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The present paper aims at an upscaled description of coupled heat and mass processes during solid–fluid

combustion in porous media using volume-averaging theory (VAT). The fluid flows through the pores in a

porous medium where a heterogeneous chemical reaction occurs at the fluid–solid interface. The

chemical model is simplified into a single reaction step with Arrhenius kinetic law, but no assumption

of local thermal equilibrium is made. An array of horizontal channels is chosen for the microstructure.

The corresponding effective properties are obtained by solving analytically the closure problems over a

representative unit cell. For a range of Péclet and D numbers, the results of the upscaled model are

compared with microscale computations found in the literature. The results show that, under the same

circumstances, the upscaled model is capable of predicting the combustion front velocity within an

acceptable discrepancy, smaller than 1% when compared to the analytical solution. Furthermore, it has

been found that for the Péclet and D numbers considered in this study, the fluid concentration and tem-

perature profiles that stem from the present upscaled model are in accordance with those obtained using

a microscale model.

1. Introduction

The propagation of combustion fronts in reactive porous media,
which is usually referred to as smouldering or filtration combus-
tion (FC), is a subject of interest for many applications. These
include oil recovery using in situ combustion, coal gasification, fire
safety, and foam combustion in a variety of situations. A broad
review of all these domains is provided by Rein [1]. In all cases,
an oxidation reaction is involved between an immobile fuel and
an oxidizer, conveyed by a gas flow through the pore space.

Many contributions referring to this topic have been published
in the past 40 years, such as the pioneer work of Aldushin et al. [2]
where the structure of the filtration combustion wave was ana-
lyzed in one-dimensional geometries, followed by a series of
papers using asymptotic methods for rapid, diffusive, co-current
or counter-current filtration combustion waves [3–6]. All these
contributions investigated the macroscale behaviors and the
structure of solutions in effective porous media. More complex
multicomponent, multiphysical, reactive problems were studied
in this framework. For instance, Moallemi et al. [7] studied the
smouldering in a two-dimensional scale solid material. They

assumed a global single-step combustion reaction, and the associ-
ated transport problem was formulated via conservation equations
for mass, species, linear momentum, and energy on the Darcy
scale. Limits of flammability were compared to experimental tests.
Rostami et al. [8] investigated the combustion of a porous biomass
fuel, with a transient two-dimensional model without thermal
equilibrium hypothesis and a complex multi-step chemistry. They
showed the existence of a steady combustion regime depending on
the ratio of oxygen to fuel contents. Rein et al. [9] studied the prop-
agation of combustion fronts using a simplified transport model
and complex chemistry of gas and solid components. Lapene
et al. [10] developed a coupled simplified-transport model with
chemistry to determine, by an optimization procedure, the effec-
tive multi-step reaction scheme of heavy-oil combustion in porous
media. Fadaei et al. [11] investigated the combustion of reactive
carbon in carbonate reservoirs by varying several parameters (flow
rates, fraction of carbon and fraction of carbonates). No explicit link
was made between local-scale phenomena and the heuristic
macroscale model.

Local-scale solid–gas combustion was described in the review
paper of Ohlemiller [12]. The structure and couplings were
explained in detail, with a realistic description of a porous medium.
The chemical coupling, the local-scale effects — i.e., local scale tem-
perature effects — were addressed. According to Ohlemiller [12], all
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of the existing models in the literature were overly simplified and
while they could be used for obtaining trends in front-velocity esti-
mates and maximum-temperature approximations, for instance,
they could not be predictive because of the lack of details in the
description. Few references of studies on this scale can be found
in the literature. Microscale or pore-scale studies are usually done
to investigate the details of all the phenomena and to determine
local effects, local thermal non-equilibrium, reaction shape, and
speed, depending on the local properties. For example, based on a
dual lattice, Lu and Yortos [13] developed a pore-network model
to investigate the dynamics of forward filtration combustion in por-
ous media. The pore-scale results showed that the overall macro-
scopic behavior of this process strongly depends on microscopic
features, such as heterogeneity. Debenest et al. [14,15] performed
3D numerical calculations of smouldering processes in a detailed
discretized image of porous medium, to demonstrate the ability
of a numerical model proposed by Debenest et al. [16] to handle a
variety of situations. Since combustion in porous media with heter-
ogeneous chemical reactions is a complex phenomenon, which

involves the transports of mass and heat as well as various chemical
reactions, the numerical computations based on microscale struc-
ture are challenging. Upscaling approaches that treat a porousmed-
ium as an equivalent continuum have proved useful to overcome
these limitations.

The published upscaling studies of reactive transport in porous
mediamainly focus on themass or heat transfer. In an important ref-
erence paper, Oliveira and Kaviany [17] identified the length and
time scales involved in heat andmass transports during combustion
in porous media and determining the conditions for local equilib-
rium. Yet, they did not upscale the local-scale system of equations.
Akkutlu and Yortsos [18] addressed theoretically in situ combustion
and the explicit coupling between heat and mass transports with
Arrhenius-type functions. Using a non-dimensional system, they
obtained solutions for forward-filtration combustion and
determined the effect of heat losses on the stability of the process.
The link between the local-scale system of equations and the one
pertaining to the macroscale has been addressed in detail in the
pioneering works of Ryan [19] and Whitaker [20] on mass transfer

Nomenclature

aV interfacial surface area per unit cell volume (mÿ1)
A0 pre-exponential factor (m sÿ1)
Afm interfacial surface area between the fluid and solid

phases (m2)
b closure variable
cp specific thermal capacity at constant pressure

(J kgÿ1 Kÿ1)
Cf ;in concentration of oxidizer at the inlet (mol/m3)

Cf ;out concentration of oxidizer at the outlet (mol/m3)

DCf difference of oxidizer concentration between inlet and
outlet (mol/m3)

Cc;in concentration of fuel at the inlet (mol/m3)

Cc;int concentration of fuel at the interface (mol/m2)

Cc;out concentration of fuel at the inlet (mol/m3)
DCc difference of fuel concentration between inlet and out-

let (mol/m3)
C concentration (mol mÿ3)
Df mass diffusivity of fluid phase (m2 sÿ1)

Deff effective mass diffusivity tensor of fluid phase (m2 sÿ1)
E activation energy (J molÿ1)
F arbitrary function of Taylor series
h heat transfer coefficient (J mÿ2 sÿ1 Kÿ1)
H heterogeneous reaction heat (kJ molÿ1)
Hc heaviside step function accounting for the fuel exhaus-

tion
hHci average step function
Hhci binary function describing the presence or not of carbon

at the macroscale
i; j unit base vectors
I unit matrix
k thermal conductivity (W Kÿ1 mÿ1)
K effective thermal conductivity tensor (W Kÿ1 mÿ1)
Kf effective permeability tensor (m2)
l microscopic characteristic length (m)
L length of channel (m)
nfm normal unit vector from the fluid phase to the solid

phase
pf pressure (Pa)

PeD cell Péclet number based on the mass diffusivity

PeT cell Péclet number based on the thermal diffusivity

PeF;s thermal Péclet number based on solid thermal diffusiv-
ity and front speed velocity

q heat generation (kJ mÿ3 sÿ1)
r special closure variable for the heterogeneous chemical

reaction case
r0 characteristic length associated with averaging volume
R universal gas constant (J molÿ1 Kÿ1)
s closure variable
srxn heterogeneous reaction rate (mol mÿ2 sÿ1)
t time (s)
T temperature (K)
Tÿ1 reference upstream temperature (K)
Tþ1 reference downstream temperature (K)
u transport coefficient (m sÿ1 or W Kÿ1 mÿ2)
UF combustion front velocity (m sÿ1)
vf velocity vector (m sÿ1)
V unit cell volume (m3)
W height of channel (m)
x, y Cartesian coordinates (m)

Greek letters
e porosity
l dynamic viscosity (kg mÿ1 sÿ1)
q density (kg mÿ3)
w arbitrary variable
1 arbitrary function of closure problem
n heat distribution coefficient
u cell Thiele modulus
r Stephan–Boltzman constant (Wmÿ2 Kÿ4)

Subscripts and superscripts
ad adiabatic
c concentration
f fluid phase
F combustion front
in inlet
int interface
out outlet
m solid phase
p plateau

Special symbols

~/ deviation from intrinsic average

h/i Darcian average

h/if ;m intrinsic average



phenomena and coupled heterogeneous reactions. Related to our
topic, Sahraoui and Kaviany [21] compared the volume-averaged
treatment of adiabatic, premixed flame with direct numerical
simulation in a porous medium. They showed that in spite of some
shortcomings, theflame structure, thickness, speed, andexcess tem-
perature can be well predicted by volume-averaged treatments.
Whitaker [22] upscaled the diffusion process in porous media with
heterogeneous reactions. Moreover, Quintard and Whitaker [23]
analyzed the coupled, nonlinear diffusion problem to derive the vol-
ume-averaged, multicomponent mass transport equations. Battiato
et al. [24] upscaled the reaction–diffusion equations and compared
the predictions of the macroscale equations to pore-scale results.
More recently, Valdés-Parada and Aguilar-Madera [25] and Valdé-
s-Parada et al. [26] carried out the upscaling process ofmass transfer
with both homogeneous and heterogeneous chemical reactions in
porous media. The results showed that for the homogeneous case,
the effective reaction rate is simply the product of its microscopic
counterpart with the porosity, whereas the effective reaction rate
can only be obtained by solving the corresponding closure problems
for the heterogeneous case. All these studies were carried out in an
isothermal case. Considering thermal transport in porous media
with homogeneous and heterogeneous heat sources, Quintard and
Whitaker [27,28] developed an upscaling analysis based on
volume-averaging theory. The assumptions of local thermal equilib-
rium or non-equilibrium between the solid and fluid phases were
discussed extensively. However, the heat source they treated was
assumed to be constant and uniform,which is generally not realistic
for combustion in porous media, where the coupling with chemical
reactions involves highly non-linear Arrhenius-type kinetic laws.

In the present paper, we do not make such assumptions and
derive a more general model by applying the volume-averaging
theory of Quintard andWhitaker [27]. The heterogeneous chemical
reaction, which is assumed to be of the first order Arrhenius-type,
occurs at the interface between the solid and fluid phases. More-
over, local thermal equilibrium between the solid and fluid phases
is not assumed a priori. The transport coefficients in the upscaled
model are obtained by solving the corresponding closure problems
in a stratified system. Eventually, the verification of the present
upscaled model is conducted for a horizontal channel by compari-
son with direct numerical simulations on the pore-scale.

2. Upscaling of two-phase media with heterogeneous chemical

reaction

In this study, we consider a rigid and immobile porous medium,
saturated by a fluid phase as sketched in Fig. 1. We consider con-
vection and diffusion in the mass transport equation, with reaction
at the interface of the two phases, which is covered by the reactive
material. The convection and conduction equations for heat
transport are applied in the whole space with no contribution of
convection within the solid phase. Radiative exchanges between
the grains that face each other are not considered. The validity of
this approximation depends on the typical pore size and on the
expected range of temperature, and it can be assessed a priori for
a particular application as discussed in Appendix A. We concen-
trate on studying the link between heat and mass transports and
non-linear reactivity depending on Arrhenius-type kinetic func-
tions. In all forthcoming developments, the subscript m refers to
the solid phase, fully filled with inert solid, and subscript f refers
to the fluid phase.

2.1. Microscale momentum, mass, and heat transfer equations

We assume that the fluid properties do not strongly depend on
the temperature and concentrations; therefore, the momentum

equation may be solved independently from the other transport
equations. We also assume that the velocity is such low, i.e., the
Reynolds number is small, so that Stokes equations may be used
in the channels. Those assumptions are the same as those of
Debenest et al. [16] and Yang and Debenest [32].

r � Vf ¼ 0 in V f ð1Þ

ÿrpf þ lfr
2Vf þ qfg ¼ 0 in V f ð2Þ

Vf ¼ 0 at Afm ð3Þ

Neglecting the variation of gas density strong approximation, which
cannot be formally justified but whose consequences have been
quantified and found acceptable in some cases. Yang and Debenest
[32] performed numerical simulations of smouldering in a channel
for both compressible and incompressible flows. The variations of
density and dynamic viscosity of the gaseous mixture were taken
into account in the compressible flow. The comparison between
the two cases indicated that ignoring the variations of density and
dynamic viscosity could result in significant discrepancies, but that
for low values of D such as 0.1 and 0.5, the agreement between the
incompressible and compressible results are acceptable. Since
accounting for compressibility effects dramatically increases the
computational time, the incompressible model is used in a first
approximation.

The transport equation for the oxidizer conveyed by the fluid
and the two energy transport equations in the solid and fluid
phases read on the microscale:

@Cf

@t
þr � ðVfCf Þ ¼ r � ðDfrCf Þ in V f ð4Þ

ðqcpÞm
@Tm

@t
¼ r � ðkmrTmÞ in Vm ð5Þ

ðqcpÞf
@T f

@t
þ ðqcpÞfr � ðVfT f Þ ¼ r � ðkfrT f Þ in V f ð6Þ

Fig. 1. Averaging volume for solid and fluid phases in the representative elemen-

tary volume (REV).



It is important to notice that we use the assumption of diluted
species for the oxidizer transport equation. Multicomponent effects
actually generate a diffusion matrix that is a function of the binary
diffusion coefficients, the activity coefficients, and the mass frac-
tions (see Quintard et al. [33]), but we simplify here the approach
by specifying a constant value for the diffusion coefficient.

Combustion in porous media is complex and involves various
chemical processes, as pointed out by Martins et al. [34]. For sim-
plicity, we use the ‘‘one-film model’’ described by Turns [35],
lumping all reactions in a single global one. The oxidizer in the
gas phase reacts with the fuel located at the interface between
the inert solid and fluid phases, and the reaction takes place as long
as the fuel is not exhausted. The whole chemical scheme is sum-
marized by a global exothermal heterogeneous reaction.

CþO2 ! CO2 þ DHO ð7Þ

with DHO ¼ 395 kJ=mol. The reaction products are regarded as pas-
sive and the description of their transport does not need to be
included in the model. The kinetic law of reaction (7) is supposed
to be of first order with respect to the oxidizer concentration Cf ,
with a rate coefficient given by Arrhenius law

srxn ¼ A0Hce
ÿE=RTCf ð8Þ

A0 is the pre-exponential factor, Hc is a Heaviside step function
accounting for the fuel exhaustion, E is the activation energy, and
R is the universal gas constant. The first order Arrhenius-type
reaction rate is commonly used for the heterogeneous chemical
reactions of carbon and oxygen (see for instance, Dutta et al. [36]
and Žajdlík et al. [37]). The reaction rate depends on both the tem-
perature and oxidizer concentration at the interface. Therefore, the
oxidizer transport is fully coupled with the thermal problems.

The interfacial boundary conditions are

ÿnfm � DfrCf ¼ srxn at Afm ð9Þ

dCc;int=dt ¼ ÿsrxn at Afm ð10Þ

Tm ¼ T f at Afm ð11Þ

nfm � kfrT f ¼ nfm � kmrTm þ srxn � H at Afm ð12Þ

where H is the heat of reaction, which is regarded as constant and
independent of temperature. Theoretically, H depends on tempera-
ture, as do the heat capacity of the gas which is also regarded here
as a constant. However, these approximations are milder than that
regarding the gas incompressibility. Therefore, addressing the for-
mer without first curing the latter would result in an illusory gain
in accuracy. All these issues should be addressed simultaneously,
possibly in a future work.

2.2. Upscaling procedure

The upscaling process involves many steps that have been dis-
cussed at length in the literature. The details for the most well-
known aspects can be found in Whitaker [22] and they are not
repeated here. Under the assumption of scale separation, usually
expressed as lf ; lm � ro � L, macroscale temperatures and concen-
tration are defined by averages over the representative elementary
volume (REV, Bear [38]) sketched in Fig. 1 as

hwmi ¼
1

V

Z

Vm

wmdV ; hwmi
m ¼

1

Vm

Z

Vm

wmdV ð13aÞ

hwmi ¼ emhwmi
m ð13bÞ

where

em ¼ Vm=V

All local variables are related to their intrinsic phase averages and
corresponding deviations according to Gray’s [39] spatial
decomposition,

Vf ¼ hVf i
f þ ~Vf ; pf ¼ hpf i

f þ ~pf ; Cf ¼ hCf i
f þ ~Cf ;

Tm ¼ hTmi
m þ ~Tm; T f ¼ hT f i

f þ ~T f ð14Þ

Consider first the flow Eqs. (1)–(3). The upscaling of the single
phase flow problem in a porous medium has been extensively stud-
ied in the past [40,41] and we simply state the result.

r � hVf i ¼ 0 ð15Þ

hVf i ¼ ÿ
Kf

lf

� ðrhpf i
f ÿ qfgÞ ð16Þ

Eq. (16) is Darcy’s law in which the permeability tensor Kf is given
by a small-scale closure problem described explicitly in Whitaker
[41], or in a different form more suitable for computations in Lass-
eux et al. [42]. Similarly, the macroscopic transport equations for
solute (oxidizer) transport in the fluid and for energy transport in
the solid and fluid phases result from volume-averaging theory
(VAT) as

ef
@hCf i

f

@t
þ ef hVf i

f �rhCf i
f ¼ r � Df efrhCf i

f þ
1

V

Z

Afm

nfm
~CfdA

 !" #

ÿr � ~Vf
~Cf

D E

þ
1

V

Z

Afm

nfm � DfrCfdA

ð17Þ

emðqcpÞm
@hTmi

m

@t
¼ r � km emrhTmi

m þ
1

V

Z

Amf

nmf
~TmdA

 !" #

þ
1

V

Z

Amf

nmf � kmrTmdA ð18Þ

ef ðqcpÞf
@hT f i

f

@t
þ ef ðqcpÞf hVf i

f �rhT f i
f

¼ r � kf efrhT f i
f þ

1

V

Z

Afm

nfm
~T fdA

 !" #

ÿ ðqcpÞfr � ~Vf
~T f

D E

þ
1

V

Z

Afm

nfm � kfrT fdA ð19Þ

The reader could refer to Quintard and Whitaker [23,28] for more
details behind the deviations of Eqs. (17)–(19). In order to close
Eqs. (17)–(19), i.e., to eliminate any reference to the fluctuating
variables, we need to (1) develop balance equations for the concen-
tration and temperature deviations, ~Cf , ~T f , and ~Tm, and (2) express
these deviations as functions of macroscopic concentrations and
temperatures. The first step is realized by applying decomposition
Eq. (14) in the microscale Eqs. (4)–(6) and substracting the macro-
scale Eqs. (17)–(19). The resulting governing equations for the fluc-
tuating quantities can be simplified owing to the following
inequalities which result from the scale separation ðlf ; lm � LÞ

r � ðDfr~Cf Þ� eÿ1
f r �

Df

V

Z

Afm

nfm
~CfdA

 !

; Vf �r~Cf � eÿ1
f r � ð~Vf

~Cf Þ

ð20a;bÞ

r � ðkmr~TmÞ � eÿ1
m r �

km
V

Z

Afm

nmf
~TmdA

 !

ð21Þ

r � ðkfr~T f Þ� eÿ1
f r �

kf
V

Z

Afm

nfm
~T fdA

 !

; ðqcpÞfvf �r~T f � eÿ1
f ðqcpÞfr � ð~vf

~T f Þ

ð22a;bÞ

Eventually, the simplified governing equations for the spatial fluc-
tuations of oxidizer concentration, fluid and solid temperature read



@~Cf

@t
þVf �r~Cf þ ~Vf �rhCf i

f ¼r � ðDfr~Cf Þÿ
eÿ1
f

V

Z

Afm

nfm �Dfr~CfdA in V f

ð23Þ

ðqcpÞm
@~Tm

@t
¼ r � ðkmr~TmÞ ÿ

eÿ1
m

V

Z

Afm

nfm � kmr~TmdA in Vm

ð24Þ

ðqcpÞf
@~T f

@t
þ ðqcpÞfVf �r~T f þ ðqcpÞf

~Vf �rhT f i
f

¼ r � ðkfr~T f Þ ÿ
eÿ1
f

V

Z

Afm

nfm � kfr~T fdA in V f ð25Þ

The associated interfacial boundary conditions are expressed as
follows

ÿnfm � Dfr~Cf ¼ nfm � DfrhCf i
f þ srxn at Afm ð26aÞ

~Tm ¼ ~T f þ hT f i
f ÿ hTmi

m at Afm ð26bÞ

nfm � kfr~T f ¼ nfm � kmr~Tm þ nfm � kmrhTmi
m

ÿ nfm � kfrhT f i
f þ srxnH at Afm ð26cÞ

In practice, we assume the closure problem to be quasi-steady, i.e.,
the time derivatives in Eqs. (23)–(25) are discarded. Dynamic clo-
sures can be formulated by introducing time convolution products
[43,44], but Davit et al. [44] showed that they can be approximated
by the quasi-steady closures after some relaxation time.

2.3. Specific treatment for the reaction rate

So far, the reaction rate srxn which depends on the interfacial
temperature and oxidizer concentration via Eq. (8) has not been
explicited. This is done in the following, by expressing it as a func-
tion of the deviations ~T f or ~Tm from the mean phase temperatures,
and eliminating them by use of the matching condition Eq. (26b).
An expression is eventually obtained, where only the concentra-
tion deviation ~Cf is involved. This mathematical treatment can
avoid the complex coupling of interface temperature and oxidizer
concentration during the resolution of closure problems, and make
it possible to obtain the analytical solutions of effective coefficients
for some simple unit cells. This is the key for the account of a non-
constant reaction rate in the upscaling procedure, which is the
main contribution of the present work.

An arbitrary function F of the state variable can be expressed by
using Taylor’s theorem for multivariate functions truncated to first
order as

FðT f ;m;Cf Þ ¼ F hT f ;mi
f ;m; hCf i

f
� �

þ T f ;m ÿ hT f ;mi
f ;m

� � @F

@T f ;m

�

�

�

�

T f ;m¼hT f ;mif ;m ;Cf¼hCf i
f

"

þðCf ÿ hCf i
f Þ
@F

@Cf

�

�

�

�

T f ;m¼hT f ;mif ;m ;Cf¼hCf i
f

#

þ � � � ð27Þ

Using the decomposition laws Eq. (14), this reads

FðT f ;m;Cf Þ¼ F hT f ;mi
f ;m;hCf i

f
� �

þ ~T f ;m

@F

@T f ;m

�

�

�

�

Tf ;m¼hT f ;mif ;m ;Cf¼hCf i
f

þ ~Cf

@F

@Cf

�

�

�

�

T f ;m¼hTf ;mif ;m ;Cf ¼hCf i
f

" #

þ�� � ð28Þ

Application of the expansion Eq. (28) to srxn as given by Eq. (8), in
terms of the deviations ~Cf and ~Tm of the interfacial conditions from
the mean oxidizer concentration and solid temperature yields

srxn ¼ A0Hce
ÿE=RhTmim hCf i

f þ ~TmA0Hc

E

R hTmi
mÿ �2

eÿE=RhTmim hCf i
f

þ ~CfA0Hce
ÿE=RhTmim þ O ~T2

m;
~C2
f

� �

ð29Þ

A similar expansion in terms of the deviation ~T f of the interfacial
temperature from hT f i

f leads to

srxn ¼ A0Hce
ÿE=RhT f i

f

hCf i
f þ ~T fA0Hc

E

R hT f i
f

� �2
eÿE=RhT f i

f

hCf i
f

þ ~CfA0Hce
ÿE=RhT f i

f

þ O ~T2
f ;
~C2
f

� �

ð30Þ

Equating Eqs. (29) and (30) while taking the matching condition Eq.
(26b) into account yields the following expression for the deviation
~Tm

~Tm ¼

E

R hT f i
fð Þ

2 e
ÿE=RhT f i

f
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Finally, substituting Eq. (31) into Eq. (29), provides an expression
for the chemical reaction rate which only depends on the concen-
tration fluctuation ~Cf , in addition to the mean phase state variables,

srxn ¼ Hcw1hCf i
f þ Hcw2

~Cf ð32aÞ

where

w1 ¼ c1A0e
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In view of the mass flux boundary condition Eq. (26a), the surface
integral in Eq. (23) can be expressed as

1

V

Z

Afm

nfm � Dfr~CfdA ¼ ÿ
1

V

Z

Afm

srxndA ¼ ÿaV hsrxnifm ð33aÞ

where

hsrxnifm ¼ w1hHcihCf i
f þw2

1

Afm

Z

Afm

Hc
~CfdA ð33bÞ

hHci is the average of Hc over the surface Afm.
Even if Hc varies continuously in space, we will assume that the

active surface of a REV is either fully active or completely depleted.
It means that hHci is treated as a binary function denoted Hhci. It
could take the following values:

Hhci ¼ 0 when the surface is not active ðcarbon exhaustedÞ

Hhci ¼ 1 when the surface is active ðinitial carbon contentÞ

ð33cÞ

Then we can rewrite Eq. (33b) using Eq. (33c) to obtain the average
surface reaction rate



hsrxnifm ¼ Hhci w1hCf i
f þw2

1

Afm

Z

Afm

~CfdA

" #

ð33dÞ

Furthermore, the two surface integrals in Eqs. (24) and (25) can be
related by exploiting the heat flux boundary condition Eq. (26c)
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nfm �kmr~TmdAþaVqfm

ð34Þ

where

qfm ¼ hsrxnifmH

At this stage, the non-linear contributions of the fluctuating parts of
the state variables have been eliminated from the governing equa-
tions. The upscaled transport equations, in terms of the locally
phase averaged variables read
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f
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ð35Þ
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They involve macroscale effective coefficients Kab and uab (with a,
b =m or f), nm, nf , Deff , uC and h, which can be determined by solving
closure problems as described in Appendix B.It is important to note
that the effective reaction rate in Eqs. (35)–(38) is the average reac-
tion rate multiplied by the effective surface aV . The effective coeffi-
cients nm and nf in Eqs. (37) and (38) are the volumetric repartition
coefficients for the heat produced at the interface between the two
phases.

3. Application to stratified porous media

This section is devoted to the application of the foregoing theo-
retical developments to a particular model of porous medium. We
consider a medium made of periodic cells and calculate the
effective parameters by solving the associated closure problems
reported in Appendix B over this representative part of the
medium. This assumption has been extensively discussed in
several papers, but readers could refer to Chrysikopoulos et al.
[45] or Eames and Bush [46]. It does not mean that the medium
is seen as physically periodic but that the representative unit cell
allows capturing the essential physical features of the involved
processes.

A variety of unit-cell geometries have been used in the litera-
ture. Souto and Moyne [47] studied the dispersion tensor of two-
dimensional periodic porous media is investigated numerically
using the volume averaging method to calculate the dispersion
tensor for ordered and disordered media. Yang and Nakayama
[48] investigated analytically the effects of tortuosity and disper-
sion on the effective thermal conductivity of fluid-saturated porous
media based on a 3D unit cell model, which embraces rectangular

solids with connecting arms in an in-line arrangement. Kuwahara
et al. [49] conducted exhaustive numerical experiments with
in-line arrangement of square rods in order to determine the
convective heat-transfer coefficient. Moreover, a numerical deter-
mination was performed by de Lemos and Saito [50] in cellular
materials, in which the solid matrix is treated as an ordered array
of elliptic rods. In the present study, however, the unit cell geom-
etry shown in Fig. 2 is chosen to derive the effective properties.
Furthermore, periodic boundary conditions are imposed on the
unit-cell model, which can provide excellent agreement between
theory and experiment for disordered systems, as claimed by
Nozad et al. [51]. Recently, Yang and Debenest [32] studied on
the microscale the combustion in a solid/gas system using the
same geometry. It is important to note that microscale simulations
are time-consuming, even for these simple geometries, as stated
also by Debenest et al. [15].

In this geometry, analytical solutions for the transport coeffi-
cients in the energy equations Eqs. (37) and (38) can be readily
found [52,28] and we simply report below the resulting macro-
scopic transport coefficients.

i � ðKmmÞ � i=kf ¼ emkm=kf ð39aÞ
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kme2m

ef km þ emkf
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Fig. 2. Unit cell of a stratified system.



nf ¼
emkf

ef km þ emkf
; nm ¼ 1ÿ

emkf
ef km þ emkf

ð39iÞ

The last two terms describe the repartition of the heat between the
two phases. They depend both on porosity and local scale conduc-
tivities. When dealing with solid/gas systems like rock/air, there is
a strong contrast of conductivity between the two phases and so
most of the heat produced by the reaction will be contained in
the solid phase.

The original contribution of this study is the derivation of
analytical solutions for the transport coefficients in the oxidizer
transport equation in the stratified system, which read

i � ðDeff Þ � i=Df ¼ ef 1þ
1=2 ef c2u2

ÿ �2
þ11ef c2u2þ20ÿ35c2u2=PeD

350 ef c2u2þ2
ÿ �
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ÿ � e2f Pe

2
D

 !

ð40aÞ

i � ðDeff Þ � j=Df ¼
e3f c2u

2

10ðef c2u2 þ 2Þðef c2u2 þ 6Þ
PeD ð40bÞ

j � ðDeff Þ � j=Df ¼ ef ð40cÞ

ðuCÞ � iðlf þ lmÞ=Df ¼ ÿ
e2f c1u

2

5ðef c2u2 þ 6Þ
PeD ð40dÞ

where the cell Thiele modulus u is defined as

u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A0eÿE=RhTmim ðlf þ lmÞ

Df

s

ð41Þ

Note that the dispersion coefficient in Eq. (40a) is similar to the Tay-
lor–Aris dispersion coefficient in the case of planar Poiseuille flow,
which is a function of the square of the cell Péclet number PeD.
However, the dispersion coefficient obtained here also depends on
the cell Thiele modulus u because of the heterogeneous chemical
reaction. Valdés-Parada et al. [26] investigated the dependence of
the effective diffusivity on the cell Thiele modulus for four types
of microscopic structures. The results showed that the microstruc-
tures has only a moderate influence on the effective diffusivity for
u < 1. Whitaker [22] claimed that the convective transport term
in Eq. (40d) generated by the heterogeneous reaction can be
neglected in the case of diffusion in porous media. But, the contri-
bution of this term to convective transport could be significant
when convection itself is important, as pointed out by Paine et al.
[53]. Moreover, the two surface-integral terms in Eq. (A5) which
relates the mean reaction rate to the local average state variables
are obtained as follows

ðCbÞ � i=ðlf þ lmÞ ¼
ef e2f c2u

2PeD þ 2efPeD þ 30
� �

10 ef c2u2 þ 2
ÿ �

ef c2u2 þ 6
ÿ � ð42aÞ

ðCbÞ � j=ðlf þ lmÞ ¼
3ef

ef c2u2 þ 2
ÿ �

ef c2u2 þ 6
ÿ � ð42bÞ

Cs ¼ ÿ
ef c1u2

ef c2u2 þ 6
ÿ � ð42cÞ

The transport coefficients which are not listed in the above are
equal to zero. In these equations, the two cell Péclet numbers
shown in Eqs. (39) and (40) are defined as:

PeD ¼
hv f i

f ðlf þ lmÞ

DO2

ð43aÞ

PeT ¼ ðqcpÞf
hv f i

f ðlf þ lmÞ

kf
ð43bÞ

4. Comparison of the macroscopic model with microscopic DNS

calculations

4.1. Geometrical and physical setting

A comparison of the predictions of the present upscaled model
with a direct numerical simulation (DNS) on the microscopic scale
is conducted here, in order to validate the approach developed in
this study. The physical geometry of the microscopic model is illus-
trated in Fig. 3. The system of equations to be solved is given by
Eqs. (1)–(12). We base our analysis on the results of a previous
study conducted by Yang and Debenest [32]. Moreover, the proper-
ties for oxygen and char combustion in the direct numerical simu-
lation are presented in Table 1. Note that the activation energy is
assumed to be constant. It has been pointed out by Tesner [54] that
activation energy depends on temperature. However, Field et al.
[55] showed that a constant activation energy for carbon oxidation
is observed if temperature does not exceed 1650 K. Moreover, the
channel width W is set to be 1 � 10ÿ3 m, which is within the range
of the experimental samples used by Fadaei [56].

A general analytical solution exists in a simplified 1D approach
as illustrated in Debenest et al. [14]. A set of governing parameters,
which has been defined in Debenest et al. [14,15] and Yang and
Debenest [32], is briefly recalled here. Let us consider in a first step
a one-dimensional situation in a very long domain. We suppose
that the smouldering process has already run for an arbitrarily long
time and that a steady regime has been reached. A reaction zone
propagates with a velocity UF , which defines the positive orienta-
tion of the x-axis. According to Fig. 3, we denote by ef and em the
volume fractions of the fluid and solid phases, with volumetric
heat capacities ðqcpÞf and ðqcpÞm. The gas flows in the open channel
with a mean intersticial velocity hv f i

f . All the state variables are
functions of the position, but, because of the stationary hypothesis,
the temperature and the concentrations of the chemical species
tend toward constant values on either side as x tends to ±1. Hence,
we introduce the two corresponding temperatures Tÿ1 and Tþ1,
the oxidizer concentrations Cf ;in at the inlet and Cf ;in ÿ DCf

¼ Cf ;out; and the initial fuel concentrations Cc;in and
DCc ¼ Cc;in ÿ Cc;out . The subscript in refers to inlet concentrations
and the subscript out refers to outlet concentrations. The adiabatic
temperature Tad can be obtained from the ratio of the volumetric
heat release to the volumetric heat capacity

Tad ¼
emDCcH

ef ðqcpÞf þ emðqcpÞm

� � ð44Þ

The front velocity can be deduced from a global mass balance based
on simple volumetric and stoichiometric arguments,

UF ¼
efDCf

emDCc

hv f i
f ð45Þ

A global heat balance implies that

ðef ðqcpÞf þ emðqcpÞmÞ
accumulation

ðTÿ1 ÿ Tþ1Þ þ ef ðqcpÞf hv f i
f

convection

¼ emDCcHUF
source term

ð46Þ

The temperature increment across the reaction front can be
obtained from Eq. (46) as

ðTÿ1 ÿ Tþ1Þ ¼
Tad

Dÿ 1
with D ¼

ef ðqcpÞf hv f i
f

ef ðqcpÞf þ emðqcpÞm

� �

UF

ð47Þ

We can then deduce that two regimes can exist, with a hot region
upstream or downstream of the front region. They are called the
reaction-leading and reaction-trailing cases by Schult et al. [5],



respectively. For D > 1, most of the heat produced in the reaction
zone passes through the front and a plateau temperature Tp is then
reached on the downstream side. The regime with D < 1 leads to a
plateau temperature upstream of the front zone. Tp can be deduced
from Eq. (47) and is expressed as follows

Tp ¼
Tad

jDÿ 1j
ð48Þ

A detailed description of the analytical developments can be found
in Debenest et al. [14], but the main results have been summarized
here in order to provide a background to the readers. The last
important parameter is the thermal Péclet number PeF;s based on
the combustion front velocity and defined as follows:

PeF;s ¼ ðqcpÞm
UFW

km
ð49Þ

As shown by Debenest et al. [14], increasing PeF;s increases the local
thermal disequilibrium between the solid and fluid phases in the
reaction zone.

Since all the effective properties in the upscaled model are
determined, the macroscale numerical simulations are performed
over a 1D geometry with the same length, initial, and boundary
conditions as those of the DNS geometry. The initial and boundary
conditions are set as follows:

t ¼ 0 : hT f i
f ¼ hTmi

m ¼ 500 K; hCf i
f ¼ 0 mol=m3;

hCci
m ¼ 1954:4 mol=m3

inlet : hT f i
f ¼500K; dhTmi

m=dx¼0;

hCf i
f ¼4:188ðD¼0:1Þ;0:8376 ðD¼0:5Þ; 0:2792 ðD¼1:5Þmol=m3

outlet : dhT f i
f =dx ¼ 0; dhTmi

m=dx; dhCf i
f =dx ¼ 0

It should be mentioned that, as shown in the inlet boundary
conditions, the different values of D are obtained by varying the

inlet oxidizer concentration while the fuel content remains con-
stant. The adiabatic temperature Tad can be easily deduced from
Eq. (44) and is found equal to 455.8 K.

4.2. Results

The upscaled model is solved by using the COMSOL Multiphys-
icsÒ package. The convergence criteria are set so that the residuals
of all equations are less than 10ÿ7. Furthermore, a sensitivity anal-
ysis was conducted in order to guarantee that all of the results in
the present study are independent of the grid step size.

First, the combustion front velocity predicted by the macroscale
model is compared in Table 2 with those from the analytical for-
mulation and from the DNS, for various values of PeD and D. It is
seen that the present upscaled model is capable of predicting the
location of the combustion front, which is defined as the abscissa
value where the fuel content remaining in the solid phase is half
of its initial value. The reaction zone can be broad, as shown by
Debenest et al. [14], and this arbitrary definition of its position is
chosen for the purpose of comparing the different approaches.

Since the prediction error of the combustion front velocity is
close to zero, it can be ignored and the subsequent comparisons
are performed at identical combustion front position rather than
identical time.

Fig. 3. Physical geometry for direct numerical simulation (DNS).

Table 1

Properties in the direct numerical simulations (DNS).

qm 2100 kg/m3 qf 0.3 kg/m3

ðcpÞm 800 J/kg K ðcpÞf 1200 J/kg K

km 1 W/m K kf 0.025 W/m K

H 391.9 kJ/mol Df 2 � 10ÿ4 m2/s

A0 10 m/s E 8314 J/mol

W 1 � 10ÿ3 m L 0.3 m

Table 2

Comparison of combustion front velocities.

PeF;s Analytical DNS Error DNS/analytical (%) Macro Error macro/analytical (%)

Combustion front velocity (m/s)

PeD = 2.5, D = 0.1 0.48 2.85 � 10ÿ4 2.88 � 10ÿ4 1.05 2.857 � 10ÿ4 0.24

PeD = 25, D = 0.1 4.8 2.85 � 10ÿ3 2.79 � 10ÿ3 2.10 2.840 � 10ÿ3 0.35

PeD = 25, D = 0.5 0.96 5.7 � 10ÿ4 5.66 � 10ÿ4 0.70 5.684 � 10ÿ4 0.28

PeD = 25, D = 1.5 0.32 1.9 � 10ÿ4 1.9 � 10ÿ4 |�0 1.896 � 10ÿ4 0.21

Fig. 4. Concentration profiles of the DNS and macroscale models in the direction of

the combustion front propagation for PeD ¼ 2:5 and D ¼ 0:1.



Fig. 5. Temperature profiles of the DNS and macroscale models in the direction of

the combustion front propagation for PeD ¼ 2:5 and D ¼ 0:1.

Fig. 6. Concentration profiles of the DNS and macroscale models in the direction of

the combustion front propagation for PeD ¼ 25 and D ¼ 0:1.

Fig. 7. Temperature profiles of the DNS and macroscale models in the direction of

the combustion front propagation for PeD ¼ 25 and D ¼ 0:1.

Fig. 8. Concentration profiles of the DNS and macroscale models in the direction of

the combustion front propagation for PeD ¼ 25 and D ¼ 0:5.

Fig. 9. Temperature profiles of the DNS and macroscale models in the direction of

the combustion front propagation for PeD ¼ 25 and D ¼ 0:5.

Fig. 10. Concentration profiles of the DNS and macroscale models in the direction

of the combustion front propagation for PeD ¼ 25 and D ¼ 1:5.



The oxidizer concentration and temperature profiles in both the
fluid and solid phases based on the macroscale model and DNS are
plotted in Figs. 4 and 5 in the case of PeD ¼ 2:5 and D ¼ 0:1. The
comparisons show that the predictions of DNS and upscaled model
are in good agreements. Moreover, the temperature difference
between the solid and fluid phases is so small that the local ther-
mal equilibrium assumption is valid in this case. It is important
to notice that the predicted plateau temperature Tp is obtained,

which gives an important indication of the ability of the upscaling
procedure to ensure a good representation of the complex and cou-
pled phenomena.

In a first variant, PeD is increased while keeping D constant.
Comparisons of the fluid concentration and temperature profiles
from the macroscale model and DNS are illustrated in Figs. 6 and
7 for the case of PeD ¼ 25 and D ¼ 0:1. The overall agreement is
good, although slight discrepancies are visible. In the front region,
the upscaled approach predicts the correct level of temperature,
and the peak (above plateau temperature) is reproduced. The local
thermal equilibrium assumption is invalid in this case in view of
the significant temperature difference between the fluid and solid
phases observed in Fig. 7. This emphasizes the necessity to use a
two-temperature model such as the one developed here. The
two-equation model provides a good approximation of the local
scale problem because it captures more characteristic times. This
is a necessary condition to reach accurate predictions of the reac-
tion rate, which depends on both the temperature level and oxi-
dizer concentration.

The increase of the Péclet number PeD with constant D ¼ 0:1
causes the rise of PeF;s (see Table 2), and accordingly, differences
between the solid and fluid phase temperatures are becoming
noticeable, which indicates a thermal disequilibrium. The estima-
tion of interfacial temperature deviation is required in the upscal-
ing process, in order to correctly predict the effective reaction rate.
For large values of PeF;s, the neglection of two high order terms in
Eqs. (29), (30) during the estimation of the spatial deviation of the
temperature of the solid phase at the interface would increase the
prediction error of the effective reaction rate. This explains the lar-
ger discrepancy between the DNS and upscaled model observed in
Fig. 7 than in Fig. 5. However, this discrepancy remains moderate

Fig. 11. Temperature profiles of the DNS and macroscale models in the direction of

the combustion front propagation for PeD ¼ 25 and D ¼ 1:5.

Fig. 12. Interfacial temperatures obtained using DNS compared to the average solid temperatures for the 4 cases.



and the macroscale model mimics the DNS results both in terms of
temperature levels and form of the profiles.

In the next variants, the value of D is increased while keeping
PeD ¼ 25. The oxidizer concentration and temperature profiles
from the macroscale model and from DNS are presented in Figs. 8
and 9 for the case of PeD ¼ 25 and D ¼ 0:5. The oxidizer concentra-
tion from the macroscale model matches fairly well with that of
DNS (Fig. 8). Moreover, the macroscale model reproduces with
accuracy the temperatures obtained by DNS. The plateau tempera-
ture is barely reached when the reaction front has traveled 160W.
The upscaled model demonstrates here its ability to accurately
describe transient regimes and capture the local scale dynamics.

All the foregoing simulations were conducted with D < 1 and
accordingly, most of the heat produced at the interface between
the solid and fluid phases is left upstream of the reaction zone,
as can be seen in Figs. 5, 7 and 9. This is called a reaction-leading
structure. The last test addresses the case of D > 1. The fluid con-
centration and temperature profiles from the macroscale model
and DNS are plotted in Figs. 10 and 11 for PeD ¼ 25 and D ¼ 1:5.
Note that most of the heat released by the heterogeneous reaction
is taken away downstream (Fig. 11), contrary to the previous
observations for D < 1. This is called a reaction-trailing structure
(see Debenest et al. [14]). The plateau temperature appears down-
stream rather than upstream. A good agreement between the
results of DNS and upscaling model is obtained. In the front region,
both models predict a peak of the solid temperature, The forms of
the temperature profiles are exactly the same, which indicates that
the effective parameters, and mainly the effective conduction for
all phases, are acceptable with respect to the upscaling procedure.

In summary, in view of the comparisons between the micro-
scale model and macroscale approach performed for various PeD
and D in this section, several important facts have been noted:

– The combustion front velocity is well predicted by the upscaled
approach, when compared to both analytical solution and
microscale simulations. In all cases, errors are limited to 0.4%
in the whole range of parameters covered by the tests.

– In all cases, the temperatures profiles from the microscale and
macroscale approaches match fairly well. The most significant
errors occur when PeF;s is much larger than unity (second case
in Table 2), suggesting that the amplitude of the local scale dis-
equilibrium has an effect on the estimations of effective quanti-
ties. At the local scale, the values of temperature on the fluid/
solid interface are those used to calculate the reaction rate. In
Fig. 12, we compared those local scale temperature with the
mean interfacial solid temperature. We observe a good agree-
ment in all cases, except for PeF;s greater than one. Then, this
suggests to use local non-equilibrium model.

Possible avenues to improve the accuracy of the upscaled model
might consist in (1) reconsider the simplifications made during the
upscaling procedure; (2) include higher-order terms in the expan-
sion for the heterogeneous reaction rate in Eq. (29), which would
introduce some other closure variables.

5. Conclusions

In this study, we have presented the coupled system of equa-
tions describing solid–gas combustion at the local scale in porous
media, in order to explore the possibility of deriving a correspond-
ing set of equations on the Darcy scale. The main challenge was to
express the local scale boundary condition for the heat and mass
transport problems. This was achieved by using a first order Tay-
lor’s expansion theorem for multivariate functions. Then, a macro-
scale model in a general non-equilibrium form was obtained in the
framework of volume-averaging theory. A set of closure variables

have been chosen, and the associated additional closure problems
have been written.

For the purpose of determining the closure variables, a simple
unit-cell model was chosen, namely the stratified system. In this
simple geometry, all the effective properties could be calculated
analytically, i.e., effective dispersion tensor, effective conduction
tensor, and effective reaction rate.

Then, the predictions of the macroscale formulation have been
compared to those of direct microscale simulations and to analyti-
cal results stemming from global balance arguments, in various
conditions characterized by the Péclet number and the parameter
D which determines the combustion regime. The front velocities
are in perfect agreement. The concentration and temperature pro-
files have been confronted. Their overall features are correctly pre-
dicted and the expected values are nearly obtained in all cases, even
when D is greater than one. Noticeable errors in the temperature
profiles occur only in situations of strong local thermal disequilib-
rium, associated with large values of the thermal Péclet number.

An avenue for their correction is the improvement of the linear-
ization procedure in the treatment of the heterogeneous reaction
rate governed by Arrhenius law, by including higher-order terms.
This would require in turn the solution of additional closure prob-
lems for the determination of new closure variables. Another pos-
sibility is the implementation of a mixed model, coupling
macroscale equations – for instance, for describing transport in
the fluid phase – with a microscale equation in the other phase.
This mixed approach would be similar to the one of Golfier et al.
[57]. The other advantage of this method could be a correct treat-
ment of the Arrhenius function, in its original form at the local
scale without any linearization.
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Appendix A. Radiative heat transfers

Recent studies such as Leroy et al. [29] or Yang et al. [30]
focused on the description of radiative heat transfers in porous
media coupled with conduction and convection. Under certain cir-
cumstances, they can be described by the classical Rosseland
approximation, whereby the radiative transfers are incorporated
in a macroscopic description in the form of an equivalent radiative
conductivity coefficient (see e.g., Sano et al. [31]). During a com-
bustion process, these transfers can be expected to be particularly
intense in the hot region where the exothermic reactions take
place and therefore to influence the smouldering process. They
can for instance reduce the temperature in the hotest spots, con-
tribute to spread the heat released by the reaction over a wider
region, and thereby cause the reaction front to thicken.

These effects are not included in the present modelisation, in
view of the ranges of temperature and pore sizes. Note first that
because of heat storage in the solid phase, the temperatures
involved in smoldering processes are smaller than in open flames.
On the other hand, the heat transfer between solid surfaces sepa-
rated by a distance d is of the order of 4r T3DT, i.e., the equivalent
conductivity krad is O(4r d T3). If it is much smaller than the ther-
mal conductivity of usual mineral materials (km � 1W/m K) or
gases (kf � 0.1 W/m K) in this range of temperature, the contribu-
tion of radiative transfers is small and can be neglected in a first
approach. In view of Eq. (48), the criterion for the validity of this
approximation reads

krad � 4rd T in þ
Tad

jDÿ 1j

� �3

� minðkf ; kmÞ � 0:1 W=m K



Note that the prediction Eq. (48) of the peak temperature
results from global balance arguments and does not depend on
the microstructure geometry. Therefore, this criterion is not
restricted to stratified media. It involves a typical pore size d, the
initial temperature Tin, and the parameters Tad andDwhich depend
on the solid and gas compositions and heat capacities. All these
quantities can be estimated and the criterion can be checked a pri-

ori. Alternatively, it can be checked a posteriori in view of the
actual maximal temperature obtained in the simulations. It can
then be assessed on a per case basis whether the dimensionless
results in the present work can be safely applied with dimensional
values of the parameters. The influence of D is particularly crucial,
since D? 1 corresponds to the superadiabatic conditions where
temperature raises to very large values and radiative transfers
are of primary importance.

For instance, with a typical pore size of d � 0.1 mm, Tin = 500 K,
Tad = 456 K and D = 0.1 (Figs. 5 and 7), the temperature does not
exceed 1000 K, krad � 0.02 W/m K and the criterion is reasonably
satisfied. Conversely, T reaches 1400 K if D = 0.5 or 1.5 (Figs. 9
and 11), krad � 0.06 W/m K and the approximation is very ques-
tionable. However, with the same materials (Tad = 456 K and
D = 0.5 or 1.5) but a lower initial temperature Tin = 300 K and a
tighter medium with d � 0.05 mm, krad is again �0.02 W/m K.

Note that the arbitrary choice of the aperture W = 1 mm
adopted in the simulations has no influence on the dimensionless
results (assuming that radiative transfers can indeed be neglected).
It is only a convenience for an easier comparison with the results of
Fadaei [56]. Fadaei did not either consider radiation in his simula-
tions, but in spite of a lower temperature range which never
exceeds 500 °C in his simulations, the large aperture W = 1 mm
causes krad to reach �0.10 W/m K, which is of the order of the
gas thermal conductivity and therefore probably plays a significant
role.

Appendix B. Closure problems

This appendix is devoted to the resolution of closure problems,
and then, the effective properties determination. According to
Quintard and Whitaker [27], this form of the closure problem sug-
gests the following representations for ~Cf , ~Tm and ~T f . We will use
the assumption that the REV is either fully active or depleted. All
the closure problems written here are expressed using Hhci = 1.

~Cf ¼ bC �rhCf i
f þ sChCf i

f þ fC ðA1Þ

~Tm ¼ bmm �rhTmi
m þ bmf �rhT f i

f þ sm hTmi
m ÿ hT f i

f
� �

þ rmqfm þ fm ðA2Þ

~T f ¼ bfm �rhTmi
m þ bff �rhT f i

f ÿ sf hT f i
f ÿ hTmi

m
� �

þ rfqfm þ ff

ðA3Þ

where fC , fm and ff are arbitrary functions, bC , bmm, bmf , bfm, bff , sC ,
sm and sf are known as the closure variables. Moreover, rm and rf are
the specific closure variables for the heterogeneous chemical reac-
tion case, which determine how the heterogeneous heat source is
distributed between the solid and fluid phases.

In order to evaluate the surface integral in Eq. (33d), Eq. (A1) is
substituted into Eq. (33d) to obtain

hsrxnifm ¼ w1H ch ihCf i
f þ H ch i CshCf i

f þ CbrhCf i
f

� �

w2 ðA4Þ

where

Cs ¼
1

Afm

Z

Afm

sCdA and Cb ¼
1

Afm

Z

Afm

bCdA ðA5Þ

Note that hsrxnifm is the effective heterogeneous reaction rate, which
embraces the effects of two surface integrals of closure variables.
Valdés-Parada et al. [26] also studied the effect of surface integral
of closure variable on the effective heterogeneous rate coefficient
with the consideration of diffusion and found that the effective het-
erogeneous rate coefficient decreases with the rise of cell Thiele
modulus, and has a weak and moderate dependency with the
pore-scale structure and porosity, respectively.

Problem 1. Substitution of Eqs. (A1)–(A3) into Eqs. (23)–(25) leads
to the governing differential equations of closure variables. The
first closure problem is associated with rhCf i

f and takes the
following form.

Vf �rbC þ ~Vf ¼ Dfr
2bC þ eÿ1

f aVw2Cb in V f ðA6Þ

ÿnfm �rbC ¼ nfm þ bCw2=Df ; at Afm ðA7Þ

Periodicity : bCðr þ ‘iÞ ¼ bCðrÞ; i ¼ 1;2;3 ðA8Þ

Average : hbCi
m ¼ 0 ðA9Þ

Problem 2. The term hCf i
f is also a source in the closure problem

for ~Cf . The boundary value problem associated with the closure
variable for hCf i

f is given by

Vf �rsC ¼ Dfr
2sC þ eÿ1

f aVw1 þ eÿ1
f aVw2Cs in V f ðA10Þ

ÿnfm �rsC ¼ w1=Df þ sCw2=Df at Afm ðA11Þ

Periodicity : sCðr þ ‘iÞ ¼ sCðrÞ; i ¼ 1;2;3 ðA12Þ

Average : hsCi
f ¼ 0 ðA13Þ

Problem 3. In what follows, the first closure problem for the tem-
peratures is associated with rhTmi

m and takes the form

kmr
2bmm ¼ eÿ1

m Cmm in Vm ðA14Þ

bmm ¼ bfm at Afm ðA15Þ

nmf � kmrbmm ¼ nmf � kfrbfm ÿ nmfkm at Afm ðA16Þ

ðqcpÞfVf �rbfm ¼ kfr
2bfm þ eÿ1

f Cmm in V f ðA17Þ

Periodicity : bmmðr þ ‘iÞ ¼ bmmðrÞ;

bfmðr þ ‘iÞ ¼ bfmðrÞ; i ¼ 1;2;3 ðA18Þ

Average : hbmmi
m ¼ 0; hbfmi

f ¼ 0 ðA19Þ

where Cmm is the unknown integral represented by

Cmm ¼
1

V

Z

Amf

nmf � kmrbmmdA ðA20Þ

A detailed description of the evaluation of this unknown integral is
given by Quintard et al. [50].

Problem 4. The termrhT f i
f is also a source in the closure problem

for ~Tm and ~T f . The boundary value problem associated with the
closure variable for rhT f i

f is given by

kmr
2bmf ¼ eÿ1

m Cmf in Vm ðA21Þ

bmf ¼ bff at Afm ðA22Þ



nmf � kmrbmf ¼ nmf � kfrbff þ nmfkf at Afm ðA23Þ

ðqcpÞf
~Vf þ ðqcpÞfVf �rbff ¼ kfr

2bff þ eÿ1
f Cmf in V f ðA24Þ

Periodicity : bmf ðr þ ‘iÞ ¼ bmf ðrÞ; bff ðr þ ‘iÞ ¼ bff ðrÞ; i ¼ 1;2;3

ðA25Þ

Average : hbmf i
m ¼ 0; hbff i

f ¼ 0 ðA26Þ

where Cmf is the unknown integral represented by

Cmf ¼
1

V

Z

Amf

nmf � kmrbmfdA ðA27Þ

Problem 5. Moving on to the source represented by hTmi
m ÿ hT f i

f

in Eq. (26b), we construct the following boundary problem for
the closure scalars sm and sf .

0 ¼ kmr
2sm þ eÿ1

m ðaVhÞ in Vm ðA28Þ

sf ¼ sm þ 1 at Afm ðA29Þ

nmf � kmrsm ¼ nmf � kfrsf at Afm ðA30Þ

ðqcpÞfVf �rsf ¼ kfr
2sf ÿ eÿ1

f ðavhÞ in V f ðA31Þ

Periodicity : smðrþ ‘iÞ ¼ smðrÞ; sf ðrþ ‘iÞ ¼ sf ðrÞ; i ¼ 1;2;3

ðA32Þ

Average : hsmi
m ¼ 0; hsf i

f ¼ 0 ðA33Þ

In this closure problem, the undetermined constant is represented
by

aVh ¼
1

V

Z

Amf

nfm � kmrsmdA ðA34Þ

Problem 6. Therefore, the focus in the following part is to deter-
mine how the heterogeneous heat source is distributed between
the matrix and fracture. The corresponding closure problem takes
the form

kmr
2rm ¼ aveÿ1

m nm in Vm ðA35Þ

rf ¼ rm at Afm ðA36Þ

nfm � kfrrf ¼ nfm � kmrrm þ 1 at Afm ðA37Þ

ðqcpÞfVf �rrf ¼ kfr
2rf ÿ ave

ÿ1
f nf in V f ðA38Þ

Periodicity : rmðrþ ‘iÞ ¼ rmðrÞ; rf ðrþ ‘iÞ ¼ rf ðrÞ; i ¼ 1;2;3

ðA39Þ

Average : hrmi
m ¼ 0; hrf i

f ¼ 0 ðA40Þ

where nm and nf are given by

nm ¼
1

Amf

Z

Amf

nmf � kmrrmdA; nf ¼
1

Afm

Z

Afm

nfm � kfrrfdA ðA41Þ

According to the boundary condition Eq. (A37), we can get

nf þ nm ¼ 1 ðA42Þ

After determining the terms associated with the spatial deviation
temperatures, we can obtain the closed form of macroscopic gov-
erning equations given by

ef
@hCf i

f

@t
þ ef hVf i

f �rhCf i
f ¼ r � Deff �rhCf i

f
� �

þr � uChCf i
f

� �

ÿ aV hsrxnifm ðA43Þ

for the concentration transport equation in the fluid phase, and

emðqcpÞm
@hTmi

m

@t
¼ r � Kmm �rhTmi

m þ Kmf �rhT f i
f

� �

þ umm �rhTmi
m þ umf �rhT f i

f

ÿ aVh hTmi
m ÿ hT f i

f
� �

þ aVnmqfm ðA44Þ

for the energy equation in the solid phase, and

ef ðqcpÞf
@hT f i

f

@t
þ ef qcp

ÿ �

f
hVf i

f �rhT f i
f

¼ r � Kff �rhT f i
f þ Kfm �rhTmi

m
� �

þ ufm �rhTmi
m

þ uff �rhT f i
f þ aVh hTmi

m ÿ hT f i
f

� �

þ aVnfqfm ðA45Þ

for the energy equation in the fluid phase. Note that the transport
coefficients are defined by

Deff ¼ efDf Iþ
Df

V

Z

Amf

nfmbCdAÿ ~VfbC

D E

ðA46Þ

Kmm ¼ emkmIþ
km
V

Z

Amf

nmfbmmdA ðA47Þ

Kmf ¼
km
V

Z

Amf

nmfbmfdA ðA48Þ

Kff ¼ ef kf Iþ
kf
V

Z

Amf

nfmbffdAÿ ðqcpÞf
~Vfbff

D E

ðA49Þ

Kfm ¼
kf
V

Z

Amf

nfmbfmdAÿ ðqcpÞf
~Vfbfm

D E

ðA50Þ

In addition, the heat transfer coefficient is given by

avh ¼
1

V

Z

Amf

nfm � kmrsmdA ðA50Þ

The five non-traditional convective transport terms in Eqs. (A43)–
(A45) depend on the coefficients uC , umm, umf , ufm and uff that are
determined by

uC ¼
Df

V

Z

Amf

nfmsCdAÿ ~Vf sC
D E

ðA51Þ

umm ¼
1

V

Z

Amf

nmf � kmrbmmdAþ
km
V

Z

Amf

nmf smdA ðA52Þ

umf ¼
1

V

Z

Amf

nmf � kmrbmfdAÿ
km
V

Z

Amf

nmf smdA ðA53Þ

ufm ¼
1

V

Z

Amf

nfm � kfrbfmdAþ
kf
V

Z

Amf

nfmsfdA

ÿ ðqcpÞf
~Vf sf
D E

ðA54Þ

uff ¼
1

V

Z

Amf

nfm � kfrbffdAÿ
kf
V

Z

Amf

nfmsfdAþ ðqcpÞf
~Vf sf
D E

ðA55Þ
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[37] R. Žajdlík, L’. Jelemenský, B. Remiarová, J. Markoš, Experimental and modelling
investigations of single coal particle combustion, Chem. Eng. Sci. 56 (2001)
1355–1361.

[38] J. Bear, Dynamics of Fluids in Porous Media, Elsevier, New York, 1972.
[39] W.G. Gray, A derivation of the equations for multi-phase transport, Chem. Eng.

Sci. 30 (2) (1975) 229–233.
[40] E. Sanchez-Palencia, On the asymptotics of the fluid flow past an array of fixed

obstacles, Int. J. Eng. Sci. 20 (12) (1982) 1291–1301.
[41] S. Whitaker, Flow in porous media: a theoretical derivation of Darcy’s law,

Transp. Porous Media 1 (1) (1986) 3–35.
[42] D. Lasseux, M. Quintard, S. Whitaker, Determination of permeability tensors

for two-phase flow in homogeneous porous media: theory, Transp. Porous
Media 24 (2) (1996) 107–137.

[43] C. Moyne, Two-equation model for a diffusive process in porous media using
the volume averaging method with an unsteady-state closure, Adv. Water
Resour. 20 (2) (1997) 63–76.

[44] Y. Davit, B.D. Wood, G. Debenest, M. Quintard, Correspondence between one-
and two-equation models for solute transport in two-region heterogeneous
porous media, Transp. Porous Media 95 (1) (2012) 213–238.

[45] C.V. Chrysikopoulos, P.K. Kitanidis, P.V. Roberts, Generalized Taylor–Aris
moment analysis of the transport of sorbing solutes through porous media
with spatially-periodic retardation factor, Transp. Porous Media 7 (2) (1992)
163–185.

[46] I. Eames, J.W.M. Bush, Longitudinal dispersion by bodies fixed in a potential
flow, Proc. R. Soc. A Math. Phys. Eng. Sci. 455 (1990) (1999) 3665–3686.

[47] H.P.A. Souto, C. Moyne, Dispersion in two-dimensional periodic porous media,
Part II: Dispersion tensor, Phys. Fluids 9 (8) (1997) 2253–2263.

[48] C. Yang, A. Nakayama, A synthesis of tortuosity and dispersion in effective
thermal conductivity of porous media, Int. J. Heat Mass Transfer 53 (15) (2010)
3222–3230.

[49] F. Kuwahara, M. Shirota, A. Nakayama, A numerical study of interfacial
convective heat transfer coefficient in two-energy equation model for
convection in porous media, Int. J. Heat Mass Transfer 44 (6) (2001) 1153–
1159.

[50] M.J.S. de Lemos, M.B. Saito, Heat transfer coefficient for cellular materials
modelled as an array of elliptic rods, Adv. Eng. Mater. 11 (10) (2009) 837–842.

[51] I. Nozad, R.G. Carbonell, S. Whitaker, Heat conduction in multiphase systems—
I: Theory and experiment for two-phase systems, Chem. Eng. Sci. 40 (5) (1985)
843–855.

[52] M. Quintard, M. Kaviany, S. Whitaker, Two-medium treatment of heat transfer
in porous media: numerical results for effective properties, Adv. Water Resour.
20 (2) (1997) 77–94.

[53] M.A. Paine, R.G. Carbonell, S. Whitaker, Dispersion in pulsed systems—I:
Heterogenous reaction and reversible adsorption in capillary tubes, Chem. Eng.
Sci. 38 (11) (1983) 1781–1793.

[54] P.A. Tesner, The activation energy of gas reactions with solid carbon, in:
Symposium (International) on Combustion, vol. 8, (1), 1961, pp. 807–814.

[55] M.A. Field, D.W. Gill, B.B. Morgan, P.G.W. Hawskey, Combustion of Pulverized
Coal, The British Coal Utilization Research Assoc., Leatherhead, England, 1967.
pp. 413.

[56] H. Fadaei, Etude de la récupération de bruts lourds en réservoir carbonaté
fracturé par le procédé de combustion in situ (PhD Thesis), INP Toulouse, 2009.

[57] F. Golfier, M. Quintard, F. Cherblanc, B.A. Zinn, B.D. Wood, Comparison of
theory and experiment for solute transport in highly heterogeneous porous
medium, Adv. Water Resour. 30 (11) (2007) 2235–2261.


