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Semiparametric M-Estimation with Non-Smooth
Criterion Functions

Laurent Delsol ∗† Ingrid Van Keilegom ‡

February 23, 2015

Abstract

We are interested in the estimation of a parameter θ that maximizes a certain
criterion function depending on an unknown, possibly infinite dimensional nuisance
parameter h. A common estimation procedure consists in maximizing the corre-
sponding empirical criterion, in which the nuisance parameter is replaced by a non-
parametric estimator. In the literature, this research topic, commonly referred to as
semiparametric M -estimation, has received a lot of attention in the case where the
criterion function satisfies certain smoothness properties. In certain applications,
these smoothness conditions are however not satisfied. The aim of this paper is
therefore to extend the existing theory on semiparametric M -estimation problems,
in order to cover non-smooth M -estimation problems as well. In particular, we
develop ‘high-level’ conditions under which the proposed M -estimator is consistent
and has an asymptotic limit. We also check these conditions in detail for a specific
example of a semiparametric M -estimation problem, which comes from the area of
classification with missing data, and which cannot be dealt with using the existing
results in the literature. Finally, we perform a small simulation study to verify
the small sample performance of the proposed estimator, and we briefly describe a
number of other situations in which the general theory can be applied, and which
are not covered by the existing theory for semiparametric M -estimators.
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1 Introduction

Consider the estimation of a parameter of interest θ0 that maximizes a criterion function

M(θ, h0), where h0 is the true value of an unknown, possibly infinite dimensional nui-

sance parameter h. A common estimation procedure consists in maximizing an empirical

criterion function Mn(θ, ĥ), where Mn is an estimator of the unknown function M and ĥ

is a nonparametric estimator of the unknown nuisance parameter h0. In the literature,

this research topic, commonly referred to as semiparametric M -estimation, has received

a lot of attention in the case where the criterion function M satisfies certain smoothness

properties. In certain applications, these smoothness conditions are however not satis-

fied. The aim of this paper is therefore to extend the existing theory on semiparametric

M -estimation problems, in order to cover non-smooth M -estimation problems as well. In

particular, we develop ‘high-level’ conditions under which the proposed M -estimator is

consistent and has an asymptotic limit. We check these conditions in detail for a specific

example of a semiparametric M -estimation problem, which comes from the area of classi-

fication with missing data, and which cannot be dealt with using the existing results in the

literature. We also mention briefly a number of other examples that are not covered by

the current literature on semiparametric estimation. These examples come from various

areas in econometrics and statistics, and illustrate the usefulness of our results.

Non-smooth semiparametric M -estimation problems form a basically unsolved open

problem in the literature. We aim at filling this gap in the literature by combining

results for non-smooth parametric M -estimation problems with smooth semiparametric

M -estimation problems. However, as will be seen later, the problem requires much more

than ‘simply’ combining ideas from these two domains. In fact, delicate mathematical

derivations will be required to cope with estimators of the nuisance parameters inside

non-smooth criterion functions. This feature is not present for parametric M -estimators

nor for smooth semiparametric M -estimators, and is the source of the complicated nature

of this problem.

In the literature it is often assumed that M(θ, h) can be written as

M(θ, h) = E
[
m(Z, θ, h(Z, θ))

]
, (1)

where m is a known function and h is allowed to depend on θ and on a random vector

Z taking values in some space F . A common estimation procedure consists then in
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maximizing the corresponding empirical criterion:

Mn(θ, ĥ) =
1

n

n∑
i=1

m(Zi, θ, ĥ(Zi, θ)), (2)

with respect to θ, where the random vectors Z1, . . . , Zn have the same distribution as Z.

We assume in the remainder of this paper that for all θ the functions m(·, θ, ĥ(·, θ)) and

m(·, θ, h0(·, θ)) are measurable.

When the function m(z, θ, h(z, θ)) is differentiable with respect to θ and when M(θ, h0)

is concave in θ, then the M -estimation problem can be reduced to a Z-estimation problem,

by solving the equation ∂Mn(θ, ĥ)/∂θ = 0 (or by minimizing the norm of ∂Mn(θ, ĥ)/∂θ if

a solution would not exist). A general result on (two-step) semiparametric Z-estimators

can be found in Chen, Linton and Van Keilegom (2003). In that paper high-level condi-

tions are given under which the estimator of θ0 is weakly consistent and asymptotically

normal. The criterion function ∂m/∂θ is not required to be smooth in θ nor in h. See also

Van der Vaart and Wellner (2007) for high-level conditions for the stochastic equiconti-

nuity in semiparametric Z-estimation problems. For specific examples of semiparametric

Z-estimation problems we refer (among others) to Chen and Fan (2006), Linton, Sper-

lich and Van Keilegom (2008), Mammen, Rothe and Schienle (2011), Escanciano, Jacho-

Chavez and Lewbel (2012, 2014), and the references therein. Finally, for (one-step) sieve

estimation in semiparametric Z-estimation problems, see Chen (2007), Chen and Pouzo

(2009), Ding and Nan (2011), Chen and Liao (2012) and Cheng and Shang (2015), among

others. See also the book by Horowitz (2009) for a number of other examples.

On the other hand, when either m(z, θ, h(z, θ)) is not differentiable with respect to θ,

or when M(θ, h0) has more than one (local) maximum, then the M -estimation problem

can not be reduced to a Z-estimation problem, and we need to use other procedures.

In the parametric case, where no infinite dimensional nuisance parameter is present, we

refer to Kim and Pollard (1990) for a general result on parametric M -estimators that

have n1/3-rate of convergence, and to Van der Vaart and Wellner (1996) for a result on

both estimators that converge at n1/2-rate in the smooth case, and at a rate slower than

n1/2 for non-smooth functions. See also Groeneboom and Wellner (1993), Groeneboom,

Jongbloed and Wellner (2001), Goldenshluger and Zeevi (2004), Mohammadi and Van de

Geer (2005) and Radchenko (2008), among others for important contributions on results

for specific parametric M -estimation problems with slower than n1/2-rate of convergence.

The problem becomes more difficult when the model is semiparametric. Basically

two main approaches can be considered in that case. In the first approach Mn(θ, h) is
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maximized jointly with respect to θ and h, and then the criterion function is modified in

order to obtain an estimator of θ0 converging at n1/2-rate. The second approach, which

we will follow, consists in maximizing Mn(θ, ĥ) with respect to θ, where ĥ is a preliminary

estimator of h0. When the m-function is in some sense ‘smooth’ (e.g. Lipschitz continuous

in Lp-norm) several contributions on both approaches can be found in the literature. See

e.g. Van der Vaart and Wellner (1996), Van de Geer (2000), Ma and Kosorok (2005),

Kosorok (2008), Ichimura and Lee (2010), and Kristensen and Salanié (2013). In these

cases, the estimator of θ0 is n1/2-consistent, even when the nuisance parameter is estimated

at slower rate. This rate is obtained thanks to the regularity of the criterion function m.

However, in numerous situations we are faced to semiparametric M -estimation prob-

lems, where the function m does not satisfy the smoothness property that makes the

estimator of θ0 n
1/2-consistent. Examples can be found (among many others) in classifi-

cation problems with variables missing at random, and in partially linear binary choice

models (see Section 6 for more details and examples). This general context has, to the

best of our knowledge, not been considered so far in the literature. It is substantially

more difficult than the ‘smooth’ case. This can be understood e.g. from the fact that it

leads to non-standard asymptotics and to estimators of θ0 that are not n1/2-consistent

and that converge to non-normal limits. To achieve this we need to apply second order

Taylor expansions (as opposed to first order Taylor expansions in the smooth case), the

application of delicate empirical process results, and the analysis of messy and compli-

cated remainder terms, which do not show up in the smooth case or the case without

nonparametric nuisance functions. The results that we will obtain allow to show that in

the case where m is not smooth (e.g. when m includes an indicator function), we can ob-

tain the same rate of convergence (and sometimes even the same asymptotic distribution)

as in the case where the nuisance parameter would be known, even when the nuisance

parameter is estimated at slower rate.

The paper is organized as follows. In the next section we introduce some notations

and give the formal definition of the M -estimator. In Section 3 we show under which

conditions the estimator of θ0 is weakly consistent. Section 4 deals with the development

of the rate of convergence of the estimator, whereas in Section 5 we state the asymptotic

distribution of the estimator. In Section 6 a particular example of a non-smooth semi-

parametric M -estimation problem is considered, for which we check the conditions of the

asymptotic results in detail, and a number of other examples are briefly outlined. Finally,

the Appendix contains the proofs of the asymptotic results.
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2 Notations and definitions

Throughout the paper we assume that the data Z1, . . . , Zn are identically distributed

random vectors. In many applications the vector Zi (i = 1, . . . , n) will consist of a ran-

dom vector Yi (representing a response) and a random vector Xi (representing a vector

of explanatory variables). The set Θ denotes a compact parameter set (usually but not

necessarily of finite dimension ) with non empty interior and H denotes an infinite dimen-

sional parameter set. Suppose there exists a non-random measurable real-valued function

M : Θ×H → IR, such that

θ0 = argmaxθ∈ΘM(θ, h0(·, θ)),

and suppose θ0 is unique and belongs to the interior of Θ. Let θ0 and h0 ∈ H be the true

unknown finite and infinite dimensional parameters. We allow that the functions h ∈ H
depend on the parameters θ and the vector Z, but for notational convenience we will often

suppress this dependence when no confusion is possible. For instance, we often use the

following abbreviated notations : (θ, h) ≡ (θ, h(·, θ)), (θ, h0) ≡ (θ, h0(·, θ)), and (θ0, h0) ≡
(θ0, h0(·, θ0)). The sets Θ and H are supposed to be metric spaces. Their metrics are

denoted by d and dH respectively. Since the nuisance parameter is allowed to depend on θ

we implicitly define dH(h, h0) uniformly over θ, i.e. dH(h, h0) := supθ∈Θ d
1
H(h(., θ), h0(., θ))

for some metric d1
H.

Suppose there exists a random real-valued function Mn : Θ × H → IR depending on

the data Z1, . . . , Zn, such that Mn(θ, h0) is an approximation of M(θ, h0) (the precise

conditions on Mn will be given in the next sections). In many applications we have that

M(θ, h) = E[m(Z, θ, h)] and Mn(θ, h) = n−1
∑n

i=1m(Zi, θ, h), where m is a measurable

real-valued function such that θ0 = argmaxθ∈ΘE[m(Z, θ, h0)]. However, the conditions on

Mn do not impose this particular structure and allow for more general situations as well.

Suppose that for each θ there is an initial nonparametric estimator ĥ(·, θ) for h0(·, θ). This

nonparametric estimator depends on the particular model, and can be based on e.g. ker-

nels, splines or neural networks. Again for notational ease we let (θ, ĥ) ≡ (θ, ĥ(·, θ)). We

estimate θ0 by any θ̂ ∈ Θ that ‘approximately solves’ the sample maximization problem:

max
θ∈Θ

Mn(θ, ĥ). (3)

In the set of conditions given in the next sections we will formalize what we mean with

‘approximate solution’.
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3 Consistency

We focus in this section on the development of sufficient conditions under which the esti-

mator θ̂ is weakly consistent. This consistency will be used as a preliminary step for the

subsequent sections, where we will deal with the rate of convergence and the asymptotic

distribution of the estimator. In the remainder of the paper the notations P ∗ and E∗

will be used to denote outer probabilities and outer expectations, to take into account

potential measurability issues.

Consider the following assumptions:

(A1) θ̂ ∈ Θ and Mn(θ̂, ĥ) ≥Mn(θ0, ĥ) + oP ∗(1).

(A2) For all ε > 0 there exists a δ(ε) > 0 such that d(θ, θ0) > ε implies M(θ0, h0) −
M(θ, h0) > δ(ε).

(A3) P(ĥ ∈ H)→ 1 as n→∞ and dH(ĥ, h0)
P ∗→ 0.

(A4)

sup
θ∈Θ, h∈H

|Mn(θ, h)−Mn(θ0, h)−M(θ, h) +M(θ0, h)|
1 + |Mn(θ, h)−Mn(θ0, h)|+ |M(θ, h)−M(θ0, h)|

= oP ∗(1).

(A5) limdH(h,h0)→0 supθ∈Θ |M(θ, h)−M(θ, h0)| = 0.

Below we illustrate and interpret these conditions, and we give some remarks, exten-

sions, sufficient conditions, etc., that are useful for verifying these conditions in practice.

Remark 1

(i) In assumption (A4), we take the supremum with respect to h over the whole family

H. However, it is enough to assume the same type of convergence only for h = ĥ

or for {h : dH(h, h0)} ≤ δn for some δn → 0 such that dH(ĥ, h0)δ−1
n = oP ∗(1).

Assumption (A5) could be changed in the same way.

(ii) Assumption (A4) is closely related to the compactness of the sets Θ and H and is

automatically fulfilled when the following standard assumption holds:

sup
θ∈Θ, h∈H

|Mn(θ, h)−M(θ, h)| = oP ∗(1).

This last condition holds when the family F = {m(., θ, h), θ ∈ Θ, h ∈ H} is

Glivenko-Cantelli, and M(θ, h) = E[m(Z, θ, h)].
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(iii) We do not require here that M is the mean of the random function m(Z, ., .).

We only require that assumption (A4) holds. Moreover, we do not impose any

smoothness assumptions on Mn. We only require that the function M satisfies

assumptions (A2) and (A5).

(iv) In this section we do not assume that θ belongs to an Euclidean space. It is possible

that θ and h belong to general metric spaces. Theoretically, it is also possible to

consider semimetric spaces, however, this only allows to get the consistency (without

rate of convergence) with respect to the corresponding semimetrics.

(v) The assumption that the variables Zi are independent is not necessary here. Our

result could be used even for dependent data as soon as it is possible to fulfill

assumptions (A1), (A3) and (A4).

(vi) Assumption (A1) is trivially fulfilled when Mn(θ̂, ĥ) ≥ supθ∈ΘMn(θ, ĥ) + oP ∗(1),

which allows to deal with approximations of the value that actually maximizes

θ 7→Mn(θ, ĥ).

Theorem 1 Under assumptions (A1)-(A5) we have that

d(θ̂, θ0)
P ∗→ 0.

The proof is given in the Appendix.

4 Rate of convergence

In the previous section we have shown the consistency of general M -estimators. We are

now interested in going one step further and give their convergence rates. In this section,

the consistency of our estimators is used as a preliminary assumption. Of course, Theorem

1 can be used to obtain this consistency. We introduce the following assumptions:

(B1) d(θ̂, θ0)
P ∗→ 0 and vndH(ĥ, h0) = OP ∗(1) for some sequence vn →∞.

(B2) For all δ1 > 0, there exist α < 2, K > 0, δ0 > 0 and n0 ∈ N such that for all n ≥ n0

there exists a function Φn for which δ 7→ Φn(δ)/δα is decreasing on (0, δ0] and for

all δ ≤ δ0,

E∗
 sup
d(θ,θ0)≤δ,dH(h,h0)≤ δ1

vn

|Mn(θ, h)−Mn(θ0, h)−M(θ, h) +M(θ0, h)|

 ≤ K
Φn(δ)√

n
.

7



(B3) There exist a constant C > 0, a sequence rn → ∞, and variables Wn = OP ∗(r
−1
n )

and βn = oP ∗(1), such that for all θ ∈ Θ satisfying d(θ, θ0) ≤ δ0:

M(θ, ĥ)−M(θ0, ĥ) ≤ Wnd(θ, θ0)− Cd(θ, θ0)2 + βnd(θ, θ0)2.

(B4) Mn(θ̂, ĥ) ≥Mn(θ0, ĥ) +OP ∗(r
−2
n ) and r2

nΦn(r−1
n ) ≤

√
n.

Under the above assumptions, we will prove that the estimator θ̂ is r−1
n -consistent.

Hence, the sequence rn plays an important role in the above assumptions and should be

chosen in the sharpest possible way. Before stating and proving this result, we first discuss

the above assumptions in more detail.

Remark 2

(i) Assumption (B1) is a ‘high-level’ assumption. Many asymptotic results allow to

get such conditions on both the M -estimator θ̂ and the nuisance estimator ĥ. In

general the rate of convergence of the nuisance estimator is slower than the best

convergence rate of the M -estimator. We are interested in studying cases where

the convergence rate of the M -estimator is not affected by the fact that we need to

estimate the nuisance parameter.

(ii) Assumption (B2) is also a ‘high-level’ assumption. Assume that for any z the

function (θ, h) → m(z, θ, h(z, θ)) − m(z, θ0, h(z, θ0)) is uniformly bounded on an

open neighborhood of (θ0, h0), i.e. on {(θ, h) : d(θ, θ0) ≤ δ0, dH(h, h0) ≤ δ′1} for

some δ0, δ
′
1 > 0. Let us consider the class Fδ,δ′1 = {m(., θ, h(·, θ))−m(., θ0, h(·, θ0)) :

d(θ, θ0) ≤ δ, dH(h, h0) ≤ δ′1} for any δ ≤ δ0 and denote its envelope by Mδ,δ′1
. For

any δ1, we have δ1v
−1
n ≤ δ′1 for n large enough. Then, under entropy conditions on

Fδ,δ′1 , as for instance

sup
δ≤δ0

∫ 1

0

√
1 + logN[ ](ε‖Mδ,δ′1

‖L2(P∗), Fδ,δ′1 , L2(P))dε < +∞ (4)

(where N[ ] denotes the bracketing number, i.e. the smallest number of brackets that

are needed to cover the space), there exists a positive constant K1 (not depending

on δ) such that for all δ ≤ δ0,

E∗
[

sup
d(θ,θ0)≤δ,dH(h,h0)≤δ′1

|Mn(θ, h)−Mn(θ0, h)−M(θ, h) +M(θ0, h)|

]
≤ K1

√
E∗[M2

δ,δ′1
]

√
n
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(see Theorems 2.14.1 and 2.14.2 in Van der Vaart and Wellner (1996)). Hence, in

this case, the last part of (B2) holds if Φn(δ) can be chosen such that

∃K0,∀δ ≤ δ0 :
√

E∗[M2
δ,δ′1

] ≤ K0Φn(δ). (5)

The function Φn(δ) is closely related to the ‘smoothness’ of the functions θ →
m(z, θ, h(z, θ)). When these functions are Lipschitz (respectively Hölder of order γ)

uniformly over z and h, it is possible to take Φn(δ) = δ (respectively Φn(δ) = δγ).

In other situations, for instance when m contains an indicator function involving θ,

such regularity assumptions may fail but it is possible to state (B2) with Φn(δ) =
√
δ

(see Section 6).

(iii) The way Φn(δ) decreases when δ tends to zero has a crucial impact on the con-

vergence rate rn through the condition r2
nΦn(r−1

n ) ≤
√
n. When Φn(δ) = δ, this

last condition is equivalent to rn ≤
√
n and we may obtain

√
n convergence rates.

However, when Φn(δ) = δγ with γ < 1, this condition is equivalent to r2−γ
n ≤

√
n

and hence only n
1

2(2−γ) rates may be considered. In the case of non continuous cri-

terion functions (involving e.g. indicator functions) a n
1
3 convergence rate may be

obtained, analogously to the case of parametric M -estimation.

(iv) Assumption (B4) is automatically fulfilled under the following classical assumption:

Mn(θ̂, ĥ) ≥ sup
θ∈Θ

Mn(θ, ĥ) +OP ∗(r
−2
n ).

As in the previous section, this allows to consider approximations of the value that

actually maximizes the empirical criterion.

(v) Assumption (B3) is automatically fulfilled when the following conditions hold:

(a) Θ ⊂ Rk for some k, and d(θ1, θ2) = ‖θ1−θ2‖, where ‖·‖ is the Euclidean norm.

(b) There exists δ2 > 0 such that for any h satisfying dH(h, h0) ≤ δ2, the function

θ → M(θ, h) is twice continuously differentiable on an open neighborhood of

θ0. Hereafter, Γ(θ0, h) and Λ(θ0, h) denote respectively its gradient and Hessian

matrix for θ = θ0. Moreover,

lim
‖θ−θ0‖→0

sup
dH(h,h0)

≤δ2
‖θ − θ0‖−2

∣∣∣M(θ, h)−M(θ0, h)− Γ(θ0, h)(θ − θ0)

−1

2
(θ − θ0)TΛ(θ0, h)(θ − θ0)

∣∣∣ = 0.
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(c) ‖Γ(θ0, ĥ)‖ = OP ∗(r
−1
n ) and Γ(θ0, h0) = 0.

(d) Λ(θ0, h0) is negative definite, and h 7→ Λ(θ0, h) is continuous in h0 (i.e.

limdH(h,h0)→0 supu∈Rk,‖u‖=1 ‖(Λ(θ0, h)− Λ(θ0, h0))u‖ = 0).

Now denote the greatest eigenvalue of Λ(θ0, h0) by λm. When dH(ĥ, h0) ≤ δ2,

assumptions (a)-(d) above imply that

M(θ, ĥ)−M(θ0, ĥ)

= 〈Γ(θ0, ĥ), γθ〉+
1

2
(γθ)

TΛ(θ0, h0)(γθ) + ‖γθ‖2oP ∗(1) + o(‖γθ‖2)

≤ ‖Γ(θ0, ĥ)‖‖γθ‖+
λm
2
‖γθ‖2 + ‖γθ‖2oP ∗(1) + o(‖γθ‖2),

where γθ = θ− θ0 and where the notation o(‖γθ‖2) means lim‖γθ‖→0
o(‖γθ‖2)
‖γθ‖2

= 0. By

taking δ0 such that ‖θ− θ0‖ ≤ δ0, the last term above is bounded by −λm
4
‖θ− θ0‖2,

and hence (B3) holds with Wn = ‖Γ(θ0, ĥ)‖ and C = −λm
4

.

(vi) Finally, it is possible to modify slightly the proof of the following theorem by con-

sidering the following extensions of assumptions (B3) and (B4):

(B3′) There exist η0 > 0, and two positive and non-decreasing functions Ψ1 and Ψ2

on (0, η0] such that for all θ satisfying d(θ, θ0) ≤ η0:

M(θ, ĥ)−M(θ0, ĥ) ≤ WnΨ1(d(θ, θ0))− (1 + oP ∗(1))Ψ2(d(θ, θ0)).

Moreover, there exist β2 > α, β1 < β2, δ0 > 0 such that δ 7→ Ψ1(δ)δ−β1 is

non-increasing and δ 7→ Ψ2(δ)δ−β2 is non-decreasing on (0, δ0], and such that

Ψ1(r−1
n )Wn = OP ∗(Ψ2(r−1

n )) for some sequence rn →∞.

(B4′) Mn(θ̂, ĥ) ≥Mn(θ0, ĥ) +Op(Ψ2(r−1
n )) and Φn(r−1

n ) ≤
√
nΨ2(r−1

n ).

It is possible to consider the case where β1 = β2 if we assume that Ψ1(r−1
n )Wn =

op(Ψ2(r−1
n )).

We are now ready to state the rate of convergence of the estimator θ̂. The proof of

this result can be found in the Appendix.

Theorem 2 Under assumptions (B1)-(B4) we have that

rnd(θ̂, θ0) = OP ∗(1).
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5 Asymptotic distribution

In the previous section, we have shown that rnd(θ̂, θ0) = OP ∗(1). Our aim is now to

study the asymptotic distribution of rn(θ̂ − θ0). We will assume throughout this section

that Θ is equipped with the Euclidean norm ‖ · ‖. We start with introducing a number

of notations. For any θ ∈ Θ and h ∈ H, let Bn(θ, h) = Mn(θ, h) − Mn(θ0, h) and

B(θ, h) = M(θ, h)−M(θ0, h), and define

Mδ(.) ≥ sup
‖θ−θ0‖≤δ

|m(., θ, h0)−m(., θ0, h0)|

for any δ > 0. Also, let

Mδ = {m(., θ, h0)−m(., θ0, h0) : ‖θ − θ0‖ ≤ δ}.

Finally, for any p ∈ N, for any f : Θ → IR and for any γ = (γ1, . . . , γp) ∈ Θp denote

fγ = (f(γ1), . . . , f(γp))
T .

We introduce the following assumptions:

(C1) rn‖θ̂ − θ0‖ = OP ∗(1) and vndH(ĥ, h0) = OP ∗(1) for some sequences rn → ∞ and

vn →∞.

(C2) θ0 belongs to the interior of Θ and Θ ⊂ (E, ‖ · ‖), where E is a finite dimensional

Euclidean space (i.e. E = Rk for some k).

(C3) For all δ2, δ3 > 0,

sup
‖θ−θ0‖≤ δ2

rn
, dH(h,h0)≤ δ3

vn

|Bn(θ, h)−B(θ, h)−Bn(θ, h0) +B(θ, h0)|
r−2
n + |Bn(θ, h)|+ |Bn(θ, h0)|+ |B(θ, h)|+ |B(θ, h0)|

= oP ∗(1).

(C4) For all K, η > 0,

r4
n

n
E∗
[
M2

K
rn

]
= O(1) and

r4
n

n
E∗
[
M2

K
rn

1{r2nM K
rn
>ηn}

]
= o(1).

(C5) For all K > 0 and for any ηn → 0,

sup
‖γ1−γ2‖<ηn,‖γ1‖∨‖γ2‖≤K

r4
n

n
E
[
m
(
Z, θ0 +

γ1

rn
, h0

)
−m

(
Z, θ0 +

γ2

rn
, h0

)]2

= o(1).

(C6) For all z ∈ F , the function θ 7→ m(z, θ, h0(z, θ)) and almost all paths of the process

θ 7→ m(z, θ, ĥ(θ, z)) are uniformly (over θ) bounded on compact sets.
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(C7) There exist βn = oP ∗(1), a random and linear function Wn : E → IR, and a

deterministic and bilinear function V : E × E → IR such that for all θ ∈ Θ,

B(θ, ĥ) = Wn(γθ) + V (γθ, γθ) + βn‖γθ‖2 + o(‖γθ‖2)

and

B(θ, h0) = V (γθ, γθ) + o(‖γθ‖2),

where γθ = θ − θ0 and the notation o(‖γθ‖2) means lim‖γθ‖→0
o(‖γθ‖2)
‖γθ‖2

= 0.

Moreover, for any compact set K in E,

∃τ, δ1 > 0, rn sup
γ∈E, δ≤δ1,
‖γ‖≤δ

|Wn(γ)

δτ
| = OP ∗(1) and sup

γ,γ′∈K, δ≤δ1,
‖γ−γ′‖≤δ

|V (γ, γ)− V (γ′, γ′)|
δτ

<∞.

(C8) For all K > 0, there exists n0 ∈ N such that for all n ≥ n0,

Mn(θ̂, ĥ) ≥ sup
‖θ−θ0‖≤ K

rn

Mn(θ, ĥ) + oP ∗(r
−2
n ).

(C9) There exists a deterministic continuous function Λ and a zero-mean Gaussian process

G defined on E such that for all p ∈ N and for all γ = (γ1, . . . , γp) ∈ Ep,

rnWnγ + r2
nBn

(
θ0 +

.

rn
, h0

)
γ

L→ Λγ + Gγ.

Moreover, G(γ) = G(γ′) a.s. implies that γ = γ′, and P ∗
(
limsup‖γ‖→+∞(Λγ + Gγ)

< supγ∈E(Λγ + Gγ)
)

= 1.

(C10) There exists a δ0 > 0 such that∫ ∞
0

sup
δ≤δ0

√
log
(
N[ ](ε‖Mδ‖P ∗,2,Mδ, L2(P ))

)
dε < +∞.

We will show below that rn(θ̂ − θ0) converges to the unique maximizer of the process

γ 7→ Λ(γ) + G(γ), where Λ and G are defined in (C9). However, let us first discuss the

above assumptions.

Remark 3

(i) The first part of assumption (C1) can be obtained from Theorem 2. If in addition

we assume that assumption (B2) holds with Φn ≡ Φ not depending on n and
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continuous, and if we take rn → +∞ such that r2
nΦ(r−1

n ) =
√
n, then assumptions

(C4) and (C5) are implied by the following ones: there exists a δ4 > 0 such that for

all δ ≤ δ4, E∗(M2
δ ) ≤ KΦ2(δ) for some K > 0,

lim
δ→0

E∗[M2
δ 1{Mδ>ηδ−2Φ2(δ)}]

Φ2(δ)
= 0

for all η > 0, and

lim
ε→0

lim
δ→0

sup
‖γ1−γ2‖≤ε, ‖γ1‖∨‖γ2‖≤K

E[m(Z, θ0 + γ1δ, h0)−m(Z, θ0 + γ2δ, h0)]2

Φ2(δ)
= 0

for all K > 0, using the same arguments as in the proof on Theorem 3.2.10 in Van

der Vaart and Wellner (1996).

(ii) Assumption (C6) ensures that for any compact K ⊂ E the processes γ 7→ r2
nBn(θ0 +

γ
rn
, ĥ) and γ 7→ r2

nBn(θ0 + γ
rn
, h0) + rnWn(γ) take values in `∞(K) (assumption

(C7) is also used for the second process). This assumption is not very restrictive.

Moreover, because we deal with asymptotic results, we actually only require the

latter properties for n > nK (where nK only depends on K). It follows directly from

(C1) and (C2) that there exists nK such that θ0 + K
rn
⊂ Θ for n > nK. Hence it is

only necessary to state (C6) on the compact set Θ.

(iii) Assumption (C3) is automatically fulfilled under the following slightly more restric-

tive (but common) assumption: for all δ2, δ3 > 0,

sup
‖θ−θ0‖≤ δ2

rn
,dH(h,h0)≤ δ3

vn

|Bn(θ, h)−B(θ, h)−Bn(θ, h0) +B(θ, h0)| = oP ∗(r
−2
n ).

The latter condition holds whenever the following one is fulfilled: there exists a

function f and a constant δ0 > 0 such that for all δ2, δ3 < δ0,

r2
nf
( δ2

rn
,
δ3

vn

)
= o(
√
n),

and

E∗
[

sup
‖θ−θ0‖≤ δ2

rn
,dH(h,h0)≤ δ3

vn

|Bn(θ, h)−B(θ, h)−Bn(θ, h0) +B(θ, h0)|
]
≤
f( δ2

rn
, δ3
vn

)
√
n

.

This last bound may be obtained using arguments that are similar to those discussed

in Remark 2(ii).
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(iv) Now assume that assumptions (a)-(d) from Remark 2(v) hold. Following the same

ideas as in this remark it is easy to show that (C7) is fulfilled with E = Rk, Wn(γ) =

〈Γ(θ0, ĥ), γ〉 and V (γ, γ) = 1
2
γTΛ(θ0, h0)γ whenever supu∈Rk,‖u‖=1 ‖Λ(θ0, h0)u‖ <

+∞. Moreover, in that case, if ĥ is computed from a dataset independent of

(Z1, . . . , Zn), it is sufficient for (C9) to assume the weak convergence of each term

rnWnγ and r2
nBn(θ0 + .

rn
, h0)

γ
separately. The convergence of the second term can

be obtained as in the parametric case (see Theorem 3.2.10 in Van der Vaart and

Wellner (1996)). Note also that if rnΓ(θ0, ĥ)→ W in distribution, the marginals of

the process γ 7→ 〈rnΓ(θ0, ĥ), γ〉 tend in distribution to the marginals of γ 7→ 〈W, γ〉.
Furthermore, if rn =

√
n, it is common to assume that Γ(θ0, ĥ) = n−1

∑n
i=1 Ui,n +

oP ∗(n
−1/2), where the variables Ui,n are independent and centered. The convergence

then follows from Lindeberg’s condition.

(v) Assumption (C8) allows to consider estimators θ̂ that are approximations of the

value that actually maximizes the map θ 7→Mn(θ, ĥ).

(vi) Let K be an arbitrary compact subset in E. Assumption (C9) is used to derive the

weak convergence (in the `∞(K) sense) of the process γ 7→ rnWn(γ) + r2
nBn(θ0 +

γr−1
n , h0) from the fact that it is asymptotically tight. If rn supγ∈K,γ 6=0 ‖Wn(γ)‖γ‖−1‖

= oP ∗(1), we are in the same situation as in the parametric case and we obtain the

convergence of the marginals whenever

lim
n→∞

r4
n

n
E
{[
m
(
Z, θ0 +

γ1

rn
, h0

)
−m

(
Z, θ0 +

γ2

rn
, h0

)]2}
= E[(G(γ1)−G(γ2))2]

for all γ1, γ2, by noting that the remaining term is a sum of an array of random

variables that fulfill Lindeberg’s condition (see Van der Vaart and Wellner (1996)

p. 293-294). The last assumption on the process γ 7→ Λγ + Gγ is used to ensure

almost all sample paths have a supremum which is only related to their behaviour on

compact sets. The dominant term of the deterministic part Γ is usually a negative

definite quadratic form and hence exponential inequalities could lead to such result.

(vii) Finally, assumption (C10) is used to show that γ 7→ r2
nBn(θ0+γr−1

n , h0) is asymptoti-

cally tight. It is the same as in the ‘parametric case’ where h0 is known (see Theorem

3.2.10 in Van der Vaart and Wellner (1996)). The same holds true for assumptions

(C4)-(C6). Van der Vaart and Wellner (1996) also give weaker conditions and al-

ternatives for assumption (C10) based on covering numbers (see Theorems 2.11.22,

2.11.23 and 3.2.10).
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We are now ready to state the main result of the paper about the asymptotic distri-

bution of θ̂ − θ0. As before, we refer to the Appendix for the proof.

Theorem 3 If assumptions (C1)-(C10) hold, then for all K > 0 the process γ 7→
r2
nBn(θ0 + γ

rn
, ĥ) converges weakly to γ 7→ Λ(γ) + G(γ) in `∞(K) with K = {γ ∈ E :

‖γ‖ ≤ K}. Moreover, for any such K almost all paths of the limiting process have a

unique maximizer γ0 on K. Assume now that γ0 is measurable. Then, the random se-

quence rn(θ̂ − θ0) converges in distribution to γ0.

6 Examples

In this section we give several examples of situations in which existing theory on semipara-

metric estimators can not be applied, whereas Theorems 1–3 in this paper can be used

to obtain the limiting distribution of the estimator. This will demonstrate the usefulness

of the asymptotic results in this paper. We start with an example on classification with

missing data, which we work out in full detail. The contexts of the other five examples

in this section are shortly stated, but the verification of the conditions of Theorems 1–3

is omitted for obvious space restrictions. See also the paper by Xu, Sen and Ying (2014),

who consider a Cox model for duration data containing a change point (threshold). Their

model and estimator also fit in our general framework.

6.1 Classification with missing data

In this section we illustrate the theory, and in particular the verification of the assump-

tions, by means of an example coming from the area of classification with missing data.

Consider i.i.d. data Xi = (Xi1, Xi2) (i = 1, . . . , n) having the same distribution as X =

(X1, X2). We suppose that these data come in reality from two underlying populations.

Let Yi be j if observation i belongs to population j (j = 0, 1), and let Y be the population

indicator for the vector X. Based on these data, we wish to establish a classification rule

for new observations, for which it will be unknown to which population they belong. The

classification consists in regressing X2 on X1 via a parametric regression function fθ(·),
and choosing θ by maximizing the criterion

P (Y = 1, X2 ≥ fθ(X1)) + P (Y = 0, X2 < fθ(X1)). (6)

Let θ0 be the value of θ that maximizes (6) with respect to all θ ∈ Θ, where Θ is a

compact subset of IRk, whose interior contains θ0.

15



We suppose now that some of the Yi’s are missing. Let ∆i (respectively ∆) be 1 if

Yi (respectively Y ) is observed, and 0 otherwise. Hence our data consist of i.i.d. vectors

Zi = (Xi, Yi∆i,∆i) (i = 1, . . . , n). We assume that the missing at random mechanism

holds true, in the sense that

P (∆ = 1|X1, X2, Y ) = P (∆ = 1|X1) := p0(X1).

Note that (6) equals

E
[I(∆ = 1)

p0(X1)

{
I(Y = 1, X2 ≥ fθ(X1)) + I(Y = 0, X2 < fθ(X1))

}]
.

Hence, it is natural to define

m(Z, θ, p) =
I(∆ = 1)

p(X1)

{
I(Y = 1, X2 ≥ fθ(X1)) + I(Y = 0, X2 < fθ(X1))

}
, (7)

where the nuisance function p(·) belongs to a space P to be defined later, and where

Z = (X, Y∆,∆). Also, let

M(θ, p) = E[m(Z, θ, p)] and Mn(θ, p) = n−1

n∑
i=1

m(Zi, θ, p).

Finally, define the estimator θ̂ of θ0 by

θ̂ = argmaxθ∈Θ Mn(θ, p̂), (8)

where for any x1,

p̂(x1) =
n∑
i=1

kh(x1 −Xi1)∑n
j=1 kh(x1 −Xj1)

I(∆i = 1),

where k is a density function with support [−1, 1], kh(u) = k(u/h)/h and h = hn is an

appropriate bandwidth sequence.

We will now check the conditions of Theorems 1, 2 and 3. Suppose d(θ, θ0) is the

Euclidean distance ‖·‖. Let P be the space of functions p : RX1 → IR that are continuously

differentiable, and for which supx1∈RX1
p(x1) ≤ M < ∞, supx1∈RX1

|p′(x1)| ≤ M and

infx1∈RX1
p(x1) > η/2, where η = infx1∈RX1

p0(x1) is supposed to be strictly positive, and

where RX1 is the support of X1, which is supposed to be a compact subspace of IR. We

equip the space P with the supremum norm : dP(p1, p2) = supx1∈RX1
|p1(x1)− p2(x1)| for

any p1, p2.

First of all, (A1) is verified by construction of the estimator θ̂. Condition (A2) is

an identifiability condition, needed to ensure that θ0 is unique, whereas (A3) holds true
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provided the functions p0 and k are continuously differentiable. Next, for (A4) is suffices

by Remark 1(ii) to show that the class F = {m(·, θ, p) : θ ∈ Θ, p ∈ P} is Glivenko-

Cantelli. For this we will show that for all ε > 0, the bracketing number N[ ](ε,F ,L1(P ))

is finite. First, note that it follows from Corollary 2.7.2 in Van der Vaart and Wellner

(1996) that N[ ](ε,P ,L1(P )) ≤ exp(Kε−1). In a similar way we can show that N[ ](ε, {fθ :

θ ∈ Θ},L1(P )) ≤ exp(Kε−1), provided x1 → fθ(x1) is continuously differentiable and the

derivatives are uniformly bounded over θ. From there it can be easily shown that the

class

T = {(x1, x2)→ I(x2 ≥ fθ(x1)) : θ ∈ Θ}

satisfies N[ ](ε, T ,L1(P )) ≤ exp(Kε−1), provided supx1,x2 fX2|X1(x2|x1) < ∞. By combin-

ing the brackets for P and T we get that N[ ](ε,F ,L1(P )) ≤ exp(Kε−1) < ∞ for some

K < ∞. Finally, condition (A5) is straightforward, and hence the weak consistency of θ̂

follows.

Next, we verify the B-conditions. Condition (B1) holds with v−1
n = K[(nh)−1/2(log n)1/2

+ h]. For (B2), it suffices by Remark 2(ii) to show that (4) and (5) hold true. Equation

(5) holds true for Φn(δ) = δ1/2. Indeed the envelope Mδ,δ′1
of the class Fδ,δ′1 can be taken

equal to (for notational simplicity we suppose throughout that θ is one-dimensional)

Mδ,δ′1
(Z) =

2

η
I(fθ0(X1)− Aδ ≤ X2 ≤ fθ0(X1) + Aδ),

where A = supθ,x1 |
∂
∂θ
fθ(x1)|, which we suppose to exist and to be finite. Hence, (5) is

easily seen to hold provided X is absolutely continuous and supx fX(x) <∞. For (4) note

that

‖Mδδ′1
‖2
L2(P ) =

4

η2
E
[
FX2|X1(fθ0(X1) + Aδ|X1)− FX2|X1(fθ0(X1)− Aδ|X1)

]
≥ 8Aδ

η2
inf∗fX2|X1(x2|x1) =: K2

1δ,

which we suppose to be strictly positive, where inf∗ is the infimum over all (x1, x2) such

that |x2 − fθ0(x1)| ≤ Aδ. It follows that N[ ](ε‖Mδδ′1
‖L2(P ),Fδδ′1 , L2(P )) is bounded above

by N[ ](K1εδ
1/2,Fδδ′1 , L2(P )). We will first construct brackets for the set G := {fθ : θ ∈

Θ, |θ−θ0| ≤ δ}. Note that fθ can be written as fθ = [1
δ
(fθ−fθ0)]δ+fθ0 . If we assume that

x1 → ∂
∂θ
fθ(x1) is twice continuously differentiable in x1 for all θ, it follows from Corollary

2.7.2 in Van der Vaart and Wellner (1996) that rε := N[ ](ε
2,D, L2(P )) ≤ exp(Kε−1) with

D = {1
δ
(fθ−fθ0) : θ ∈ Θ, |θ−θ0| ≤ δ}. Let dL1 ≤ dU1 , . . . , d

L
rε ≤ dUrε be the ε2-brackets for D.

It then easily follows that N[ ](ε
2δ,G, L2(P )) = rε, and that the ε2δ-brackets for G are given
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by gLj := dLj δ+fθ0 ≤ dUj δ+fθ0 =: gUj . Moreover, sε := N[ ](ε,P , L∞(P )) ≤ exp(Kε−1). Let

hL1 ≤ hU1 , . . . , h
L
sε ≤ hUsε be the ε-brackets for P defined in such a way that for 1 ≤ k ≤ sε,

inft∈RX1
hLk ≤ η. We now claim that

N[ ](ε‖Mδδ′1
‖L2(P ),Fδδ′1 , L2(P )) ≤ rεsε ≤ exp(Kε−1). (9)

Indeed, define for 1 ≤ j ≤ rε and 1 ≤ k ≤ sε,

fLjk(Z) =
I(∆ = 1)

hUk (X1)

{
I(Y = 1)

[
I(X2 ≥ gUj (X1))− I(X2 ≥ fθ0(X1))

]
+I(Y = 0)

[
I(X2 < gLj (X1))− I(X2 < fθ0(X1))

]}
,

and define in a similar way the upper bracket fUjk(Z). Then,

‖fUjk(Z)− fLjk(Z)‖2
2

≤ 4E
([ 1

hUk (X1)
− 1

hLk (X1)

]2[∣∣∣P (X2 ≤ gUj (X1)|X1)− P (X2 ≤ fθ0(X1)|X1)
∣∣∣

+
∣∣∣P (X2 ≤ gLj (X1)|X1)− P (X2 ≤ fθ0(X1)|X1)

∣∣∣])
+

4

η2
E
(
P (X2 ≤ gUj (X1)|X1)− P (X2 ≤ gLj (X1)|X1)

)
≤ 16δ

η2
sup
x1

|hUk (x1)− hLk (x1)|2 sup
x1,x2

fX2|X1(x2|x1)E
[
|dUj (X1)|+ |dLj (X1)|

]
+

4

η2
sup
x1,x2

fX2|X1(x2|x1)E
[
gUj (X1)− gLj (X1)

]
≤ Cε2δ,

for some 0 < C <∞. Moreover, for each function in the class Fδδ′1 there exists a bracket

[fLjk, f
U
jk] to which it belongs. This shows (9). It now follows that

sup
δ≤δ0

∫ 1

0

√
1 + logN[ ](ε‖Mδδ′1

‖L2(P ),Fδδ′1 , L2(P )) dε <∞,

which shows (4) and hence (B2).

For (B3) we check conditions (b)-(d) of Remark 2(v). It is easily seen that (b) holds

with

Γ(θ0, p) = E
[p0(X1)

p(X1)

{
1− 2P (Y = 1|X1, X2)

}
fX2|X1(fθ0(X1))

∂

∂θ
fθ0(X1)

]
,

and

Λ(θ0, p) = E
[p0(X1)

p(X1)

{
1− 2P (Y = 1|X1, X2)

}{
f ′X2|X1

(fθ0(X1))
( ∂
∂θ
fθ0(X1)

)2

+fX2|X1(fθ0(X1))
∂2

∂θ2
fθ0(X1)

}]
,
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and provided the derivatives in Λ(θ0, p) all exist. Next, by assuming that Γ(θ0, p0) = 0

and that Λ(θ0, p0) is negative, and by noting that ‖Γ(θ0, p̂)‖ = OP (r−1
n ) if rn satisfies

rn[n−1/2 + h+ (nh)−1 log n)] = O(1), it follows that (c) and (d) are also valid. It remains

to check condition (B4), which easily holds provided rn = O(n1/3). The two conditions

on rn and the fact that rn should be chosen as large as possible, are reconcilable provided

nh3 = O(1) and (nh3/2)−1(log n)3/2 = O(1). Note that it is possible to weaken the first

condition to nh6 = O(1) if we assume that p0(·) is twice continuously differentiable. Note

however that the rate v−1
n of p̂ would then be O((nh)−1/2(log n)1/2 + h2), which is faster

than the rate r−1
n = Kn−1/3 of θ̂ provided nh3 → ∞. Hence, the latter case is of lower

level of complexity than the case where p0 is only once differentiable, and we therefore do

not consider it further. To conclude, we have that

θ̂ − θ0 = OP ∗(n
−1/3).

Finally, we check the conditions needed for establishing the asymptotic distribution of

θ̂. Condition (C1) follows from Theorem 2 and condition (B1), whereas (C2) is immedi-

ately satisfied. For (C3) a similar proof as for condition (B2) can be given, which we omit

for reasons of brevity. For (C4) and (C5), first note that the function Φn(δ) = Kδ1/2 in

condition (B2) is independent of n and continuous. Hence, (C4) and (C5) hold provided

the three conditions stated in Remark 3(i) are verified. For the first one, we have that

Mδ satisfies

|Mδ(Z)| ≤ 2

η
I
(
fθ0(X1)− Aδ ≤ X2 ≤ fθ0(X1) + Aδ

)
.

Hence, E∗(M2
δ ) ≤ Kδ for some K <∞. In a similar way the second and third condition

can be proved, from which (C4) and (C5) follow. Next, (C6) is obviously satisfied since

for fixed p and z, our function m(z, ·, p) consists of indicator functions. Next, following

Remarks 2(v) and 3(v), condition (C7) follows provided |Λ(θ0, p0)| <∞. By construction

of the estimator θ̂, condition (C8) holds true. For (C9), first note that rnWn(γ) =

rnΓ(θ0, p̂)γ = oP (1) provided nh3 = o(1) and (nh3/2)−1(log n)3/2 = o(1), using what

has been shown already for (B3). Next,

r2
nBn(θ0 +

γ

rn
, p0) (10)

= r2
n

[
Mn(θ0 +

γ

rn
, p0)−Mn(θ0, p0)−M(θ0 +

γ

rn
, p0) +M(θ0, p0)

]
+

1

2
Λ(θ0, p0)γ2 + o(1),

since Γ(θ0, p0) = 0. Hence, Λ(γ) = 1
2
Λ(θ0, p0)γ2. The first terms on the right hand side of

(10) are exactly the same as in the parametric case. Hence we can follow the same steps
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and get the convergence of the marginals using Lindeberg condition and Remark 3 (vii)

under some regularity assumptions on fX2|X1 and θ 7→ fθ.Finally, condition (C10) can be

proved in a similar way as (B2). The asymptotic distribution of rn(θ̂ − θ0) now follows

from Theorem 3.

To illustrate the finite sample behavior of the estimator θ̂ defined in (8), we carry out

a small simulation study. Let X1 ∼ U [0, 1] and consider the model

X2 = max(min(U + ε, 1), 0),

where U ∼ U [0, 1], ε ∼ U [−r, r] for some small r > 0, and U , ε and X1 are independent.

Let Y = I(U ≥ fθ(X1)), where fθ(x1) = θx1 for some θ. Define

p(x1) = P (∆ = 1|X1 = x1) = α0 + α1(x1 − 0.5)2.

The data consist of (Xi1, Xi2, Yi∆i,∆i) (i = 1, . . . , n) from the above model. For the

bandwidth we work with h = chn
−1/2, since this bandwidth satisfies the regularity con-

ditions coming from the asymptotic theory. In Table 1 we show the bias and root mean

squared error (RMSE) of the estimator θ̂ for several values of n (150 and 300), r (0.1 and

0.2), α0 (0.25, 0.50 and 0.75), and ch (2, 3.5 and 5). The other parameters are set to

θ = 1 and α1 = 1. The results are based on 1000 Monte Carlo runs. The table shows that

both the bias and the RMSE are quite small, and the results improve when n increases,

α0 increases or r decreases. Also, the table clearly shows that the estimation of θ is not

very sensitive to the choice of the bandwidth h.

6.2 Partially linear binary choice model

Consider the following binary choice model with partially linear regression structure :

U = XTβ + g(Z)− ε

Y = I(U ≥ 0),

where the median of ε given X and Z is zero, X is of dimension d ≥ 1, and Z is one-

dimensional. The observations consist of the i.i.d. triplets (Xi, Zi, Yi), i = 1, . . . , n, with

the same distribution as (X,Z, Y ). In the absence of the nonparametric function g(·), a

semiparametric estimator of β, called the maximum score estimator, has been proposed

by Manski (1975). The consistency of this estimator was proved by Manski (1985), while
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ch = 2.0 ch = 3.5 ch = 5.0

n r α0 Bias RMSE Bias RMSE Bias RMSE

150 0.1 0.25 .0346 .1321 .0375 .1320 .0385 .1310

0.50 .0240 .0931 .0251 .0930 .0269 .0947

0.75 .0218 .0741 .0230 .0733 .0222 .0734

0.2 0.25 .0521 .1802 .0542 .1809 .0575 .1791

0.50 .0539 .1452 .0549 .1445 .0566 .1453

0.75 .0541 .1220 .0544 .1234 .0545 .1235

300 0.1 0.25 .0281 .0921 .0291 .0902 .0277 .0913

0.50 .0208 .0651 .0219 .0658 .0217 .0658

0.75 .0179 .0510 .0164 .0496 .0178 .0504

0.2 0.25 .0525 .1403 .0554 .1397 .0588 .1383

0.50 .0484 .1057 .0508 .1073 .0535 .1067

0.75 .0491 .0925 .0506 .0931 .0506 .0936

Table 1: Bias and root mean squared error (RMSE) of the estimator θ̂ for several values

of n, r, α0 and ch.

Kim and Pollard (1990) showed that the estimator converges at n1/3-rate, and Abrevaya

and Huang (2005) proved the consistency of a certain bootstrap procedure.

For a given vector β we estimate the function g by means of an M -estimator of kernel

type : ĝβ(z) = argmaxa Sn,β(a|z), where

Sn,β(a|z) = (nh)−1

n∑
i=1

[
2I(Yi = 1)− 1

]
I(XT

i β + a ≥ 0)k
(Zi − z

h

)
,

where h = hn is a bandwidth sequence and k is a kernel function. This leads to the

following estimator of β :

β̂ = argmaxβ Mn(β, ĝβ),

where

Mn(β, g) = n−1

n∑
i=1

[
2I(Yi = 1)− 1

]
I(XT

i β + g(Zi) ≥ 0).

It is clear that this criterion function can not be differentiated with respect to β, and hence

it is an example of a situation which the existing theory on semiparametric estimation

fails to cover, whereas the theory developed in this paper can be applied. We expect
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that the estimator β̂ has a cube-root n convergence rate. We leave the verification of the

conditions of Theorems 1–3 to the reader.

6.3 Hit rate model

Suppose we like to estimate

θ = P
(
h(XTβ) ∈ A(Z)

)
,

where A(Z) is a random set, and β and h are unknown finite and infinite dimensional

parameters. Applications where the estimation of θ is of interest can be found e.g. in Bliss

(1997), who is interested in evaluating nonparametric yield curve fits.

Suppose that h is the density of XTβ. For a random sample (Xi, Zi), i = 1, . . . , n,

define ĥβ(z) = n−1
∑n

i=1 kh(X
T
i β − z), which is the classical kernel density estimator

applied to the linear combination XT
i β (i = 1, . . . , n). Then, a natural estimator of β and

θ is

(β̂, θ̂) = argmaxβ,θ n
−1

n∑
i=1

[
I
(
ĥβ(XT

i β) ∈ A(Zi)
)
− θ
]2

.

When XTβ is replaced by X, this example has been studied by Chen, Linton and Van

Keilegom (2003) using semiparametric theory for Z-estimators. However, the introduction

of the β-vector makes the criterion function non-smooth, and hence the M -estimation

problem can no longer be reduced to a Z-estimation problem.

6.4 Threshold (or change point) model

A popular model in statistics and econometrics is the following semiparametric threshold

model :

Y = g1(X)I(ZTβ ≤ 0) + g2(X)I(ZTβ > 0) + ε,

where X is one-dimensional, Z is possibly of higher dimension, Z may or may not contain

X, E(ε|X,Z) = 0, Var(ε|X,Z) < ∞, and g1 and g2 are unknown but supposed to be

smooth on the interior of their support. Given i.i.d. data (X1, Z1, Y1), . . . , (Xn, Zn, Yn)

from the above model, define

ĝ1,β(x) =
n∑
i=1

kh(Xi − x)I(ZT
i β ≤ 0)∑n

j=1 kh(Xj − x)I(ZT
j β ≤ 0)

Yi

and

ĝ2,β(x) =
n∑
i=1

kh(Xi − x)I(ZT
i β > 0)∑n

j=1 kh(Xj − x)I(ZT
j β > 0)

Yi,

22



where kh(·) = k(·/h)/h. Then, the idea is to estimate the vector β by looking for the

linear combination ZTβ which leads to the largest difference between ĝ1,β and ĝ2,β :

β̂ = argmaxβ n
−1

n∑
i=1

(
ĝ1,β(Xi)− ĝ2,β(Xi)

)2

.

As in the previous examples, the non-differentiability of the criterion function with respect

to β makes this an example of a case where our theory applies, contrary to existing theory.

6.5 Single index model with monotone link function

Another example where our theory can be applied comes from the context of single index

regression models (see Ichimura, 1993) :

Y = g(XTβ) + ε,

where E(ε|X) = 0, Var(ε|X) < ∞ and we suppose that g is unknown but monotone.

Given i.i.d. data (X1, Y1), . . . , (Xn, Yn) from the above model, an estimator of the function

g can be obtained by using e.g. the pool-adjacent-violators algorithm, leading to a non-

smooth estimator ĝβ of gβ(z) = E[Y |XTβ = z]. Next, an estimator of β can be found by

applying the least-squares estimation method :

β̂ = argmaxβ

[
− n−1

n∑
i=1

(
Yi − ĝβ(XT

i β)
)2
]
.

Due to the non-smooth nature of ĝβ(·), this criterion function is not smooth in β. Hence,

this is another example of a situation where the theory of this paper can help out.

6.6 Binary choice model with missing data

Reconsider a binary choice model as in Subsection 6.2, but suppose now that the regression

function is linear :

U = XTβ − ε

Y = I(U ≥ 0),

where as before we suppose that ε has median zero, conditional on X. We suppose that Y

is subject to the missing at random (MAR) mechanism, and the probability of observing

Y depends on the value of X through a certain linear combination of the X-components :

P (∆ = 1|X, Y ) = P (∆ = 1|XTγ) := p(XTγ),
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where ∆ = 1 if Y is observed and 0 if it is missing. The data now consist of i.i.d. triplets

(Xi, Yi∆i,∆i), i = 1, . . . , n, from the above model. For estimating pγ(z) = P (∆ =

1|XTγ = z), we use a kernel estimator :

p̂γ(z) =
n∑
i=1

kh(X
T
i γ − z)∑n

j=1 kh(X
T
j γ − z)

I(∆i = 1).

Next, let (β̂, γ̂) = argmaxβ,γ Mn(β, γ, p̂γ), where

Mn(β, γ, p) = n−1

n∑
i=1

I(∆i = 1)

p(XT
i γ)

[
2I(Yi = 1)− 1

]
I(XT

i β ≥ 0).

It is clear that Mn(β, γ, p) is smooth in γ but non-smooth in β, and hence existing theory

cannot be applied here. As before, Theorems 1–3 can be applied to this criterion function

to find the limiting distribution of β̂ and θ̂.

More generally, from the above example it is clear that any parametric M -estimation

problem with a non-smooth criterion function in which the response is missing at random

can be turned into a semiparametric M -estimation problem by introducing the above

propensity function. Hence, the theory of this paper applies to many more examples than

the illustrative examples given here.

Appendix: Proofs

In this Appendix we give the proofs of the asymptotic results, namely we prove the con-

sistency, the rate of convergence and the asymptotic distribution of our M -estimator θ̂.

Proof of Theorem 1. Our aim is to show that

M(θ0, h0)−M(θ̂, h0) = oP ∗(1). (1)

Indeed, the result we want to obtain is a direct consequence of (1) and assumption (A2).

It is easy to show that assumptions (A3) and (A4) imply that

|Mn(θ̂, ĥ)−Mn(θ0, ĥ)−M(θ̂, ĥ) +M(θ0, ĥ)|
1 + |Mn(θ̂, ĥ)−Mn(θ0, ĥ)|+ |M(θ̂, ĥ)−M(θ0, ĥ)|

= oP ∗(1), (2)

since θ̂ belongs by construction to Θ. Consider the following decomposition:

M(θ0, h0)−M(θ̂, h0)

= M(θ̂, ĥ)−M(θ̂, h0) +M(θ0, h0)−M(θ0, ĥ) +M(θ0, ĥ)−M(θ̂, ĥ)

≤Mn(θ0, ĥ)−Mn(θ̂, ĥ) + 2 sup
θ∈Θ
|M(θ, h0)−M(θ, ĥ)|

+|Mn(θ̂, ĥ)−M(θ̂, ĥ)−Mn(θ0, ĥ) +M(θ0, ĥ)|.
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This, together with (2) leads to the following inequality:

(M(θ0, h0)−M(θ̂, h0))(1 + oP ∗(1))

≤ (Mn(θ0, ĥ)−Mn(θ̂, ĥ))(1 + oP ∗(1)) + 4 sup
θ∈Θ
|M(θ, h0)−M(θ, ĥ)|+ oP ∗(1).

Now, the quantity (1 + oP ∗(1)) on the left hand side in the above inequality is positive

on a set An whose outer probability tends to one when n tends to infinity. On An, a

reformulation of the previous inequality gives:

M(θ0, h0)−M(θ̂, h0) (3)

≤ (Mn(θ0, ĥ)−Mn(θ̂, ĥ))(1 + oP ∗(1)) + 4 sup
θ∈Θ
|M(θ, h0)−M(θ, ĥ)|(1 + oP ∗(1)) + oP ∗(1).

Assumptions (A3) and (A5) imply that

sup
θ∈Θ
|M(θ, h0)−M(θ, ĥ)| = oP ∗(1), (4)

and assumption (A1) gives that

Mn(θ0, ĥ)−Mn(θ̂, ĥ) ≤ oP ∗(1). (5)

It now follows directly from (3)-(5) that

0 ≤M(θ0, h0)−M(θ̂, h0) ≤ oP ∗(1). 2

Proof of Theorem 2. Let ξn be the OP ∗(r
−2
n )-quantity involved in assumption (B4).

We introduce the sets

Sj,n =
{
θ : 2j−1 < rnd(θ, θ0) ≤ 2j

}
,

and observe that Θ\{θ0} = ∪+∞
j=1Sj,n. Our aim is to prove that for any ε > 0 there exists

τε > 0 such that

P∗
(
rnd(θ̂, θ0) > τε

)
< ε (6)

for n sufficiently large. From now on we work with an arbitrary fixed positive value of ε.

For any δ, δ1, M, K, K ′ > 0, we obtain the following bound using assumption (B4):

P∗
(
rnd(θ̂, θ0) > 2M

)
≤

∑
j≥M, 2j≤δrn

P∗
(

sup
θ∈Sj,n

[Mn(θ, ĥ)−Mn(θ0, ĥ)] ≥ −Kr−2
n , An

)
+P∗

(
2d(θ̂, θ0) ≥ δ

)
+ P∗

(
r2
n|ξn| > K

)
+ P∗

(
rn|Wn| > K ′

)
+P∗

(
|βn| >

C

2

)
+ P∗

(
dH(ĥ, h0) >

δ1

vn

)
, (7)
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where An = {rn|Wn| ≤ K ′, |βn| ≤ C
2
, dH(ĥ, h0) ≤ δ1

vn
}. Indeed, we can write

P∗
(
rnd(θ̂, θ0) > 2M , 2d(θ̂, θ0) < δ, r2

n|ξn| ≤ K, An

)
≤

∑
j≥M,2j≤δrn

P∗
(
θ̂ ∈ Sj,n, r2

n|ξn| ≤ K, An

)
≤

∑
j≥M,2j≤δrn

P∗
(

sup
θ∈Sj,n

[Mn(θ, ĥ)−Mn(θ0, ĥ)] ≥ ξn, r
2
n|ξn| ≤ K, An

)
≤

∑
j≥M,2j≤δrn

P∗
(

sup
θ∈Sj,n

[Mn(θ, ĥ)−Mn(θ0, ĥ)] ≥ −Kr2
n, An

)
.

Assumption (B1) implies that for all δ > 0 there exists nε such that

P∗(2d(θ̂, θ0) ≥ δ) <
ε

6
(8)

for n larger than nε. Then, by definition of ξn and Wn and because of (B1), there exist

three positive constants δ1,Kε and K ′ε such that

P∗
(
r2
n|ξn| > Kε

)
<
ε

6
, P∗

(
rn|Wn| > K ′ε

)
<
ε

6
,

P∗
(
|βn| >

C

2

)
<
ε

6
, and P∗

(
dH(ĥ, h0) >

δ1

vn

)
<
ε

6
(9)

for n larger than some n1 ∈ N. We fix δ < δ0 and suppose that n ≥ max(n0, n1, nε) to get

that assumptions (B2) and (B3) are fulfilled on all Sj,n such that 2j ≤ δrn.

Now, it follows directly from assumption (B3) that for each fixed j such that 2j ≤ δrn

one has for all θ ∈ Sn,j:

Mn(θ, ĥ)−Mn(θ0, ĥ)

≤M(θ, ĥ)−M(θ0, ĥ) + sup
d(θ,θ0)≤ 2j

rn

|Mn(θ, ĥ)−Mn(θ0, ĥ)−M(θ, ĥ) +M(θ0, ĥ)|

≤ |Wn|
2j

rn
− (C − βn)

22j−2

r2
n

+ sup
d(θ,θ0)≤ 2j

rn

|Mn(θ, ĥ)−Mn(θ0, ĥ)−M(θ, ĥ) +M(θ0, ĥ)|.

Consequently, we obtain the following inequality:

P∗
(

sup
θ∈Sj,n

[Mn(θ, ĥ)−Mn(θ0, ĥ)] ≥ −Kεr
−2
n , An

)
≤ P∗

(
sup

d(θ,θ0)≤ 2j

rn
, dH(ĥ,h0)≤ δ1

vn

|Mn(θ, h)−Mn(θ0, h)−M(θ, h) +M(θ0, h)|

≥ 22j−2

r2
n

(
C

2
−K ′ε22−j −Kε2

2−2j)
)
.
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Now, there exists Mε such that for all j ≥Mε one gets

C

2
−K ′ε22−j −Kε2

2−2j ≥ C

4
.

Consequently, if M ≥ Mε, using assumption (B2) and Chebychev’s inequality we have

that ∑
j≥M, 2j≤δrn

P∗
({

sup
θ∈Sj,n

[Mn(θ, ĥ)−Mn(θ0, ĥ)] ≥ −Kεr
−2
n

}
∩ An

)
≤

∑
j≥M, 2j≤δrn

P∗
(

sup
d(θ,θ0)≤ 2j

rn
, dH(ĥ,h0)≤ δ1

vn

|Mn(θ, ĥ)−Mn(θ0, ĥ)−M(θ, ĥ) +M(θ0, ĥ)| ≥ C22j−2

4r2
n

)

≤ 4Kr2
n

C
√
n

∑
j≥M, 2j≤δrn

Φn( 2j

rn
)

22j−2

≤ 4Kr2
n

C
√
n

∑
j≥M, 2j≤δrn

2jαΦn( 1
rn

)

22j−2

≤ 16K

C

∑
j≥M

2j(α−2).

Finally, since α < 2, the series
∑

j≥M 2j(α−2) converges and hence there exists M ′
ε ≥ Mε

such that
16K

C

∑
j≥M ′ε

2j(α−2) ≤ ε

6
.

This finishes the proof showing (6) with τε = 2M
′
ε . 2

Proof of Theorem 3. The first step of the proof consists in showing the weak conver-

gence of the process γ 7→ r2
nBn(θ0 + γ

rn
, ĥ). This is shown in Lemma 4 (given below).

The remainder of the proof is based on somewhat similar arguments as those used to

state the Argmax theorem in Van der Vaart and Wellner (1996). First note that E is a

σ-compact metric space since E = ∪∞i=1Ki with Ki = {γ ∈ E : ‖γ‖ ≤ ai} for any positive

sequence (ai)i∈N∗ tending to infinity.

Then deduce from assumption (C9) together with Lemmas 5 and 6 given below, that

almost all paths of the limiting process γ 7→ Λ(γ) + G(γ) attain their supremum at an

unique point γ0, following similar ideas to what is done in the parametric case (see Theo-

rem 3.2.10 in Van der Vaart and Wellner (1996)). Assume now that γ0 is measurable. The

weak convergence of rn(θ̂ − θ0) to γ0 is equivalent to the next statement (Portmanteau’s

theorem) :

limsupn→∞P∗
(
rn(θ̂ − θ0) ∈ C

)
≤ P

(
γ0 ∈ C

)
, for every closed set C.
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Let C be an arbitrary closed subset of E and fix ε > 0. The random variable γ0 is tight

because it takes values in E, which is σ-compact. Combining this tightness and the first

part of (C1), it is possible to find Kε > 0 and hence a compact set Kε := {γ : ‖γ‖ ≤ Kε}
such that

P∗
(
γ0 /∈ Kε

)
≤ ε

2
, and P∗

(
rn(θ̂ − θ0) /∈ Kε

)
≤ ε

2
. (10)

It follows easily from (10) that

limsupn→∞P∗
(
rn(θ̂ − θ0) ∈ C

)
≤ P∗

(
rn(θ̂ − θ0) ∈ C ∩ Kε, γ0 ∈ Kε

)
+ limsupn→∞P∗

(
{rn(θ̂ − θ0) /∈ Kε} ∪ {γ0 /∈ Kε}

)
≤ P∗

(
rn(θ̂ − θ0) ∈ C ∩ Kε, γ0 ∈ Kε

)
+ ε. (11)

Now using Lemma 4 and assumption (C8) we obtain

limsupn→∞P∗
(
rn(θ̂ − θ0) ∈ C ∩ Kε, γ0 ∈ Kε

)
≤ limsupn→∞P∗

(
sup

γ∈C∩Kε
r2
nBn

(
θ0 +

γ

rn
, ĥ
)
≥ sup

γ∈Kε
r2
nBn

(
θ0 +

γ

rn
, ĥ
)

+ oP ∗(1), γ0 ∈ Kε
)

≤ P∗
(

sup
γ∈C∩Kε

(Λ + G)(γ) ≥ sup
γ∈Kε

(Λ + G)(γ), γ0 ∈ Kε
)
, (12)

by Slutsky’s lemma and Portmanteau’s theorem. On the other hand, for every open set

G containing γ0, we have:

(Λ + G)(γ0) > sup
γ∈Gc∩Kε

(Λ + G)(γ).

This together with (12) leads to

limsupn→∞P∗
(
rn(θ̂ − θ0) ∈ C ∩ Kε, γ0 ∈ Kε

)
≤ P∗

(
γ0 ∈ C

)
. (13)

Consequently, it follows from (11) that for all ε > 0,

limsupn→∞P∗
(
rn(θ̂ − θ0) ∈ C

)
≤ P∗

(
γ0 ∈ C

)
+ ε. (14)

Since the right hand side of (14) holds for all ε > 0, it also holds for ε = 0. The result

now follows from Portmanteau’s theorem. 2

We end this section with three lemmas that were needed in the proof of Theorem 3.

Lemma 4 For all K > 0, let K = {γ ∈ E : ‖γ‖ ≤ K} be a compact subset of E. Then,

under the assumptions of Theorem 3, for any such K, the process γ 7→ r2
nBn(θ0 + γ

rn
, ĥ)

converges weakly to the process γ 7→ Λ(γ) +G(γ) in `∞(K). Moreover, almost all paths of

the limiting process are continuous (uniformly on every compact K) with respect to ‖ · ‖.
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Proof. The weak convergence of the process γ 7→ r2
nBn(θ0 + γ

rn
, ĥ) in `∞(K) follows

directly from Slutsky’s theorem and Lemmas 5 and 6. On the other hand, ‖ · ‖ makes K
totally bounded (since it is compact) and γ 7→ r2

nBn(θ0 + γ
rn
, h0) + rnWn(γ) is asymptoti-

cally uniformly ‖ · ‖-equicontinuous in probability, asymptotically tight, and it converges

weakly to γ 7→ Λ(γ) + G(γ) in `∞(K) (see proof of Lemma 6). Thus almost all paths of

the limiting process are uniformly ‖ · ‖-continuous on K (see Theorem 1.5.7 in Van der

Vaart and Wellner (1996)). Moreover, because E may be covered by a countable sequence

of such compact sets, almost all paths of the limiting process are ‖ · ‖-continuous on E.

2

Lemma 5 Let K = {γ ∈ E : ‖γ‖ ≤ K}. Then, under the assumptions of Theorem 3, for

all γ ∈ K, there exist ξ0,n, ξ1,n, ξ2,n, such that supγ∈K |ξj,n| = oP ∗(1), j = 0, 1, 2, and

r2
nBn

(
θ0 +

γ

rn
, ĥ
)

(1 + ξ0,n) =
[
r2
nBn

(
θ0 +

γ

rn
, h0

)
+ rnWn(γ)

]
(1 + ξ1,n) + ξ2,n.

Proof. Let us introduce the following notations :

α0,n(γ) =
Bn(θ, h)−B(θ, h)−Bn(θ, h0) +B(θ, h0)

r−2
n + |Bn(θ, h)|+ |Bn(θ, h0)|+ |B(θ, h)|+ |B(θ, h0)|

,

sn,h(γ) = sign
[
Bn

(
θ0 +

γ

rn
, h
)]
,

sh(γ) = sign
[
B
(
θ0 +

γ

rn
, h
)]
,

with θ = θ0 + γ/rn.

Because the compact K is bounded and θ0 belongs to the interior of Θ, there exists

nK such that for all n ≥ nK and for all γ ∈ K, the quantity θ0 + γ
rn

is in Θ. Then, for all

γ ∈ K entails that

Bn

(
θ0 +

γ

rn
, ĥ
)

= Bn

(
θ0 +

γ

rn
, h0

)
+B

(
θ0 +

γ

rn
, ĥ
)
−B

(
θ0 +

γ

rn
, h0

)
+α0,n(γ)

(
r−2
n +

∣∣∣Bn

(
θ0 +

γ

rn
, ĥ
)∣∣∣+

∣∣∣Bn

(
θ0 +

γ

rn
, h0

)∣∣∣ (15)

+
∣∣∣B(θ0 +

γ

rn
, ĥ
)∣∣∣+

∣∣∣B(θ0 +
γ

rn
, h0

)∣∣∣).
This can be reformulated as

r2
nBn

(
θ0 +

γ

rn
, ĥ
)(

1− α0,n(γ)sn,ĥ(γ)
)

= r2
nBn

(
θ0 +

γ

rn
, h0

)(
1 + α0,n(γ)sn,h0(γ)

)
+ r2

nB
(
θ0 +

γ

rn
, ĥ
)(

1 + α0,n(γ)sĥ(γ)
)

−r2
nB
(
θ0 +

γ

rn
, h0

)(
1− α0,n(γ)sh0(γ)

)
+ α0,n(γ). (16)
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Then use assumptions (C1) and (C7) to get

r2
n

[
B
(
θ0 +

γ

rn
, ĥ
)
−B

(
θ0 +

γ

rn
, h0

)]
= rnWn(γ) + βn‖γ‖2 + r2

no
(‖γ‖2

r2
n

)
:= rnWn(γ) + α1,n(γ). (17)

Combining (16) and (17) we obtain

r2
nBn

(
θ0 +

γ

rn
, ĥ
)

(1 + ξ0,n(γ))

=
[
r2
nBn

(
θ0 +

γ

rn
, h0

)
+ rnWn(γ)

]
(1 + ξ1,n(γ)) + ξ2,n(γ), (18)

with

ξ0,n(γ) = −α0,n(γ)sn,ĥ(γ),

ξ1,n(γ) = α0,n(γ)sn,h0(γ),

ξ2,n(γ) = α0,n(γ)
[
1 +

(
V (γ, γ) + r2

no
(‖γ‖2

r2
n

))
(sĥ + sh0)(γ)

+
(
rnWn(γ) + α1,n(γ)

)
(sĥ − sn,h0)(γ)

]
+ α1,n(γ)(1 + ξ1,n(γ)).

It can be easily shown that supγ∈K |ξj,n(γ)| = oP ∗(1) for j = 0, 1, 2 using assumptions

(C3) and (C7). 2

Lemma 6 Let K = {γ ∈ E : ‖γ‖ ≤ K}. Then, under the assumptions of Theorem

3, the process γ 7→ r2
nBn(θ0 + γ

rn
, h0) + rnWn(γ) is asymptotically tight, asymptotically

uniformly equicontinuous with respect to ‖ · ‖ on K, and it converges weakly to the process

γ 7→ Λ(γ) + G(γ) in `∞(K).

Proof. The main idea of this proof consists in writing the process Tn : γ 7→ r2
nBn(θ0 +

γ
rn
, h0)+rnWn(γ) as the sum of two processes T1,n : γ 7→ r2

n(Bn(θ0+ γ
rn
, h0)−B(θ0+ γ

rn
, h0))

and T2,n : γ 7→ r2
nB(θ0 + γ

rn
, h0) + rnWn(γ) and studying separately the properties of T1,n

and T2,n. However, in some specific cases it could be possible to state the weak convergence

of Tn without this decomposition. Let us first note that assumption (C7) implies that for

n sufficiently large (only depending on K) so that θ0 + K
rn
⊂ Θ, the processes T1,n and T2,n

take values in `∞(K).

The process T1,n does not depend on the estimation of the nuisance parameter. Hence,

following similar ideas as in the parametric case we get from assumptions (C4), (C5) and

(C10) the asymptotic uniform equicontinuity of T1,n with respect to ‖ · ‖ on K (as a sub-

product of the proof of Theorem 2.11.9 in Van der Vaart and Wellner (1996)). On the
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other hand, for n large enough, θ+ γ
rn
∈ Θ (see the proof of Lemma 5). Assume now that

n is large enough and use assumption (C7) to conclude that for all 0 < δ ≤ δ1,

sup
γ,γ′∈K,‖γ−γ′‖≤δ

|T2,n(γ)− T2,n(γ′)|

= sup
γ,γ′∈K,‖γ−γ′‖≤δ

∣∣∣Wn(γ − γ′) + V (γ, γ)− V (γ′, γ′) + r2
n

(
o
(‖γ‖2

r2
n

)
+ o
(‖γ′‖2

r2
n

))∣∣∣
≤ δτ

(
rn sup

γ∈E, δ≤δ1, ‖γ‖≤δ

∣∣∣Wn(γ)

δτ

∣∣∣+ sup
γ,γ′∈E, δ≤δ1, ‖γ−γ′‖≤δ

|V (γ, γ)− V (γ′, γ′)|
δτ

)
+ bn

:= δταn + bn, (19)

where bn ≤ supγ,γ′∈K |r2
n(o(‖γ‖

2

r2n
) + o(‖γ

′‖2
r2n

))| → 0 as n tends to infinity, and αn = OP ∗(1)

uniformly over δ ≤ δ1. Let ε and η be arbitrary positive constants. It is clear that, for

any 0 < δ ≤ δ1 and any positive constant K, (19) leads to

limsupn→∞P∗
(

sup
γ,γ′∈K,‖γ−γ′‖≤δ

|T2,n(γ)− T2,n(γ′)| > ε
)

≤ limsupn→∞P∗
(
δταn + bn > ε, αn ≤ K, |bn| <

ε

2

)
+ limsupn→∞P∗

(
αn > K

)
≤ limsupn→∞P∗

(
δτ >

ε

2K

)
+ limsupn→∞P∗

(
αn > K

)
.

Finally choose Kη such that the last term is smaller than η, and take δ ≤ δ1 ∧ ( ε
2Kη

)
1
τ .

It then follows that T2,n is asymptotically uniformly equicontinuous in probability with

respect to ‖ · ‖ on K.

Hence, the same is also true for the process Tn, since it is the sum of two such pro-

cesses. The asymptotic tightness and hence the weak convergence of Tn to Λ + G in

`∞(K) now follows from Theorems 1.5.7 and 1.5.4 in Van der Vaart and Wellner (1996),

together with assumption (C9) and the fact that K is totally bounded with respect to the

‖ · ‖-norm (since it is compact). Moreover, using Addendum 1.5.8 in the same book, al-

most all paths of the limiting process on K are uniformly continuous with respect to ‖·‖. 2
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