 2. Saturation profiles at the capillary-gravity equilibrium are presented in the Fig. 6 (left). The comparison between theoretical and numerical evaluations of saturation gradients (depending on the saturation) validates the numerical implementation of the presented models (see Fig. 6). 

Performance test: viscous fingering in a heavy oil reservoir

We now consider a water injection (U b = 1 × 10 -4 m.s -1 ) in a horizontal oil saturated system (see fluid properties on Table 1).

The size of the reservoir is 1 ×0.4 m 2 (1.6 × 10 6 computation cells with a 2000×800 mesh). The permeability of the two-dimensional domain is heterogeneous by blocks with a value between 1×10 -13 and 4 × 10 -13 m 2 (see Fig. 7). The Van Genuchten model is used for relative permeability and capillary pressure with m = 0, 5 and p c,0 = 5 Pa.

In this condition, we observe the emergence of multiple instabilities in the saturation front area (see Fig. 8(a)). The development of these instabilities leads to a so called ''viscous fingering'' (see Fig. 8(b)), a phenomenon due to the important viscosity ratio between the two fluids [START_REF] Homsy | Viscous fingering in porous media[END_REF].

The viscous fingering presents an important challenge to oil industry and needs to be accurately understood and modeled because these instabilities decrease the efficiency of oil recovery processes. We do not focus in this study on these phenomena characterization and the reader interested could refer to previous experimental [START_REF] Homsy | Viscous fingering in porous media[END_REF][START_REF] Chen | Pore-scale viscous fingering in porous-media[END_REF][START_REF] Lenormand | Numerical models and experiments on immiscible displacements in porous media[END_REF][START_REF] Brock | Flow visualization of viscous fingering in heterogeneous porous media[END_REF][START_REF] Doorwar | Viscous fingering during non-thermal heavy oil recovery[END_REF] and numerical studies [START_REF] Chen | Miscible porous media displacements in the quarter fivespot configuration. Part 1. The homogeneous case[END_REF][START_REF] Chen | Miscible porous media displacements in the quarter fivespot configuration. Part 2. Effects of heterogeneities[END_REF][START_REF] Riaz | Numerical simulation of immiscible two-phase flow in porous media[END_REF][START_REF] Ferrari | Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy[END_REF]. Actually, the number of ''viscous fingers'' depends on the reservoir properties but also on numerical parameters such as grid refinement and algorithm tolerance. Therefore, the complete characterization would require a thorough study that is not in the scope of this paper. However, it is an interesting illustration of the possibilities of the solver by simulating a complex multiphase flow where the saturation front occupies almost the whole domain. A unique configuration is tested and used to evaluate the parallel performance of our solver.

In OpenFOAM R , the parallel algorithm is based on the domain decomposition method. Before the simulation, the whole domain is decomposed in n small domains, n being the number of computational cores used for the simulation. Then, each core solves a smaller linear system and information exchanges at boundaries between cores are done using the Message Passing Interface (MPI) communications protocol. Several decomposition methods are available in OpenFOAM R (simple, scotch, manual, etc.) and can be used independently of the considered solver. We use in our simulations the simple method which decomposes the domain in n x × n y × n z equal parts, where n i are user-defined values. The pressure equation ( 14) is solved with the standard preconditioned conjugate gradient (PCG) solver with a fixed tolerance of 10 -6 .

The ''viscous fingering'' phenomena is simulated on the Hyperion cluster which consists of 368 computation nodes of 2 quad-core Nehalem EX processors at 2.8 GHz with 8 MB of cache per processor. The MPI version installed on the cluster is the MPT-2.04, a specific version of MPI optimized for SGI clusters. Simulations were performed from 16 (the reference) to 1024 cores. The cluster was charged during the simulations and allocates randomly computation nodes, whose 8 cores are fully dedicated to the requested task. The total simulation, i.e. 4000 s of physical time, takes around 700 h of CPU time. The speedup σ for a simulation with n cores is com- puted as follows:

σ n = T 16 T n ( 58 
)
where T n is the computation time for n cores. The parallel efficiency ǫ n is defined:

ǫ n = 16 n σ n . (59) 
The results in term of speedup are presented in Fig. 9. The numerical results show a super linear speedup until 256 cores (ǫ 256 ≈ 1.58). This is not an unusual behavior since it has already been observed on standard OpenFOAM applications, see for example the 3D cavity flow simulations performed by the IT Center For Science [39]. In that study, Navier-Stokes equations are solved on 10 millions computation cells and the parallel efficiency can reach ǫ ≈ 1.6. In our case, we assume that the explicit part of the resolution (saturation equation and the flow properties computation at each time step) can partly explain this observation. Indeed, increasing the number of processors decreases the number of computation cells and then RAM memory necessary for each processor. As the explicit treatment need low computation but high access memory (RAM and cache), this could lead to a high parallel efficiency superior to 1. This effect decreases above 256 cores, because partial linear systems become smaller and the information exchange between cores takes relatively more computation time. A linear scaling is reached for 512 cores (ǫ 512 ≈ 0.97). Then, the parallel efficiency for 1024 cores is low (ǫ 1024 ≈ 0.59) because the linear system for each core become very small (only 1560 cells per core). Parallel efficiency has also been tested using the OpenFOAM R multi-grid solver (GAMG) on shorter simulations (t start = 1000 to t end = 1010 s) from 16 to 512 cores. For the reference case (16 cores), the GAMG solver reduces the global computational time of the simulation from 679 s (PCG) to 436 s (GAMG). The GAMG solver exhibits also a super linear speed-up until 256 cores but lower than the PCG solver (respectively ǫ 256 ≈ 1.09 and ǫ 256 ≈ 1.58). This results in a similar computational time for both solvers (T 256 ≈ 26 s) when using 256 processors and slower simulations above (T 512 ≈ 19 s for GAMG and T 512 ≈ 14 s for PCG). Note that the optimization of the GAMG solver parametrization may improve global efficiency and should require a thorough study.

Conclusion

A toolbox for the simulation of multiphase flow in porous media has been developed using the standards of OpenFOAM R . This toolbox includes libraries for porous models (relative permeability, capillary pressure and phase model) and a specific porous boundary condition. A classical IMPES solver has been developed to validate the provided models by comparison with analytical solutions. A study on the parallel efficiency (up to 1024 cores) has also been performed on a complex multiphase flow. The presented solver shows a satisfactory speedup, provided to solve a sufficiently large problem. The provided solver can serve as a basis to develop other features, such as new multiphase or improved wellbore models. Moreover, the easily modifiable nature of the OpenFOAM R platform can be useful to test, for example, new numerical schemes or solution methods.
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 4 Fig. 4. Saturation profiles for the Brooks and Corey model (left) and the Van Genuchten model (right). Dash lines are theoretical saturation profiles.

Table 1

 1 Parameters for: (a) fluid, (b) model and (c) algorithm. (a) Fluid ρ (kg m -3 ) µ (Pa s) Air 1 1.76 × 10 -5

  gives S b,front = 0.467 for Brooks and Corey model and S b,front = 0.754 for the Van Genuchten model. The computed front velocities are respectively 4.28 × 10 -5 and 2.65 × 10 -5 m s -1 .

  section (H = 1 m). The bottom boundary condition is now a fixed wall (''Darcy velocity'' boundary condition with U a = U b = 0 m/s) and the top boundary condition is a Dirichlet condition with fixed reference pressure p = 0 Pa and irreducible saturation S b = S b,irr . We initialize the lower half of the domain with S b = 0.5. Then we simulate the flow over a long period (2 × 10 6 s) to allow the establishment of a saturation profile along the vertical axis. When the stationary state is reached, we have U a = U b = 0, (53) and then we can write: ∂p a ∂y = ρ a g y , (54) ∂p c ∂y = ρ b g y -∂p a ∂y .
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 5 Fig. 5. Saturation profiles in the gravity regime for the Brooks and Corey model (left) and the Van Genuchten model (right). Dash lines are theoretical saturation profiles.
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 6 Fig. 6. Saturation profiles (left) and gradients (right) depending on the capillary pressure model (top: Brooks and Corey, bottom: Van Genuchten).
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 7 Fig. 7. Heavy oil reservoir permeability field and boundary conditions.
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 8 Fig. 8. Viscous fingering in a heavy oil reservoir (Water saturation field S b ).
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 9 Fig. 9. Log-log representation of the speedup with the impesFoam solver (reference is 16 cores and linear solver is PCG).

Table 2

 2 Model parameters for capillary validation.

	Model	p c,0	m	α
	Brooks and Corey [18]	1000		0.5
	Van Genuchten [19]	100	0.5	
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