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HOLDERIAN WEAK INVARIANCE PRINCIPLE UNDER A
HANNAN TYPE CONDITION

DAVIDE GIRAUDO

ABsTRACT. We investigate the invariance principle in Holder spaces for strictly
stationary martingale difference sequences. In particular, we show that the suffi-
cient condition on the tail in the i.i.d. case does not extend to stationary ergodic
martingale differences. We provide a sufficient condition on the conditional vari-
ance which guarantee the invariance principle in Holder spaces. We then deduce
a condition in the spirit of Hannan one.

1. INTRODUCTION

One of the main problems in probability theory is the understanding of the
asymptotic behavior of Birkhoff sums S, (f) := Z?:_& foTt where (Q,F,u,T) is
a dynamical system and f a map from €2 to the real line.

One can consider random functions contructed from the Birkhoff sums

(1.1) Sgl(f, t) := Sy (f) + (nt — [nt]) f o Tlntl+1

and investigate the asymptotic behaviour of the sequence (SEI( I, t)) | Seen as
nz

an element of a function space. Donsker showed (cf. [Donb1]) that the sequence
(n_1/2(E(fQ))_l/QSgl(f))n>1 converges in distribution in the space of continuous
functions on the unit interval to a standard Brownian motion W when the sequence
(f o T";>0 is ii.d. and zero mean. Then an intensive research has then been
performed to extend this result to stationary weakly dependent sequences. We
refer the reader to [MPUQG] for the main theorems in this direction.

Our purpose is to investigate the weak convergence of the sequence (n =1/ 2551( )nz1
in Hélder spaces when (f o T%);>o is a strictly stationary sequence. A classical
method for showing a limit theorem is to use a martingale approximation, which
allows to deduce the corresponding result if it holds for martingale differences
sequences provided that the approximation is good enough. To the best of our
knowledge, no result about the invariance principle in Holder space for stationary
martingale difference sequences is known.

1.1. The Ho6lder spaces. It is well known that standard Brownian motion’s paths
are almost surely Holder regular of exponent « for each a € (0,1/2), hence it is
natural to consider the random function defined in (II)) as an element of H,[0,1]
and try to establish its weak convergence to a standard Brownian motion in this
function space.

Before stating the results in this direction, let us define for o € (0,1) the Holder
space Hq[0,1] of functions z: [0, 1] — R such that supy; |x(s) —z(t)| /s —t|* is
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finite. The analogue of the continuity modulus in C10, 1] is w,, defined by

(1.2) we(x,d) =  sup M
o<lt—s|<s |t — 3]
We then define H2[0, 1] by H2[0, 1] := {z € H4[0, 1], lims_0 wa (z,d) = 0}. We shall
essentially work with the spaces H2[0,1] which, endowed with ||z, = wa(z,1) +
|z(0)], is a separable Banach space (while #,[0,1] is not). Since the canonical
embedding ¢: H2[0,1] — H,[0,1] is continuous, each convergence in distribution in
HO[0, 1] also takes place in H,[0,1].
Let us denote by D, the set of dyadic numbers in [0,1] of level j, that is,

(1.3) Do:={0,1}, Dj:={(2-1)277;1<1<2 7} j>1

If r € Dj for some j > 0, we define r* :=r + 27 and r~:=7r—27J. Forr € Dj,
j =1, let A, be the function whose graph is the polygonal path joining the points
(0,0), (r—,0), (r,1), (r™,0) and (1,0). We can decompose each x € C[0,1] as

+oo
(1.4) r=> M@A =D > M)A,

reD _]:0 T'EDJ'
and the convergence is uniform on [0,1]. The coefficients \,(x) are given by

+ _ —
(1.5) A(z) = a(r) — w,
and A\o(z) = z(0), A1 (z) = z(1).

Ciesielski proved (cf. [Cie60]) that {A,;r € D} is a Schauder basis of HJ[0,1]
and the norms |[|-||,, and the sequential norm defined by

’I“GDj,j)l,

(1.6) |5 = sup 2 max A (@)l
are equivalent.

Considering the sequential norm, we can show (see Theorem 3 in [Suq99]) that
a sequence (&,)n>1 of random elements of H? vanishing at 0 is tight if and only if
for each positive ¢,

(1.7) lim lim sup p {sup 27 max |Ar(&n)] > 8} = 0.

—00 n—00 G=J rel;

Notation 1.1. In the sequel, we will denote ry ; := k277 and uy ; := [nry ;] (or

r, and wuy, for short). Notice that upi1; —ug; = [nre; + n277] — ug,; < 2n277 if
j < logn, where logn denotes the binary logarithm of n and for a real number z,
[z] is the unique integer for which [z] < z < [z] + 1.

Now, we state the result obtained by Rackauskas and Suquet in [RS03].

Theorem 1.2. Let p > 2 and let (f o T7);50 be an i.i.d. centered sequence with
unit variance. Then the condition

(1.8) lim tPp{|f]| >t} =0

t—00
is equivalent to the weak convergence of the sequence (n™2SE(f))n>1 to a standard
Brownian motion in the space 7—[(1)/2_1/]) [0,1].
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1.2. Some facts about the LP*° spaces. Let p > 2. We define the LLP**° space
as the collection of functions f: £ — R such that the quantity

(L9) 715 e 2= sup {1 ] > 1} < o0,

This quantity is denoted like a norm, while it is not a norm. However, there is a
constant r, such that for each f,

(1.10) 1Fllpoo < sup (AT FYPE( £l xa] < i [ 1],
:pu(A)>0

and Ny (f) == supa.u(a)>0 p(A)~HVPE[| f| x 4] defines a norm.
A function f satisfies (L.8)) if and only if it belongs to the closure of bounded
functions with respect to N,,.

Lemma 1.3. If limyoo tPu{|f| > t} = 0, then for each sub-o-algebra A, we have
limy, oo Pu{E[|f| | A] >t} =0.

Proof. For simplicity, we assume that f is non-negative. For a fixed ¢, the set

{E[f | A] > t} belongs to the o-algebra A, hence

(L11)  tpf{E[f | Al >t} <E[E[f | AIX{E[f | A] > t}] = E[fx{E[f | A] > t}].
By definition of N,

(112)  E[fx{E[f | Al > t}] < N, (FX{E[f | Al > t}) u{E[f | A > ¢} 777,
hence

(1.13) tPu{ELf | A] >t} < Np (fX{E[f | Al > t})".
Notice that

(1.14) Vs >0, N, (fx{ELf | Al > 1)) < sp{ELf | Al > 1PN, (fx{f > s}),
hence

(115)  lmswp X (B | A > 1] < N/ df > 5} < mpsupap {f > a}.

xr>s

By the assumption on the function f, the right hand side goes to 0 as s goes to
infinity, which concludes the proof of the lemma. O

The next lemma provides an estimation of the IL?**° norm of a simple function.

Lemma 1.4. Let f := Zfio aix(A;), where the family (A;)N.q is pairwise disjoint
and 0 < ay < -+ < ag. Then

p < P )

(1.16) 171 < g a3 ().
Proof. We have the equality

N J
(1.17) p{F >t = Xagraa) (0D (A,

j=0 =0
where an41 := 0, therefore

J
p .

(1.18) tPu{f >t} < OrgnjaéXNaj;u(Al).



2. MAIN RESULTS

The goal of the paper is to give a sharp sufficient condition on the moments
of a strictly stationary martingale difference sequence which guarantees the weak
invariance principle in H2[0,1] for a fixed a.

We first show that Theorem does not extend to strictly stationary ergodic
martingale difference sequences.

An application of Kolmogorov’s continuity criterion shows that if (m o T%);>¢
is a martingale difference sequence such that m € LPT? for some positive § and
p > 2, then the partial sum process (=255 (m))n>1 is tight in H(l)/2—1/p [0,1] (see
IKRO1]).

We provide a condition on the quadratic variance which improves the previous
approach (since the previous condition can be replaced by m € ILP). Then using
martingale approximation we can provide a Hannan type condition which guaran-
tees the weak invariance principle in H3[0, 1].

Theorem 2.1. Let p > 2 and (Q,F,u,T) be a dynamical system with positive
entropy. There exists a function m: Q — R and a o-algebra M for which TM C M
such that:

e the sequence (m ° T >0 is a martingale difference sequence with respect to
the filtration (T~"M);>1;
e the convergence limy_, o tPp{|m| >t} = 0 takes place;

o the sequence (n~Y2SE (m))ps1 is not tight in H?/271/p[0’ 1].

Theorem 2.2. Let p > 2 and let (moT7, T~* M) be a strictly stationary martingale
difference sequence. Assume that tPp{|lm| >t} — 0 and E[m? | TM] € LP/2. Then

(2.1) n~Y28P(m) — n- W in distribution, in 7-[(1)/271/1,[0, 1],
where the random variable n is given by
(2.2) 0= lim E[S? | Z]/n in L!

and n is independent of the process (Wt)te[o,l]-
In particular, 21)) takes place if m belongs to LP.

The key point of the proof of Theorem is an inequality in the spirit of Doob’s
one, which gives n™'E [maxi<j<n Sj(m)?| < 2E[m?]. It is used in order to establish
tightness of the sequence (n~Y25P (m)),>1 in the space C[0, 1].

Proposition 2.3. Let p > 2. There exists a constant C,, depending only on p such
that if (moT");>1 is a martingale difference sequence, then the following inequality
holds:

P

(2.3) sup

n=1

st

0 < Cp (Imlly oo + E (Elm? | TM])"?).
7"11/2—1/17 P00 ’

Remark 2.4. As Theorem 2T shows, the term E (E[m? | TM])p/2 cannot be omitted

in general. For the constructed m, the quadratic variance is km? for some constant
x and m does not belong to the ILP space.
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Since for a function g,

_ _ goTJ — goTi|
2.4 Hn 126Pl(g —goT ‘ =n P max ‘
(2:4) nlg—goT) H o1/ 1<i<j<n  (j —i)1/2-1/p
(2.5) <2n VP max |go T,

1<i<sn

the sequence (Hnl/ 2551(9 —go T)H . ) converges to 0 in probability if
1/2-1/p ) p>1

g belongs to IL?. Therefore, we can exploit a martingale-coboundary decomposition
in ILP.

Corollary 2.5. Let p > 2 and let f be an M-measurable function which can be
written as

(2.6) f=m+g—goT,

where m, g € LP and (moT") ;= is a martingale difference sequence for the filtration
(T~ M)iso. Then n=Y2SP(f) = nW in distribution in 7—[?/2_1/1)[0, 1], where n is
given by ([22) and independent of W.

We define for a function h the operators E(h) := E[h | T*M] and P;(h) :=
E;(h)—E;t+1(h). The condition Y ;2 || P(f)||5 was introduced by Hannan in [Han73]
in order to deduce a central limit theorem. It actually implies the weak invariance
principle (see Corollary 2 in [DMV07]).

Theorem 2.6. Let p > 2 and let f be an M-measurable function such that

(2.7) E|f|()T"M| =0 and

€L

(2.8) SR, < o

120

Then n=/2SP (m) — nW in distribution in 7—[(1)/271/1) [0, 1], where n is given by (2.2)
and independent of W

3. PROOFS

3.1. Proof of Theorem [2.1]l We need a result about dynamical systems of positive
entropy for the construction of a counter-example.

Lemma 3.1. Let (Q, A, u, T) be an ergodic probability measure preserving system
of positive entropy. There exists two T-invariant sub-o-algebras B and C of A and
a function g: Q0 — R such that:

o the o-algebras B and C are independent;

e the function g is B-measurable, takes the values —1, 0 and 1, has zero mean
and the process (g o T™) is independent;

e the dynamical system (Q,C,pu,T) is aperiodic.

This is Lemma 3.8 from [LVO0I].



We consider the following four increasing sequences of integers (I);>1, (J;)i>1,
(ng)i1>1 and (L;);>1. We define k; := 2071 and impose the conditions:

1
1 — ;
(3.1) 7, <o
=1
(3.2) limnzﬁ:O'
’ l—00 ! - n; ’
>l
(3.3) lim J;2~ /2 = o;
l—o0
. 1/ Ll
(3.4) lim J; - pq N| =277 =1;
=00 gl
-1 1/p
kl n; 1/p ny
(35) for each l, Zl L—Z (ﬁ) < T
1=

Here N denotes a random variable whose distribution is standard normal.
Using Rokhlin’s lemma, we can find for any integer [ > 1 a measurable set
C; € C such that the sets T7'C;, ¢ = 0,...,n; — 1 are pairwise disjoint and

1 <U2161 T‘iCz) >1/2.

For a fixed [, we define

(3.6) k=200 0 <<,

(3.7) ky =200 0<j<J and
J—1 1/p kg —j—1—1
1 n;
Jii=—+ (k: ) X U 77a|+
im0 NI i=hi, g
1 /p L
+ — ( o > X TﬁZCl )
Ly \ kg, Pt
+oo
(3.8) f=> 0 m=g-f
=1

Proposition 3.2. We have the estimate || fi]|p oo < R;Ll_l for some constant
depending only on p. As a consequence, limy_, oo tPu {|m| >t} = 0.

Proof. Notice that

Ky g, —1 p

(3.9) 1\ | Tc L e <
. L \ ki, X ot l _Lfk” LJy - pl \Lf'

s

p7m



1/p
Next, using Lemma [4 with N := J, — 1, a; = L( 1 ) and A; :=

Ly \ ki,g,—j
kig—j—1=1 .
U. T—"Cy, we obtain

i=ki,j,—j
(3.10)
Ji— ip [P P 1 VAN
T7'C < — A
Z (lil J> X ; U : Ogrjrg?]}l{_l (Ll <lilj> ) Zlu( J)
= Z:kl"]l —j p.co ’ =0
1 Ky
(3.11) <= max —° LJi—i
Ll 0<j<J;— lk‘l Ji—j =0 ny
1 oli+i
(3.12) = L_f ogg‘ri%}z(—l 2 ol +j
1=
2
Ly
hence by (II0), (B9) and (EI3),
1 kg, —1
3.14 <N, T-'C
1/p ki g, —j—1 A
(3.15) + N, > x| U 177
kl Jl ] i=kl i
1—J
n 1/p kg —
3.16 < Ry ||— X T-'C +
(316) Pl L (’ﬂm) U
I)7m>
1 J—1 n 1/p ki g, —j—1 A
(3.17) T || & Z( ! ) U e
Ly =5 \kig- —r
R P,00
1
(3.18) < =k, (1 n 21/7’)
L

We thus define Ii;) = Kp (1 + 21/p).



We fix ¢ > 0; using (3.I), we can find an integer lp such that »,_; 1/L; < e.
Since the function 250:1 gf1 is bounded, we have,

p
> afi| > }+2p > afi

(3.19) hmsuptp,u{|m|>t} hmsuptp {
1>lg

p7oo

(3.20) =221 " gfi

1>l p,00
P

(3.21) < (2D M)

1>y

/

(3.22) Kp Z L,

>lp
(3.23) < fpe?,

where the second inequality comes from inequalities (I.I0]). Since ¢ is arbitrary, the
proof of Lemma is complete. O

We denote by M the o-algebra generated by C and the random variables g o T*,
k < 0. It satisfies M C T~ M.

Proposition 3.3. The sequence (moTi)i>0 is a (stationary) martingale difference
sequence with respect to the filtration (T~*'M);>o.

Proof. We have to show that E[m | TM] = 0. Since the o-algebra C is T-invariant,
we have TM = o(C U o (go Tk, k < —1)). This implies

(3.24) E[m | TM] =Elgf | TM] = f-Elg | TM].

Since g is centered and independent of T'M, Proposition [3.3]is proved. O

. _ 1 : o
It remains to prove that the process (n=/2S% (m)),>1 is not tight in 7—[(1)/271/1) [0, 1].

Proposition 3.4. Under conditions B.2), B.3) and B4), there exists an integer
lop such that forl >l

1 ‘Su—l—v(gfl)) (gfl)‘ 1
. = — > —.
(3.25) Pr=up /P 1<5§%§(ka vl/2-1/p ~ 16
l v<k;

Proof. Let us fix an integer [ > 1. Assume that w € C;. Then we have

1/p : .
L% <k"—’J> /, if 0 <i<hyg_1;
i _ 1/p
(3.26) (fioT")(w)= %(klzlll) 7 if kyj <i<kyj, and1<j<Ji;
0 if kjo<i<n—1L



As a consequence,

1 Sk, _1-1(91) = Sk, (9.1)]
, L ’ ’ >

IS (kg — )2V

Since for a fixed s € {0,...,n; — k;}, the inequality

_ |Ssth;1-1(9/1) = Ssrm, (9]
2 T=50,) - s g
(3 8) X( Cl) 125.1{% (kl,j—l _1— kl’j)l/Zfl/p

— X(T_S(Cl)) max ’Su—l—v(gfl)) B Su(gfl)‘

1<usn;—k; 01/2_1/]7
V<N

takes place and the sets (T*SCI)ZQBI are pairwise disjoint, we obtain the lower
bound

s (ko= 1= ki) t2mte

n;—k; _
(3.29) P> Z M (TS(Cl) N { max |Ss+k‘l,j—1—1(gfl) Ss+kl,j(gfl)| > 1}) )
s=0

Using the fact that 7" is measure-preserving, this becomes

(3.30) P> (nl o kl) - <Cl N { max ‘Skz,jflfl(gfl) - Skl,j(gfl)‘ > 1}) :

1<5<J; (/{?17]',1 —1- /{?17]')1/2_1/7’

and plugging ([3.27)) in the previous estimate, we get

Sk, . . _ — Sk, .
(3.31) Pz —k)p|CN{ max St -1-109) kl’f(g)‘ > L
ISISI (ky ;= 1)V2-1/p ) é{l

Sk, -1(9)—5k, ,(9)]
(kl,jfl)l/Q_l/pk‘llégl

The sets { maxi<j<y, > Ll} and Cj belong to the independent

sub-o-algebras B and C respectively, hence

Sk . _ — Sy, .
(3.32) P> (m —k)p (Cr) p max St,41(0) kli]/(g)| > L
1<5<d; (kl,j _ 1)1/271/;)]{[ jlil

By construction, we have n; - u(Cy) = p (Ugal T"C’l) > 1/2, hence

(3.33) P>z

It remains to find a lower bound for

Sk, — Sk, .
(334) Pl/ = ,U/ 1I<IlaX | kl,]fl 1(9) kl,lj/(g)‘ 2 Ll
SIST (kyy — D)V2=1rk jlil

9




Let us define the set

Sk, — Sk, .
(335) E] — ‘ kl,]fl 1(9) kl,](g)‘ >Ll

_ 1
(kg — )21 2

Since the sequence (goT");>0 is independent, the family (F;)1<;<

, is independent,
hence

(3.36) P =1 -] - uE))).

We define the quantity

L ( ki "
(3.37) cj = |N|>—< ) >
! l9ll kg —1

(we recall that N denotes a standard normally distributed random variable). By
the Berry-Essen theorem, we have for each j € {1,...,J;},
1 1 2
¢l < 3 1/2 < \/_327[#2'
lglly (kuj-1 = 1) g1l

Plugging the estimate (B.38]) into (8:36]) and noticing that for an integer N and
(an)N_1, (b)), two families of numbers in the unit interval,

(3.38) n(E) -

N N N
(3.39) ITan =T n <D lan —bal,
n=1 n=1 n=1
we obtain
Jp Jy Ji
(3.40) Pz1i-J[a-pwE)+][0-c)-[[0-¢)
j=1 j=1 j=1
Ji Jp
(3.41) >1- [ =) = ulE) — ¢
j=1 j=1
Ji \/5
(3.42) >1- [ -¢) - D22
j=1 HgHQ
Notice that
Ji
J,
. _ e > 1 - _ o)
(3.43) 1 1—[1(1 cj) =1 max. (1—¢)
J:
and ¢; > p {|N| > 21/pﬁ} for 1 < j < J;. We thus have
2
L \\" 2
(3.44) Pl>1- <1 — {|N| > 21/1’—1}) — lingfl/?
gl lgll5
Using the elementary inequality
-1
(3.45) 1—(1—t)">nt— %ﬂ

10



valid for a positive integer n and t € [0, 1], we obtain
L J? L\ 2

(3.46) P! > Ji {W\ > ol/r }——l (u {W\ > ol/r }) —Jligrfl/?.
lglly )2 g1l g1l

By conditions (33)) and (34), there exists an integer [, such that if [ > [, then

Sk 1(g) — Sk
(3.47) - |1Sk,_1-1(9) — Sk, (9)] o \s

NN 1)1/2—1/;;/{;[1?111

]

Combining (333 with (347, we obtain for [ > [,
1 ky

3.48 P>2-(1——|.

(3.49 EH

By condition (3:2), we thus get that P, > 1/16 for | > ly, where lp > [ and
ki/mp <1/2if 1 > 1.
This concludes the proof of Proposition 3.4
U

Proposition 3.5. Under conditions (31), B2), B3), B4) and B3], we have

for 1 large enough

1 |Sutv(m)) — Su(m)| _ 1 1
: — > V> =
(3.49) A oo 1 2 (7 32
l ’l}gkl

Since the Holder modulus of continuity of a piecewise linear function is reached
at vertices, we derive the following corollary.

Corollary 3.6. Ifl > Iy, then

(3.50) wforemn (Fstion. 2) > 51> 55
Therefore, for each positive §, we have

(3.51) imsupp {wrja-yp (S=S0m).0) > 5 > o5
n—00 Vn 2 32

and the process (n_l/QSgl(m))n>1 is not tight in 7—[?/2_1/1)[0, 1].

Proof of Proposition[3.3 Let [y be the integer given by Proposition B4 and let
1 > ly. We define mj := Zﬁ;% gfi and m} = Z;;OZOH qfi.
We define for ¢ > 1,

R 1 ‘Su—l—v(gfz)) B Su(gfz)’
(3.52) M = /P 1@{2%&]{” wl/2—1/p
l v<k;

Let ¢ be an integer such that ¢ < [. Notice that for 1 < u < n; — k; and v < k;, we
have

(3'53) ’Su—l—v(gfz)) - Su(gfz)‘ = Uu(’Sv(gfz))‘)7
where U(h)(w) = h(T(w) and since
(351) SNl < vlofle < 2 (30)"

11



the estimate

/{?l n; 1/p
(3.55) My < —2 < 1.)
Llnll/p A

holds. Since

-1
1 ’Su+v(m;)) — SU(m;)‘
(356) VRO RS S 2 M
l ’ng‘l =1
we have by (3.59),
-1
nll/P 1@;}27]?;@ v1/2-1/p = Lmll/p 21
By (B.3)), the following bound takes place:
1 |Su+v(m;)) - Su{mm 1
. — < -
(3.58) n)/? 1@2&1};@ v1/2-1/p T2
vk
The following set inclusions hold
1 ‘Su—l—v(m;/)) — SU(m;/)‘
(3.59) 7 A - T #£0 5 C | J{My,; #0}
T <k i>l
ng
(3.60) cJU {wr s # 0y
i>lu=1
We thus have
1 ‘Su—l—v(mil)) — Su(mfl)‘
(3.61)  p{ gy, max S #£00 <> m-pfgfi #0}
Tk i>1
(3.62) <m Y pd{fi # 0}
i>1
(3.63) =Y (ki + 1)u(Ci)
>l
ki
(3.64) < 2ny Z o
1>
and by ([3.2), it follows that
1 ’Su+v(m2/)) — SU(m;/)‘ 1
. — < —
(3 65) )U/ n}/p lgug'rlil*kl ’[)1/271/1) # 0 32
vk

12



Accounting ([B.58]), we thus have

1 |Sutv(m)) — Su(m)| _ 1
. — > =
(3.66) 1 VP P VPR e 5
l ngl
> 1 x ‘Su—l—v(gfl + mil)) B Su(gfl + mil)’ >1
ZH nM/P 1<u<n—k; v1/2-1/p -
ngl
1 ’Su-i-v(gfl)) B Su(gfl)’
> —_ >
Y I icusmek w2 21
v<k;
—u 1 | Sutv(my)) — Su(m])] 405
nYP 1<u<n—k v1/2=1/p

l v<ky

hence combining Proposition B4 with (B.65]), we obtain the conclusion of Proposi-
tion 0]

Theorem 2] follows from Corollary and Propositions and
3.2. Proof of Theorem and Proposition

Proof of Proposition[Z.3. Let us fix a positive t. We have to show that for some
constant C' depending only on p and each integer n > 1,

(3.67) P(n,t) :=tPu {sup 2%, 1/2 max
j>1 1<k<2i

Sgl(m,rkﬂd) — S}Zl(m,rkd)‘ > t} <
<C (Hmugm +E (E[m? | TM])”/Q)

(handling the differences

SE (m, 7y, ;) — S (m, rk,l,j)‘ is completely similar, hence
ommited).

In the proof, we shall denote by C), a constant depending only on p which may
change from line to line.

We define
(3.68)

Pi(n,t) :==p sup 299072 max
1<j<logn 1<k<27

S};l(m,rkﬂ,j) — S};l(m,rk,j)‘ > t} , and

(3.69) Py(n,t) ::u{ sup 2990712 max
j>logn 1<k<2y

S (m, rrin ) — Sﬁl(mﬂ“k,j)‘ > t} ,
hence
(3.70) P(n,t) <tPPi(n,t/2) + tPPy(n,t/2).
We estimate P5(n,t). For j > logn, we have the inequality
(3.71) Thi1y —Thj = (k+1)277 — k277 =277 < 1/n,

hence if 1, ; belongs to the interval [I/n, (I+1)/n) for some [ € {0,...,n — 1}, then
13



e cither 7441 ; € [I/n, (I +1)/n), and in this case,

(3.72)

SPH(m, rg15) =SB (m, Ty j)‘ = ‘m OTl“‘ 2770 < 277n max
p p 1<i<n

Ul(m)(;

e or ri11,; belongs to the interval [(I 4+1)/n, (I +2)/n). The estimates

(3.73) | S (m, i) — Sﬁl(mﬂ“k,j)‘ < SR marrgr ) =SB (m, (1+ 1)/?1)‘ +
| S (14 1) /) = 8B m, )| < 2T e |0 m)|
hold.

Considering these two cases, we obtain

(3.74) Py(n,t) < u{ sup 29n2'77n Y2 max Ul(m)‘ > t}
j>logn I<i<n
. < a—1/2 1 ‘
(3.75) M{Qn max U'(m)| >t
(3.76) < np {Qn—l/p m)| > t}
op
(3.77) < —supaPp{|lm| > x}.
P 2>0

Therefore, establishing inequality (B.67)) reduces to find a constant C' depending
only on p such that

(3.78) supsupt’ Py (n,t) < C (HmHZOO +E (E[m? | T.M])p/Q)
n t ’

We define uy, j := [nry, ;] for k < 27 and j > 1 (see Notation [LT).
Notice that the inequalities

(3.79)

Sy (m) = SEm 1 )| < U9 ()] and

(3.80)

B, T 15) = Sy (m)| < U157 )

take place because if j < logn, then

(3.81) Upj KN < Up;+ 1 < upprj < Nrpg1; < U1, + L
Therefore, Py(n,t) < P11(n,t) + Py 2(n,t), where

1/2
(3.82) P1 1 n, t ,u{l r]ri%g(gnzaﬂn / 13]1;2}; |Suk+l’1(m) — Su,w(mﬂ > t/?},

1<j<logn 1<i<n

(3.83) Pra(n,t) ,u{ max  2%n 12 max Ul(m)‘ >t/4}.

Notice that

(3.84) Pro(n,t) < p {na1/2 max Ul(m)‘ > t/4}
1<i<n
(3.85) < np {|m| > nl/pt/4}
(3.86) < APt PsupaPpu{|lm| >z},
x>0

14



hence [B.78) will follow from the existence of a constant C' depending only on p
such that

(3.87) supsup Py 1(n,t) < C (Hmug o +E (E[m? | TM])”/Z) .
n t ’

We estimate P j(n,t) in the following way:

logn

(3.88) P171(n, t) < Z 29 13}5?; K { ‘Suml,j (m) — Suk,j (m)| > tnl/227170‘j}
Jj=1 =

We define for 1 < j <logn and 0 < k < 27 the quantity
(3.89) P(n, g, k,t) := p { ‘Suk+l,j (m) — Suk,j (m)| > tnl/22iliaj} .

If (f 0 T7);>0 is a strictly stationary sequence, we define

n 1/2
(3.90) Qfn(u):= ,u{ max ‘foTj{ > u} +p (Z U'E[f? | TM]) >u

1<g<n :
i=1

The following inequality is Theorem 1 of [Nag03]. It allows us to express the tail
function of a martingale by that of the increments and the quadratic variance.

Theorem 3.7. Let m be an M-measurable function such that E[m | TM] = 0.
Then for each positive y and each integer n,

1
(3.91) 0 {18u(m)| > v} < clg,) /0 Qi (e - )t \du,

where ¢ > 0, n >0, e, :=1n/q and c(q,n) := gexp(3ne"™t —n —1)/n.

We shall use 39I) with ¢ := p+ 1, n = 1 and y := n'/22717%¢ in order to
estimate P(n,j,k,t):

1 . .
(3.92) P(n,j,k,t) < Cp/ ,u{ max \U*(m)| > n1/22_1_°‘]tu€p+1} uPdu
0

1SiSUR 41,5~ Uk, 5

1/2
Uk+1,5 /

1
—i—Cp/O i Z UYE[m? | TM]) > pt/22 1" yte, b uPdu.

Exploiting the inequality w41 ; — ug j < 2n277 we get from the previous bound

1
(3.93) P(n,j,k,t) < Cp/ ,u{ max |U'(m)| > n1/2210‘jtu8p+1} uPdu
0

1<i<2n277

2n2=7 1/2

1
+Cp/0 i Z UY(E[m? | TM]) > /2271 % ye, ) 3 uPdu.
i=1

We define for j < logn, t > 0 and u € (0,1),

(3.94) P'(n,j,t,u) == u{ max |Ul(m)‘ > pt/22 1%y, b, and
1<i<2n2-7
15



. 1/2
2n277 /

(3.95) P"(n,j,t,u) :=p > UE[m? | TM)) e

Using the fact that the random variables Ut(m),1 < i < 2n277 are identically
distributed, we derive the bound

(3.96) P'(n,j,t,u) < 2n277p {|m| > n1/22_1_ajtuep+1} ,
hence
(3.97) P'(n,j.t,u) < 20279 (n'/2271 " tue, 1) 7P Imlff
— 2p+1€;f1nlfp/22j(fl+pa)fpufp [l

Since v and p are linked by the relationship 1/2 — 1/p = «, we have pa = p/2 — 1
hence

1

(3.99) /0 P/, .t u)uPdu < Gyt Pn!P/2950/22) |
Notice the following set equalities:

2n27J 1/2
(3.99) > UE[m? | TM)) T e

i=1

1 2n27J ‘
=\ 292 Z UYE[m? | TM]) > 2—361!2)“”222]/10152
n
i=1

and that n277 > 1 (because j < logn), hence
2n2~7 1/2
(3.100) > UYE[m? | TM)) > gpunt/22717 § C

N
1 Z. ) |
- U {N E UYE[m? | TM]) > 2 35§+1u222]/pt2},
i=1

N>2
from which it follows

2n2=7 1/2

(3.101) us [ Y U(EW® | TM)) > gppunt/22717%0 5 <
=1

sup — UY(E[m? | TM]) > 2732, u?2%/P2 |
<ufun v v i > 204

Combining ([B.98) and BI01]), we obtaln

(3.102) 1r<r11€a<>§J P(n,j,k,t) < Cpt*pnlfp/221(p/2f2) Hm”gm

1
+ Cp/ ,u {sup I Z:UZ m? | TM]) > 23612,+1u222j/pt2} uPdu,
0 N>2
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hence by (3.88) and (3.89),

logn
(3.103)  Pri(n,t) < Cpt P lImlly Z 2793 (p/2=2) p1-p/2
j=1
1 logn
+ Cp/ Z 2 {sup — Z U'(E[m? | TM]) > 2_3612,+1u222j/pt2} uPdu.
0 % N2 N
7=1

From the elementary bounds

logn
(3.104) Z 9I(p/2- 1) 1=p/2 < (1 _ 91-p/2)-1

(3.105) Z 2 {|g| > 22j/p} < C,E |g|p/2, for any non-negative function g,

7j=1
with
1 N
o 93_—2 -2 L i 2
(3.106) g =22 u sup 2U (E[m? | TM]),u € (0,1)
1=
we obtain
1 N p/2
(3.107)  Pra(n,t) < Cpt P m|b  + Cpt ™" sup > UHE[m? | TM))
- =1 p/2

As the Koopman operator U is an L!-IL° contraction, Theorem 1 of [Ste61] gives
the existence of a constant A, such that for each h € LP/2,

3.108 sup — UJ < A,k .
(3108 s Z o el
p/2
Applying (B.I08) with h := E[m? | TM], we get by ([3.107)
_ _ 2
(3.109) Pyi(n,t) < Cpt P [mlf% . + Cpt PE (E[m? | TM])"?,
which establishes (B.78)). This concludes the proof of Proposition 2.3l O

Proof of Theorem[2Z.2. We deduce Theorem from Proposition 23] by a trunca-
tion argument. For a fixed R, we define

(3.110) mpg :=mx{|m| < R} —E[mx{|m| < R} | TM] and

(3.111) mly == mx {|m| > R} — E[mx {|m| > R} | TM].
In this way, the sequences (mpoT");>¢ and (m’y o T");>( are martingale differences
sequences and m = mpg + m’y,.

Since |mp| < 2R and (mp o T");>0 is a martingale difference sequence, the se-
quence (n~ Y285 (mg))n>1 is tight in 7—[1/2 1/p[ 1]. Consequently, for each positive
e, the following convergence takes place:

(3.112) lim limsup p {sup 2% max

—00 p—s00 j=J reD;
17
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Using Proposition 2.3] we derive the following bound, valid for each ¢ and each R,

(3.113)  lim limsup p {sup 2% max

J—o0 n—o0 j?J T'EDJ'

Ar <S};l(m)>‘ > Enl/z} <

< Cpe™® <sug)tp,u{|m| x{|m| > R} >t} + Sug)tp,u {E[|m|x {|m| > R} | TM] > t}) +
> >
+ePC,R <(E[m2x{\m] >R} | TM])W) .

The first term is sup,> g P {|m| > t}, which goes to 0 as R goes to infinity.

The second term can be bounded by sup g tPu {E[|m| | TM] > t}. Indeed, if
t > R, we use the inclusion
(3.114) {Ellm[x {lm| > R} | TM] >t} C{E[|m[ | TM] > t},
and if t < R, then accounting the fact that the random variable E[|m/| x {|m| > R} |
TM] is greater than R, we get

Ellm|x{lm| > R} | TM] = E[lm|x{Im| > R} | TM]x{E[jm| | TM] > R}

(3.115) < E[m| | TMIXAE[/m| | TM] > R},

from which it follows that

(3.116) ufE[lm[x {Im| > R} | TM] >t} < R u{E[m| | TM] > R} .
By Lemma [[.3] the convergence

(3.117) Rh_r)réo f;gtpu {E[lm| | TM] >t} =0

takes place.

The third term of (BII3]) converges to 0 as R goes to infinity by monotone
convergence.

This concludes the proof of Theorem O

3.3. Proof of Theorem By 1), the equality f = >, P(f) holds almost

surely. For a fixed integer K, we define fx := Zfio P;i(f). Then fx satisfies the
conditions of Corollary
Indeed, we have the equalities

(3.118)
Pi(f) = Po(U'f) =E[f | T"M] = E[U"f | M] = E[f | T""'M] + E[U" f | TM]
(3.119) = (I -UYE[f | T'M] — (I = UHE[f | T M|

and the later term can be expressed as a coboundary noticing that (I —U?) = (I —
U) Z;;lo U*. Since P;(f) belongs to the L? space, we may write fr — Zfio Po(Uf)
as (I —U)gi where gx belongs to the P space. Defining my := Zfio Py(U(f)),
the sequence (mp oT");>0 is a martingale difference sequence hence for each positive
g,

(3.120) lim limsup p {sup 2% max

—00 p—00 j=J reD;
18
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Now, we have show that the convergence in ([3.120) holds if fx is replaced by f— fx.
To this aim, we use the inclusion

3.121 sup 2% max
( ) {Jélj reD;

A (S = 1)) > n/} c

- {sup 2% max

A (S = 110))] > en1/2} ,

i1 TED;
hence
(3.122)
p
1
i sup 2 ma |\, (SE(f = fi))| > ent/2§ <=2 || | —=SE(F — fi)
g=J T‘GDJ n 0
1/2—1/p P00
_ 1
(3.123) =)l =Z=s | D AW
i>K+1 240

from which it follows that

(3.124) 1 { sup 2*/ max |\,
jzJ  TED;

(s'cs = 10)| > n/}

= %Sﬁl (P.())

i2K+1

HO
1/2-1/p || p oo

Notice that for a fixed i, the sequence (U HP;(f)))i>1 is a martingale difference se-
quence (with respect to the filtration (T~""!M);5q). Therefore, by Proposition 2.3,
we obtain

(3.125) Jesr, f))HHO <GP,

1/2-1/p [},

Plugging this estimate into (B.124]), we obtain that for some constant C' depending
only on p,

(3.126)
P
90j . plyg ‘ 1/2 < —p P,
p {?213 max - (SE(7 = fi))| > en'/* § < Ce 22 IR,
i2K+1
Combining ([3I20) and (B126]), we obtain for each K:
(3.127) }Ln;oliﬁsolépu {3282 aj %%X , <Sgl(f))‘ > n1/26} <
p
<ce | Y B,

i>K+1

Since K is arbitrary, we conclude the proof of Theorem thanks to assumption

@3).

19
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