Wavelets and functional magnetic resonance imaging of the human brain - Archive ouverte HAL
Article Dans Une Revue NeuroImage Année : 2004

Wavelets and functional magnetic resonance imaging of the human brain

Résumé

The discrete wavelet transform (DWT) is widely used for multiresolution analysis and decorrelation or "whitening" of nonstationary time series and spatial processes. Wavelets are naturally appropriate for analysis of biological data, such as functional magnetic resonance images of the human brain, which often demonstrate scale invariant or fractal properties. We provide a brief formal introduction to key properties of the DWT and review the growing literature on its application to fMRI. We focus on three applications in particular: (i) wavelet coefficient resampling or "wavestrapping" of 1-D time series, 2- to 3-D spatial maps and 4-D spatiotemporal processes; (ii) wavelet-based estimators for signal and noise parameters of time series regression models assuming the errors are fractional Gaussian noise (fGn); and (iii) wavelet shrinkage in frequentist and Bayesian frameworks to support multiresolution hypothesis testing on spatially extended statistic maps. We conclude that the wavelet domain is a rich source of new concepts and techniques to enhance the power of statistical analysis of human fMRI data.
Fichier principal
Vignette du fichier
edNIinvited-2004.pdf (16.36 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01128152 , version 1 (09-03-2015)

Identifiants

Citer

Ed Bullmore, Jalal M. Fadili, Voichita Maxim, Levent Sendur, B. Whitcher, et al.. Wavelets and functional magnetic resonance imaging of the human brain. NeuroImage, 2004, Mathematics in Brain Imaging, 23, pp.S234-249. ⟨10.1016/j.neuroimage.2004.07.012⟩. ⟨hal-01128152⟩
107 Consultations
325 Téléchargements

Altmetric

Partager

More