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We are interested in the estimation of a parameter θ that maximizes a certain criterion function depending on an unknown, possibly infinite dimensional nuisance parameter h. A common estimation procedure consists in maximizing the corresponding empirical criterion, in which the nuisance parameter is replaced by a nonparametric estimator. In the literature, this research topic, commonly referred to as semiparametric M -estimation, has received a lot of attention in the case where the criterion function satisfies certain smoothness properties. In certain applications, these smoothness conditions are however not satisfied. The aim of this paper is therefore to extend the existing theory on semiparametric M -estimation problems, in order to cover non-smooth M -estimation problems as well. In particular, we develop 'high-level' conditions under which the proposed M -estimator is consistent and has an asymptotic limit. We also check these conditions in detail for a specific example of a semiparametric M -estimation problem, which comes from the area of classification with missing data, and which cannot be dealt with using the existing results in the literature. Finally, we perform a small simulation study to verify the small sample performance of the proposed estimator, and we briefly describe a number of other situations in which the general theory can be applied, and which are not covered by the existing theory for semiparametric M -estimators.

Introduction

Consider the estimation of a parameter of interest θ 0 that maximizes a criterion function M (θ, h 0 ), where h 0 is the true value of an unknown, possibly infinite dimensional nuisance parameter h. A common estimation procedure consists in maximizing an empirical criterion function M n (θ, h), where M n is an estimator of the unknown function M and h is a nonparametric estimator of the unknown nuisance parameter h 0 . In the literature, this research topic, commonly referred to as semiparametric M -estimation, has received a lot of attention in the case where the criterion function M satisfies certain smoothness properties. In certain applications, these smoothness conditions are however not satisfied. The aim of this paper is therefore to extend the existing theory on semiparametric M -estimation problems, in order to cover non-smooth M -estimation problems as well. In particular, we develop 'high-level' conditions under which the proposed M -estimator is consistent and has an asymptotic limit. We check these conditions in detail for a specific example of a semiparametric M -estimation problem, which comes from the area of classification with missing data, and which cannot be dealt with using the existing results in the literature. We also mention briefly a number of other examples that are not covered by the current literature on semiparametric estimation. These examples come from various areas in econometrics and statistics, and illustrate the usefulness of our results.

Non-smooth semiparametric M -estimation problems form a basically unsolved open problem in the literature. We aim at filling this gap in the literature by combining results for non-smooth parametric M -estimation problems with smooth semiparametric M -estimation problems. However, as will be seen later, the problem requires much more than 'simply' combining ideas from these two domains. In fact, delicate mathematical derivations will be required to cope with estimators of the nuisance parameters inside non-smooth criterion functions. This feature is not present for parametric M -estimators nor for smooth semiparametric M -estimators, and is the source of the complicated nature of this problem.

In the literature it is often assumed that M (θ, h) can be written as

M (θ, h) = E m(Z, θ, h(Z, θ)) , (1) 
where m is a known function and h is allowed to depend on θ and on a random vector Z taking values in some space F. A common estimation procedure consists then in maximizing the corresponding empirical criterion:

M n (θ, h) = 1 n n i=1 m(Z i , θ, h(Z i , θ)), (2) 
with respect to θ, where the random vectors Z 1 , . . . , Z n have the same distribution as Z.

We assume in the remainder of this paper that for all θ the functions m(•, θ, h(•, θ)) and m(•, θ, h 0 (•, θ)) are measurable.

When the function m(z, θ, h(z, θ)) is differentiable with respect to θ and when M (θ, h 0 ) is concave in θ, then the M -estimation problem can be reduced to a Z-estimation problem, by solving the equation ∂M n (θ, h)/∂θ = 0 (or by minimizing the norm of ∂M n (θ, h)/∂θ if a solution would not exist). A general result on (two-step) semiparametric Z-estimators can be found in [START_REF] Chen | Estimation of semiparametric models when the criterion function is not smooth[END_REF]. In that paper high-level conditions are given under which the estimator of θ 0 is weakly consistent and asymptotically normal. The criterion function ∂m/∂θ is not required to be smooth in θ nor in h. See also [START_REF] Van Der Vaart | Empirical processes indexed by estimated functions[END_REF] for high-level conditions for the stochastic equicontinuity in semiparametric Z-estimation problems. For specific examples of semiparametric Z-estimation problems we refer (among others) to [START_REF] Chen | Estimation of copula-based semiparametric time series models[END_REF], [START_REF] Linton | Estimation of a semiparametric transformation model[END_REF], [START_REF] Mammen | Semiparametric estimation with generated covariates[END_REF], Escanciano, Jacho-Chavez andLewbel (2012, 2014), and the references therein. Finally, for (one-step) sieve estimation in semiparametric Z-estimation problems, see [START_REF] Chen | Large sample sieve estimation of semi-nonparametric models[END_REF], [START_REF] Chen | Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals[END_REF], [START_REF] Ding | A sieve M -theorem for bundled parameters in semiparametric models, with application to the efficient estimation in a linear model for censored data[END_REF], [START_REF] Chen | On limiting distributions of sieve M-estimators of irregular functionals[END_REF] and [START_REF] Cheng | Joint asymptotics for semi-nonparametric regression models under partially linear structure[END_REF], among others. See also the book by [START_REF] Horowitz | Semiparametric and Nonparametric Methods in Econometrics[END_REF] for a number of other examples.

On the other hand, when either m(z, θ, h(z, θ)) is not differentiable with respect to θ, or when M (θ, h 0 ) has more than one (local) maximum, then the M -estimation problem can not be reduced to a Z-estimation problem, and we need to use other procedures.

In the parametric case, where no infinite dimensional nuisance parameter is present, we refer to [START_REF] Kim | Cube root asymptotics[END_REF] for a general result on parametric M -estimators that have n 1/3 -rate of convergence, and to [START_REF] Van Der Vaart | Weak convergence and empirical processes: with applications in statistics[END_REF] for a result on both estimators that converge at n 1/2 -rate in the smooth case, and at a rate slower than n 1/2 for non-smooth functions. See also Groeneboom and Wellner (1993), [START_REF] Groeneboom | Estimation of a convex function: characterizations and asymptotic theory[END_REF], [START_REF] Goldenshluger | The Hough transform estimator[END_REF], [START_REF] Mohammadi | Asymptotics in empirical risk minimization[END_REF] and [START_REF] Radchenko | Mixed-rates asymptotics[END_REF], among others for important contributions on results

for specific parametric M -estimation problems with slower than n 1/2 -rate of convergence.

The problem becomes more difficult when the model is semiparametric. Basically two main approaches can be considered in that case. In the first approach M n (θ, h) is maximized jointly with respect to θ and h, and then the criterion function is modified in order to obtain an estimator of θ 0 converging at n 1/2 -rate. The second approach, which we will follow, consists in maximizing M n (θ, h) with respect to θ, where h is a preliminary estimator of h 0 . When the m-function is in some sense 'smooth' (e.g. Lipschitz continuous in L p -norm) several contributions on both approaches can be found in the literature. See e.g. [START_REF] Van Der Vaart | Weak convergence and empirical processes: with applications in statistics[END_REF], [START_REF] Van De Geer | Empirical processes in M-estimation[END_REF], [START_REF] Ma | Robust semiparametric M-estimation and the weighted bootstrap[END_REF], [START_REF] Kosorok | Introduction to empirical processes and semiparametric inference[END_REF], [START_REF] Ichimura | Characterization of the asymptotic distribution of semiparametric M -estimators[END_REF], and [START_REF] Kristensen | Higher order improvements of approximate estimators[END_REF]. In these cases, the estimator of θ 0 is n 1/2 -consistent, even when the nuisance parameter is estimated at slower rate. This rate is obtained thanks to the regularity of the criterion function m.

However, in numerous situations we are faced to semiparametric M -estimation problems, where the function m does not satisfy the smoothness property that makes the estimator of θ 0 n 1/2 -consistent. Examples can be found (among many others) in classification problems with variables missing at random, and in partially linear binary choice models (see Section 6 for more details and examples). This general context has, to the best of our knowledge, not been considered so far in the literature. It is substantially more difficult than the 'smooth' case. This can be understood e.g. from the fact that it leads to non-standard asymptotics and to estimators of θ 0 that are not n 1/2 -consistent and that converge to non-normal limits. To achieve this we need to apply second order

Taylor expansions (as opposed to first order Taylor expansions in the smooth case), the application of delicate empirical process results, and the analysis of messy and complicated remainder terms, which do not show up in the smooth case or the case without nonparametric nuisance functions. The results that we will obtain allow to show that in the case where m is not smooth (e.g. when m includes an indicator function), we can obtain the same rate of convergence (and sometimes even the same asymptotic distribution) as in the case where the nuisance parameter would be known, even when the nuisance parameter is estimated at slower rate.

The paper is organized as follows. In the next section we introduce some notations and give the formal definition of the M -estimator. In Section 3 we show under which conditions the estimator of θ 0 is weakly consistent. Section 4 deals with the development of the rate of convergence of the estimator, whereas in Section 5 we state the asymptotic distribution of the estimator. In Section 6 a particular example of a non-smooth semiparametric M -estimation problem is considered, for which we check the conditions of the asymptotic results in detail, and a number of other examples are briefly outlined. Finally, the Appendix contains the proofs of the asymptotic results.

Notations and definitions

Throughout the paper we assume that the data Z 1 , . . . , Z n are identically distributed random vectors. In many applications the vector Z i (i = 1, . . . , n) will consist of a random vector Y i (representing a response) and a random vector X i (representing a vector of explanatory variables). The set Θ denotes a compact parameter set (usually but not necessarily of finite dimension ) with non empty interior and H denotes an infinite dimensional parameter set. Suppose there exists a non-random measurable real-valued function

M : Θ × H → IR, such that θ 0 = argmax θ∈Θ M (θ, h 0 (•, θ)),
and suppose θ 0 is unique and belongs to the interior of Θ. Let θ 0 and h 0 ∈ H be the true unknown finite and infinite dimensional parameters. We allow that the functions h ∈ H depend on the parameters θ and the vector Z, but for notational convenience we will often suppress this dependence when no confusion is possible. For instance, we often use the following abbreviated notations : (θ, h) ≡ (θ, h(•, θ)), (θ, h 0 ) ≡ (θ, h 0 (•, θ)), and (θ 0 , h 0 ) ≡ (θ 0 , h 0 (•, θ 0 )). The sets Θ and H are supposed to be metric spaces. Their metrics are denoted by d and d H respectively. Since the nuisance parameter is allowed to depend on θ we implicitly define d H (h, h 0 ) uniformly over θ, i.e. d H (h, h 0 ) := sup θ∈Θ d 1 H (h(., θ), h 0 (., θ)) for some metric d 1 H . Suppose there exists a random real-valued function M n : Θ × H → IR depending on the data Z 1 , . . . , Z n , such that M n (θ, h 0 ) is an approximation of M (θ, h 0 ) (the precise conditions on M n will be given in the next sections). In many applications we have that

M (θ, h) = E[m(Z, θ, h)] and M n (θ, h) = n -1 n i=1 m(Z i , θ, h),
where m is a measurable real-valued function such that θ 0 = argmax θ∈Θ E[m(Z, θ, h 0 )]. However, the conditions on M n do not impose this particular structure and allow for more general situations as well.

Suppose that for each θ there is an initial nonparametric estimator h(•, θ) for h 0 (•, θ). This nonparametric estimator depends on the particular model, and can be based on e.g. kernels, splines or neural networks. Again for notational ease we let (θ, h) ≡ (θ, h(•, θ)). We estimate θ 0 by any θ ∈ Θ that 'approximately solves' the sample maximization problem:

max θ∈Θ M n (θ, h).
(3)

In the set of conditions given in the next sections we will formalize what we mean with 'approximate solution'.

Consistency

We focus in this section on the development of sufficient conditions under which the estimator θ is weakly consistent. This consistency will be used as a preliminary step for the subsequent sections, where we will deal with the rate of convergence and the asymptotic distribution of the estimator. In the remainder of the paper the notations P * and E * will be used to denote outer probabilities and outer expectations, to take into account potential measurability issues.

Consider the following assumptions:

(A1) θ ∈ Θ and M n ( θ, h) ≥ M n (θ 0 , h) + o P * (1).
(A2) For all > 0 there exists a δ(

) > 0 such that d(θ, θ 0 ) > implies M (θ 0 , h 0 ) - M (θ, h 0 ) > δ( ). (A3) P( h ∈ H) → 1 as n → ∞ and d H ( h, h 0 ) P * → 0. (A4) sup θ∈Θ, h∈H |M n (θ, h) -M n (θ 0 , h) -M (θ, h) + M (θ 0 , h)| 1 + |M n (θ, h) -M n (θ 0 , h)| + |M (θ, h) -M (θ 0 , h)| = o P * (1). (A5) lim d H (h,h 0 )→0 sup θ∈Θ |M (θ, h) -M (θ, h 0 )| = 0.
Below we illustrate and interpret these conditions, and we give some remarks, extensions, sufficient conditions, etc., that are useful for verifying these conditions in practice.

Remark 1

(i)
In assumption (A4), we take the supremum with respect to h over the whole family H. However, it is enough to assume the same type of convergence only for h = h or for {h :

d H (h, h 0 )} ≤ δ n for some δ n → 0 such that d H ( h, h 0 )δ -1 n = o P * (1).
Assumption (A5) could be changed in the same way.

(ii) Assumption (A4) is closely related to the compactness of the sets Θ and H and is automatically fulfilled when the following standard assumption holds:

sup θ∈Θ, h∈H |M n (θ, h) -M (θ, h)| = o P * (1).
This last condition holds when the family F = {m(., θ, h), θ ∈ Θ, h ∈ H} is Glivenko-Cantelli, and

M (θ, h) = E[m(Z, θ, h)].
(iii) We do not require here that M is the mean of the random function m(Z, ., .).

We only require that assumption (A4) holds. Moreover, we do not impose any smoothness assumptions on M n . We only require that the function M satisfies assumptions (A2) and (A5).

(iv) In this section we do not assume that θ belongs to an Euclidean space. It is possible that θ and h belong to general metric spaces. Theoretically, it is also possible to consider semimetric spaces, however, this only allows to get the consistency (without rate of convergence) with respect to the corresponding semimetrics.

( v) The assumption that the variables Z i are independent is not necessary here. Our result could be used even for dependent data as soon as it is possible to fulfill assumptions (A1), (A3) and (A4).

(vi) Assumption (A1) is trivially fulfilled when M n ( θ, h) ≥ sup θ∈Θ M n (θ, h) + o P * (1), which allows to deal with approximations of the value that actually maximizes

θ → M n (θ, h).
Theorem 1 Under assumptions (A1)-(A5) we have that

d( θ, θ 0 ) P * → 0.
The proof is given in the Appendix.

Rate of convergence

In the previous section we have shown the consistency of general M -estimators. We are now interested in going one step further and give their convergence rates. In this section, the consistency of our estimators is used as a preliminary assumption. Of course, Theorem 1 can be used to obtain this consistency. We introduce the following assumptions:

(B1) d( θ, θ 0 ) P * → 0 and v n d H ( h, h 0 ) = O P * (1) for some sequence v n → ∞.
(B2) For all δ 1 > 0, there exist α < 2, K > 0, δ 0 > 0 and n 0 ∈ N such that for all n ≥ n 0 there exists a function Φ n for which δ → Φ n (δ)/δ α is decreasing on (0, δ 0 ] and for all δ ≤ δ 0 ,

E *   sup d(θ,θ 0 )≤δ,d H (h,h 0 )≤ δ 1 vn |M n (θ, h) -M n (θ 0 , h) -M (θ, h) + M (θ 0 , h)|   ≤ K Φ n (δ) √ n .
(B3) There exist a constant C > 0, a sequence r n → ∞, and variables

W n = O P * (r -1 n ) and β n = o P * (1), such that for all θ ∈ Θ satisfying d(θ, θ 0 ) ≤ δ 0 : M (θ, h) -M (θ 0 , h) ≤ W n d(θ, θ 0 ) -Cd(θ, θ 0 ) 2 + β n d(θ, θ 0 ) 2 . (B4) M n ( θ, h) ≥ M n (θ 0 , h) + O P * (r -2 n ) and r 2 n Φ n (r -1 n ) ≤ √ n.
Under the above assumptions, we will prove that the estimator θ is r -1 n -consistent. Hence, the sequence r n plays an important role in the above assumptions and should be chosen in the sharpest possible way. Before stating and proving this result, we first discuss the above assumptions in more detail.

Remark 2 B1) is a 'high-level' assumption. Many asymptotic results allow to get such conditions on both the M -estimator θ and the nuisance estimator h. In general the rate of convergence of the nuisance estimator is slower than the best convergence rate of the M -estimator. We are interested in studying cases where the convergence rate of the M -estimator is not affected by the fact that we need to estimate the nuisance parameter.

(i) Assumption (
(ii) Assumption (B2) is also a 'high-level' assumption. Assume that for any z the

function (θ, h) → m(z, θ, h(z, θ)) -m(z, θ 0 , h(z, θ 0 )) is uniformly bounded on an open neighborhood of (θ 0 , h 0 ), i.e. on {(θ, h) : d(θ, θ 0 ) ≤ δ 0 , d H (h, h 0 ) ≤ δ 1 } for some δ 0 , δ 1 > 0. Let us consider the class F δ,δ 1 = {m(., θ, h(•, θ)) -m(., θ 0 , h(•, θ 0 )) : d(θ, θ 0 ) ≤ δ, d H (h, h 0 ) ≤ δ 1 }
for any δ ≤ δ 0 and denote its envelope by M δ,δ 1 . For any δ 1 , we have δ 1 v -1 n ≤ δ 1 for n large enough. Then, under entropy conditions on F δ,δ 1 , as for instance sup

δ≤δ 0 1 0 1 + log N [ ] ( M δ,δ 1 L 2 (P * ) , F δ,δ 1 , L 2 (P))d < +∞ (4) 
(where N [ ] denotes the bracketing number, i.e. the smallest number of brackets that are needed to cover the space), there exists a positive constant K 1 (not depending on δ) such that for all δ ≤ δ 0 ,

E * sup d(θ,θ 0 )≤δ,d H (h,h 0 )≤δ 1 |M n (θ, h) -M n (θ 0 , h) -M (θ, h) + M (θ 0 , h)| ≤ K 1 E * [M 2 δ,δ 1 ] √ n
(see Theorems 2.14.1 and 2.14.2 in [START_REF] Van Der Vaart | Weak convergence and empirical processes: with applications in statistics[END_REF]). Hence, in this case, the last part of (B2) holds if Φ n (δ) can be chosen such that

∃K 0 , ∀δ ≤ δ 0 : E * [M 2 δ,δ 1 ] ≤ K 0 Φ n (δ).
(5)

The function Φ n (δ) is closely related to the 'smoothness' of the functions θ → m(z, θ, h(z, θ)). When these functions are Lipschitz (respectively Hölder of order γ)

uniformly over z and h, it is possible to take Φ n (δ) = δ (respectively Φ n (δ) = δ γ ).

In other situations, for instance when m contains an indicator function involving θ, such regularity assumptions may fail but it is possible to state (B2) with Φ n (δ) = √ δ (see Section 6).

(iii) The way Φ n (δ) decreases when δ tends to zero has a crucial impact on the convergence rate r n through the condition

r 2 n Φ n (r -1 n ) ≤ √ n. When Φ n (δ) = δ, this
last condition is equivalent to r n ≤ √ n and we may obtain √ n convergence rates.

However, when Φ n (δ) = δ γ with γ < 1, this condition is equivalent to r 2-γ n ≤ √ n
and hence only n 1 2(2-γ) rates may be considered. In the case of non continuous criterion functions (involving e.g. indicator functions) a n 1 3 convergence rate may be obtained, analogously to the case of parametric M -estimation.

(iv) Assumption (B4) is automatically fulfilled under the following classical assumption:

M n ( θ, h) ≥ sup θ∈Θ M n (θ, h) + O P * (r -2 n ).
As in the previous section, this allows to consider approximations of the value that actually maximizes the empirical criterion.

(v) Assumption (B3) is automatically fulfilled when the following conditions hold:

(a) Θ ⊂ R k for some k, and

d(θ 1 , θ 2 ) = θ 1 -θ 2 , where • is the Euclidean norm. (b) There exists δ 2 > 0 such that for any h satisfying d H (h, h 0 ) ≤ δ 2 , the function θ → M (θ, h) is twice continuously differentiable on an open neighborhood of θ 0 .
Hereafter, Γ(θ 0 , h) and Λ(θ 0 , h) denote respectively its gradient and Hessian

matrix for θ = θ 0 . Moreover, lim θ-θ 0 →0 sup d H(h,h 0 ) ≤δ 2 θ -θ 0 -2 M (θ, h) -M (θ 0 , h) -Γ(θ 0 , h)(θ -θ 0 ) - 1 2 (θ -θ 0 ) T Λ(θ 0 , h)(θ -θ 0 ) = 0. (c) Γ(θ 0 , h) = O P * (r -1 n ) and Γ(θ 0 , h 0 ) = 0. (d) Λ(θ 0 , h 0 ) is negative definite, and h → Λ(θ 0 , h) is continuous in h 0 (i.e. lim d H (h,h 0 )→0 sup u∈R k , u =1 (Λ(θ 0 , h) -Λ(θ 0 , h 0 ))u = 0). Now denote the greatest eigenvalue of Λ(θ 0 , h 0 ) by λ m . When d H ( h, h 0 ) ≤ δ 2 , assumptions (a)-(d) above imply that M (θ, h) -M (θ 0 , h) = Γ(θ 0 , h), γ θ + 1 2 (γ θ ) T Λ(θ 0 , h 0 )(γ θ ) + γ θ 2 o P * (1) + o( γ θ 2 ) ≤ Γ(θ 0 , h) γ θ + λ m 2 γ θ 2 + γ θ 2 o P * (1) + o( γ θ 2 ),
where γ θ = θ -θ 0 and where the notation

o( γ θ 2 ) means lim γ θ →0 o( γ θ 2 )
γ θ 2 = 0. By taking δ 0 such that θ -θ 0 ≤ δ 0 , the last term above is bounded by -λm 4 θ -θ 0 2 , and hence (B3) holds with W n = Γ(θ 0 , h) and C = -λm 4 .

(vi) Finally, it is possible to modify slightly the proof of the following theorem by considering the following extensions of assumptions (B3) and (B4):

(B3 ) There exist η 0 > 0, and two positive and non-decreasing functions Ψ 1 and Ψ 2 on (0, η 0 ] such that for all θ satisfying d(θ, θ 0 ) ≤ η 0 :

M (θ, h) -M (θ 0 , h) ≤ W n Ψ 1 (d(θ, θ 0 )) -(1 + o P * (1))Ψ 2 (d(θ, θ 0 )).
Moreover, there exist

β 2 > α, β 1 < β 2 , δ 0 > 0 such that δ → Ψ 1 (δ)δ -β 1 is
non-increasing and δ → Ψ 2 (δ)δ -β 2 is non-decreasing on (0, δ 0 ], and such that

Ψ 1 (r -1 n )W n = O P * (Ψ 2 (r -1 n )) for some sequence r n → ∞. (B4 ) M n ( θ, h) ≥ M n (θ 0 , h) + O p (Ψ 2 (r -1 n )) and Φ n (r -1 n ) ≤ √ nΨ 2 (r -1 n ).
It is possible to consider the case where

β 1 = β 2 if we assume that Ψ 1 (r -1 n )W n = o p (Ψ 2 (r -1 n )).
We are now ready to state the rate of convergence of the estimator θ. The proof of this result can be found in the Appendix.

Theorem 2 Under assumptions (B1)-(B4) we have that

r n d( θ, θ 0 ) = O P * (1).

Asymptotic distribution

In the previous section, we have shown that r n d( θ, θ 0 ) = O P * (1). Our aim is now to study the asymptotic distribution of r n ( θ -θ 0 ). We will assume throughout this section that Θ is equipped with the Euclidean norm • . We start with introducing a number of notations. For any θ ∈ Θ and h ∈ H, let

B n (θ, h) = M n (θ, h) -M n (θ 0 , h) and B(θ, h) = M (θ, h) -M (θ 0 , h)
, and define

M δ (.) ≥ sup θ-θ 0 ≤δ |m(., θ, h 0 ) -m(., θ 0 , h 0 )|
for any δ > 0. Also, let

M δ = {m(., θ, h 0 ) -m(., θ 0 , h 0 ) : θ -θ 0 ≤ δ}.
Finally, for any p ∈ N, for any f : Θ → IR and for any γ = (γ 1 , . . . , γ p ) ∈ Θ p denote

f γ = (f (γ 1 ), . . . , f (γ p )) T .
We introduce the following assumptions:

(C1) r n θ -θ 0 = O P * (1) and v n d H ( h, h 0 ) = O P * (1) for some sequences r n → ∞ and v n → ∞.
(C2) θ 0 belongs to the interior of Θ and Θ ⊂ (E, • ), where E is a finite dimensional Euclidean space (i.e. E = R k for some k).

(C3) For all δ 2 , δ 3 > 0, sup θ-θ 0 ≤ δ 2 rn , d H (h,h 0 )≤ δ 3 vn |B n (θ, h) -B(θ, h) -B n (θ, h 0 ) + B(θ, h 0 )| r -2 n + |B n (θ, h)| + |B n (θ, h 0 )| + |B(θ, h)| + |B(θ, h 0 )| = o P * (1). (C4) For all K, η > 0, r 4 n n E * M 2 K rn = O(1) and r 4 n n E * M 2 K rn 1 {r 2 n M K rn >ηn} = o(1).
(C5) For all K > 0 and for any η n → 0, sup

γ 1 -γ 2 <ηn, γ 1 ∨ γ 2 ≤K r 4 n n E m Z, θ 0 + γ 1 r n , h 0 -m Z, θ 0 + γ 2 r n , h 0 2 = o(1).
(C6) For all z ∈ F , the function θ → m(z, θ, h 0 (z, θ)) and almost all paths of the process θ → m(z, θ, h(θ, z)) are uniformly (over θ) bounded on compact sets.

(C7) There exist β n = o P * (1), a random and linear function W n : E → IR, and a deterministic and bilinear function V : E × E → IR such that for all θ ∈ Θ,

B(θ, h) = W n (γ θ ) + V (γ θ , γ θ ) + β n γ θ 2 + o( γ θ 2 )
and

B(θ, h 0 ) = V (γ θ , γ θ ) + o( γ θ 2 ),
where

γ θ = θ -θ 0 and the notation o( γ θ 2 ) means lim γ θ →0 o( γ θ 2 ) γ θ 2 = 0. Moreover, for any compact set K in E, ∃τ, δ 1 > 0, r n sup γ∈E, δ≤δ 1 , γ ≤δ | W n (γ) δ τ | = O P * (1) and sup γ,γ ∈K, δ≤δ 1 , γ-γ ≤δ |V (γ, γ) -V (γ , γ )| δ τ < ∞.
(C8) For all K > 0, there exists n 0 ∈ N such that for all n ≥ n 0 ,

M n ( θ, h) ≥ sup θ-θ 0 ≤ K rn M n (θ, h) + o P * (r -2 n ).
(C9) There exists a deterministic continuous function Λ and a zero-mean Gaussian process G defined on E such that for all p ∈ N and for all γ = (γ 1 , . . . , γ p ) ∈ E p ,

r n W nγ + r 2 n B n θ 0 + . r n , h 0 γ L → Λ γ + G γ .
Moreover, G(γ) = G(γ ) a.s. implies that γ = γ , and

P * limsup γ →+∞ (Λ γ + G γ ) < sup γ∈E (Λ γ + G γ ) = 1.
(C10) There exists a δ 0 > 0 such that

∞ 0 sup δ≤δ 0 log N [ ] ( M δ P * ,2 , M δ , L 2 (P )) d < +∞.
We will show below that r n ( θ -θ 0 ) converges to the unique maximizer of the process

γ → Λ(γ) + G(γ)
, where Λ and G are defined in (C9). However, let us first discuss the above assumptions.

Remark 3

(i) The first part of assumption (C1) can be obtained from Theorem 2. If in addition we assume that assumption (B2) holds with Φ n ≡ Φ not depending on n and continuous, and if we take r n → +∞ such that r 2 n Φ(r -1 n ) = √ n, then assumptions (C4) and (C5) are implied by the following ones: there exists a δ 4 > 0 such that for

all δ ≤ δ 4 , E * (M 2 δ ) ≤ KΦ 2 (δ) for some K > 0, lim δ→0 E * [M 2 δ 1 {M δ >ηδ -2 Φ 2 (δ)} ] Φ 2 (δ) = 0
for all η > 0, and

lim →0 lim δ→0 sup γ 1 -γ 2 ≤ , γ 1 ∨ γ 2 ≤K E[m(Z, θ 0 + γ 1 δ, h 0 ) -m(Z, θ 0 + γ 2 δ, h 0 )] 2 Φ 2 (δ) = 0
for all K > 0, using the same arguments as in the proof on Theorem 3.2.10 in [START_REF] Van Der Vaart | Weak convergence and empirical processes: with applications in statistics[END_REF].

(ii) Assumption (C6) ensures that for any compact

K ⊂ E the processes γ → r 2 n B n (θ 0 + γ rn , h) and γ → r 2 n B n (θ 0 + γ rn , h 0 ) + r n W n (γ) take values in ∞ (K) (assumption ( 
C7) is also used for the second process). This assumption is not very restrictive.

Moreover, because we deal with asymptotic results, we actually only require the latter properties for n > n K (where n K only depends on K). It follows directly from (C1) and (C2) that there exists n K such that θ 0 + K rn ⊂ Θ for n > n K . Hence it is only necessary to state (C6) on the compact set Θ.

(iii) Assumption (C3) is automatically fulfilled under the following slightly more restrictive (but common) assumption: for all δ 2 , δ 3 > 0, sup

θ-θ 0 ≤ δ 2 rn ,d H (h,h 0 )≤ δ 3 vn |B n (θ, h) -B(θ, h) -B n (θ, h 0 ) + B(θ, h 0 )| = o P * (r -2 n ).
The latter condition holds whenever the following one is fulfilled: there exists a function f and a constant δ 0 > 0 such that for all δ 2 , δ 3 < δ 0 ,

r 2 n f δ 2 r n , δ 3 v n = o( √ n), and 
E * sup θ-θ 0 ≤ δ 2 rn ,d H (h,h 0 )≤ δ 3 vn |B n (θ, h) -B(θ, h) -B n (θ, h 0 ) + B(θ, h 0 )| ≤ f ( δ 2 rn , δ 3 vn ) √ n .
This last bound may be obtained using arguments that are similar to those discussed in Remark 2(ii).

(iv) Now assume that assumptions (a)-(d) from Remark 2(v) hold. Following the same ideas as in this remark it is easy to show that (C7) is fulfilled with

E = R k , W n (γ) = Γ(θ 0 , h), γ and V (γ, γ) = 1 2 γ T Λ(θ 0 , h 0 )γ whenever sup u∈R k , u =1 Λ(θ 0 , h 0 )u < +∞.
Moreover, in that case, if h is computed from a dataset independent of (Z 1 , . . . , Z n ), it is sufficient for (C9) to assume the weak convergence of each term r n W nγ and r 2 n B n (θ 0 + . rn , h 0 ) γ separately. The convergence of the second term can be obtained as in the parametric case (see Theorem 3.2.10 in [START_REF] Van Der Vaart | Weak convergence and empirical processes: with applications in statistics[END_REF]). Note also that if r n Γ(θ 0 , h) → W in distribution, the marginals of the process γ → r n Γ(θ 0 , h), γ tend in distribution to the marginals of γ → W, γ .

Furthermore, if r n = √ n, it is common to assume that Γ(θ 0 , h) = n -1 n i=1 U i,n + o P * (n -1/2
), where the variables U i,n are independent and centered. The convergence then follows from Lindeberg's condition.

(v) Assumption (C8) allows to consider estimators θ that are approximations of the value that actually maximizes the map θ → M n (θ, h).

(vi) Let K be an arbitrary compact subset in E. Assumption (C9) is used to derive the weak convergence (in the

∞ (K) sense) of the process γ → r n W n (γ) + r 2 n B n (θ 0 + γr -1 n , h 0 ) from the fact that it is asymptotically tight. If r n sup γ∈K,γ =0 W n (γ) γ -1 = o P * (1)
, we are in the same situation as in the parametric case and we obtain the convergence of the marginals whenever

lim n→∞ r 4 n n E m Z, θ 0 + γ 1 r n , h 0 -m Z, θ 0 + γ 2 r n , h 0 2 = E[(G(γ 1 ) -G(γ 2 )) 2 ]
for all γ 1 , γ 2 , by noting that the remaining term is a sum of an array of random variables that fulfill Lindeberg's condition (see [START_REF] Van Der Vaart | Weak convergence and empirical processes: with applications in statistics[END_REF] p. 293-294). The last assumption on the process γ → Λ γ + G γ is used to ensure almost all sample paths have a supremum which is only related to their behaviour on compact sets. The dominant term of the deterministic part Γ is usually a negative definite quadratic form and hence exponential inequalities could lead to such result.

(vii) Finally, assumption (C10) is used to show that γ → r 2 n B n (θ 0 +γr -1 n , h 0 ) is asymptotically tight. It is the same as in the 'parametric case' where h 0 is known (see Theorem 3.2.10 in [START_REF] Van Der Vaart | Weak convergence and empirical processes: with applications in statistics[END_REF]). The same holds true for assumptions (C4)-(C6). [START_REF] Van Der Vaart | Weak convergence and empirical processes: with applications in statistics[END_REF] also give weaker conditions and alternatives for assumption (C10) based on covering numbers (see Theorems 2.11.22, 2.11.23 and 3.2.10).

We are now ready to state the main result of the paper about the asymptotic distribution of θ -θ 0 . As before, we refer to the Appendix for the proof.

Theorem 3 If assumptions (C1)-(C10) hold, then for all K > 0 the process γ → r 2 n B n (θ 0 + γ rn , h) converges weakly to γ → Λ(γ) + G(γ) in ∞ (K) with K = {γ ∈ E : γ ≤ K}. Moreover, for any such K almost all paths of the limiting process have a unique maximizer γ 0 on K. Assume now that γ 0 is measurable. Then, the random sequence r n ( θ -θ 0 ) converges in distribution to γ 0 .

Examples

In this section we give several examples of situations in which existing theory on semiparametric estimators can not be applied, whereas Theorems 1-3 in this paper can be used to obtain the limiting distribution of the estimator. This will demonstrate the usefulness of the asymptotic results in this paper. We start with an example on classification with missing data, which we work out in full detail. The contexts of the other five examples in this section are shortly stated, but the verification of the conditions of Theorems 1-3 is omitted for obvious space restrictions. See also the paper by [START_REF] Xu | Bootstrapping a change-point Cox model for survival data[END_REF], who consider a Cox model for duration data containing a change point (threshold). Their model and estimator also fit in our general framework.

Classification with missing data

In this section we illustrate the theory, and in particular the verification of the assumptions, by means of an example coming from the area of classification with missing data. Consider i.i.d. data X i = (X i1 , X i2 ) (i = 1, . . . , n) having the same distribution as X = (X 1 , X 2 ). We suppose that these data come in reality from two underlying populations.

Let Y i be j if observation i belongs to population j (j = 0, 1), and let Y be the population indicator for the vector X. Based on these data, we wish to establish a classification rule for new observations, for which it will be unknown to which population they belong. The classification consists in regressing X 2 on X 1 via a parametric regression function f θ (•), and choosing θ by maximizing the criterion

P (Y = 1, X 2 ≥ f θ (X 1 )) + P (Y = 0, X 2 < f θ (X 1 )). ( 6 
)
Let θ 0 be the value of θ that maximizes (6) with respect to all θ ∈ Θ, where Θ is a compact subset of IR k , whose interior contains θ 0 .

We suppose now that some of the Y i 's are missing. Let ∆ i (respectively ∆) be 1 if Y i (respectively Y ) is observed, and 0 otherwise. Hence our data consist of i.i.d. vectors

Z i = (X i , Y i ∆ i , ∆ i ) (i = 1, . . . , n).
We assume that the missing at random mechanism holds true, in the sense that

P (∆ = 1|X 1 , X 2 , Y ) = P (∆ = 1|X 1 ) := p 0 (X 1 ).
Note that ( 6) equals

E I(∆ = 1) p 0 (X 1 ) I(Y = 1, X 2 ≥ f θ (X 1 )) + I(Y = 0, X 2 < f θ (X 1 )) .
Hence, it is natural to define

m(Z, θ, p) = I(∆ = 1) p(X 1 ) I(Y = 1, X 2 ≥ f θ (X 1 )) + I(Y = 0, X 2 < f θ (X 1 )) , (7) 
where the nuisance function p(•) belongs to a space P to be defined later, and where

Z = (X, Y ∆, ∆). Also, let M (θ, p) = E[m(Z, θ, p)] and M n (θ, p) = n -1 n i=1 m(Z i , θ, p).
Finally, define the estimator θ of θ 0 by

θ = argmax θ∈Θ M n (θ, p), (8) 
where for any x 1 ,

p(x 1 ) = n i=1 k h (x 1 -X i1 ) n j=1 k h (x 1 -X j1 ) I(∆ i = 1),
where k is a density function with support [-1, 1], k h (u) = k(u/h)/h and h = h n is an appropriate bandwidth sequence.

We will now check the conditions of Theorems 1, 2 and 3. Suppose d(θ, θ 0 ) is the Euclidean distance • . Let P be the space of functions p : R X 1 → IR that are continuously differentiable, and for which sup

x 1 ∈R X 1 p(x 1 ) ≤ M < ∞, sup x 1 ∈R X 1 |p (x 1 )| ≤ M and inf x 1 ∈R X 1 p(x 1 ) > η/2, where η = inf x 1 ∈R X 1 p 0 (x 1
) is supposed to be strictly positive, and where R X 1 is the support of X 1 , which is supposed to be a compact subspace of IR. We equip the space P with the supremum norm :

d P (p 1 , p 2 ) = sup x 1 ∈R X 1 |p 1 (x 1 ) -p 2 (x 1 )| for any p 1 , p 2 .
First of all, (A1) is verified by construction of the estimator θ. Condition (A2) is an identifiability condition, needed to ensure that θ 0 is unique, whereas (A3) holds true provided the functions p 0 and k are continuously differentiable. Next, for (A4) is suffices by Remark 1(ii) to show that the class F = {m(•, θ, p) : θ ∈ Θ, p ∈ P} is Glivenko-Cantelli. For this we will show that for all > 0, the bracketing number N [ ] ( , F, L 1 (P )) is finite. First, note that it follows from Corollary 2.7.2 in [START_REF] Van Der Vaart | Weak convergence and empirical processes: with applications in statistics[END_REF] that N [ ] ( , P, L 1 (P )) ≤ exp(K -1 ). In a similar way we can show that N [ ] ( , {f θ :

θ ∈ Θ}, L 1 (P )) ≤ exp(K -1 ), provided x 1 → f θ (x 1
) is continuously differentiable and the derivatives are uniformly bounded over θ. From there it can be easily shown that the class

T = {(x 1 , x 2 ) → I(x 2 ≥ f θ (x 1 )) : θ ∈ Θ} satisfies N [ ] ( , T , L 1 (P )) ≤ exp(K -1 ), provided sup x 1 ,x 2 f X 2 |X 1 (x 2 |x 1 ) < ∞. By combin-
ing the brackets for P and T we get that N [ ] ( , F, L 1 (P )) ≤ exp(K -1 ) < ∞ for some K < ∞. Finally, condition (A5) is straightforward, and hence the weak consistency of θ follows.

Next, we verify the B-conditions. Condition (B1) holds with v -1 n = K[(nh) -1/2 (log n) 1/2 + h]. For (B2), it suffices by Remark 2(ii) to show that ( 4) and ( 5) hold true. Equation ( 5) holds true for Φ n (δ) = δ 1/2 . Indeed the envelope M δ,δ 1 of the class F δ,δ 1 can be taken equal to (for notational simplicity we suppose throughout that θ is one-dimensional)

M δ,δ 1 (Z) = 2 η I(f θ 0 (X 1 ) -Aδ ≤ X 2 ≤ f θ 0 (X 1 ) + Aδ),
where A = sup θ,x 1 | ∂ ∂θ f θ (x 1 )|, which we suppose to exist and to be finite. Hence, ( 5) is easily seen to hold provided X is absolutely continuous and sup x f X (x) < ∞. For (4) note that

M δδ 1 2 L 2 (P ) = 4 η 2 E F X 2 |X 1 (f θ 0 (X 1 ) + Aδ|X 1 ) -F X 2 |X 1 (f θ 0 (X 1 ) -Aδ|X 1 ) ≥ 8Aδ η 2 inf * f X 2 |X 1 (x 2 |x 1 ) =: K 2 1 δ,
which we suppose to be strictly positive, where inf * is the infimum over all (x 1 , x 2 ) such

that |x 2 -f θ 0 (x 1 )| ≤ Aδ. It follows that N [ ] ( M δδ 1 L 2 (P ) , F δδ 1 , L 2 (P )) is bounded above by N [ ] (K 1 δ 1/2 , F δδ 1 , L 2 (P )
). We will first construct brackets for the set

G := {f θ : θ ∈ Θ, |θ -θ 0 | ≤ δ}. Note that f θ can be written as f θ = [ 1 δ (f θ -f θ 0 )]δ + f θ 0 . If we assume that x 1 → ∂ ∂θ f θ (x 1
) is twice continuously differentiable in x 1 for all θ, it follows from Corollary 2.7.2 in [START_REF] Van Der Vaart | Weak convergence and empirical processes: with applications in statistics[END_REF] 

that r := N [ ] ( 2 , D, L 2 (P )) ≤ exp(Kε -1 ) with D = { 1 δ (f θ -f θ 0 ) : θ ∈ Θ, |θ-θ 0 | ≤ δ}. Let d L 1 ≤ d U 1 , . . . , d L r ≤ d U r
be the2 -brackets for D. It then easily follows that N [ ] ( 2 δ, G, L 2 (P )) = r , and that the 2 δ-brackets for G are given by g

L j := d L j δ +f θ 0 ≤ d U j δ +f θ 0 =: g U j . Moreover, s := N [ ] ( , P, L ∞ (P )) ≤ exp(K -1 ). Let h L 1 ≤ h U 1 , .
. . , h L s ≤ h U s be the -brackets for P defined in such a way that for 1 ≤ k ≤ s , inf t∈R X 1 h L k ≤ η. We now claim that

N [ ] ( M δδ 1 L 2 (P ) , F δδ 1 , L 2 (P )) ≤ r s ≤ exp(K -1 ). ( 9 
)
Indeed, define for 1 ≤ j ≤ r and 1 ≤ k ≤ s ,

f L jk (Z) = I(∆ = 1) h U k (X 1 ) I(Y = 1) I(X 2 ≥ g U j (X 1 )) -I(X 2 ≥ f θ 0 (X 1 )) +I(Y = 0) I(X 2 < g L j (X 1 )) -I(X 2 < f θ 0 (X 1 )) ,
and define in a similar way the upper bracket f U jk (Z). Then,

f U jk (Z) -f L jk (Z) 2 2 ≤ 4E 1 h U k (X 1 ) - 1 h L k (X 1 ) 2 P (X 2 ≤ g U j (X 1 )|X 1 ) -P (X 2 ≤ f θ 0 (X 1 )|X 1 ) + P (X 2 ≤ g L j (X 1 )|X 1 ) -P (X 2 ≤ f θ 0 (X 1 )|X 1 ) + 4 η 2 E P (X 2 ≤ g U j (X 1 )|X 1 ) -P (X 2 ≤ g L j (X 1 )|X 1 ) ≤ 16δ η 2 sup x 1 |h U k (x 1 ) -h L k (x 1 )| 2 sup x 1 ,x 2 f X 2 |X 1 (x 2 |x 1 )E |d U j (X 1 )| + |d L j (X 1 )| + 4 η 2 sup x 1 ,x 2 f X 2 |X 1 (x 2 |x 1 )E g U j (X 1 ) -g L j (X 1 ) ≤ C 2 δ,
for some 0 < C < ∞. Moreover, for each function in the class F δδ 1 there exists a bracket [f L jk , f U jk ] to which it belongs. This shows (9). It now follows that sup

δ≤δ 0 1 0 1 + log N [ ] ( M δδ 1 L 2 (P ) , F δδ 1 , L 2 (P )) d < ∞,
which shows (4) and hence (B2).

For (B3) we check conditions (b)-(d) of Remark 2(v). It is easily seen that (b) holds with Γ(θ 0 , p) = E p 0 (X 1 ) p(X 1 ) 1 -2P (Y = 1|X 1 , X 2 ) f X 2 |X 1 (f θ 0 (X 1 )) ∂ ∂θ f θ 0 (X 1 ) , and 
Λ(θ 0 , p) = E p 0 (X 1 ) p(X 1 ) 1 -2P (Y = 1|X 1 , X 2 ) f X 2 |X 1 (f θ 0 (X 1 )) ∂ ∂θ f θ 0 (X 1 )
and provided the derivatives in Λ(θ 0 , p) all exist. Next, by assuming that Γ(θ 0 , p 0 ) = 0 and that Λ(θ 0 , p 0 ) is negative, and by noting that Γ(θ 0 , p) 1), it follows that (c) and (d) are also valid. It remains to check condition (B4), which easily holds provided r n = O(n 1/3 ). The two conditions on r n and the fact that r n should be chosen as large as possible, are reconcilable provided 1) and (nh 3/2 ) -1 (log n) 3/2 = O(1). Note that it is possible to weaken the first condition to nh 6 = O(1) if we assume that p 0 (•) is twice continuously differentiable. Note however that the rate v -1 n of p would then be O((nh) -1/2 (log n) 1/2 + h 2 ), which is faster than the rate r -1 n = Kn -1/3 of θ provided nh 3 → ∞. Hence, the latter case is of lower level of complexity than the case where p 0 is only once differentiable, and we therefore do not consider it further. To conclude, we have that

= O P (r -1 n ) if r n satisfies r n [n -1/2 + h + (nh) -1 log n)] = O(
nh 3 = O(
θ -θ 0 = O P * (n -1/3 ).
Finally, we check the conditions needed for establishing the asymptotic distribution of θ. Condition (C1) follows from Theorem 2 and condition (B1), whereas (C2) is immediately satisfied. For (C3) a similar proof as for condition (B2) can be given, which we omit for reasons of brevity. For (C4) and (C5), first note that the function Φ n (δ) = Kδ 1/2 in condition (B2) is independent of n and continuous. Hence, (C4) and (C5) hold provided the three conditions stated in Remark 3(i) are verified. For the first one, we have that

M δ satisfies |M δ (Z)| ≤ 2 η I f θ 0 (X 1 ) -Aδ ≤ X 2 ≤ f θ 0 (X 1 ) + Aδ .
Hence, E * (M 2 δ ) ≤ Kδ for some K < ∞. In a similar way the second and third condition can be proved, from which (C4) and (C5) follow. Next, (C6) is obviously satisfied since for fixed p and z, our function m(z, •, p) consists of indicator functions. Next, following Remarks 2(v) and 3(v), condition (C7) follows provided |Λ(θ 0 , p 0 )| < ∞. By construction of the estimator θ, condition (C8) holds true. For (C9), first note that

r n W n (γ) = r n Γ(θ 0 , p)γ = o P (1) provided nh 3 = o(1) and (nh 3/2 ) -1 (log n) 3/2 = o(1)
, using what has been shown already for (B3). Next,

r 2 n B n (θ 0 + γ r n , p 0 ) (10) = r 2 n M n (θ 0 + γ r n , p 0 ) -M n (θ 0 , p 0 ) -M (θ 0 + γ r n , p 0 ) + M (θ 0 , p 0 ) + 1 2 Λ(θ 0 , p 0 )γ 2 + o(1), since Γ(θ 0 , p 0 ) = 0. Hence, Λ(γ) = 1 2 Λ(θ 0 , p 0 )γ 2 .
The first terms on the right hand side of (10) are exactly the same as in the parametric case. Hence we can follow the same steps [START_REF] Kim | Cube root asymptotics[END_REF] showed that the estimator converges at n 1/3 -rate, and [START_REF] Abrevaya | On the bootstrap of the maximum score estimator[END_REF] proved the consistency of a certain bootstrap procedure.

c h = 2.0 c h = 3.5 c h = 5.0 n r
For a given vector β we estimate the function g by means of an M -estimator of kernel type : g β (z) = argmax a S n,β (a|z), where

S n,β (a|z) = (nh) -1 n i=1 2I(Y i = 1) -1 I(X T i β + a ≥ 0)k Z i -z h ,
where h = h n is a bandwidth sequence and k is a kernel function. This leads to the following estimator of β :

β = argmax β M n (β, g β ),
where

M n (β, g) = n -1 n i=1 2I(Y i = 1) -1 I(X T i β + g(Z i ) ≥ 0).
It is clear that this criterion function can not be differentiated with respect to β, and hence it is an example of a situation which the existing theory on semiparametric estimation fails to cover, whereas the theory developed in this paper can be applied. We expect that the estimator β has a cube-root n convergence rate. We leave the verification of the conditions of Theorems 1-3 to the reader.

Hit rate model

Suppose we like to estimate

θ = P h(X T β) ∈ A(Z) ,
where A(Z) is a random set, and β and h are unknown finite and infinite dimensional parameters. Applications where the estimation of θ is of interest can be found e.g. in [START_REF] Bliss | Testing term structure estimation methods[END_REF], who is interested in evaluating nonparametric yield curve fits.

Suppose that h is the density of X T β. For a random sample (X i , Z i ), i = 1, . . . , n,

define h β (z) = n -1 n i=1 k h (X T i β -z)
, which is the classical kernel density estimator applied to the linear combination X T i β (i = 1, . . . , n). Then, a natural estimator of β and θ is

( β, θ) = argmax β,θ n -1 n i=1 I h β (X T i β) ∈ A(Z i ) -θ 2 .
When X T β is replaced by X, this example has been studied by [START_REF] Chen | Estimation of semiparametric models when the criterion function is not smooth[END_REF] using semiparametric theory for Z-estimators. However, the introduction of the β-vector makes the criterion function non-smooth, and hence the M -estimation problem can no longer be reduced to a Z-estimation problem.

Threshold (or change point) model

A popular model in statistics and econometrics is the following semiparametric threshold model :

Y = g 1 (X)I(Z T β ≤ 0) + g 2 (X)I(Z T β > 0) + ε,
where X is one-dimensional, Z is possibly of higher dimension, Z may or may not contain X, E(ε|X, Z) = 0, Var(ε|X, Z) < ∞, and g 1 and g 2 are unknown but supposed to be smooth on the interior of their support. Given i.i.d. data (X 1 , Z 1 , Y 1 ), . . . , (X n , Z n , Y n ) from the above model, define

g 1,β (x) = n i=1 k h (X i -x)I(Z T i β ≤ 0) n j=1 k h (X j -x)I(Z T j β ≤ 0) Y i and g 2,β (x) = n i=1 k h (X i -x)I(Z T i β > 0) n j=1 k h (X j -x)I(Z T j β > 0) Y i ,
where k h (•) = k(•/h)/h. Then, the idea is to estimate the vector β by looking for the linear combination Z T β which leads to the largest difference between g 1,β and g 2,β :

β = argmax β n -1 n i=1 g 1,β (X i ) -g 2,β (X i ) 2 .
As in the previous examples, the non-differentiability of the criterion function with respect to β makes this an example of a case where our theory applies, contrary to existing theory.

Single index model with monotone link function

Another example where our theory can be applied comes from the context of single index regression models (see [START_REF] Ichimura | Semiparametric least squares (SLS) and weighted SLS estimation of single index models[END_REF] :

Y = g(X T β) + ε,
where E(ε|X) = 0, Var(ε|X) < ∞ and we suppose that g is unknown but monotone.

Given i.i.d. data (X 1 , Y 1 ), . . . , (X n , Y n ) from the above model, an estimator of the function g can be obtained by using e.g. the pool-adjacent-violators algorithm, leading to a non-

smooth estimator g β of g β (z) = E[Y |X T β = z].
Next, an estimator of β can be found by applying the least-squares estimation method :

β = argmax β -n -1 n i=1 Y i -g β (X T i β) 2 .
Due to the non-smooth nature of g β (•), this criterion function is not smooth in β. Hence, this is another example of a situation where the theory of this paper can help out.

Binary choice model with missing data

Reconsider a binary choice model as in Subsection 6.2, but suppose now that the regression function is linear :

U = X T β -ε Y = I(U ≥ 0),
where as before we suppose that ε has median zero, conditional on X. We suppose that Y is subject to the missing at random (MAR) mechanism, and the probability of observing Y depends on the value of X through a certain linear combination of the X-components :

P (∆ = 1|X, Y ) = P (∆ = 1|X T γ) := p(X T γ),
where ∆ = 1 if Y is observed and 0 if it is missing. The data now consist of i.i.d. triplets (X i , Y i ∆ i , ∆ i ), i = 1, . . . , n, from the above model. For estimating p γ (z) = P (∆ = 1|X T γ = z), we use a kernel estimator :

p γ (z) = n i=1 k h (X T i γ -z) n j=1 k h (X T j γ -z) I(∆ i = 1).
Next, let ( β, γ) = argmax β,γ M n (β, γ, p γ ), where

M n (β, γ, p) = n -1 n i=1 I(∆ i = 1) p(X T i γ) 2I(Y i = 1) -1 I(X T i β ≥ 0).
It is clear that M n (β, γ, p) is smooth in γ but non-smooth in β, and hence existing theory cannot be applied here. As before, Theorems 1-3 can be applied to this criterion function to find the limiting distribution of β and θ.

More generally, from the above example it is clear that any parametric M -estimation problem with a non-smooth criterion function in which the response is missing at random can be turned into a semiparametric M -estimation problem by introducing the above propensity function. Hence, the theory of this paper applies to many more examples than the illustrative examples given here.

Appendix: Proofs

In this Appendix we give the proofs of the asymptotic results, namely we prove the consistency, the rate of convergence and the asymptotic distribution of our M -estimator θ.

Proof of Theorem 1. Our aim is to show that

M (θ 0 , h 0 ) -M ( θ, h 0 ) = o P * (1). (1) 
Indeed, the result we want to obtain is a direct consequence of (1) and assumption (A2).

It is easy to show that assumptions (A3) and (A4) imply that

|M n ( θ, h) -M n (θ 0 , h) -M ( θ, h) + M (θ 0 , h)| 1 + |M n ( θ, h) -M n (θ 0 , h)| + |M ( θ, h) -M (θ 0 , h)| = o P * (1), (2) 
since θ belongs by construction to Θ. Consider the following decomposition:

M (θ 0 , h 0 ) -M ( θ, h 0 ) = M ( θ, h) -M ( θ, h 0 ) + M (θ 0 , h 0 ) -M (θ 0 , h) + M (θ 0 , h) -M ( θ, h) ≤ M n (θ 0 , h) -M n ( θ, h) + 2 sup θ∈Θ |M (θ, h 0 ) -M (θ, h)| +|M n ( θ, h) -M ( θ, h) -M n (θ 0 , h) + M (θ 0 , h)|.
This, together with (2) leads to the following inequality:

(M (θ 0 , h 0 ) -M ( θ, h 0 ))(1 + o P * (1)) ≤ (M n (θ 0 , h) -M n ( θ, h))(1 + o P * (1)) + 4 sup θ∈Θ |M (θ, h 0 ) -M (θ, h)| + o P * (1).
Now, the quantity (1 + o P * (1)) on the left hand side in the above inequality is positive on a set A n whose outer probability tends to one when n tends to infinity. On A n , a reformulation of the previous inequality gives:

M (θ 0 , h 0 ) -M ( θ, h 0 ) (3) ≤ (M n (θ 0 , h) -M n ( θ, h))(1 + o P * (1)) + 4 sup θ∈Θ |M (θ, h 0 ) -M (θ, h)|(1 + o P * (1)) + o P * (1).
Assumptions (A3) and (A5) imply that

sup θ∈Θ |M (θ, h 0 ) -M (θ, h)| = o P * (1), (4) 
and assumption (A1) gives that

M n (θ 0 , h) -M n ( θ, h) ≤ o P * (1). (5) 
It now follows directly from (3)-( 5) that

0 ≤ M (θ 0 , h 0 ) -M ( θ, h 0 ) ≤ o P * (1). 2 
Proof of Theorem 2. Let ξ n be the O P * (r -2 n )-quantity involved in assumption (B4). We introduce the sets S j,n = θ : 2 j-1 < r n d(θ, θ 0 ) ≤ 2 j , and observe that Θ\{θ 0 } = ∪ +∞ j=1 S j,n . Our aim is to prove that for any > 0 there exists τ > 0 such that

P * r n d( θ, θ 0 ) > τ < (6) 
for n sufficiently large. From now on we work with an arbitrary fixed positive value of .

For any δ, δ 1 , M, K, K > 0, we obtain the following bound using assumption (B4):

P * r n d( θ, θ 0 ) > 2 M ≤ j≥M, 2 j ≤δrn P * sup θ∈S j,n [M n (θ, h) -M n (θ 0 , h)] ≥ -Kr -2 n , A n +P * 2d( θ, θ 0 ) ≥ δ + P * r 2 n |ξ n | > K + P * r n |W n | > K +P * |β n | > C 2 + P * d H ( h, h 0 ) > δ 1 v n , (7) 
where

A n = {r n |W n | ≤ K , |β n | ≤ C 2 , d H ( h, h 0 ) ≤ δ 1 vn }. Indeed, we can write P * r n d( θ, θ 0 ) > 2 M , 2d( θ, θ 0 ) < δ, r 2 n |ξ n | ≤ K, A n ≤ j≥M,2 j ≤δrn P * θ ∈ S j,n , r 2 n |ξ n | ≤ K, A n ≤ j≥M,2 j ≤δrn P * sup θ∈S j,n [M n (θ, h) -M n (θ 0 , h)] ≥ ξ n , r 2 n |ξ n | ≤ K, A n ≤ j≥M,2 j ≤δrn P * sup θ∈S j,n [M n (θ, h) -M n (θ 0 , h)] ≥ -Kr 2 n , A n .
Assumption (B1) implies that for all δ > 0 there exists n such that

P * (2d( θ, θ 0 ) ≥ δ) < 6 (8)
for n larger than n . Then, by definition of ξ n and W n and because of (B1), there exist three positive constants δ 1 , K and K such that

P * r 2 n |ξ n | > K < 6 , P * r n |W n | > K < 6 , P * |β n | > C 2 < 6 , and 
P * d H ( h, h 0 ) > δ 1 v n < 6 (9) 
for n larger than some n 1 ∈ N. We fix δ < δ 0 and suppose that n ≥ max(n 0 , n 1 , n ) to get that assumptions (B2) and (B3) are fulfilled on all S j,n such that 2 j ≤ δr n . Now, it follows directly from assumption (B3) that for each fixed j such that 2 j ≤ δr n one has for all θ ∈ S n,j :

M n (θ, h) -M n (θ 0 , h) ≤ M (θ, h) -M (θ 0 , h) + sup d(θ,θ 0 )≤ 2 j rn |M n (θ, h) -M n (θ 0 , h) -M (θ, h) + M (θ 0 , h)| ≤ |W n | 2 j r n -(C -β n ) 2 2j-2 r 2 n + sup d(θ,θ 0 )≤ 2 j rn |M n (θ, h) -M n (θ 0 , h) -M (θ, h) + M (θ 0 , h)|.
Consequently, we obtain the following inequality:

P * sup θ∈S j,n [M n (θ, h) -M n (θ 0 , h)] ≥ -K r -2 n , A n ≤ P * sup d(θ,θ 0 )≤ 2 j rn , d H ( h,h 0 )≤ δ 1 vn |M n (θ, h) -M n (θ 0 , h) -M (θ, h) + M (θ 0 , h)| ≥ 2 2j-2 r 2 n ( C 2 -K 2 2-j -K 2 2-2j ) .
Now, there exists M such that for all j ≥ M one gets

C 2 -K 2 2-j -K 2 2-2j ≥ C 4 .
Consequently, if M ≥ M , using assumption (B2) and Chebychev's inequality we have that j≥M, 2 j ≤δrn

P * sup θ∈S j,n [M n (θ, h) -M n (θ 0 , h)] ≥ -K r -2 n ∩ A n ≤ j≥M, 2 j ≤δrn P * sup d(θ,θ 0 )≤ 2 j rn , d H ( h,h 0 )≤ δ 1 vn |M n (θ, h) -M n (θ 0 , h) -M (θ, h) + M (θ 0 , h)| ≥ C2 2j-2 4r 2 n ≤ 4Kr 2 n C √ n j≥M, 2 j ≤δrn Φ n ( 2 j rn ) 2 2j-2 ≤ 4Kr 2 n C √ n j≥M, 2 j ≤δrn 2 jα Φ n ( 1 rn ) 2 2j-2 ≤ 16K C j≥M 2 j(α-2) .
Finally, since α < 2, the series j≥M 2 j(α-2) converges and hence there exists

M ≥ M such that 16K C j≥M 2 j(α-2) ≤ 6 .
This finishes the proof showing (6) with τ = 2 M . 2

Proof of Theorem 3. The first step of the proof consists in showing the weak convergence of the process γ → r 2 n B n (θ 0 + γ rn , h). This is shown in Lemma 4 (given below). The remainder of the proof is based on somewhat similar arguments as those used to state the Argmax theorem in [START_REF] Van Der Vaart | Weak convergence and empirical processes: with applications in statistics[END_REF]. First note that E is a σ-compact metric space since E = ∪ ∞ i=1 K i with K i = {γ ∈ E : γ ≤ a i } for any positive sequence (a i ) i∈N * tending to infinity.

Then deduce from assumption (C9) together with Lemmas 5 and 6 given below, that almost all paths of the limiting process γ → Λ(γ) + G(γ) attain their supremum at an unique point γ 0 , following similar ideas to what is done in the parametric case (see Theorem 3.2.10 in [START_REF] Van Der Vaart | Weak convergence and empirical processes: with applications in statistics[END_REF]). Assume now that γ 0 is measurable. The weak convergence of r n ( θ -θ 0 ) to γ 0 is equivalent to the next statement (Portmanteau's This together with (12) leads to limsup n→∞ P * r n ( θ -θ 0 ) ∈ C ∩ K , γ 0 ∈ K ≤ P * γ 0 ∈ C .

Consequently, it follows from (11) that for all > 0, limsup n→∞ P * r n ( θ -θ 0 ) ∈ C ≤ P * γ 0 ∈ C + .

Since the right hand side of ( 14) holds for all > 0, it also holds for = 0. The result now follows from Portmanteau's theorem. 2

We end this section with three lemmas that were needed in the proof of Theorem 3.

Lemma 4 For all K > 0, let K = {γ ∈ E : γ ≤ K} be a compact subset of E. Then, under the assumptions of Theorem 3, for any such K, the process γ → r 2 n B n (θ 0 + γ rn , h) converges weakly to the process γ → Λ(γ) + G(γ) in ∞ (K). Moreover, almost all paths of the limiting process are continuous (uniformly on every compact K) with respect to • . other hand, for n large enough, θ + γ rn ∈ Θ (see the proof of Lemma 5). Assume now that n is large enough and use assumption (C7) to conclude that for all 0 < δ ≤ δ 1 , sup γ,γ ∈K, γ-γ ≤δ Finally choose K η such that the last term is smaller than η, and take δ ≤ δ 1 ∧ ( 2Kη ) 1 τ . It then follows that T 2,n is asymptotically uniformly equicontinuous in probability with respect to • on K.

Hence, the same is also true for the process T n , since it is the sum of two such processes. The asymptotic tightness and hence the weak convergence of T n to Λ + G in ∞ (K) now follows from Theorems 1.5.7 and 1.5.4 in [START_REF] Van Der Vaart | Weak convergence and empirical processes: with applications in statistics[END_REF], together with assumption (C9) and the fact that K is totally bounded with respect to the • -norm (since it is compact). Moreover, using Addendum 1.5.8 in the same book, almost all paths of the limiting process on K are uniformly continuous with respect to • . 2

  theorem) : limsup n→∞ P * r n ( θ -θ 0 ) ∈ C ≤ P γ 0 ∈ C , for every closed set C.Let C be an arbitrary closed subset of E and fix > 0. The random variable γ 0 is tight because it takes values in E, which is σ-compact. Combining this tightness and the first part of (C1), it is possible to find K > 0 and hence a compact set K := {γ : γ ≤ K } such thatP * γ 0 / ∈ K ≤ 2, and P * r n ( θ -θ 0 ) / from (10) thatlimsup n→∞ P * r n ( θ -θ 0 ) ∈ C ≤ P * r n ( θ -θ 0 ) ∈ C ∩ K , γ 0 ∈ K + limsup n→∞ P * {r n ( θ -θ 0 ) / ∈ K } ∪ {γ 0 / ∈ K } ≤ P * r n ( θ -θ 0 ) ∈ C ∩ K , γ 0 ∈ K + . (11)Now using Lemma 4 and assumption (C8) we obtainlimsup n→∞ P * r n ( θ -θ 0 ) ∈ C ∩ K , γ 0 ∈ K ≤ limsup n→∞ P * sup γ∈C∩K r 2 n B n θ 0 + γ r n , h ≥ sup γ∈K r 2 n B n θ 0 + γ r n , h + o P * (1), γ 0 ∈ K ≤ P * sup γ∈C∩K (Λ + G)(γ) ≥ sup γ∈K (Λ + G)(γ), γ 0 ∈ K ,(12)by Slutsky's lemma and Portmanteau's theorem. On the other hand, for every open set G containing γ 0 , we have: (Λ + G)(γ 0 ) > sup γ∈G c ∩K (Λ + G)(γ).

  |T 2,n (γ) -T 2,n (γ )| = sup γ,γ ∈K, γ-γ ≤δ W n (γ -γ ) + V (γ, γ) -V (γ , γ ) + r 2 ∈E, δ≤δ 1 , γ-γ ≤δ |V (γ, γ) -V (γ , γ )| δ τ + b n := δ τ α n + b n ,(19)where b n ≤ sup γ,γ ∈K |r 2 n (o( → 0 as n tends to infinity, andα n = O P * (1)uniformly over δ ≤ δ 1 . Let and η be arbitrary positive constants. It is clear that, for any 0 < δ ≤ δ 1 and any positive constant K, (19) leads tolimsup n→∞ P * sup γ,γ ∈K, γ-γ ≤δ |T 2,n (γ) -T 2,n (γ )| > ≤ limsup n→∞ P * δ τ α n + b n > , α n ≤ K, |b n | < 2 + limsup n→∞ P * α n > K ≤ limsup n→∞ P * δ τ > 2K + limsup n→∞ P * α n > K .

Table 1 :

 1 Bias and root mean squared error (RMSE) of the estimator θ for several values of n, r, α 0 and c h .

	α 0	Bias RMSE Bias RMSE Bias RMSE
	150 0.1 0.25 .0346 .1321 .0375 .1320 .0385 .1310
	0.50 .0240 .0931 .0251 .0930 .0269 .0947
	0.75 .0218 .0741 .0230 .0733 .0222 .0734
	0.2 0.25 .0521 .1802 .0542 .1809 .0575 .1791
	0.50 .0539 .1452 .0549 .1445 .0566 .1453
	0.75 .0541 .1220 .0544 .1234 .0545 .1235
	300 0.1 0.25 .0281 .0921 .0291 .0902 .0277 .0913
	0.50 .0208 .0651 .0219 .0658 .0217 .0658
	0.75 .0179 .0510 .0164 .0496 .0178 .0504
	0.2 0.25 .0525 .1403 .0554 .1397 .0588 .1383
	0.50 .0484 .1057 .0508 .1073 .0535 .1067
	0.75 .0491 .0925 .0506 .0931 .0506 .0936

+f X 2 |X 1 (f θ 0 (X 1 )) ∂ 2 ∂θ 2 f θ 0 (X 1 ) ,
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and get the convergence of the marginals using Lindeberg condition and Remark 3 (vii) under some regularity assumptions on f X 2 |X 1 and θ → f θ .Finally, condition (C10) can be proved in a similar way as (B2). The asymptotic distribution of r n ( θ -θ 0 ) now follows from Theorem 3.

To illustrate the finite sample behavior of the estimator θ defined in (8), we carry out a small simulation study. Let X 1 ∼ U [0, 1] and consider the model X 2 = max(min(U + ε, 1), 0), where U ∼ U [0, 1], ε ∼ U [-r, r] for some small r > 0, and U , ε and X 1 are independent.

The data consist of (X i1 , X i2 , Y i ∆ i , ∆ i ) (i = 1, . . . , n) from the above model. For the bandwidth we work with h = c h n -1/2 , since this bandwidth satisfies the regularity conditions coming from the asymptotic theory. In Table 1 we show the bias and root mean squared error (RMSE) of the estimator θ for several values of n (150 and 300), r (0.1 and 0.2), α 0 (0.25, 0.50 and 0.75), and c h (2, 3.5 and 5). The other parameters are set to θ = 1 and α 1 = 1. The results are based on 1000 Monte Carlo runs. The table shows that both the bias and the RMSE are quite small, and the results improve when n increases, α 0 increases or r decreases. Also, the table clearly shows that the estimation of θ is not very sensitive to the choice of the bandwidth h.

Partially linear binary choice model

Consider the following binary choice model with partially linear regression structure :

where the median of ε given X and Z is zero, X is of dimension d ≥ 1, and Z is onedimensional. The observations consist of the i.i.d. triplets (X i , Z i , Y i ), i = 1, . . . , n, with the same distribution as (X, Z, Y ). In the absence of the nonparametric function g(•), a semiparametric estimator of β, called the maximum score estimator, has been proposed by [START_REF] Manski | The maximum score estimation of the stochastic utility model of choice[END_REF]. The consistency of this estimator was proved by [START_REF] Manski | Semiparametric analysis of discrete response: asymptotic properties of the maximum score estimator[END_REF], while Proof. The weak convergence of the process γ → r 2 n B n (θ 0 + γ rn , h) in ∞ (K) follows directly from Slutsky's theorem and Lemmas 5 and 6. On the other hand, • makes K totally bounded (since it is compact) and γ → r 2 n B n (θ 0 + γ rn , h 0 ) + r n W n (γ) is asymptotically uniformly • -equicontinuous in probability, asymptotically tight, and it converges weakly to γ → Λ(γ) + G(γ) in ∞ (K) (see proof of Lemma 6). Thus almost all paths of the limiting process are uniformly • -continuous on K (see Theorem 1.5.7 in [START_REF] Van Der Vaart | Weak convergence and empirical processes: with applications in statistics[END_REF]). Moreover, because E may be covered by a countable sequence of such compact sets, almost all paths of the limiting process are • -continuous on E.

2

Lemma 5 Let K = {γ ∈ E : γ ≤ K}. Then, under the assumptions of Theorem 3, for all γ ∈ K, there exist ξ 0,n , ξ 1,n , ξ 2,n , such that sup γ∈K |ξ j,n | = o P * (1), j = 0, 1, 2, and

Proof. Let us introduce the following notations :

Because the compact K is bounded and θ 0 belongs to the interior of Θ, there exists n K such that for all n ≥ n K and for all γ ∈ K, the quantity θ 0 + γ rn is in Θ. Then, for all γ ∈ K entails that

This can be reformulated as

Then use assumptions (C1) and (C7) to get

Combining ( 16) and ( 17) we obtain

with

It can be easily shown that sup γ∈K |ξ j,n (γ)| = o P * (1) for j = 0, 1, 2 using assumptions (C3) and (C7). 2

Lemma 6 Let K = {γ ∈ E : γ ≤ K}. Then, under the assumptions of Theorem 3, the process γ → r 2 n B n (θ 0 + γ rn , h 0 ) + r n W n (γ) is asymptotically tight, asymptotically uniformly equicontinuous with respect to • on K, and it converges weakly to the process

Proof. The main idea of this proof consists in writing the process T

and studying separately the properties of T 1,n and T 2,n . However, in some specific cases it could be possible to state the weak convergence of T n without this decomposition. Let us first note that assumption (C7) implies that for n sufficiently large (only depending on K) so that θ 0 + K rn ⊂ Θ, the processes T 1,n and T 2,n take values in ∞ (K).

The process T 1,n does not depend on the estimation of the nuisance parameter. Hence, following similar ideas as in the parametric case we get from assumptions (C4), (C5) and (C10) the asymptotic uniform equicontinuity of T 1,n with respect to • on K (as a subproduct of the proof of Theorem 2.11.9 in [START_REF] Van Der Vaart | Weak convergence and empirical processes: with applications in statistics[END_REF]). On the