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This paper derives a method to estimate the structural or surface impedance matrix (or equivalently
the inverse of the structural Green’s function) for an elastic body by placing it in an encompassing
and spatially random noise field and cross-correlating pressure and normal velocity measurements
taken on its surface. A numerical experiment is presented that utilizes a cross-correlation method to
determine the structural impedance matrix for an infinite cylindrical shell excited by a spatially ran-
dom noise field. It is shown that the correlation method produces the exact analytic form of the
structural impedance matrix. Furthermore, using standard impedance formulations of the scattered
and incident pressure fields at the object surface that are based on the equivalent source method and
using this estimated structural impedance, a prediction of the scattered acoustic field at any position
outside of the object can be made for any given incident field. An example is presented for a
point (line) source near a cylindrical shell and when compared with the analytical result, excellent
agreement is found between the scattered fields at a radius close to the shell.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4828833]

PACS number(s): 43.40.Fz, 43.20.Gp, 43.40.Qi [RKS] Pages: 4401–4411

I. INTRODUCTION

The structural Green’s function describes the in vacuo
response of a structure to excitation forces applied to its sur-
face. This Green’s function or its inverse, the structural im-
pedance, can be used to predict the scattered field from the
object when placed in a fluid under any incident field condi-
tions. In this case, the loading effect of the fluid on the struc-
ture must be known and is modeled by the acoustic
impedance and the internal impedance.1 Those two quanti-
ties depend only upon the shape of the object’s surface and
the outer medium properties, and thus are independent of the
object’s structural parameters (see Fig. 1).

The acoustic and internal impedances can be deduced
using the Helmholtz integral equation (HIE),1–3 replacing
the object with a surface integral, or by the equivalent source
method (ESM), replacing the object with a surface populated
with point monopole sources.4–6 No matter what the method,
numerically deriving the scattering properties of a complex
object with a large number of internal degrees of freedom is
ultimately a very costly endeavor (see Zampolli et al. paper7

and references therein). The structural Green’s function or
structural impedance must be modeled either with an analyti-
cal formulation for structures of simple shape or otherwise
with finite element methods.4 Alternatively, measurements
of the scattered field with a more or less complete set of inci-
dent fields and a dense set of field points in an effort to
deduce the structural impedance are also performed by a
very involved procedure.8

The analytic relationship between the structural imped-
ance (compliance) of a shell/plate-like object and the scattered
field is clearly outlined by Borgiotti.9 He uses impedance con-
cepts along with a discretization of the Helmholtz integral
equation to formulate a scattering formalism. In the paper by
Gaumond,8 a method for estimating the structural impedance
matrix is introduced that estimates the surface forces by using
the measured far-field scattered pressure field and the known
incident field for cylindrical and spherical geometries through
the use of far-field T matrix operators. However, this method
is not capable of capturing the structural near-field (ks< k
where ks and k are the structural and acoustic wavelengths,
respectively) that often rapidly decays away from the surface.
The near-field is necessary to predict the scattering from
forces on or near the surface. Recently, a significant series of
papers by Bobrovnitskii1,10,11 has formulated an impedance
theory of sound scattering and further makes use of the struc-
tural (surface) impedance matrix to optimally design surface
coatings for the reduction of scattered field signatures.

In this paper, we derive a method to obtain the structural
or surface impedance matrix by placing the object in an
encompassing noise field and cross correlating pressure and
normal velocity measurements taken on its surface. Using
the standard definition of the structural impedance matrix,
we show that it can be robustly acquired by the correlation
method presented in Sec. II. In Sec. III, we present a numeri-
cal example of the correlation method to determine the struc-
tural impedance matrix for an infinite cylindrical shell. In
Sec. III C, the structural impedance matrix is derived by a nu-
merical experiment using a finite-element multi-physics calcu-
lation (COMSOL Multiphysics) to simulate the surface pressure
and normal velocity from a dense field of uncorrelated noise
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sources placed at all angles in the far-field. Cross correlations
are performed on this simulated data, and the structural imped-
ance matrix is computed. Compared to the exact solution, the
structural impedance matrix computed by cross correlation
agrees very well. In Sec. IV, we review the impedance formu-
lations (i.e., formulations with acoustic and internal impedan-
ces) that rely upon the determination of the structural
impedance to predict the scattered acoustic fields given only
the incident field. The equivalent source method is used to
derive the impedances of the incident and scattered fields at
the surface of the scatterer. Finally, using the ESM and the
structural impedance derived from the numerical experiment
presented in Sec. III, the scattered field from a point source
near the shell is predicted at a radius close to the shell.
Estimation of the scattered field shows excellent agreement
with the exact result.

II. ESTIMATING THE STRUCTURAL IMPEDANCE BY
CROSS CORRELATION

Consider a linearly elastic object with surface X excited
into vibration at a frequency x by a distribution of forces on
its surface f(x) defined as positive in the outward direction.
We limit our discussions to harmonic fields and the time
dependence e!ixt is suppressed in our analysis. The
outward-positive normal component of the vibration velocity
at the surface is defined by v(y) where x and y are vectors in
coordinate space from a common origin to X. The structural
Green’s function Gs(y, x) provides an integral relationship
between v(y) and f(x) (Refs. 12–14) on the surface of the
object when it is placed in vacuo,

vðyÞ ¼
ð

X
Gsðy; xÞf ðxÞd2x: (1)

The integral equation is discretized to form a vector/matrix
equation and then inverted to give

Zsv ¼ f; (2)

where v and f (force per unit area) are column vectors of
length N spanning the complete surface X and Zs is an N%N
matrix representing a discretized inverse of the structural

Green’s function. Zs is called the structural impedance ma-
trix and represents the impedance of the object in vacuum.
The impedance matrix Zs depends uniquely upon the elastic
properties and geometry of the object but not the external
fluid properties. It is sometimes called the dry impedance
matrix,9 the stiffness matrix,4 or the surface impedance ma-
trix.1 The forces can arise from excitation of the body due to
acoustic sources in the volume outside the object as well as
reaction forces due to mass loading from fluid on the exterior
of the surface. If the forces arise from acoustic sources and
mass loading, a pressure p, a column vector spanning the
complete surface, is generated on the surface (defined as
positive when the medium is in compression), and equation
Eq. (2) still describes the dynamics,

XN

j¼1

zljvj ¼ !pl; (3)

where the elements zlj of the structural impedance matrix Zs

connect the pressure, pl, at the lth surface node with the nor-
mal velocity, vj, at the the jth surface node. As shown in Sec.
III A, the structural impedance matrix Zs is the dry imped-
ance matrix and is independent of the mass loading from the
fluid. To estimate Zs by cross correlation, we multiply Eq.
(2) by pH to obtain the outer products

Zs½vpH' ¼ ½!ppH'; (4)

where the bracketed quantities are cross correlation, rank 1 mat-
rices and superscript H stands for the conjugate transpose.
Because the impedance matrix is independent of the ensonifica-
tion, we take the average of L realizations p1, p2,…, pL to obtain
expressions in terms of sample cross-correlation matrices

hppHi ( 1

L

XL

k¼1

pkpH
k ; hvpHi ( 1

L

XL

k¼1

vkpH
k : (5)

If we take the statistics of the ensonifying field to be
Gaussian, then it has been shown that taking L> 3N is suffi-
cient to construct a full rank, well conditioned sample cross
correlation matrix.15 Given full rank matrices, inversion is

FIG. 1. (Color online) Three impedan-
ces are required to describe the scatter-
ing problem using either the equivalent
source method or the Helmholtz inte-
gral equation: Za, Zi, and Zs, which are
the acoustic, the internal, and the struc-
tural impedances, respectively. The
acoustic and the internal impedances
characterize the vibration of the outer
fluid outstide and within the body sur-
face and thus only depend on the body
shape and the outer fluid property. The
structural impedance characterizes the
response of the elastic body in vacuum,
thus only depends on the object’s struc-
tural parameters. This paper focuses on
deriving a new method to estimate this
structural impedance.
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feasible and the impedance matrix can therefore be written
as

Zs ¼ !hppHihvpHi!1: (6)

Equation (6) suggests that we can measure the structural
impedance matrix by placing the object in a random noise
field and performing the prescribed cross correlations: On a
set of sensors, cross correlate all measured pressures with
each other and cross correlate all measured pressures with
all measured normal velocities. This formulation is akin to
the noise correlation methodology associated with extracting
Green’s functions.16–22 Typically, in the latter formulation, it
is only the imaginary part of the Green’s function that is
extracted (i.e., the Green’s function and its time-reversed
form). However, in our formulation, we have the restriction
that we are measuring the outward normal velocity, thereby
specifying a direction. In fact, because the total fields and
derivatives are at the surface nodes of the object, we must
adequately excite the object at all these points to perform a
stable inversion for the impedance matrix. Otherwise, we
could use a limited noise distribution23,24 in which only a
sector of sensors are used in a nondiffuse noise field.

Note that for a high compressibility (soft) object, the
structural impedance matrix is a zero matrix Zs¼ 0,25

whereas Eq. (6) is not defined if the surface velocity is zero
due to the inversion in Eq. (6) as happens for a rigid object.
In that latter case, the rigid object is characterized by a struc-
tural Green’s function or a mobility matrix Ys¼ 0, (inverse
of the structural impedance matrix).

III. STRUCTURAL IMPEDANCE FOR AN INFINITE
CYLINDRICAL SHELL

The correlation method for estimating the structural im-
pedance matrix of a body in a random field is demonstrated
numerically for an infinite cylindrical shell immersed in a
fluid medium and filled with a fluid. First the analytical for-
mulation of the structural impedance matrix is derived in
Sec. III A. Then we show that the correlation process of Eq.
(6) produces the same analytical expression. Finally, using a
COSMOL Multiphysics numerical simulation, the structural im-
pedance matrix is estimated following Eq. (6) and compared
to the analytical results.

A. Analytical expression of the structural impedance
matrix

We consider a body that has a circular cross section and
use a modal approach to develop the structural impedance
matrix. The external and inner radius of the shell are denoted
a and b, respectively. Using formulations from Doolittle
and €Uberall,26 the scattered pressure field from an infinite
cylindrical shell excited by a plane wave incident from an
angle h is

psðr; /; hÞ ¼ Pi

Xþ1

n¼!1
ð!iÞnRnHnðk0rÞeinð/!hÞ; (7a)

which simplifies as

psðr; /Þ ¼ Pi

Xþ1

n¼!1
inRnHnðk0rÞein/ for h ¼ p; (7b)

where Pi is the amplitude of the incident field, k0 is the
wavenumber in the fluid surrounding the shell, and r and /
represent the polar coordinates of the receiver with the basis
origin at the center of the shell. The function Hn refers to the
Hankel function of first kind Hð1Þn . The scattering coefficient
of the shell Rn is obtained from the boundary conditions
between the shell and the inner and outer fluid and is defined
as the ratio between two determinants26

Rn ¼
D½1'n

Dn
: (8)

The full expressions for the determinants Dn and D½1'n are
given in Appendix A. Using Eq. (7b) and the modal decom-
position of the incident plane wave at h¼ p,

piðr; /Þ ¼ Pie
ikr cos / ¼

Xþ1

n¼!1
inJnðk0aÞein/;

the total field at the boundary of the shell is

pða; /Þ ¼ Pi

X1

n¼!1
inðJnðk0aÞ þ RnHnðk0aÞÞein/: (9)

Although we have chosen a specific angle of incidence,
h¼p, the result in Eq. (9) is unchanged for an arbitrary
angle of incidence due to the rotational symmetry of the
shell. In the following, all results are for h¼p.

The normal velocity at the shell boundary follows from
Euler’s equation,

vða;/Þ ¼ Pi

iq0c0

Xþ1

n¼!1
inðJ0nðk0aÞ þ RnH0nðk0aÞÞein/;

(10)

where c0 and q0 are the sound speed and the density of the
fluid surrounding the shell. Following Eqs. (9) and (10), we
denote pn and vn the modal components of the decomposition
of the total pressure field, pða;/Þ ¼

P1
n¼!1 pnðaÞein/, and

normal velocity, vða;/Þ ¼
P1

n¼!1 vnðaÞein/. These compo-
nents are computed using the forward Fourier transform

pnðaÞ ¼
1

2p

ð
pða;/Þe!in/d/:

The ratio between the modal coefficients of the total pres-
sure, Eq. (9), and the normal velocity, Eq. (10), yields the
modal coefficients, zsn, of the structural impedance matrix

zsnðaÞ ¼
pnðaÞ
vnðaÞ

¼ !iq0c0
Jnðk0aÞ þ RnHnðk0aÞ
J0nðk0aÞ þ RnH0nðk0aÞ

: (11)

After a few manipulations (see Appendix A for more
details), the modal coefficients of the structural impedance
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are expressed in terms of the shell and the inner medium
properties

zsnðaÞ ¼ i
q1c2

s

xa

D½21'
n

D½11'
n

; (12)

where full expressions of determinants D½11'
n and D½21'

n are
given in Appendix B and, cs and q1 are the shear speed and
the density of the shell, respectively.

Although the total pressure field and normal velocity at
the surface depend on the external medium properties, their
ratio cancels out the impact of the external fluid loading and
provides the structural or dry impedance. To illustrate this
remark, the pressure and velocity from Eqs. (9) and (10) are
reformulated in Eqs. (13) and (14) in terms of the structural
impedance and the acoustic impedance. The acoustic imped-
ance, discussed in Sec. IV, relates the scattered pressure to
the scattered velocity and its modal coefficient for this cylin-
drical geometry is zanðaÞ ¼ iq0c0ðHnðk0aÞ=H0nðk0aÞÞ. Using
this definition of the acoustic impedance and the modal coef-
ficients of the structural impedance from Eq. (11) yields

pða;/Þ ¼ 2Pi

pk0a

Xþ1

n¼!1

inþ1

H0nðk0aÞ
zsn

zsn þ zan
ein/; (13)

vða;/Þ ¼ ! 2Pi

pk0a

Xþ1

n¼!1

inþ1

H0nðk0aÞ
1

zsn þ zan
ein/: (14)

It becomes clear, given that the denominators of Eqs. (13)
and (14) are identical, that the ratio of the modal components
of the total pressure and the velocity removes the impact of
the external fluid loading manifested through zan.

Finally, the structural impedance Zs is calculated from
the modal coefficient in Eq. (12) using the inverse Fourier
transform

Zsð/Þ ¼
X1

n¼!1
zsnðaÞein/; (15)

and the convolution theorem with * representing the
convolution

pða;/Þ ¼ !
X1

n¼!1
zsnvnein/ ¼ ! 1

2p
Zsð/Þ * vða;/Þ;

which leads to

pða;/Þ ¼ ! 1

2p

ð
Zsð/! /0Þvða;/0Þd/0: (16)

Discretization of Eq. (16) leads to the matrix equation, Eq.
(3), p¼!Zsv where p and v are column vectors spanning
the circumference of the shell. As before Zs represents the
properties of the shell and is independent of the parameters
of the outer fluid or the forces acting on the shell. We also
note that Zs will be purely imaginary in the case of a lossless
structure (see Appendix C for formal justification).

B. Analytical derivation of the structural impedance
matrix from the correlation process

Analytically the structural impedance of Eq. (15) was
determined from considering a plane wave incident from a
single angle h¼p. However, to measure Zs from an experi-
ment is a rather different matter as was pointed out in the
discussion leading to Eq. (6). That is, the resulting matrix in
the second equation of Eq. (5) is rank one and can not be
inverted in Eq. (6) for a single angle of incidence. Thus we
turn to multiple angles of incidence and use the formulation
of solving for correlations27,28 to obtain the structural imped-
ance using the correlation process presented in Sec. II.
Starting with Eq. (9) for an incident plane wave with an arbi-
trary angle of incidence h1, the pressure field at angle /1 is

pða;/1; h1Þ ¼ P1i

Xþ1

n¼!1
ð!iÞnðJnðk0aÞ þ RnHnðk0aÞÞeinð/1!h1Þ:

(17)

Then we consider the cross correlation of the pressure,

pða;/1; h1Þp+ða;/2; h2Þ

¼ P1iP
+
2i

Xþ1

m¼!1

Xþ1

n¼!1
ð!imÞðinÞeimð/1!h1Þe!inð/2!h2Þ

% ½Jmðk0aÞ þ RmHmðk0aÞ'½J+nðk0aÞ þ R+nH+nðk0aÞ';
(18)

where h2 and /2 refer to an other arbitrary incident angle
and other field angle. We now treat the incident fields as ran-
dom uncorrelated plane waves and integrate over all possible
directions to obtain the cross correlation of the pressure on
the surface of the object in a homogeneous plane wave noise
field,

hpða;/1; h1Þp+ða;/2; h2Þi

¼
ð

dh1

ð
dh2hP1iP

+
2ii

%
Xþ1

m¼!1

Xþ1

n¼!1
ð!imÞðinÞeimð/1!h1Þe!inð/2!h2Þ

% ½Jmðk0aÞ þ RmHmðk0aÞ'½J+nðk0aÞ þ R+nH+nðk0aÞ':
(19)

For a homogeneous plane wave random noise field, we have

hP1iP
+
2ii ¼ jPj

2dðh1 ! h2Þ: (20)

Integrating over h2 then h1 (integration of exponent in h1

yields 2pdmn), we get

hpða;/1Þp+ða;/2Þi

¼ 2pjPj2
Xþ1

n¼!1
einð/1!/2Þ

% ½Jnðk0aÞ þ RnHnðk0aÞ'½J+nðk0aÞ þ R+nH+nðk0aÞ':
(21)
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Furthermore following the same exact procedure with
Euler’s equation, we get from Eq. (10),

hvða;/1Þp+ða;/2Þi

¼ 2p
jPj2

iq0c0

Xþ1

n¼!1
einð/1!/2Þ

% ½J0nðk0aÞ þ RnH0nðk0aÞ'½J+nðk0aÞ þ R+nH+nðk0aÞ':
(22)

The ratio between the modal coefficients of Eqs. (21)
and (22) yields the same result as Eq. (11),

zsn ¼ !iq0c0
Jnðk0aÞ þ RnHnðk0aÞ
J0nðk0aÞ þ RnH0nðk0aÞ

: (23)

Again the structural impedance Zs is calculated from the
modal coefficient in Eq. (23) using the inverse transform,
Eq. (15), and the convolution theorem

hpða;/1Þp+ða;/2Þi

¼ ! 1

2p

ð
Zsð/2 ! /0Þhvða;/1Þp+ða;/0Þid/0: (24)

Discretizing formulation (24) and defining vectors p and v
spanning the whole circumference of the shell yields

hppHi ¼ !ZshvpHi: (25)

We have therefore shown that the modal formulation of
an infinite cylindrical shell in a homogeneous random noise
field yields the structural impedance matrix as the discretized
formulation Eq. (6). We proceed to demonstrate this method
with a numerical experiment.

C. Numerical experiment for the evaluation
of the structural impedance matrix

The method for estimating the structural impedance ma-
trix for an elastic body in a random field is numerically dem-
onstrated for an aluminum cylindrical shell filled with air and
immersed in water. In this example, the aluminum shell has a
Young’s modulus E1¼ 70 GPa, a Poisson ratio l1¼ 0.33, and
density q1¼ 2700 kg/m3. The sound speeds in the external
and inner medium are c0¼ 1500 m/s and c2¼ 343 m/s,
respectively; and the densities are q0¼ 1000 kg/m3 and
q2¼ 1.25 kg/m3. The inner and outer radius of the shell are
b¼ 21.5 cm and a¼ 22.5 cm, respectively. The structural im-
pedance matrix is evaluated at 2 kHz.

The random field consists of the incoherent superposi-
tion of plane waves of all directions and phases.16 Thus the
pressure field and normal velocity at the N nodes of the shell
surface are computed over M realizations, each realization
associated to a distinct incident plane wave with a Gaussian
phase and amplitude distribution. Taking advantage of the
cylindrical shell symmetry, we construct by rotation N real-
izations of the pressure field and velocity field at the N

surface nodes of the shell surface from a single simulation.
To get the pressure field and normal velocity at N surface
nodes, we perform L simulations with the finite element soft-
ware COMSOL Multiphysics as a tool to simulate an experi-
ment, leaving M¼ L%N realizations. The finite element
simulation was performed with N¼ 400 surface nodes
evenly spaced and for L¼ 400 incident plane waves. Then
we compute the structural impedance matrix from 100 sur-
face nodes (evenly spaced and chosen among the 400 exist-
ing surface nodes). The sample cross-correlation matrices
hppHi and hvpHi are computed by averaging over 5000 real-
izations (chosen randomly over the M¼ 160 000 realiza-
tions). Then, the inverse of the factor hvpHi is computed
using a singular value decomposition (SVD). Figure 2 shows
the singular values of the factor hvpHi, where 18 singular
values are significant with the 20th singular value falling
into the computational noise, indicated by the broad plateau
starting at !120 dB. Note the short steps in the curve before
this plateau indicate a degeneracy in the modes that is
entirely expected. That is for any mode n, there exists
cos(n/) and sin(n/) components that are degenerate for our
axisymmetric shell and that the SVD interprets as equal level
singular values creating the short steps in the curve in Fig. 2.
Due to this degeneracy, the number of singular values is
double the number of modes.

First, Zs is computed [Fig. 3(a)] for a lossless shell using
SVD with 18 eigenvalues. Note that the magnitude of the
real part is 500 times below the magnitude of the imaginary
part of Zs; thus this non zero real part has no impact on the
scattered field calculation and is negligible. This result is in
a good agreement with the analytical calculation of Zs [Fig.
3(b)], which is purely imaginary for the lossless case as dem-
onstrated in Appendix C.

Finally, Fig. 4 compares the analytical and numerical
structural impedance matrix when damping is introduced to
the body, g1¼ 0.05. Both results are in a good agreement,
and we note that the impedance is now a complex number
with a non zero real part. Indeed, the damping factor,14 g1,
introduces a complex Young modulus (or complex compres-
sional and shear wave speeds) so that the structural imped-
ance of the object is not purely imaginary.

FIG. 2. Singular values of the operator hvpHi.
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The next and crucial step in our analytic example of the
correlation method is to use the computed Zs to predict the
scattered field from the cylinder given any incident field of
our choosing. As discussed in the next section, this requires
a knowledge of two other impedance matrices: the internal
impedance matrix and the acoustic impedance matrix. We
postpone our result for the scattered field until Sec. IV B to
discuss the general impedance formulations.

IV. FORMULATIONS FOR THE PREDICTION OF THE
SCATTERED FIELD USING THE MEASUREMENT OF
THE STRUCTURAL IMPEDANCE MATRIX

We want to show that when the impedance matrix Zs is
known, one can predict the scattered field from an object
from just the specification of the incident pressure field over
the surface. This prediction is carried out using the equiva-
lent source method (ESM).5,29–31 In the literature, the ESM

FIG. 4. (Color online) Structural im-
pedance matrix (Pa s/m) at 100 surface
nodes for a lossy cylindrical shell with
damping g1¼ 0.05. (a) Numerical
result with pseudo-inversion of hvpHi
performed with the 18 largest eigen-
values. (b) Analytical solution using
nine modes.

FIG. 3. (Color online) Structural im-
pedance matrix (Pa s/m) at 100 surface
nodes for a lossless cylindrical shell.
(a) Numerical result with pseudo-
inversion of hvpHi performed with the
18 largest eigenvalues; note that the
magnitude of the real part is 500 times
below the magnitude of the imaginary
part of Zs; thus this non zero real part
has no impact on the scattered field
calculation. (b) Analytical solution
using nine modes.
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is also referred to as the wave superposition method or the
virtual source method.

Central to this approach are three linear matrix equations

pi ¼ !Zivi; (26)

ps ¼ !Zavs; (27)

pi þ ps ¼ !Zsðvi þ vsÞ: (28)

Equation (26) describes the relationship between the incident
pressure and incident normal velocity fields on the surface
X, where Zi is the internal field impedance or the incident
impedance.1 The acoustic impedance matrix Za in Eq. (27)
relates the scattered pressure field to scattered velocity field
on the surface. In radiation problems with no exterior fields,
Za relates surface vibration induced by internal forces to the
resulting surface pressure and in this case is called the radia-
tion impedance.1 In either case, Za represents the loading of
the outer fluid on the surface. Finally, the last of the three
matrix equations, Eq. (28), is a restatement of Eq. (3). The
three impedance matrices, Zi, Za, Zs, are denoted Zi, Zr, Z,
respectively, in the paper by Bobrovnitskii.1

Simple manipulation of Eqs. (27) and (28) to eliminate
vs leads to a fundamental relationship between the scattered
pressure on the surface and the incident field there,

ps ¼ !ZaðZa þ ZsÞ!1ðpi þ ZsviÞ: (29)

Given that the impedance matrices are invertible, we can
remove vi from Eq. (29) using Eq. (26), to obtain

ps ¼ !ZaðZa þ ZsÞ!1ðIþ ZsZ
!1
i Þpi: (30)

Unlike Zs, we do not measure Za and Zi; rather, we compute
them numerically using the ESM method as described next.

Alternatively, when defining the inverse of each imped-
ance matrix as Ya¼Z

!1

a where a is any of the three sub-
scripts, we obtain the simple form relating the scattered
pressure to the incident pressure presented by Bobrovnitskii,1

ps ¼ ðYa þ YsÞ!1ðYi ! YsÞpi: (31)

A. Derivation of the scattered field using ESM

The acoustic impedance matrix Za, as well as Zi, depend
only upon the geometry of X and the Greens’s function in
the external fluid that satisfies the boundary conditions at
remote boundaries, such as an ocean surface, walls in a
room, etc. For an infinite space above the scatterer, we use
the well known free-space Green’s function,

Gðy;xÞ ( eikjy!xj=4pjy! xj; (32)

where x is the vector to the source point and y the vector to
the field point.

We derive Za using the equivalent source method which
replaces the body with a conformal set of point sources with
unknown strengths represented in a column vector s that are
located just inside X (Fig. 5). We place a set of field points yi

uniformly distributed on X and place the conformal set of
source points at locations xj to yield the matrix relating the
ith surface node to the jth point source,

psðyiÞ ¼ ixq0

X

j

Gðyi; xjÞsðxjÞ; (33)

and define the elements of a matrix Mc to be ixq0G(yi, xj)
leading to

ps ¼Mcs: (34)

From Eq. (33), the normal velocity on the surface is obtained
using Euler’s equation

vs ¼ Dcs; (35)

where the elements of Dc are @nðyiÞGðyi; xjÞ, the normal deriv-
ative of the Green’s function taken with respect to the field
point. Solving Eq. (35) for s and inserting into Eq. (34)
immediately provides the acoustic impedance matrix Za of
Eq. (27),

Za ¼McD!1
c : (36)

Using Eqs. (34) and (29), the unknown source strength
vector is

s ¼ !D!1
c ðZa þ ZsÞ!1ðpi þ ZsZ

!1
i piÞ: (37)

This formulation is equivalent to the virtual source strength
formulation given in the paper by Lucifredi [Eq. (4)].4

Once s is known, the scattered field pso can be computed
at any point or set of points z outside X by replacing the field
point y with z in Eq. (33) and using Eq. (37),

pso ¼ !MziD
!1
c ðZa þ ZsÞ!1ðIþ ZsZ

!1
i Þpi; (38)

where the elements of Mzi are ixq0G(zi, xj).
Calculation of Zi follows in a similar manner to Eq.

(33), however, a different set of sources si are placed just
outside the surface with the interior volume filled with the
exterior fluid (the exterior fluid is replaced with a vacuum as
shown in Fig. 1) and the following calculation is made:

piðyiÞ ¼ ixq0

X

j

Gðyi; xjÞsiðxjÞ; (39)

leading, in similar fashion to Eq. (34)–(36), to Zi.

FIG. 5. (Color online) The equivalent source method replaces the scattering
object by a set of virtual point sources located at Xs just inside the surface
of the object X.

J. Acoust. Soc. Am., Vol. 134, No. 6, December 2013 Rakotonarivo et al.: Structural impedance from random noise 4407

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  137.110.8.36 On: Thu, 20 Mar 2014 15:22:04



Equation (38) shows the power of the approach. All the
quantities are known except the incident field pi, which we
are free to choose to represent any desired source condition
needed to be investigated. Whereas Mc and Dc are not func-
tions of the interior elastic parameters, Zs provides the inter-
face conditions and introduces the effect of scattering from
the elastic effects of the interior body. Exterior boundaries
can be introduced by using a Green’s function in Eq. (32)
that accounts for them and the formulation remains the same
except for the change in G in Eq. (32). For example, a sub-
merged body below an air-water interface would require a
Green’s function that included images across this boundary
to satisfy the Dirichlet boundary condition at the interface.
In the work by Lucifredi,4 Green’s functions were used for a
stratified medium arriving at an expression identical to
Eq. (37).

B. Prediction of the scattered field from the noise
correlation numerical experiment

As an illustration, the ESM is applied to compute the
scattered field by the cylindrical shell from the evaluation of
its structural impedance matrix. We consider the lossy shell
example presented in Sec. III C. The lossy shell is immersed
in water in an infinite medium. The scattered field is com-
puted from the numerical estimation of the structural imped-
ance matrix over 100 nodes (see Sec. III C and Fig. 4). Thus
the shell structure is represented by 100 equivalent sources.
The equivalent sources are located inside the boundary of
the shell but in the outer fluid medium at a distance 0.6 dn

from the shell surface,4 dn being the lattice spacing. To cal-
culate the equivalent source strengths, Eq. (37), one needs to
compute the acoustic impedance Za and the incident imped-
ance Zi to get the incident velocity from the incident pres-
sure field given the relation pi¼Zivi. We compute Za and Zi

from relation (36) using the two-dimensional (2D) free field
Green’s function in water,

Gðy;xÞ ¼ i

4
Hð1Þ0 ðk0jy! xjÞ; (40)

to define the elements of the Green’s function matrix Mc and
the normal derivative matrix Dc, where rows and columns
correspond to the source points x and the surface nodes y,
respectively. Determination of Za and Zi is very similar, the
difference lies in the position of the source points y that are
just inside the shell (equivalent source locations at a distance
0.6 dn from the shell surface) for Za and outside the shell for
calculation of Zi. Once the source strengths are known, the
scattered field is computed at any set of points outside the
shell using the free-field Green’s function, Eq. (40), between
the equivalent sources and the observation points. Figure 6
compares the scattered pressure field at a radius of 40 cm
from the equivalent source method with the exact solution
when the cylindrical shell is excited by a 2D point source at
2 kHz located 3 m from the shell center. The ESM and ana-
lytical solutions are in a very good agreement for this
near-field configuration.

V. DISCUSSION

The efficacy of the structural impedance evaluation
relies on the number of realizations for computing expecta-
tion value of the correlations hppHi and hvpHi, the number
of surface nodes, and the number of singular values used for
inverting hvpHi. To get an accurate estimate of the structural
impedance matrix, we assume a large number of realizations
to properly construct the cross-correlation matrices (at least
L> 3N as mentioned in Sec. II).

Varying the number of surface nodes and the number of
eigenvalues affects the resolution of the structural imped-
ance matrix, which will affect the accuracy of the scattered
field computation using the ESM. The number of surface
nodes and singular values to consider is dictated by a better
than Nyquist sampling of the highest order surface mode
excited at the highest frequency of interest.32 The distribu-
tion of point sources for the ESM method must also satisfy
the same Nyquist condition. In the cylindrical shell example,
the maximum number of significant singular values is 18
(Fig. 2). This means that at least 18 surface nodes are
required to compute Zs. Moreover, the number of singular
values to consider for the inversion of hvpHi depends on the
signal to noise ratio of the pressure and normal velocity data
fields. The estimation of Zs is more accurate when increasing
the number of eigenvalues for the inversion using a SVD as
long as the singular values are above the uncorrelated noise
level as is the case for any matrix pseudo-inversion.

FIG. 6. Comparison of the scattered pressure fields from the equivalent
source method (ESM) with the analytical solution when the cylindrical shell
is excited by a 2D point source at 2 kHz. The point source is located at 3 m
from the center of the shell. The scattered pressure field is plotted for
receivers located all around the shell at 0.4 m from the center of the shell.
The ESM solution uses 100 equivalent sources and the structural impedance
matrix (Fig. 4) numerically evaluated using the correlation process.
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Regarding the prediction of the scattered field using the
ESM, this calculation is also affected by potential mismatch
between the Green’s function of the outer medium and the
real environment. The effect of mismatch between the
Green’s function model and the outer environment is not dis-
cussed here as it is out of the scope of the paper. However,
the reader can refer to the literature4,5,7 for more discussions
on that topic.

VI. CONCLUSIONS

This paper presented a method for obtaining the struc-
tural impedance matrix from a random field. The approach
relies on the correlation between pressure and normal veloc-
ity noise field data at a given set of surface nodes at the body
surface. Numerical results with an infinite cylindrical shell
show very good agreement with the analytical solution. This
structural impedance matrix is used for computing the scat-
tered field either from the Helmholtz integral equation or the
equivalent source method formulations. For both methods,
computation of the scattered field involves two other impe-
dances matrices, the acoustic impedance matrix and the inci-
dent impedance matrix. Only the ESM approach was
discussed here because the HIE method is equivalent. This
work finds applications for computing the scattered field of a
complex object in any complex environment from the
knowledge of its structural impedance matrix, the latter
measured using a random noise field.
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APPENDIX A: DEFINITION OF DETERMINANT
Dn AND D ½1'n

We consider scattering from an infinite cylindrical shell
excited by a plane wave. The scattering coefficient Rn for an
infinite cylindrical shell is defined as the ratio between two
determinants26

Rn ¼
D½1'n

Dn
; (A1)

where expression of determinant Dn is33

Dn ¼ detðDnÞ

¼

a11ðaÞ a12ðaÞ , , , a15ðaÞ 0

a21ðaÞ a22ðaÞ , , , a25ðaÞ 0

0 a32ðaÞ , , , a35ðaÞ 0

0 a12ðbÞ , , , a15ðbÞ a46ðbÞ
0 a22ðbÞ , , , a25ðbÞ a56ðbÞ
0 a32ðbÞ , , , a35ðbÞ 0

""""""""""""""

""""""""""""""

: (A2)

In the following, coefficients of the determinant Dn are
expressed in terms of the Bessel Jn, Hankel Hn, and Neuman
Yn functions and variables xp and xs. They are defined as

xp¼xr/cp and xs¼xr/cs, respectively, where cp is the com-
pressional wave speed and cs the shear wave speed in the
shell. The spatial variable r is either equal to the outer radius
a or the inner radius b of the shell.

a12ðrÞ ¼ ðx2
s ! 2n2ÞJnðxpÞ þ 2xpJ0nðxpÞ;

a13ðrÞ ¼ ðx2
s ! 2n2ÞYnðxpÞ þ 2xpY0nðxpÞ;

a14ðrÞ ¼ !2n½JnðxsÞ ! xsJ
0
nðxsÞ';

a15ðrÞ ¼ !2n½YnðxsÞ ! xsY
0
nðxsÞ';

a22ðrÞ ¼ !xpJ0nðxpÞ;
a23ðrÞ ¼ !xpY0nðxpÞ;
a24ðrÞ ¼ nJnðxsÞ;
a25ðrÞ ¼ nYnðxsÞ;
a32ðrÞ ¼ !2n½JnðxpÞ ! xpJ0nðxpÞ';
a33ðrÞ ¼ !2n½YnðxpÞ ! xpY0nðxpÞ';
a34ðrÞ ¼ ðx2

s ! 2n2ÞJnðxsÞ þ 2xsJ
0
nðxsÞ;

a35ðrÞ ¼ ðx2
s ! 2n2ÞYnðxsÞ þ 2xsY

0
nðxsÞ:

The elements of the last column in Eq. (A2) depend on
the inner medium sound speed c2 and density q2,

a46ðrÞ ¼ x2
s Jnðx2Þ;

a56ðrÞ ¼ !
q1

q2

x2J0nðx2Þ; (A3)

where x2 is defined as x2¼xr/c2.
The elements of the first column in Eq. (A2) depend on

the external medium sound speed c0 and density q0,

a11ðrÞ ¼ x2
s Hnðx0Þ;

a21ðrÞ ¼ !
q1

q0

x0H0nðx0Þ; (A4)

where x0 is defined as x0¼xr/c0.
Definition of the determinant D½1'n is the same as Dn

except that the elements of the first column a11(a) and a21(a)
are replaced by b1(a) and b2(a),

b1ðrÞ ¼ !x2
s Jnðx0Þ;

b2ðrÞ ¼ !
q1

q0

x0J0nðx0Þ: (A5)

APPENDIX B: DERIVATION OF zsn

This section derives a formulation of the structural im-
pedance, which only depends on the cylindrical shell and
inner medium properties. As shown in Sec. III A, the modal
coefficient of the structural impedance matrix is

zsnða;/Þ ¼ !iq0c0
Jnðk0aÞ þ RnHnðk0aÞ
J0nðk0aÞ þ RnH0nðk0aÞ

: (B1)

Expressing the determinant in terms of the first column ele-
ments a11(a), a21(a), b1(a), and b2(a) yields the following
expression of the scattering coefficient
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Rn ¼ !
q0c0x2

s Jnðk0aÞD½11'
n ! q1xaJ0nðk0aÞD½21'

n

q0c0x2
s Hnðk0aÞD½11'

n ! q1xaH0nðk0aÞD½21'
n

;

(B2)

where D½11'
n and D½21'

n are related to the minor of matrix Dn

by eliminating row 1 and column 1, and row 2 and column
1, respectively. The determinants D½11'

n and D½21'
n only depend

on the shell and inner medium properties. Their full expres-
sions are

D½11'
n ¼

a22ðaÞ , , , a25ðaÞ 0

a32ðaÞ , , , a35ðaÞ 0

a12ðbÞ , , , a15ðbÞ a46ðbÞ
a22ðbÞ , , , a25ðbÞ a56ðbÞ
a32ðbÞ , , , a35ðbÞ 0

""""""""""""

""""""""""""

; (B3)

and

D½21'
n ¼

a12ðaÞ , , , a15ðaÞ 0

a32ðaÞ , , , a35ðaÞ 0

a12ðbÞ , , , a15ðbÞ a46ðbÞ
a22ðbÞ , , , a25ðbÞ a56ðbÞ
a32ðbÞ , , , a35ðbÞ 0

""""""""""""

""""""""""""

: (B4)

Substituting Eqs. (B3) and (B4) into the expression of the
structural impedance in (B1) yields (after few manipulations
involving the Wronskian)

zsnða;/Þ ¼ i
q1c2

s

xa

D½21'
n

D½11'
n

: (B5)

APPENDIX C: PROOF REAL PART OF STRUCTURAL
IMPEDANCE MATRIX IS ZERO FOR LOSSLESS
SYSTEMS

Assume a closed three-dimensional body with no internal
losses and a pressure field on its surface X driving the body
into vibration. This pressure field p(x), x 2 X might arise
from the scattering of an incident wave off the surface. The
structural impedance matrix Zs is represented as above but in
functional form by Zs(x, y) where y 2 X. The normal velocity
response of the surface is v(y). The time average power P
injected into the structure—the time average work done by
these forces due to the motion of the surface is given by

P ¼ 1

2
<
ð

X
pðxÞvðxÞ+d2x

# $
: (C1)

When there are no losses within the structure, the work done
and power injected into the structure must be zero so that
there is no buildup or loss of energy over time in the interior
space. Thus P is zero. The definition of the structural imped-
ance matrix Eq. (3) in continuous form is

pðxÞ ¼ !
ð

Xc

Zsðx;yÞvðyÞd2y:

Inserting this into Eq. (C1) yields

P ¼ ! 1

2
<
ð

Xc

ð

X
Zsðx; yÞvðyÞvðxÞ+d2xd2y

# $
¼ 0: (C2)

Due to reciprocity, the impedance matrix must be symmet-
ric, Zs(x, y)¼ Zs(y, x), thus

P ¼ ! 1

2
<
ð

Xc

ð

X
Zsðy; xÞvðyÞvðxÞ+d2xd2y

# $
¼ 0:

Interchanging the dummy variables and adding the result to
Eq. (C2) leads to

P ¼ ! 1

2
<
ð

Xc

ð

X
Zsðx; yÞðvðxÞvðyÞ+ þ vðxÞ+vðyÞÞd2xd2y

# $

¼ !<
ð

Xc

ð

X
Zsðx; yÞ<½vðxÞvðyÞ+'d2xd2y¼ 0: (C3)

Because v(,) is an arbitrary function Eq. (C3) can vanish
only if <½Zsðx; yÞ' ¼ 0 for all points on the surface, and we
conclude that the real part of the structural impedance must
vanish.
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