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Microwave assisted magnetization reversal are studied in the bulk bilayer exchange coupled system. We investigate the nonlinear 

magnetization reversal dynamics in a perpendicular exchange spring media using Landau-Lifshitz equation. In the limit of the infinite 

thickness of the system, the propagation field leads the reversal of the system. The reduction of the switching field and the 

magnetization profile in the extended system are studied numerically. The possibility to study the dynamics analytically is discussed 

and an approximation where two P-modes are coupled by an interaction field is presented. The ansatz used for the interaction field is 

validated by comparison with the numerical results. This approach is shown to be equivalent to two exchange coupled macrospins. 

 
Index Terms—Micromagnetics, Magnetic switching, Microwave-assisted reversal.  

 

I. INTRODUCTION 

ith the tremendous demand in the electronic storage 

technology, new strategies are being continuously tested 

to overcome the so called “recording trilemma” [1]. This fast-

paced developing technology requires understanding of the 

fundamental dynamical magnetization reversal processes [2] 

[3]. One of the current challenges is to reduce the writing field 

in the recording devices as the use of high perpendicular-

anisotropy materials requires very intense applied fields for 

switching the media grains. 

One of the projected solutions is to use the heat-assisted 

magnetic recording (HAMR) or thermally assisted recording 

(TAR) technique [4].  Thirion et al. [5] proposed a method to 

overcome high fields required to reverse the spins in the high 

density media without compromising the thermal stability of 

the devices by introducing a radio-frequency (RF) field along 

with a constant applied field [6]. Suess et al. [7] reviewed the 

use of exchange spring media for magnetic recording and 

moreover they showed that it is possible for perpendicular 

recording media to achieve the required thermal stability at 

very high densities. 

In this work we focus on the application of microwave 

assisted switching to perpendicular exchange spring media 

(PESM). Many works have been devoted to show the 

reduction in the switching field in PESM compared to single 

phase high anisotropic media [8], [9], [10]. However, there is 

very limited literature to explain analytically the mechanisms 

of switching and reversal in this class of materials [11]. The 

analytical description of magnetic behavior in PESM was 

studied by Asti et al. [12] using the static micromagnetic 

approach. The magnetization dynamics was analytically 

studied by Bertotti et al. [13], [14] for uniaxial anisotropic 

media. This work was limited to uniformly magnetized 

systems.  

The challenge represented by the non linear nature of 

Landau Lifshitz (LL) equation, and by the non-uniformity of 

the problem, due to the interface between the hard and soft 

magnetic phases, makes a pure analytical solution hardly 

achievable. However, here we show that the numerical 

solution of the problem makes possible, under rather general 

condition, to describe the dynamics using the same analytical 

results obtained for the decoupled layers with an additional 

interaction field mimicking the effect of the interface induced 

nonuniformity. 

II. MODEL 

We consider a system composed of two layers lying on the 

xy plane, one magnetically hard and the other soft. Both layers 

exhibit perpendicular uniaxial anisotropy directed along z-

axis. The system is infinite in the xy plane and due to this 

geometry the magnetization is uniform along the plane. Thus 

the problem reduces to work out the distribution of 

magnetization vector M= M(z) with respect to z, is the local 

magnetization vector. Calling z0 the coordinate of the interface 

between the soft and the hard layer we have that |M(z)| = 

Ms(z). The in-plane component of the magnetization is given 

by M= M
2
x +M

2
y. The magnetocrystalline anisotropy is K(z) 

= K1 for z < z0, and K(z) = K2 otherwise. The shape and 

magnetocrystalline anisotropies can be merged in a single 

effective anisotropy constant, Ku(z) = K(z) -0Ms
2
(z)/2. The 

two phases are assumed to be exchange coupled at the 

interface. 

The magnetization dynamics are given by LL equation,  
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where γ is the gyromagnetic ratio associated with electron 

spin, α is the damping constant, and Heff is the effective field, 
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where lex = (2A/0M
2

s(z))
1/2

 is the characteristic exchange 

length. 

Ha(t) is the total applied field which is the sum of a DC 

magnetic field, Haz applied perpendicular to the plane of the 

media and a circularly polarized microwave field of 

magnitude Ha rotating with angular frequency  = 2πf, 

W 
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applied in the plane. 
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It is known [12] that there are two fields controlling the 

process of magnetic reversal in spring systems, the nucleation 

field HN and propagation field HP. For exchange coupled 

multilayer systems it has been shown that the leading field in 

the reversal process, for thin systems is HN and HP in the limit 

of infinite thickness of the layers. In this case, the analytical 

expression for the propagation field in static conditions is [12], 

.11
2

1

2

0

1












u

u

s

u

P
K

K

M

K
H


                       (4) 

To study numerically the dynamical reversal of this system 

we have developed a Fortran code solving LL equation using 

the finite difference technique [15]. Here we focus our 

attention on a thick system where the propagation field leads 

the reversal process. Actually the infinite thickness limit is 

easily reached when the total width of the system is few tens 

of its domain wall.  

The switching process is studied keeping Ha and  

constant and by slowly changing the DC field between Haz = -

1.6 × 10
6 

A/m and Haz = 1.6 × 10
6
 A/m. The effect of eddy 

currents on the uniformity of the applied field is neglected.  

We solve the equation of motion for the bilayer system 

using the micromagnetic parameters of a widely used PESM, 

FePt/Fe system. The parameters used are as follows: exchange 

constant A1=A2 =10
-11 

J/m, anisotropy constants K1 =2 × 10
6 

J/m
3
, K2 = 0.48 × 10

5 
J/m

3
. We performed calculations 

assuming same saturation for both layers Ms = 1.55 × 10
6 

A/m 

(this overestimates Ms for hard layer but allows a simpler 

analytical formulation in term of reduced units). Damping 

parameter is taken to be α = 0.01. Soft and hard layers have 

equal thicknesses of 100 nm. The magnitude of the in-plane 

microwave field is kept constant, Ha = 8 × 10
4 

A/m. 

Simulations are performed for several microwave frequencies 

ranging 1 GHz   f   20 GHz.  

III. RESULTS AND DISCUSSION 

A first and worth discussing result of the simulations is that, 

in a frequency interval up to more than 10 GHz, the average 

magnetization of the system, taken along z, <Mz>, behaves 

like a P-mode. A P-mode is a stable solution of the dynamic 

equation for the system subjected to the microwave field, 

which results in uniform precession of the magnetization 

around anisotropy axis, in synchronization with microwave 

field. Due to non-uniform magnetization in the bilayer system, 

the stable solution is given by the average magnetization 

<Mz>, which is constant in time forming an angle  with 

respect to z axis whereas < M> is rotating with angular 

frequency , and with a phase lag  with respect to the 

rotating component of the applied field Ha. We call this 

stationary state a global P-mode. In Fig.1 we plot the 

normalized average z-component of the magnetization against 

the DC magnetic field showing the ascending branch of a 

switching loop with -1.6 × 10
6
  Ha  1.6 × 10

6 
A/m. The P-

mode behavior is apparent up to f = 10 GHz. Beyond this 

limit, the average magnetization shows oscillations whose 

behavior is much more similar to a quasi periodic mode (Q-

mode, using terminology from [16] [17].  Another feature 

apparent in Fig. 1 is the switching field reduction as a function 

of the microwave frequency (see inset in Fig.1). This 

microwave assisted switching is similar to the one reported in 

[13] for uniformly magnetized systems. It is worth noting that 

6 GHz curve is switching at a very small positive DC field. 

This results opens a possibility to investigate zero field 

directional field microwave assisted switching. 

A deeper analysis of the simulation results gives us the 

opportunity to go beyond the global P-mode concept. Fig.2 

shows the angle θ(z) between perpendicular component of 

magnetization M and Haz as a function of z for different values 

of Haz. The system is subjected to a constant in-plane 

circularly polarized field with f = 6 GHz. The figure shows 

two uniform regions separated by a thin transition region. The 

thickness of the latter stays constant (~30 nm) all along the 

magnetization curve and its contribution to the average 

magnetization can be assumed to be negligible. A plot of the 

lag angle (z) between M(z) and Ha gives very similar 

results. Thus we can say that the global P-mode is nothing but 

the average of two individual P-modes, corresponding 

respectively to the soft and the hard layer. 

 
Fig.1. Spatial average of Mz as a function of frequency. Only the 

branches of the loop when DC field is varied from -1.6 × 10
6 

to  1.6 

× 10
6 

A/m, is shown here for frequencies of 1,6,10 and 15 GHz. 

Variation of switching field in response to the microwave frequency 

(line with triangles) is shown in the inset with the solid straight line 

corresponding to the switching field in absence of microwave field. 

 

Treating with P-mode solutions, it is possible to greatly 

simplify expressions by changing the system frame from the 

laboratory frame to a frame in which the system is rotating 

around z axis with the same angular frequency  of the 

microwave field. In this frame, the applied field becomes 

constant and is given by Ha = Haz ez+ Hax ex and the LL 

equation (1) is written as, 
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(5) 

 

The magnetization M is fully defined by its angle θ with 

respect to z-axis and the angle  with respect to x (i.e. to Ha). 

From [16], and [17] we know that a P-mode maps, for given 

, the values of Mz and of the lag angle  (namely of Mx, and 

My) onto the values of the DC field Hz, and on the in-plane 

rotating field amplitude H through the following expressions: 
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Fig.2 Spatial distribution of θ(z) for various DC field values at AC 

field frequency 6GHz. From z=0-100 represents the soft phase and 

z=100-200 represents hard phase. The black circles at θ=π represents 

the initial state of the system and the down triangle represents the 

final state of the system after complete switching. 

 

From Eq. (6), (7), and (8), we can easily verify that the field 

we are actually applying, Ha would not produce the observed 

P-mode when applied to the uncoupled layers. From this we 

can suppose the observed P-mode to be generated by a field Hi 

(subscript i = 1, 2 refer to the P-mode we observe in i layer) 

being the sum of the applied field and of an interaction field 

Hj, exc representing the interface exchange coupling with the 

other layer, 

          .
,excjai

HHH     (9) 

We use a standard ansatz for the exchange field (see [11]) 

with Hj,exc = C Mj, where C is a constant to be determined. 

Assuming that,  
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where, L is the total thickness of the system and z1 z  z2, is 

the region where the transition layer is located. We define 

|M1,2 (t)| = Ms1,2. The interaction due to the layer is taken into 

account by an energy term  

-0CM1M2, so that the effective field in the two spatially 

uniform layers is given by 
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      The P-mode in the two coupled layers is given by the 

equations 
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 The four unknowns of the problem, specifically the three 

components of Hi and C, are fully determined by equations 

(6), (7), (9) and by the constraint, Hj,exc = C Ms. 
 

 Fig.3 

Representation of exchange energy versus the angle between M1 and 

M2 defined in Eq.(10). 

 

Using our numerical results we calculated, C = 0.1. On the 

other hand, we can also estimate C by calculating the 

exchange energy of the bilayer system. The exchange energy 

term is calculated by integrating (M)
2 

along the sample 

thickness. This integration includes the transition region, 

which, of course, will give the main contribution to the total 

exchange energy of the system. Exchange energy is plotted 

against the angle between the magnetizations of the two 

uniform regions (i.e. the two P-modes), respectively M1 and 

M2, Fig.3. The slope of the curve gives the exchange 

coefficient C. Linear fitting of the curve is shown by the red 

line in the figure. 

    The points in the figure which do not follow the linear 

behavior correspond to the region around switching field.   
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This approach is equivalent to describe the system as two 

exchange coupled macrospin with different uniaxial 

anisotropy. This model is numerically solved under the same 

parametric conditions used for the bilayer system with the 

exchange constant derived from the solutions of bilayer 

system. In Fig.4 we show that <Mz>(Haz) loops for the 

extended bilayer and of the macrospin system are in very good 

agreement.  

Further investigations will be devoted to apply the 

bifurcation analysis presented in [13] to the case of two 

coupled P-modes. In this case, the phase portrait analysis 

discussed in [13] can be used to describe the dynamics of each 

single P-mode substituting the field of Eq. (9) to the standard 

applied field.  

 

 
Fig.4 Average magnetization vs DC field. The loop in red (solid 

line) is the magnetization behavior for bilayer system obtained from 

the numerical simulations and the loop in blue (with filled circles) is 

the magnetization behavior from the macrospin magnetization model. 
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