
HAL Id: hal-01128021
https://hal.science/hal-01128021

Preprint submitted on 9 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantically Invariant Tensor Factorization
Raphaël Bailly, Antoine Bordes, Nicolas Usunier

To cite this version:
Raphaël Bailly, Antoine Bordes, Nicolas Usunier. Semantically Invariant Tensor Factorization. 2015.
�hal-01128021�

https://hal.science/hal-01128021
https://hal.archives-ouvertes.fr

Semantically Invariant Tensor Factorization

Raphaël Bailly, baillyra@utc.fr ∗

Antoine Bordes, abordes@fb.com †

Nicolas Usunier, usunier@hds.utc.fr ‡

Abstract

Multi-relational data can usually be represented as three-mode tensors with
each slice (matrix) representing one relation (not necessarily symmetric) between
two nodes. In this paper, we study factorization algorithms for such tensors that
are semantically invariant, which means that they commute with the transposition
of their frontal slices. We describe why this property is crucial for conveniently
approximating such data and we demonstrate what are the necessary and sufficient
conditions that any algorithm should have to fulfill it. Then, we introduce SITAR,
a convex and semantic invariant algorithm, which produces low-rank approxima-
tions of tensors. We show empirically on three benchmarks that this well-defined
algorithm outperforms previously presented low-rank factorization algorithm like
RESCAL [11].

1 Introduction
This paper concerns tensor factorization motivated by the problem of link prediction in
Knowledge Bases (KBs). KBs are popular nowadays to store and organize information
in a structured fashion but suffer from incompleteness; the problem of KB completion
is crucial. Information extraction can add data to KBs using external sources but other
processes also attempt to add information using the KB itself, by performing (endoge-
nous) link prediction.

A convenient way to formalize the concept of KB is to consider a set of entities E
and a set of binary relations R, and make a list of all triplets ei, ej and Rk such that the
relationRk(ei, ej) holds. Such data can be represented by a adjacency 3-modes tensor,
each slice (a binary non-symmetric matrix) representing a particular relation between
entities; this tensor has the same dimension along the first two axis (the number of
entities). False or missing assertions are represented by a 0, while a true and known
assertion is represented by a 1. The goal of a learning algorithm for link prediction is
∗Sorbonne universités, Université de technologie de Compiègne, CNRS, Heudiasyc UMR 7253,

Compiègne, France
†Facebook AI Research 770 Broadway, New York, NY 10003. USA
‡Sorbonne universités, Université de technologie de Compiègne, CNRS, Heudiasyc UMR 7253,

Compiègne, France

1

Paris

Berlin

City

Europe

France
Germany

Figure 1: Example of Knowledge Base, with three relations has-member, has-capital
and has-type

to discover new links, i.e. predict missing 1. Consider the KB of the example of Fig.1
which depicts the KB made of the following triplets: (europe, has-member, france),
(europe, has-member, germany), (france, has-capital, paris), (germany, has-capital,
berlin), (berlin, has-type, city). A link prediction algorithm algorithm should able
to answer the question: (paris, has-type, ?).

Many approaches have been proposed to perform link prediction in KBs. Most of
them operate with latent representations (or embeddings) of the constituents (entities
and relations) that are learnt under different formalisms. [9] proposed an extension
of stochastic block models and [14] a Bayesian clustering framework. Energy-based
models for learning embeddings using stochastic gradient descent have also been suc-
cessfully adapted to this problem with variants using linear [3], bilinear formulations
[1] or both [8]. Still, due to the tensor representation of KBs, a particular effort has
concerned link prediction through tensor factorization or collective matrix factoriza-
tion. Hence, standard methods like CANDECOMP/PARAFAC [7] or Tucker decom-
position [17] have been applied. Yet, due to the particular form of the tensor in such
cases (two dimensions represent the entities), methods derived from collective matrix
factorization [13, 6] have shown to perform best. The most successful application of
such approaches is RESCAL [11], which we will discuss at length in Section 3 and
Section 5. Even if such collective matrix factorization methods have been conceived
for the particular features of tensors representing KBs, we believe that some key prop-
erties are missing.

The work of this paper started from the observation that two relations in a KB can
be inverse of each other, e.g. the relations has-capital and is-capital-of. This means that
the adjacency matrixX1 associated to has-capital and the matrixX2 associated to is-
capital-of are transpose of each others, that isX1 = X>2 . Usually, among two inverse
relationships, only one is expressed in the KB, mainly to ensure data consistency and
avoid the existence of conflicting data; but this does not mean that one relation is more
valid than the other. For instance, the choice, in the example, of the relation has-capital
instead of is-capital-of is arbitrary. The order of the slices representing the different
relations in the tensor is also arbitrary.

Hence, we would like the methods factorizing tensors representing KB data to be
robust to such variations, which are semantically equivalent given the information of

2

the KB. We term this property of factorization models semantic invariance. As we
show in Section 2, semantic invariance requires factorization algorithms that commute
with transposition and permutation of the frontal slices of the tensors. As we shall
see, while this is verified by data-fitting terms of usual methods, this imposes strong
constraints on the type of regularization that should be used.

This paper is organized as follows. In Section 2, we precisely define the property of
commuting with transposition required by a tensor factorization method to be semantic
invariant and present a theorem on the necessary and sufficient conditions under which
an algorithm has it. Then, in Section 3, we demonstrate that, to fulfill these conditions,
a method based on low-rank factorization must take a certain form. Sections 4 and 5
present SITAR, our convex algorithm for semantic invariant tensor factorization. We fi-
nally show in Section 6 that SITAR can achieve very promising empirical performance.

2 Semantic Invariance
The semantic invariance of a tensor factorization algorithm in the context of Knowledge
Bases means that if one or several of the slices of the data matrix were transposed
(i.e. we observe one or several relations in the reverse direction), then the result of
the factorization should be transposed as well (so that the predicted fact is the same
as before). In other words, semantic invariance means that the factorization of the
“transposed tensor” should be the transposed of the factorization, or, equivalently, that
the factorization algorithm should commute with the transposition operator.

In this section, we prove a necessary and sufficient condition under which a factor-
ization algorithm for (n, n, p) tensors commutes with the transposition of the frontal
slices.

2.1 Tensor Factorization Algorithms
We study algorithms that perform regularized (e.g. low-rank) approximations of ten-
sors, which have the same dimensions along the first two modes. This incudes adja-
cency tensors representing KBs but is not restricted to them. Given a third-order tensor
X of dimensions dim(X) = (n, n, p) and denoting Tdim(X) the set of all third-order
tensors with the same dimensions as X , we are primarily interested in algorithms of
the form

argmin
W∈Tdim(X)

‖X −W ‖2F + Ω(W) ,

where ‖X‖2F is the squared Frobenius norm of X , and Ω is the regularizer. In this
section, we provide a necessary and sufficient condition on Ω such that if we arbitrarily
transpose some of the frontal slices of X and approximate the resulting tensor, then
we recover the approximation of X up to the appropriate transpositions of the frontal
slices.

Our result, presented in Theorem 2, does not only apply to Frobenius-norm ap-
proximations of tensors. To express the result in its full generality, we consider a
more general form of algorithms which take two tensors as input, X and A such that

3

dim(X) = dim(A), whereX is the target tensor andA represents weights to individ-
ual entries of the target tensor or captures the information of whether some entries of
the tensor are unknown. Denoting by T the set of all tensors with the same dimension
along the first two modes, we study algorithms F : T × T → T of the form:

FA(X) = argmin
W∈Tdim(X)

fA(X,W) + Ω(W) , (1)

where fA : T × T → R is the data-fitting term (or loss) and Ω : T → R ∪ {+∞} is
the regularizer.

Examples of regularizers An example of regularization is to impose constraints on
the multilinear rank of W , which depends on the rank of the unfoldings of the tensor:
given an (n, n, p) tensor X , the mode-1 unfolding of the tensor W (1) is the (n, n ×
p) matrix obtained by stacking horizontally the frontal slices of the tensor (unfolding
along the other modes are defined similarly). Then, a constraint on the multilinear
rank, as performed in truncated Tucker decompositions [10] of W is a regularizer
of the form Ω(W) =

∑3
k=1 Ωk(W (k)) where Ωk is a hard constraint on the rank

of the mode-k unfolding of W (i.e. Ωk(W (k)) = +∞ if the rank of matrix W (k) is
greater than a threshold, and 0 otherwise). This kind of regularization on the unfoldings
of the tensors is also widely used in convex tensor factorization methods, using for
instance Ωk(W) = λk

∥∥W (k)

∥∥
∗ where λk ∈ R+ and

∥∥W (k)

∥∥
∗ is the nuclear norm

(sum of singular values) of matrix W (k) [16, 15]. As we shall see, even though these
regularizers fall into our framework of study, they are usually heavily affected by the
transposition of one or several frontal slices of the tensors (see Section 2.4).

Examples of data-fitting terms An example of f used in tensor completion or tensor
approximation is the Frobenius norm ofX −W weighted byA (see e.g. [5]):

fA(X,W) = ‖X −W ‖F,A (2)

=
∑
i,j,k

Ai,j,k(Xi,j,k −W i,j,k)2 ,

where Xi,j,k is the entry at coordinates (i, j, k) of tensor X . Another example is the
ranking criterion of e.g. [3], used for link prediction in the case of binary adjacency
tensors (this loss does not depend onA):

fA(X,W) = (3)∑
i,j,k

Xi,j,k

∑
i′ 6=i

max(0, 1−W i,j,k +W i′,j,k)

+
∑
i,j,k

Xi,j,k

∑
j′ 6=j

max(0, 1−W i,j,k +W i,j′,k) .

2.2 Commuting with Transposition
We now introduce the main property of tensor factorization algorithms that we study:
factorization commutes with the transposition of frontal slices. Such transpositions are

4

formalized by the operator >: given a tensor X of dimensions (n, n, p) and a vector
b = (b1, ..., bp) ∈ {0, 1}p, X>b transposes X ::k, the k-th frontal slice of X , when
bk = 1, and leavesX ::k unchanged when bk = 0.

X>b = X̃ ∈ Tdim(X) with X̃ ::k =

{
XT

::k if bk = 1

X ::k if bk = 0
.

Hence the following property:

Definition 1 (Factorization commutes with transposition). We say that F commutes
with transposition if, for anyX,A ∈ Tn,n,p and any b ∈ {0, 1}p, we have:

FA>b

(
X>b

)
= FA(X)

>b .

In other words, should we transpose any frontal slice(s) of the original tensor X
(together with the weight tensor A), the factorization should grant the transposition of
the result.

2.3 Assumptions
The result we prove in Theorem 2 is a necessary and sufficient condition that Ω should
satisfy so that F satisfies the property of commutation with transposition of Defini-
tion 1. The equivalence is bound to three underlying assumptions on on F , f and Ω
that we describe below.

Transposition invariance of the cost function The first and most important one is
that the data-fitting term f should be invariant under any joint transposition of the
frontal slices ofA,X andW .

The invariance by transposition of f is formally stated by:

∀X,A,W ∈ Tn,n,p,∀b ∈ {0, 1}p,

fA(X,W) = fA>b

(
X>b ,W>b

)
.

(4)

This is a natural assumption and one can easily check that both data-fitting terms
of (2) and (3) satisfy this invariance for instance.

Duplication invariance This property concerns the learning function F and means
that when the input data is duplicated, i.e. two copies of each relationship are consid-
ered, then the result is a duplication of the initial result.

Let n, p, p′ be three integers, and let X ∈ Tn,n,p and X ′ ∈ Tn,n,p′ . We denote by
(X|3X ′) the (n, n, p + p′) tensor obtained by stacking along the third mode X and
X ′:

(X|3X ′) = X̃ with X̃ ::k =

{
X ::k if 1 ≤ k ≤ p
X ′::k−p if 1 ≤ k − p ≤ p′

.

5

Then, we assume that F satisfies the following invariance: given a target tensorX and
a weighting tensor A, the result of appliying F to X and A stacked with themselves
is the stacking of the result of FA(X):

∀X ∈ T ,∀A ∈ Tdim(X), F(A|3A)((X|3X)) =
(
FA(X) |3FA(X)

)
. (5)

This requirement is natural: by jointly approximating twice the same dataset, we obtain
twice the same result.

Slice permutation invariance A third property that we may need id for f and Ω to
be invariant by a permutation of the frontal slices. This requirement is met in most
methods since the indexing of the slices rarely conveys any semantics. To that end, let
X ∈ Tn,n,p and σ a permutation of {1, . . . , p}. Then, the permutation operator is:

Pσ(X) = X̃ ∈ Tdim(X) with X̃ ::k = X ::σ(k)

and the invariance by permutation of frontal slices of f and Ω can be written as:

fPσ(A)(Pσ(X) , Pσ(W)) = fA(X,W) and
Ω(Pσ(W)) = Ω(W) .

(6)

We notice at his point that a direct consequence of (6) is that F commutes with permu-
tations of frontal slices:

FPσ(A)(Pσ(X)) = Pσ(FA(X)) . (7)

2.4 Fundamental Counterexample
We show in this section why typical tensor approximation or completion algorithms
relying on usual constraints on the rank of the unfoldings of the tensor do not lead to
algorithms that commute with transposition by studying a counterexample algorithm.

Before that, we give here a simple lemma that simplifies the analysis. To simplify
notation, given a tensor X , we write X>12 the tensor obtained by transposing all
frontal slices, i.e.

X>12 = X>(1,...,1) .

Lemma 1. Assume F is of the form (1) and that f , F and Ω satisfy the conditions of
Equations 4, 5 and 6.

Then F commutes with transposition if and only if
∀X ∈ T ,∀A ∈ Tdim(X),

F(A|3A>12)

(
(X|3X>12)

)
=
(
FA(X) |3FA(X)

>12
)
. (8)

(Condition (6) is not required for the only if direction.)

6

Proof. only if direction: By the commutation with transposition and the definition of
>, we have F(A|3A>12)

(
(X|3X>12)

)
= FA|3A((X|3X))

>b where b contains p ze-
ros followed by p ones. The duplication invariance (5) gives us

F(A|3A>12)

(
(X|3X>12)

)
=
(
FA(X) |3FA(X)

)>b
=
(
FA(X) |3FA(X)

>12
)
.

if direction: Let X ∈ T , (n, n, p) = dim(tens), A ∈ Tn,n,p, and b ∈ {0, 1}p.

Considering the tensor of size 2p (A>b |3A>b
>12

), let us define the permutation σ of
{1, ..., 2p} such that:

σ(k) =

k if and b((k−1)mod p)+1 = 0

p+ k if k ≤ p and bk = 1

k − p if k > p and bk = 1

(9)

such that (X>b |3X>b
>12

) = Pσ

(
(X|3X>12)

)
. Using the fact that F commutes

with permutations of frontal slices (7), and the assumption (8), we obtain:(
FA>b

(
X>b

)
|3FA>b

(
X>b

)>12)
= Pσ

((
FA(X) |3FA(X)

>12
))

.

The result comes by comparing the first p frontal slices of the two sides of the equa-
tion, and noticing that the first p slices of the right-hand side are exactly FA(X)

>b .

Before giving the example, we introduce a notation on the stacking of matrices that
will be used in subsequent sections. Given two integers n and m, we denote byMn,m

the set of matrices of dimensions (n,m) and by rk(M) the rank of matrix M . Given
two matricesM ∈Mn,m andM ′ ∈Mn,m′ , we denote by (M |M ′) the (n,m+m′)
matrix formed by stacking the columns ofM andM ′:

(M |M ′) = M̃ ∈Mn,m+m′

with M̃ i,j =

{
M i,j if 1 ≤ j ≤ m′

M ′
i,j−m if 1 ≤ j −m ≤ m′

.

Now let us consider the following standard tensor factorization algorithm, which
minimizes the Frobenius norm under a rank contraint on the mode-1 unfolding (ignor-
ing the weight tensorA):

argmin
W∈Tdim(X)

‖X −W ‖2F

u.c. rk
(
W (1)

)
≤ d .

(10)

Given some (n, n) matrix M construct the (n, n, 2) tensor (M |3MT). The so-
lution to (10) is given by the truncated SVD of (M |3MT)(1) = (M |MT) at rank
d. However, if we denote by (S1|S2) the truncated SVD of (M |MT) with S1,S2 ∈
Mn,n, we cannot guarantee S1 = ST2 in general. Hence, using Lemma 1, we have that
tensor approximations with constraints on the rank of the unfodings do not commute
with transposition in general.

7

2.5 Properties of Regularizers
Our main result is that a tensor approximation algorithm commutes with the transposi-
tion of frontal slices if and only if it is equivalent to approximateX or to approximate
(X|3X>12) by enforcing the constraint of Lemma 1. Before proving the main result,
we first give a mean to transform any approximation algorithm of the form (1) to an
approximation algorithm that commutes with the transposition of frontal slices.

Theorem 1. Assume that f and Ω are invariant by permutation of frontal slices (Equa-
tion 6).

Let us define F̃ : T × T → T as follows:

F̃A(X) = argmin
W∈Tdim(X)

f(A|3A>12)

(
(X|3X>12), (W |3W>12)

)
+ Ω((W |3W>12)) .

Then F̃ commutes with the transposition of frontal slices.

Proof. Let (n, n, p) = dim(X), b ∈ {0, ..., 1}p, and b̄ ∈ {0, ..., 1}p such that b̄k =

1− bk. Then F̃A>b

(
X>b

)
equals

argmin
W∈Tdim(X)

f(A>b |3A>
b̄)

(
(X>b |3X>b̄), (W |3W>12)

)
+ Ω((W |3W>12)) .

With the change of variableW ←W>b , if we consider

Y = argmin
W∈Tdim(X)

f(A>b |3A>
b̄)

(
(X>b |3X>b̄), (W>b |3W>b̄)

)
+ Ω((W>b |3W>b̄)) ,

then, by noticing thatW>b>b = W , we have

Y >b = F̃A>b

(
X>b

)
. (11)

Now, using the invariance by permutation of frontal slices of f and Ω (6), and defin-
ing σ given b as in (9) in the proof of Lemma 1, we have Pσ

(
(A>b |3A>b̄)

)
=

(A|3A>12), and the same holds for X and W . We then have Y = F̃A(X) and

consequently F̃A(X)
>b

= F̃A>b

(
X>b

)
by (11), which is the desired result.

We can finally state our main theorem:

Theorem 2. Assume F is of the form (1) and that f , F and Ω satisfy the conditions of
Equations 4, 5 and 6.

8

Then F commutes with the transposition of frontal slices if and only if
∀X ∈ T ,∀A ∈ Tdim(X),

FA(X) = argmin
W∈Tdim(X)

f(A|3A>12)

(
(X|3X>12), (W |3W>12)

)
+ Ω((W |3W>12)) ,

(12)

(Condition (6) is not required for the only if direction.)

Proof. only if direction: Let (n, n, p) = dim(X). If we denote by (Y |3Y ′) =

F(A|3A>12)

(
(X|3X>12)

)
, where Y and Y ′ have dimensions (n, n, p), Lemma 1 im-

plies that Y ′ = Y >12 . We can thus obtain the same result by restricting the argmin
of F in (1) to consider only tensors of the form (W |3W>12) withW ∈ Tn,n,p. Thus,
FA(X) is equal to the first p frontal slices of

argmin
(W |3W ′)
W∈Tdim(X)

W ′∈Tdim(X)

f(A|3A>12)

(
(X|3X>12), (W |3W ′)

)

+ Ω((W |3W ′))

u.c. W>12 = W ′

which is equivalent to the desired result (12).
if direction: It is a direct consequence of Theorem 1. If we define F̃ as in Theorem

1, Eq. 12 says that F = F̃ and thus F commutes with the transposition of frontal
slices.

When the data-fitting term f is invariant by transposition, and if we want that fac-
torization commutes with transposition, then it is intuitive to say that the regularizer it-
self should be invariant by transposition. In fact, Theorem 1 precisely gives a means to
make the regularizer invariant by transposition: it is sufficient to regularize the stacking
of the parameter tensor with its transpose. We present in the next section an algorithm
that uses this transformation in a low-rank tensor factorization setting.

3 Rank Constraint and Shared Embeddings
In this section, we now apply the results of Theorem 1 to the case of low-rank tensor
factorization. More precisely, we will consider the case where the Ω regularizer is a
constraint on the rank of the different unfoldings of the tensor. This type of constraint
is a very common regularization; see for instance [6, 12, 11].

The main result of this section demonstrates an equivalence between the regulariza-
tion promoted by Theorem 1 and a factorization of the form W k = URkU

>, where
U is a low-rank matrix of embeddings, shared by both sides of triplets, and where
Rk are factorized matrices corresponding to the approximation W k of the slice Xk

. Thus, each entity is represented by a single vector, which is shared by all relations,
regardless of its position. In other words, we show that, in order to commute with

9

transpositions and hence be semantic invariant, a tensor factorization constraining the
rank of the unfoldings should take the form of a URkU

> factorization.

Constraining the rank of the unfoldings Let us consider the following approxima-
tion of a tensorX

F (X) = argmin f(X,W) + Ω(W)

where the regularization Ω(W) acts as a hard constraint on the rank of the different
unfoldings. Hence, the minimization problem can be written:

F (X) = argmin f(X,W)

u.c. rk
(
W (i)

)
≤ di for i = 1, 2, 3 .

(13)

Theorem 2 shows that, to commute with transposition, the minimization problem
(13) has to be equivalent to

F (X) = argmin f((X|3X>12), (W |3W>12))

u.c. rk
(

(W |3W>12)(i)

)
≤ di for i = 1, 2, 3 .

(14)

One can check that, for the two first modes, the rank contraints are both equivalent
to

rk
(
(W (1)|W (2))

)
≤ d

where (W (1)|W (2)) is the stacking of the two unfoldings ofW along the two first
modes. Finally, the minimization problem can be written

F (X) = argmin f((X|3X>12), (W |3W>12))

u.c. rk
(
W (1)|W (2)

)
≤ d

rk
(

(W |3W>12)(3)

)
≤ d′ .

(15)

The next result shows the equivalence between using the constraint rk
(
W (1)|W (2)

)
≤

d and a factorization along the two first modes with shared embeddings U :

Theorem 3. For any (n, n, p) tensorW , the two conditions are equivalent:

rk
(
(W (1)|W (2))

)
≤ d (16)

and
W k = URkU

>, with rk(U) ≤ d (17)

Proof. First, one can check that the constraint (16) is equivalent to

rk
(

(W 1| . . . |W p|W>
1 | . . . , |W

>
p)
)
≤ d

Indeed, the fibers ofW along the mode 1 (resp. 2) are the rows (resp. columns) of the
slicesW k, soW (1) (resp. W (2)) is equal to (W>

1 | . . . , |W
>
p) (resp. (W 1| . . . , |W p)

) (more or less the columns order).

10

b
e
r
l
i
n

f
r
a
n
c
e

c
i
t
y

e
u
r
o
p
e

g
e
r
m
a
n
y

p
a
r
i
s

X =

berlin
france
city
europe
germany
paris

0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 0

Figure 2: Example of a single-relation knowledge base.

Now, it is clear that ifW k has the form URkU
> with rk(U) ≤ d, then

rk
(

(W 1| . . . |W p|W>
1 | . . . ,W

>
p)
)
≤ d

and the tensorW satisfies the constraints of Equation (17).
Conversely, if the matricesW k satisfy constraints of Equation (17), let

UD[V >1 | . . . |V
>
p |V

′
1
>| . . . ,V ′p

>
]

be the truncated SVD of (W 1| . . . |W p|W>
1 | . . . ,W

>
p) to the rank d (i.e. U is an

(n, d) matrix).
One has, for all k, W k = UDV >k = V ′kDU

>. As U is a unitary matrix,
one has U>U = Ir, and UU>W k = U(U>U)DV >k = UDV >k = W k, thus
W k = UU>V ′kDU

> = URkU
> with Rk = U>V ′kD. Hence, ∀k,W k has the

form URkU
> with U being an (n, d) matrix.

4 A Convex Relaxation of RESCAL
This section focuses on the case where the data-fitting function f is given by

f(X,W) = ‖X −W ‖2F .

The previous section proved that a rank constraint, in order to commute with trans-
position, should take the form of a constraint on a shared representation of entities. We
show now that transforming the optimization problem indicated by Theorem 2 leads to
a RESCAL-like algorithm [11], but also that the hard constraint on the rank embedding
matrix U is too coarse to solve adequately the compromise between generalization ca-
pacity and consistency with the training data.

In a second step, we establish that by replacing the rank constraint by a nuclear
norm penalization, which is a standard way of relaxing a rank constraint for tensor fac-
torization problems, Theorem 2 can actually provide a convex relaxation of RESCAL.

4.1 Failure of an Hard Rank Constraint
Let us consider the simple single-relation KB of Fig. 2. This KB is built from the
merging of the three relations of the introduction example of Fig. 1 with the only rela-

11

tion considered being ’has-member OR has-capital OR has-type’. Our goal here is to
predict the link from paris to city, as stated in Fig. 3.

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

Figure 3: Input matrix X (left) and expected matrix (right) with the triplet (paris,
has-type,city). (black=1, white=0)

Considering the optimization problem as in the fundamental counterexample 2.4,
i.e. minimization of the Frobenius norm with a rank constraint on the mode-1 unfold-
ing, is hopeless if one wants to be able to predict the paris-city link because this
regularization would not update a null vector (that of paris). We now see that consid-
ering the commutativity with transposition leads to a regularization that helps to solve
this link prediction task.

Commutativity with transposition as regularization Applying the recipe from The-
orem 2, the minimization problem to solve is the following:

F (X) = argmin ‖(X|3X>12)− (W |3W>12)‖2F
u.c. rk

(
W (1)|W (2)

)
≤ d

rk
(

(W |3W>12)(3)

)
≤ d′ .

(18)

On can check that the minimization of ‖(X|3X>12) − (W |3W>12)‖2F is equivalent
to that of ‖X −W ‖2F , and with Theorem 3, one can show that (18) is equivalent to

F (X) = argmin ‖X −W ‖2F
u.c. W k = URkU

>, rk(U) ≤ d

rk
(

(W |3W>12)(3)

)
≤ d′

(19)

which is a variation of RESCAL (with a rank constraint on the third mode instead
of a penalty on ‖U‖2F and ‖R‖2F). Applying the minimization of (19) to the exam-
ple of Fig. 2 gives the result represented Fig. 4. The link (paris, has-type, city)
clearly appears for an embedding matrix of rank d = 4. However, the information
(france,has-capital,paris) gets lost: the rank constraint is too strong, and enforces
the embeddings of france and germany to be very similar.

12

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

Figure 4: Solutions of the problem of Fig. 2, provided by minimization of (19) for
d = 3, 4, 5 from left to right.

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

Figure 5: Solutions of RESCAL with d = 5, and (λU , λR) equal to
(0.9, 0.05), (1, 0.05), (1, 0.06) from left to right.

The algorithm RESCAL uses an extra regularization term λU

2 ‖U‖
2
F + λR

2 ‖R‖
2
F

which can be tuned in order to get the correct prediction for the link, while preserving
initial information. Some solutions provided by RESCAL are depicted in Fig. 5. The
result is very sensitive to the parameter tuning: if the solution for d = 5, (λU , λR) equal
to (1, 0.05) seems to be consistent (it predicts correctly (paris, has-type, city’)
without losing information), in the two other cases the triplet (france, has-capital,
paris) has a lower score than (france, has-capital, berlin). This means in that
there is few hope to find a correct parameter tuning with standard methods via cross-
validation, because of the instability on the rank of the predicted triplets.

4.2 Convex Relaxation of the Rank Constraint
We saw with a simple example, that considering a minimization problem commuting
with transposition – with a rank constraint as a regularizer – leads to an algorithm based
on shared embeddings and that this algorithm can predict new valid links. However,
the obtained regularization is not entirely satisfactory, because it does not allow for fine
adjustments of the generalization trade-off. Even for RESCAL, the tuning of hyper-
parameters seems too unstable to ensure good generalization ability.

Many works have been conducted to designe efficient convex tensor factorization,

13

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

Figure 6: Solutions provided by minimizing (21), with λ′ = 0 (single relation) and
λ = 1, 1.5, 2 (from left to right). In each case, the link ’paris has-type city’ is
predicted with no loss of information.

primarily based on the use of nuclear norm penalty instead of a hard constraint on
the rank e.g. [16, 4, 15]. We now propose a method for tensor factorization based on
minimizing the Frobenius norm and a nuclear norm penalty as a regularizer. The design
of the functional to be minimized is directly driven by the the property of commuting
with transpositions.

Consider the following minimization problem:

F (X) = argmin ‖(X|3X>12)− (W |3W>12)‖2F

+

3∑
i=1

λi‖(W |3W>12)(i)‖∗
(20)

One has that ‖(W |3W>12)(1)‖∗ = ‖(W |3W>12)(2)‖∗ = ‖(W (1)|W (2))‖∗, hence
an equivalent minimization problem is

F (X) = argmin ‖X −W ‖2F
+ λ‖(W (1)|W (2))‖∗ + λ′‖(W |3W>12)(3)‖∗

(21)

Applying the minimization of (21) to the example of Fig. 2 gives the results repre-
sented in Fig. 6. For a wide range of parameters, the link paris – city is correctly
predicted, with no loss of information: the score of france-paris remains higher
than that of france-berlin for all the configurations. The results are also less noisy
than with a hard constraint of rank, or even than for RESCAL.

5 SITAR algorithm
This section presents our final algorithm SITAR (for Semantic Invariant Tensor Ap-
proximation through Regularization), which takes up the idea of tensor factorization
by minimizing the Frobenius norm with a nuclear norm regularization of (21) with the
addition of the ability to relax the equality constraint corresponding to the property (8):

14

Algorithm 1 SITAR 12

Input: tensorX , parameters µ and λ, precision ε
Y ,Y ′ = 0, Lnew = ‖X‖2F , δ = 1

2(µ+1)
repeat
∇1 = (Y −X) + µ(Y − Y ′)
∇2 = µ(Y ′ − Y)
u, s, vh = SV D(((Y − δ∇1)(1)|(Y ′ − δ∇2)(2)))
s′ = max(s− δλ, 0), vh = (vh1|vh2)
Y = unfold(1)(us

′vh1)
Y ′ = unfold(2)(us

′vh2)
Lold = Lnew
Lnew = 1

2‖X − Y ‖
2
F + µ

2 ‖Y − Y
′‖2F

+λ‖(Y (1)|Y ′(2))‖∗
until (Lold − Lnew)/Lold < ε
Return: Y

F (X) = argmin
1

2
‖(X|3X>12)− (W |3W ′)‖2F

+

3∑
i=1

λi‖(W |3W ′)(i)‖∗ +
µ

2
‖W ′ −W>12‖2F

(22)

The µ parameter allows to control of the propagation of similarities between rows and
columns, and hence the sharing of embeddings. With µ = 0, the similarities between
entities will spread to a distance of 1 in the graph of a relationship, whereas considering
µ > 0 will induce a recursion in the propagation of similarities.

Algorithm 1 describes an implementation of SITAR for λ3 = 0, which is closer to
a convex relaxation of RESCAL.

6 Experiments
We tested SITAR on three benchmarks in the field of learning multi-relational data:
UMLS, Nations and kinships. (see [9] for full description of the datasets). Kinships
depicts kinship relations between members of the Alyawarra tribe in central Australia
(26 relations, 104 entities, 10790 observations). UMLS is a small part of the semantic
network Unified Medical Language System (49 relations, 135 entities, 6752 observa-
tions). And Nations describes political interactions within countries between 1950 and
1965 (56 relations, 14 entities, 2024 observations).

Table 1 presents the results of SITAR as well as that of the best performing methods
of the literature for these datasets: SME [2], CP [7], LFM [8] and RESCAL [11]. As in
those previous work, we use the precision-recall AUC score as evaluation metrics and
a 10-fold cross-validation scheme.

We compare two versions of our algorithm: SITAR 123 and SITAR 12, the latter has
λ3 = 0. SITAR performs constantly better than RESCAL. On the kinships benchmark,

15

Table 1: PR-AUC scores of SITAR and other standard algorithms.

METHOD UMLS NATIONS KINSHIPS

SME(LIN.) 0.979 ± 0.003 0.777 ± 0.025 0.149 ± 0.003
SME(BIL.) 0.985 ± 0.003 0.865 ± 0.015 0.894 ± 0.011
CP 0.95 0.83 0.94
LFM 0.990 ± 0.003 0.909 ± 0.009 0.946 ± 0.005
RESCAL 0.976 ± 0.003 0.82 ± 0.02 0.952 ± 0.006
SITAR 12 0.977 ± 0.003 0.838 ± 0.017 0.964 ± 0.005
SITAR 123 0.976 ± 0.003 0.890 ± 0.019 0.969 ± 0.004
µ µ ∼ 2.2 µ ∼ 0.1 µ ∼ 100

SITAR reaches the best performance. The SITAR algorithm (as RESCAL) appears to
be efficient when a large µ is requested, i.e. when sharing embeddings is important for
the discovery of new links.

7 Conclusion
This paper introduced the concept of semantic invariance, a set of properties that can
be required from a tensor factorization algorithm seeking to approximate a KB. We
described the general form that must have such a semantically invariant algorithm, and
proposed a new convex tensor factorization algorithm following this framework.

Acknowledgments
Raphael Bailly is funded through a Google Faculty Research Award. This work was
carried out in the framework of the Labex MS2T (ANR-11-IDEX-0004-02), and was
funded by the French National Agency for Research (EVEREST-12-JS02-005-01).

References
[1] A. Bordes, X. Glorot, J. Weston, and Y. Bengio. Joint learning of words and

meaning representations for open-text semantic parsing. In Proceedings of the
Fifteenth International Conference on Artificial Intelligence and Statistics, AIS-
TATS 2012, La Palma, Canary Islands, April 21-23, 2012, pages 127–135, 2012.

[2] A. Bordes, X. Glorot, J. Weston, and Y. Bengio. A semantic matching energy
function for learning with multi-relational data - application to word-sense dis-
ambiguation. Machine Learning, 94(2):233–259, 2014.

[3] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Trans-
lating embeddings for modeling multi-relational data. In C. Burges, L. Bottou,

16

M. Welling, Z. Ghahramani, and K. Weinberger, editors, Advances in Neural In-
formation Processing Systems 26, pages 2787–2795. 2013.

[4] G. Bouchard, D. Yin, and S. Guo. Convex collective matrix factorization. In
AISTATS, volume 31 of JMLR Proceedings, pages 144–152. JMLR.org, 2013.

[5] S. Gandy, B. Recht, and I. Yamada. Tensor completion and low-n-rank tensor
recovery via convex optimization. Inverse Problems, 27(2):025010, 2011.

[6] R. A. Harshman. Models for analysis of asymmetrical relation- ships among n
objects or stimuli. In First Joint Meeting of the Psychometric Society and the
Society for Mathematical Psychology, 1978.

[7] R. A. Harshman and M. E. Lundy. Parafac: Parallel factor analysis. In Computa-
tional Statistics and Data Analysis, 1994.

[8] R. Jenatton, N. L. Roux, A. Bordes, and G. Obozinski. A latent factor model
for highly multi-relational data. In Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada,
United States., pages 3176–3184, 2012.

[9] C. Kemp, J. Tenenbaum, T. Griffiths, T. Yamada, and N. Ueda. Learning systems
of concepts with an infinite relational model. In Proceedings of the National
Conference on Artificial Intelligence, 2006.

[10] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM
review, 51(3):455–500, 2009.

[11] M. Nickel, V. Tresp, and H.-P. Kriegel. A three-way model for collective learning
on multi-relational data. In ICML, pages 809–816, 2011.

[12] A. Paccanaro and G. E. Hinton. Learning distributed representations of concepts
using linear relational embedding. IEEE Trans. Knowl. Data Eng., 13(2):232–
244, 2001.

[13] A. P. Singh and G. J. Gordon. Relational learning via collective matrix factor-
ization. In Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’08, 2008.

[14] I. Sutskever, J. B. Tenenbaum, and R. R. Salakhutdinov. Modelling relational
data using bayesian clustered tensor factorization. In Y. Bengio, D. Schuurmans,
J. Lafferty, C. Williams, and A. Culotta, editors, Advances in Neural Information
Processing Systems 22, pages 1821–1828. 2009.

[15] R. Tomioka and T. Suzuki. Convex tensor decomposition via structured schatten
norm regularization. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Weinberger, editors, Advances in Neural Information Processing Systems 26,
pages 1331–1339. 2013.

17

[16] R. Tomioka, T. Suzuki, K. Hayashi, and H. Kashima. Statistical performance
of convex tensor decomposition. In Advances in Neural Information Processing
Systems 24: 25th Annual Conference on Neural Information Processing Systems
2011. Proceedings of a meeting held 12-14 December 2011, Granada, Spain.,
pages 972–980, 2011.

[17] L. R. Tucker. Some mathematical notes on three-mode factor analysis. In Psy-
chometrika, 1966.

18

	Introduction
	Semantic Invariance
	Tensor Factorization Algorithms
	Commuting with Transposition
	Assumptions
	Fundamental Counterexample
	Properties of Regularizers

	Rank Constraint and Shared Embeddings
	A Convex Relaxation of RESCAL
	Failure of an Hard Rank Constraint
	Convex Relaxation of the Rank Constraint

	SITAR algorithm
	Experiments
	Conclusion

