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A New Multivariate Statistical Model for Change
Detection in Images Acquired by Homogeneous

and Heterogeneous Sensors
Jorge Prendes, Student Member, IEEE, Marie Chabert, Member, IEEE, Frédéric Pascal, Senior Member, IEEE,

Alain Giros, and Jean-Yves Tourneret, Senior Member, IEEE

Abstract—Remote sensing images are commonly used to
monitor the earth surface evolution. This surveillance can be
conducted by detecting changes between images acquired at
different times and possibly by different kinds of sensors.
A representative case is when an optical image of a given area is
available and a new image is acquired in an emergency situation
(resulting from a natural disaster for instance) by a radar
satellite. In such a case, images with heterogeneous properties
have to be compared for change detection. This paper proposes
a new approach for similarity measurement between images
acquired by heterogeneous sensors. The approach exploits the
considered sensor physical properties and specially the associated
measurement noise models and local joint distributions. These
properties are inferred through manifold learning. The resulting
similarity measure has been successfully applied to detect changes
between many kinds of images, including pairs of optical images
and pairs of optical-radar images.

Index Terms—Optical images, SAR images, change detection,
EM algorithm, mixture models, manifold learning.

I. INTRODUCTION

FOR a long time, airborne or satellite remote sensing
imagery has been used to track changes on the Earth

surface for applications including urban growth
tracking [1], [2], plantation monitoring, and urban database
updating [3]. For this purpose, different sensors have been
investigated including optical [4], synthetic aperture radars
(SAR) [4]–[6] or multi-spectral sensors [4]. Due to the
involved wavelengths, optical sensors provide high resolution
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images. As a consequence, huge databases of optical images
are currently available. On the other hand, SAR images can
be acquired even at night or under bad weather conditions and
thus are more rapidly available in emergency situations [7].
Consequently, accurate change detectors applying to either
homogeneous or heterogeneous sensors are needed for the
management of natural disasters such as floods, volcano
eruptions or earthquakes [8].

Change detection is the discrimination of two different
classes representing change and no change between two
images. In this paper we focus on the analysis of
multitemporal coregistered remote sensing images. The fea-
tures handled by change detection methods are generally
chosen according to the kind of sensor. As a consequence
many different approaches have been developed for optical
and SAR images separately. In this paper we propose a
new flexible change detection strategy capable of dealing
with homogeneous and heterogeneous sensors (with a spe-
cific attention to detecting changes between optical and
SAR images).

In the case of optical images, many detection methods
are based on the difference between intensities or on the
difference between spectral bands in the case of multi-
spectral images leading to the so-called spectral change
vector [9]. The difference image was initially derived
pixel-wise [10]–[14]. However a parcel-wise derivation, using
local averaging increases robustness with respect to noise,
misregistration, miscalibration and other artifacts [15], [16].
Note that the difference image can also be derived in a
transformed domain related to the wavelet transform for
instance [17], [18]. Some interesting change detection
methods adapted to optical images are based on neural
networks [19]–[22] and support vector machines [23], [24].
Finally, it is interesting to mention that a survey of many
popular change detection methods was made in [25].

In the case of SAR images, many change detection methods
are based on the ratio of the image intensities because of the
multiplicative nature of the sensor noise [26]–[31]. In this case
the difference image is usually computed as the difference
between the logarithm of the images, which is referred as
the log-ratio. As in the case of optical images, some change
detection methods are based on neural networks [32], [33] or
on the joint distribution of the two images [34]–[36].



The correlation coefficient is particularly popular for
detecting changes between images acquired by homogeneous
sensors [37]. In this case, it is assumed that, in the absence
of change, the pixel intensities in the two images are linearly
correlated. However, this assumption is generally not valid in
the case of heterogeneous sensors [7], [37]–[39]. The mutual
information allows the dependency between two non linearly
dependent images to be measured. The estimation of the
mutual information requires estimating the joint distribution
of the pixel intensities, which can be achieved using a joint
histogram or methods based on Parzen windows [40]. Unfortu-
nately, the resulting mutual information is strongly dependent
on the bins used to generate the histogram [41] or on the
Parzen window size [40]. More robust techniques are required
to estimate the joint distribution of the images of interest
and their mutual information. One alternative is to consider
parametric distributions and to estimate their parameters using
pixels located within a sliding window. Distributions that have
been recently considered in the literature include bivariate
gamma distributions for two SAR images [34]. Extensions to
heterogeneous sensors, where the statistics of the two marginal
distributions are not necessarily the same have also been
proposed in [37] and [42].

However, change detection between images acquired by
heterogeneous sensors has received much less attention in the
literature than the optical/optical or radar/radar cases. One can
cite the recent approach developed in [43] which transforms
one of the two images in order to obtain characteristics similar
to the other image, using the theory of copulas. However, this
method requires to learn the appropriate copula using training
samples and it is hardly generalizable to situations where more
than two images are available.

This paper proposes a new method to estimate the joint
distribution of pixel intensities based on a physical model. We
assume that we have observed a given scene through a set
of D images denoted as {I1, . . . , ID} acquired by D sensors
{S1, . . . , SD}. Each sensor has imaged the scene differently,
e.g., a given sensor measures different physical properties
of the objects involved in the scene and the kind of noise
affecting these measures generally differs from one sensor to
another. Consider as an example the case of two optical and
SAR images (D = 2). The SAR sensors are very sensitive
to the object edges whereas the colorimetry of a scene is
clearly an important property captured by optical sensors. The
noise affecting a given area of a homogeneous SAR image
is classically supposed to be a multiplicative speckle noise
with gamma or Weibull distribution [44]–[46]. Conversely,
the noise affecting optical images has been considered as
an additive Gaussian noise in many applications [47], [48].
The model considered in this study takes advantage of the
relationships between the sensor responses to the objects con-
tained in the observed scene, the physical properties of these
objects and the statistical properties of the noise corrupting
the images. The proposed model is flexible in the sense
that it can be used for images acquired with homogeneous
(e.g., two optical or two SAR) or heterogeneous sensors
(e.g., one optical and one SAR) and for many kinds of
sensors simultaneously. The parameters of this model can

be estimated by the popular expectation-maximization (EM)
algorithm [49], [50]. A similarity measure between sliding
windows contained in the observed images is then derived
from this model. This similarity measure is potentially inter-
esting for many image processing applications. Our paper
focuses on its application to detect changes between optical
and SAR images. However the proposed statistical model can
be applied to any kind of images acquired in single or multiple
channels. Moreover, the similarity measure associated with
this model can be interesting for many other applications
including image registration and image indexing.

The paper is structured as follows. Section II introduces
the new statistical model used to describe the pixel intensity
distribution of a set of images acquired with either homo-
geneous or heterogeneous sensors. A method for generating
synthetic images based on such model is also presented.
Section III begins with a description of classical similarity
measures and an analysis of their weaknesses. A new flexible
similarity measure based on the model investigated in the
previous section is finally defined. Change detection results
obtained with this similarity measure for various synthetic and
real images are presented in Section IV. Conclusions, possible
improvements and future work are reported in Section V.

II. A NEW STATISTICAL MODEL FOR IMAGE ANALYSIS

This section introduces a flexible statistical model for the
pixel intensities associated with several images acquired by
different sensors. To achieve this, the marginal statistical
properties of the pixel intensities contained in a homogeneous
area are reviewed in Section II-A. Section II-B defines the joint
distribution of a group of pixels belonging to a homogeneous
area contained into the analysis window. An extension to
pixels belonging to a non-homogeneous area is introduced
in Section II-C.

A. Statistical Properties of Homogeneous Areas

A homogeneous area of an image is a region of the image
where the pixels have the same physical properties (denoted
as P). Since the measurements of any sensor S are corrupted
by noise, we propose the following statistical model for the
image intensity IS associated with the sensor S

IS |P = fS[TS(P), νS] (1)

where

• P is used for the set of physical properties characterizing
the homogeneous area

• TS(P) is a deterministic function of P explaining how
an ideal noiseless sensor S would capture these physical
properties P to form an intensity

• νS is a random variable representing the sensor noise
(which only depends on S).

• fS(·, ·) describes how the sensor noise interacts with the
ideal sensor measurement (which only depends on the
kind of sensor S)

Model (1) indicates that IS is a random variable whose dis-
tribution depends on the noise distribution but also on TS(P).



In order to clarify this point, the examples of SAR and optical
images are considered in what follows.

For SAR images, it is widely accepted that the pixel inten-
sity ISAR in a homogeneous area is distributed according to a
gamma distribution [44]–[46], and that the so-called speckle
noise is multiplicative. Thus, for this example the model (1)
reduces to

ISAR|P = TSAR(P) νSAR

where TSAR is the functional transforming the physical prop-
erties of the scene P to the noiseless radar intensity and
νSAR is a multiplicative speckle noise with gamma distribution,
i.e., νSAR ∼ Ŵ

(
L, L−1

)
, where L is the so-called number of

looks of the SAR sensor. Using standard results on gamma
distributions, we obtain

ISAR|P ∼ Ŵ

[
L,

TSAR(P)

L

]
. (2)

For optical images, we can consider that the pixel intensity
IOpt is affected by an additive Gaussian noise [47] leading to

IOpt
∣∣P = TOpt(P)+ νOpt

where TOpt is the optical equivalent of TSAR (i.e., the functional
indicating the true color of the object with physical proper-
ties P) and the random variable νOpt is an additive Gaussian
noise with constant variance σ 2, i.e., νOpt ∼ N

(
0, σ 2

)
. These

assumptions lead to

IOpt
∣∣P ∼ N

[
TOpt(P), σ 2

]
. (3)

Taking the optical grayscale sensor as an example, we have

TOpt(P) =
R + G + B

3
(4)

where R, G and B are the red, green and blue components
respectively of the noiseless color image, which can be easily
derived from the material reflectivity (contained in P) and the
spectral response of each color filter in the sensor.

The notations ŴP (ISAR) and NP

(
IOpt

)
will be used in this

paper to denote the probability density functions (pdfs) of
ISAR|P and IOpt

∣∣P .

B. Distribution for Multiple Sensors in a Homogeneous Area

Assume that we have observed D images acquired by D

different and independent sensors. It makes sense to assume
that the D random variables ν1, . . . , νD (defining the random
vector ν = (ν1, . . . , νD)T ) associated with the sensor noises
are independent. Since the image intensity Id |P only depends
on νd for any d = 1, . . . , D, the joint distribution of the image
intensities is

p(I1, . . . , ID |P) =

D∏

d=1

p(Id |P). (5)

For example, in the (interesting) particular case where one
radar and one optical image are observed, one obtains

p
(
ISAR, IOpt

∣∣P
)
= ŴP (ISAR)NP

(
IOpt

)
.

C. Distribution for Multiple Sensors in a Sliding Window

A classical way of handling the change detection problem
for a set of D images is to analyze these images using
sliding windows and to define a change indicator for each
window [38]. In this case, we are particularly interested in the
statistical properties of the pixel intensities within a sliding
window. Denote as p(I1, . . . , ID |W ) the joint pdf of the pixel
intensities within a sliding window W . To obtain this pdf, we
assume that the region of interest (located inside the sliding
window) is composed of a finite number K of homogeneous
areas with different physical properties P1, . . . , PK . In this
case, it makes sense to assume that the physical properties of
the region of interest can be described by a discrete random
variable with distribution

p(P|W ) =

K∑

k=1

wk δ(P − Pk) (6)

where wk is the weight or probability of Pk which represents
the relative area of W covered by Pk . Using (5) and the total
probability theorem, the joint distribution of the pixel intensity
can be expressed as

p(I1, . . . , ID |W ) =

K∑

k=1

wk p(I1, . . . , ID |Pk)

=

K∑

k=1

wk

D∏

d=1

p(Id |Pk). (7)

In the particular case of two SAR and optical images, we
obtain

p
(
ISAR, IOpt

∣∣W
)
=

K∑

k=1

wk ŴPk (ISAR)NPk

(
IOpt

)
. (8)

The expressions (7) and (8) show that the joint distribution
of the pixel intensities within a given sliding window W

is a mixture of distributions. Moreover, according to (5),
each component of this mixture is the product of densities
associated with independent random variables. Some remarks
are appropriate here:

Remark 1: In the case of multispectral images, each spec-
tral band can be considered as a separate image. If we assume
that the noises affecting each band are independent Gaussian
random variables, equations (3) and (5) are satisfied. In this
case, the noise vector associated with the multispectral image
is distributed according to a multivariate normal distribution
with a diagonal covariance matrix.

Remark 2: The way we have decomposed the observed
images into sliding windows deserves some comment. First,
the change detection strategy considered in this paper relies
on the properties of sliding windows containing different
objects. The proposed similarity measure and the correspond-
ing change detection rule are related to the entire sliding
window and not to a specific pixel of this window (such
as its centroid for instance). Thus, considering too many
overlapping windows (e.g., with many common pixels) is
not useful. Indeed, when two windows are very similar,
the estimated pdf are mostly the same (with some slight



Fig. 1. Examples of real SAR (a) and optical (b) images for a rural area
(near Gloucester, UK), and of an optical (c) image for an urban area (in south
Toulouse, FR).

changes in the weights, or with the creation/removal of small
weighted mixture components) which reduces diversity. More-
over, the computational complexity of the change detection
is directly related to the number of windows associated with
the images to be analyzed. In our implementations, we have
analyzed the images of interest using sliding windows of size
N = p× p with p even and 50% overlap between two consec-
utive windows, so that the window (i, j) corresponds to the
pixels

[ p
2 (i − 1)+ 1, p

2 (i + 1)
]
×

[ p
2 ( j − 1)+ 1, p

2 ( j + 1)
]

on the image. Within a given window, some objects can change
when the others do not change. Each pixel in the sliding
window has a pdf defined by (7) and all the pixels belonging
to a given window are statistically independent conditionally
to the set of properties P1, . . . , PK .

D. Synthetic Images

This section summarizes the different steps that have been
considered to generate synthetic images for understanding and
evaluating the performance of the proposed change detection
algorithms. From the model introduced in (1), a synthetic
image can be generated from the knowledge of

• The distribution of the noise νS ,
• The transformation TS(·),
• The function fS(·, ·),
• An image representing the values of P .

For most sensors (particularly for optical and SAR sensors),
the distribution of νS as well as the function fS(·, ·) are known,
while the transformation TS(P) is unknown and depends on
the chosen representation of P . In this paper, we propose to
generate a synthetic image P and to transform it using a known
transformation TS(P). Looking at real images such as those
depicted in Fig. 1, we can see that they are composed of
different patches with homogeneous properties. Considering
this, we have generated a synthetic image P by defining
different regions in the image and have assigned them a
random value of P . To define the different regions, random
points are distributed within a rectangular area. These points
will represent the nodes of the polygons delimiting each
region. The edges of these polygons are obtained through a
Delaunay triangulation [51]. The prior distribution of P within
each polygon being unknown, we have drawn the values of P

according to a uniform distribution in the set [0, 1]. A typical
example of image obtained with this approach is depicted
in Fig. 2(a).

Fig. 2. Synthetic P image and its corresponding SAR and optical images.
(a) P Image. (b) ISAR . (c) IOpt.

The second point required for the generation of syn-
thetic images is the definition of the transformation TS for
each sensor. For instance, consider grayscale optical and SAR
sensors. For the optical sensor, TOpt(P) can be defined as
TOpt(P) = R+G+B

3 as in (4). In order to test our algorithm,
we have defined a SAR response TSAR(·) which is not linearly
correlated with TOpt(·) given by

TSAR(P) = TOpt(P)
[
1− TOpt(P)

]
. (9)

The final images are obtained by corrupting TOpt(P) and
TSAR(P) by additive and multiplicative noise as in (2) and (3).
Examples of images simulated with this method are displayed
in Figs. 2(b) and 2(c). To generate synthetic changes corre-
sponding to different areas of the images, different values of
P have been chosen for the two sensors. This strategy can
also be used to generate images with some regions affected
by changes and some other regions not affected by any change.

E. Model Parameter Estimation

Different approaches have been widely used in the literature
to estimate the parameters of a mixture distribution such
as (7) or (8). Even if the method of moments has received some
interest for this estimation problem [52], the EM algorithm
has became a reference for mixture models [53], [54]. The
EM algorithm is known to converge to a local maximum of
the likelihood function [49]. When applied to the joint dis-
tribution (7), the algorithm iteratively optimizes the following
Q function defined as an expectation (E-step)

Q
(
θ

∣∣∣θ (i)
)
= E

K

∣∣∣I,θ (i)

[
log p(I, K |θ)

]
(10)

where
• I = [I1, . . . , I N ] represents the observed data, N is

the number of pixels in the window W , and In =[
IS1, . . . , ISD

]
n
(with n = 1, . . . , N) contains the intensi-

ties for the n-th pixel produced by the different sensors,
• θ = [θ1, . . . , θ K ] is the set of parameters defining

the mixture, where θ k =
[
wk, θ k,1, . . . , θ k,D

]
with

k = 1, . . . , K contains the parameters related to the
k-th object (or equivalently, the k-th mixture component)
– wk is the proportion of Pk in the window W ,
– θ k,d is the set of parameters for the sensor Sd that

defines the distribution resulting from the physics of
the component Pk ,

• θ
(i) is the value of the parameter θ on the i -th iteration

of the algorithm,



• K = [k1, . . . , kN ] is the unobserved map of labels
indicating that pixel In results from the observation of
the k-th component Pk .

At each iteration the optimization (M-step) is performed

θ
(i+1) = argmax

θ

Q
(
θ

∣∣∣θ (i)
)
.

It can be easily proven that optimizing Q
(
θ

∣∣∣θ (i)
)
with respect

to (wrt) θ is equivalent to optimizing log p(I |θ) wrt θ [53].
Throughout this paper, we consider the standard assumption

according to which the samples [I1, k1], . . . , [I N , kN ] are
independent (independence of the pixels in the observation
window) leading to

log p(I, K |θ) =

N∑

n=1

log p(In, kn |θ).

Thus, using the linearity of the expectation, (10) can be
rewritten as

Q
(
θ

∣∣∣θ (i)
)
= E

K

∣∣∣I ,θ (i)

[
N∑

n=1

log p(In, kn|θ)

]

=

N∑

n=1

E
kn

∣∣∣In,θ (i)

[
log p(In, kn|θ)

]
. (11)

Since kn is a discrete variable, its expected value can be written
as a summation, i.e., for any function g(·), we have

E
kn

∣∣∣In ,θ (i) [g(kn)] =
K∑

k=1

p
(

kn = k

∣∣∣In, θ
(i)

)
g(kn = k)

=

K∑

k=1

p
(

In, kn = k

∣∣∣θ (i)
)

p
(

In

∣∣∣θ (i)
) g(kn = k)

=

K∑

k=1

π
(i)
n,k f (kn = k) (12)

where π
(i)
n,k =

p
(

In ,kn=k

∣∣∣θ (i)
)

p
(

In

∣∣∣θ (i)
) is constant for a given value of

(i, n, k).
Replacing (12) in (11), Q can be expressed as

Q
(
θ

∣∣∣θ (i)
)
=

N∑

n=1

K∑

k=1

π
(i)
n,k log p(In, kn = k|θ)

=

N∑

n=1

K∑

k=1

π
(i)
n,k log [wk p(In|kn = k, θ)]

=

N∑

n=1

K∑

k=1

π
(i)
n,k logwk

+

N∑

n=1

K∑

k=1

π
(i)
n,k log p(In|θ k).

It should be noted that p(In |θk) = p(In |kn = k, θ) is the
probability that the observed pixel intensities In are produced

Fig. 3. Images of an unchanged area in south of Toulouse and the
corresponding joint distribution. (a) Iold. (b) Inew . (c) p(Iold, Inew).

by an object with physical properties Pk . Thus, p(In |θ k) can
be replaced by the result obtained in (5) leading to

Q
(
θ

∣∣∣θ (i)
)
=

N∑

n=1

K∑

k=1

π
(i)
n,k logwk

+

N∑

n=1

K∑

k=1

D∑

d=1

π
(i)
n,k log p

(
In,d

∣∣θ k,d

)
. (13)

This result shows that Q can be written as the summation
of negative terms, where each term depends on the different
components θ k,d of θ . This implies that each term can be
maximized independently w.r.t. θ k,d . Moreover, maximizing
Q w.r.t. wk yields

w
(i+1)
k =

1

N

N∑

n=1

π
(i)
n,k

while maximizing Q w.r.t. θk,d leads to

θ
(i+1)
k,d = argmax

θk,d

N∑

n=1

π
(i)
n,k log p

(
In,d

∣∣θ k,d

)
(14)

which is the weighted maximum likelihood estimator (MLE)
of the pdfs associated with the sensors Sd for d = 1, . . . , D.
Note that the optimization problem (14) has been solved for
most well known distributions [55]. Note also that estimating
the parameters of the proposed model for a given set of
heterogeneous sensors reduces to determining the parameter
MLEs for each sensor independently. However, the number of
components in the mixture should also be estimated, which
should correspond to the number of objects present in the
window W. The algorithm introduced in [56] can be used for
this estimation. This algorithm starts with an upper bound
of the number of components, and gradually removes the
components that do not describe enough samples.

III. SIMILARITY MEASURES

A. Analysis of Classical Similarity Measures

This section uses the statistical model introduced
in Section II-C to analyze the behavior of the correlation
coefficient and the mutual information as change indicators.
Figs. 3(a) and 3(b) display examples of optical images
associated with an unchanged area. Three kinds of objects
can be clearly seen in these two images: a red roof, grass,
and parts of trees. According to the proposed model, the joint
distribution of these images should be a mixture of three



Fig. 4. Images before and after the construction of a road in south of Toulouse
and the corresponding joint distribution. (a) Iold. (b) Inew. (c) p(Iold, Inew).

Gaussian components. Fig. 3(c) shows the estimated joint
distribution of the two images. This distribution has been
estimated using a histogram, which was computed using an
appropriate number of bins obtained by cross validation. The
centroids of the clusters contained in Fig. 3(c) are close to
a straight line defined by µS1 = λ µS2 + β. The parameters
λ and β account for contrast and brightness differences as
explained in [57]. This result is easy to understand since the
two images have been acquired by the same kind of sensor.

Figs. 4(a) and 4(b) show a pair of optical images corre-
sponding to a changed area. The first image is quite homo-
geneous and is mainly composed of grass. A new road takes
most of the central portion of the second image. The first
image can be thought as having the same object distribution
as the second one, where some of the objects have different
physical properties P on each of the two images. Since
two different objects are present in the second image, the
joint distribution of the two images is expected to have two
components, where the parameters of the first dimension are
the same for both components (since this first dimension
corresponds to the same object, i.e., the grass). This result
can be clearly seen in Fig. 4(c). It should also be noted
that since there is a changed area between the two images,
the two components are aligned in a horizontal (or vertical)
line (as for the unchanged area of 3). Note finally that the
mutual information and the correlation coefficient are good
similarity measures to detect changes corresponding to these
situations.

However, the mutual information and the correlation coef-
ficient are not always good similarity measures. For instance,
these measures provide similar results when only one object
is contained within the window (as would often happen
when using small windows, or when using high resolution
images), independently of the presence of a change or not.
An example of this situation is illustrated in Figs. 5 and 6.
Figure 5 shows two windows in the presence of a change,
where the corresponding joint distribution (estimated using
a 2D histogram with 50 × 50 bins in the normalized
range [0, 1] × [0, 1]) shows two independent variables. This
independence may indicate a change between the thwo images.
Fig. 6 shows two windows of an unchanged area in two
different times, however its joint distribution (also estimated
with 50 × 50 bins in the normalized range [0, 1]×[0, 1]) also
shows two independent variables, and thus, change detectors
based on statistical independence would lead to a wrong
result. Applying the model (7) to these situations, P will

Fig. 5. Old image with a group of trees, new image preparing the ground
for a new construction, and their corresponding joint distribution. (a) Iold.
(b) Inew . (c) p(Iold, Inew).

Fig. 6. (a) and (b) Optical images for an unchanged homogeneous area
with different brightnesses and contrasts, and (c) the corresponding joint
distribution (estimated using a 2D histogram).

Fig. 7. (a) Optical image with two different objects, (b) the unchanged image
corresponding to a sensor with TS(P) = TOpt(P)

[
1− TOpt(P)

]
and (c) the

corresponding joint distribution (estimated using a 2D histogram).

be constant in each window: in one situation both images
will share the same value of P , and in the other situa-
tion the new value of P denoted as Pnew will be different
from the old value of P denoted as Pold. However, in both
cases, the joint distribution consists of only one cluster.
In these cases the mutual information, the correlation coef-
ficient, or any dependency measure are clearly bad similarity
measures.

Another situation where measures based on the dependency
of two random variables fail to detect changes is presented
in Fig. 7. This situation corresponds to an optical sensor
defined by TOpt(P) and another sensor defined by TS(P) =

TOpt(P)
[
1− TOpt(P)

]
. As it can be seen in Fig. 7(c), the

values of the intensities for the left and right sides of the
optical image are quite different (close to 0.25 and to 0.75
respectively). However, because of the transformation TS , the
transformed values TS(P) for the sensor S are both simi-
lar, making IS homogeneous. The resulting joint distribution
between the two images consists of two clusters aligned
in a horizontal (or vertical) line, as shown in Fig. 7(c).
In this situation, the correlation coefficient and the mutual
information are not appropriate to detect the absence of change
between the two images.



Fig. 8. The improved goodness of fit obtained with the mixture pdf (a) does
not reflect any improvement in the change detection performance (b) when
compared to the use of the mutual information as a similarity measure.

Another factor to consider is that whenever we compute a
similarity measure, we discard some information considered
as irrelevant and we keep some information considered as
relevant. These irrelevant and relevant quantities are summa-
rized into a single quantity, namely the similarity measure.
When considering the mutual information or the correlation
coefficient, we arbitrarily decide that the relevant information
is contained solely in the dependency of the two random
variables. This property yields a limit on the performance that
can be obtained using this similarity measure. Even when
the joint distribution estimation is improved, the resulting
change detection performance is not necessarily improved
when using the mutual information as a similarity measure.
To measure the estimation improvement, a 2D generalization
of the Kolmogorov-Smirnov (KS) goodness of fit test [58]
was used. This test measures whether a sample population has
been produced by a given distribution or not. The hypothesis
H0 indicating that the sample population was produced by
the same distribution is accepted whenever the p-value is
less than the significance level α. Fig. 8(a) shows that when
using a mixture to estimate the joint distribution, the resulting
goodness of fit is improved with respect to that obtained with
a histogram. However, the receiver operating characteristic
(ROC) curves [59] in Fig. 8(b) show that the performance
obtained when using the mutual information to detect changes
is not necessarily improved, motivating the definition of a new
similarity measure.

B. Manifold Estimation

We propose to define a vector vP gathering all the trans-
formations TSd (P) for d = 1, . . . , D, i.e.,

vP =
[
TS1(P), . . . , TSD(P)

]
(15)

which is a parametric function of P defining a manifold
in R

m , where m is the dimension of the vector vP . Note
that m can be different from D since any sensor can provide
several measurements, e.g., a typical optical camera produces
3 measurements for each pixel. The vector v p defines a
manifold characterizing the relationships between the sensors
involved. For instance, for a color optical sensor S1 such that
TS1(P) = [R, G, B], and another optical sensor S2
differing only by its brightness and contrast such that

Fig. 9. Diagram illustrating the steps proposed for estimating the manifold
described by vP for a pair of synthetic images.

TS2(P) = λ1TS1(P) + λ2 [57], the vector vP is defined as

vP =
[
TS1(P), TS2(P)

]

= [R, G, B, λ1R + λ2, λ1G + λ2, λ1B + λ2].

Note that a more complex vector vP could be defined if we
consider other factors such as sensor saturations. This section
studies a method to estimate such manifold defined by vP .

Since the transformations TSd for d = 1, . . . , D are a priori

unknown, the proposed method estimates the manifold defined
by vP from training data, considering P as a hidden variable.
The general idea is to divide the training area in different
windows, to estimate vP for any window (each window
corresponds to several values of P) and finally, to estimate



the manifold described by vP based on these estimates. This
estimation procedure illustrated in Figure 9 is detailed more
precisely in what follows.

For any sliding window W , we can estimate the parame-
ters of the joint distribution (7) using the method described
in Section II-E. This estimation produces a vector θ̂ for each
component of the mixture model (7). For instance, for a
grayscale optical image and a SAR image, θ̂ =

[
µ̂, σ̂ , k̂, α̂

]

where µ̂ and σ̂ are the mean and variance of the normal
distribution associated with the optical sensor as in (3), and
k̂ and α̂ are the shape and scale parameters of the gamma
distribution associated with the SAR sensor as described
in (2). As explained by (1), the parameters contained in θ

are tightly related to TS(P), so that TS(P) can be estimated
from θ̂ . For instance, consider the case of two optical and
SAR images. Using (2) and (3), we obtain T̂SAR(P) = k̂α̂ and
T̂Opt(P) = µ̂. From the parameter vector θ̂ k associated with
the k-th component of the mixture distribution, we obtain an
estimation v̂P =

[
T̂Opt(P), T̂SAR(P)

]
of a point belonging to

the manifold. In the particular case of a pair of optical and
SAR images, the parameter vector is θ = [µ, σ, k, α]. From
(2) and (3) we have TOpt = µ and TSAR = kα. Thus, the
manifold is defined by v = [µ, kα] so that we can estimate it
as v̂ =

[
µ̂, k̂α̂

]
. As illustrated in Fig. 9, repeating this process

for several windows provides samples that can be used to
estimate the manifold associated with vP .

The following remark is appropriate: the weight wk is
related to the number of pixels associated with the kth compo-
nent of the mixture. Thus, the estimations v̂P resulting from
components with low weights have a higher variance and thus
impact negatively the manifold estimation. To prevent this,
we estimated the manifold from the samples v̂(Pk) associated
with the weights wk above the 90th percentile. The difference
between the manifold estimates obtained using all vectors v̂Pk

and the vectors associated with the largest weights can be
observed in Figs. 10(a) and 10(c). Discarding the estimations
v̂P corresponding to the smallest weights introduces some
robustness in the manifold estimation hence a better estimation
performance.

C. A New Similarity Measure for Change Detection

In this paper, we want to define a similarity measure
between different (possibly heterogeneous) images for change
detection. This similarity measure is defined using an estimator
of the probability density function (pdf) of v̂P . This pdf can
be estimated by several methods based on multidimensional
histograms, Parzen windows, or mixture distributions. In this
paper we have approximated the pdf of v̂P by a mixture
of multivariate normal pdfs constructed by the samples v̂P

yielding p̂(̂vP ). Fig. 10 shows typical examples of estimations
obtained for synthetic images corresponding to

vP =
[
TOpt(P), TSAR(P)

]
(16)

with TSAR(P) = TOpt(P)
[
1− TOpt(P)

]
. The approximated

mixtures (black curves) are clearly in good agreement with
the actual pdfs (red curves).

Fig. 10. Manifold estimation for synthetic images obtained with the method
described in Section III-B. Scatter plot of v̂Pk

for (a) high values of wk and
(c) any value of wk , and their respective estimation of the pdf p̂T (̂vP ).

D. New Change Detection Strategy

In order to build a new change detection strategy, we assume
that two training images associated with an unchanged area
are available. These images are used to estimate vectors v̂P

associated with the “no change” manifold. The corresponding
pdf p̂T (̂vP) (where T stands for “Training”) can then be esti-
mated using the procedure presented in the previous section.
We assume that the absence of change for the two kinds of
images (for instance, an optical image and a SAR image) is
characterized by the distribution of the vectors vP .

The change detection problem classically consists of detect-
ing the absence and presence of changes into two test images.
We propose to divide the two images into square estimation
windows of size p × p [34], [38]. For any estimation win-
dow W containing p2 pixels, we consider the following binary
hypothesis testing problem

H0 : Absence of change

H1 : Presence of change

A vector vW,k (for k = 1, . . . , K ) is introduced to charac-
terize the manifold associated with the k-th object within the
estimation window W of the two test images. The procedure
described in the previous section can then be used to estimate
vW,k , obtaining as many vectors as components in the mixture
distribution. Fig. 11 shows examples of estimates obtained
with different test windows in the case of synthetic optical
and SAR images, in the absence (Fig. 11(a)) and presence
(Fig. 11(b)) of changes. Note that the synthetic images were
generated with the method described in Section II-D, using
the same P image for the “no change” test images, and
using different P images for the “change” images. We can
observe that the distances between the estimates v̂W,k and vP

are clearly smaller for the windows associated with the “no
change” test images, as expected. Based on these observations,
we introduce the following similarity measure for a sliding



Fig. 11. Scatter plots of v̂W,k (blue circles) for different areas of the
images superimposed with the ideal vP (red curve) (a) and (b). Corresponding
estimated pdf p̂T (̂vP ) (black) (c).

window W

δW =

K∑

k=1

ŵk p̂T

(
v̂W,k

)
(17)

where ŵk is the weight associated with the k-th object
within W. This definition leads to the following change detec-
tion strategy

log (δW )
H0
≷
H1

τ (18)

where τ is a threshold related to the probability of false alarm
PFA and the probability of detection PD of the change detector.

Note that the structure of the manifold defined by the
vector vP is directly related to the image modalities that are
under consideration. However, the manifold learning defined
in Section III-B and the change detection strategy defined by
(17) and (18) can be applied to any sequence of images and
do not depend on the kind of sensors involved (optical, radar,
etc.). In particular, the proposed change detection methodology
can be used for homogeneous as well as for heterogeneous
datasets, as shown in the next section.

IV. SIMULATION RESULTS

This section studies the relevance of the model introduced
in Section II-C and the performance of the change detector
defined in Section III-D to detect changes between synthetic
and real images. The change detection results are compared
with those obtained with different classical methods, namely,
mean pixel difference, mean pixel ratio, correlation coefficient
and mutual information. The first two reference change detec-
tion methods were provided by the ORFEO Toolbox [60].
The change detection results are compared with those obtained
with classical methods and with the method of [43] based on
conditional copulas. Note that the method presented in [43] is
one of the more recent change detection methods that can be
applied to both homogeneous and heterogeneous images.

A. Synthetic Images

The images shown in Fig. 12 were created by generating a
synthetic scene P composed of triangular patches representing
the different objects contained in the image, following the
steps described in Section II-D. This synthetic scene was
corrupted by additive Gaussian noise with SNR = 30d B

to form the optical image. To generate the SAR image,
a known transformation was applied to the scene P which

Fig. 12. Example of synthetic images with changed and unchanged areas,
with TOpt(P) = P and TSAR(P) = P(1− P). (a) POpt. (b) PSAR. (c) Change
mask. (d) IOpt. (e) ISAR.

Fig. 13. Estimated change maps for the images of Fig. 12. Bright areas
indicate high similarity, while dark areas indicate low similarity. (a) log (δW ).
(b) Correlation Coeff. (c) Mutual Information.

was corrupted by multiplicative gamma noise (with shape
parameter equal to L = 5). More precisely, the following
transformation

vP =
[
TOpt(P), TSAR(P)

]
(19)

with TSAR(P) = TOpt(P)
[
1− TOpt(P)

]
was used for experi-

ments conducted on synthetic data.
The images displayed in Fig. 13 compare the proposed

estimated change detection map with those obtained using
the correlation coefficient, the mutual information, the mean
pixel difference and the mean pixel ratio. These results were
obtained using window sizes optimized by cross validation
to produce the best performance for each method. More
precisely, following Remark 2, we obtained window sizes of
20 × 20 pixels for the proposed method, 50 × 50 pixels for
the correlation coefficient and the mutual information, and
21× 21 pixels for the mean pixel difference and mean pixel
ratio. Note that the difference in the window sizes is due to
the inefficiency of the correlation coefficient and the mutual
information for small homogeneous windows (as described
in Section III-A and observed in Fig. 6), thus requiring bigger
(and thus more likely heterogeneous) windows. The mutual
information was computed by integrating numerically the joint
distribution derived in Section II-C.



Fig. 14. ROC curves for synthetic images (a) for different methods, (b) for
the proposed method with different SNRs.

TABLE I

PERFORMANCE OF DIFFERENT CHANGE DETECTION

METHODS FOR THE IMAGES OF FIG. 14(A)

Fig. 15. Histograms of the similarity measure log (δW ) for K̂∗ = K̂

and K̂∗ = K̂ + 1. The blue and red bins correspond to the changed and
unchanged areas, respectively. (a) Histogram of log

(
δW

)
for K̂∗ = K̂ (no

overestimation). (b) Histogram of log (δW ) for K̂∗ = K̂ + 1.

Fig. 14(a) displays the ROC curves for the different
methods. In order to compare the performance of the dif-
ferent methods, we propose to choose a detection threshold
corresponding to PFA = 1 − PD = PND, located in the
diagonal line displayed in Fig. 14(b). Table I shows the values
of PFA obtained with the different methods, confirming the
good performance of the proposed method.

We evaluated the performance of the proposed strategy for
different values of the signal to noise ratio (SNR) associated
with the optical image. ROC curves obtained for different
SNRs are shown in Fig. 14(a), where it can be observed
that the change detection performance is not affected for
SNR ≥ 10dB. The performance drop obtained for lower SNR
is mainly due to errors in the estimation of the mixture para-
meters (the parameters of the different mixture components
are difficult to estimate in the presence of significant noise).

It is interesting to study the effect of overestimat-
ing the number of mixture components K on the
detection performance. As discussed before, this will generally
result in a high variance for the manifold samples v̂W,k

Fig. 16. Performance of the change detector for different values of K̂∗.

Fig. 17. Two optical images for the same area in the south of Toulouse at
two time instants (a) and (b), and the corresponding change mask (c).

associated with small values of ŵk . However, (17) shows
that the terms associated with small values of ŵk have small
impact on the final value of the test statistics δW , mitigating
the overestimation effects. To analyze this behavior, we have
conducted simulations by running the EM algorithm with
an overestimated number of components K̂ ∗ = K̂ + i , for
i = 1, . . . , 4. The corresponding ROC curves are displayed
in Fig. 16, where it can be observed that the detector is charac-
terized by a small performance drop when the overestimation
is not too important. This result is also illustrated in Fig. 15
showing that the distributions of δW are close for K̂ ∗ = K̂

and K̂ ∗ = K̂ + 1 under both hypotheses (“change” and “no
change”).

B. Pair of Real Optical Images

Fig. 17 shows two optical images corresponding to an area
located in the south of Toulouse (France) acquired at two
different time instants (December 31, 2006 and June 2, 2012)
and the corresponding change mask. Both images were scaled
and co-registered, resulting in a pixel resolution of 0.66m
for both images. The change mask was provided by a photo
interpreter. The observed changes between the two images are
mainly due to the construction of a new road and some of
new buildings. Note that even if the two sensors are optical
sensors, they have different brightness, contrast and saturation.

Fig. 18 shows the detection maps obtained with the
proposed method, the correlation coefficient, the mutual
information, the conditional copulas1 [43], the mean pixel

1The authors would like to thank Grégoire Mercier for providing the results
obtained with the conditional copulas.



Fig. 18. Detection maps obtained with the proposed method (a), correla-
tion coefficient (b) and conditional copulas (c). Bright areas indicate high
similarity, while dark areas indicate low similarity.

Fig. 19. ROC curves for the optical images of Fig. 17.

TABLE II

PERFORMANCE OF DIFFERENT CHANGE DETECTION

METHODS FOR THE IMAGES OF FIG. 19

difference and the mean pixel ratio. These results were
obtained with moving windows of 10 × 10 pixels for the
proposed method, 20×20 for the correlation coefficient and the
mutual information and 21×21 pixels for the remaining meth-
ods. Fig. 19 shows the corresponding ROCs computed using
the ground truth of Fig. 17(c). Since the pixel intensities in the
two optical images have linear dependencies, the correlation
coefficient method performance is quite good, as expected.
Since the dataset consists of two optical images the mean
pixel difference is expected to outperform the mean pixel ratio
(which is more adequate to detect changes on SAR images).
However, an important performance loss can be observed in
both pixel-wise approaches. Table II shows the probabilities
of false alarm obtained with the different methods. Again, the
proposed method outperforms existing techniques.

Fig. 20. Optical and SAR images associated with the same area in Gloucester
before (a) and after (b) a flooding, and the corresponding change mask (c).

Fig. 21. Change detection maps obtained with the proposed method (a),
the correlation coefficient (b) and the conditional copulas (c). Bright areas
indicate high similarity, while dark areas indicate low similarity.

TABLE III

PERFORMANCE OF DIFFERENT CHANGE DETECTION

METHODS FOR THE IMAGES OF FIG. 22

C. Heterogeneous Optical and SAR Images

Fig. 20 shows an optical and a SAR image acquired
before and during a flooding in Gloucester (UK) and the
corresponding change mask. The SAR image was obtained
by the TerraSAR-X satellite with HH polarization in 2007.
Both images were scaled and co-registered, resulting in a pixel
resolution of 7.27m for both images. The change mask was
provided by a photo interpreter.

The sizes of the moving windows used for these exper-
iments were 10 × 10 pixels for the proposed method, the
correlation coefficient and the mutual information, 21 × 21
pixels for the mean pixel difference and the mean pixel ratio,



Fig. 22. ROCs for the heterogeneous images in Fig. 20.

and 9 × 9 pixels for the conditional copulas. Fig. 21
shows the change detection maps obtained for the different
methods, while the corresponding probabilities of false alarm
are reported in Table III. As expected, the mutual information
performance remains unchanged while the correlation coeffi-
cient is heavily affected by the multimodality of the dataset.
The particularly good performance of the mean pixel ratio
method is a consequence of the particular nature of the changes
present in this dataset, where water is captured by the radar
sensor as an homogeneous dark surface.

V. CONCLUSION

The first part of this paper introduced a new statistical
model to describe the distribution of any number of joint
images independently of the kind of sensors used to obtain
these images. The proposed model was based on a mixture
of multi-dimensional distributions whose parameters can be
estimated by the expectation-maximization algorithm. This
mixture of distributions can be used to determine standard
similarity measures such as the mutual information and is
thus interesting for many potential applications. The second
part of this article introduced a new change detection strategy
based on a test statistics estimated from training images
without changes. This strategy was compared to classical
methods for synthetic and real data showing encouraging
results. This paper mainly concentrated on the detection of
changes between optical and synthetic aperture radar images.
However, the proposed model could be interesting for many
other applications such as image segmentation [61], [62],
image registration [34], [63], database updating [64], image
indexing or image classification. Moreover, when the dataset
consists mostly of unchanged areas, the whole image can
be used for the manifold estimation since the influence of
the changed areas are negligible. In this case the proposed
strategy can be used to build a completely unsupervised change
detector. These applications would deserve to be studied in
future work.
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