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Abstract

We introduce a new class of Green-Naghdi models for the propagation of internal waves
between two (1+1)-dimensional layers of homogeneous, immiscible, ideal, incompressible, irro-
tational fluids, vertically delimited by a flat bottom and a rigid lid. These models are tailored
to improve the frequency dispersion of the original Green-Naghdi model, and in particular to
manage high-frequency Kelvin-Helmholtz instabilities. Our models preserve the Hamiltonian
structure, symmetry groups and conserved quantities of the original model. We provide a rig-
orous justification of a class of our models thanks to consistency, well-posedness and stability
results. These results apply in particular to the original Green-Naghdi model as well as to the
Saint-Venant (hydrostatic shallow water) system with surface tension.

1 Introduction

1.1 Motivation

This work is dedicated to the study of a bi-fluidic system which consists in two layers of homoge-
neous, immiscible, ideal and incompressible fluids under only the external influence of gravity. Such
a configuration is commonly used in oceanography, where variations of temperature and salinity
induce a density stratification; see [22] and references therein.

A striking property of the above setting, in contrast with the water-wave case (namely only
one layer of homogeneous fluid with a free surface) is that the Cauchy problem for the governing
equations is ill-posed outside of the analytic framework when surface tension is neglected [19, 23, 24].
This ill-posedness is caused by the formation of high-frequency (i.e. small wavelength) Kelvin-
Helmholtz instabilities which are triggered by any non-trivial velocity shear. Recently, Lannes [25]
showed that a small amount of surface tension is sufficient to durably regularize the high-frequency
component of the flow, while the main low-frequency component remains mostly unaffected.

This result explains why, occasionally, surface tension may be harmlessly neglected in asymptotic
models, that is simplified models constructed from smallness assumptions on physical properties of
the flow. This is typically expected to be the case for shallow-water models, since the shallow-water
regime implies that the main component of the flow is located at low frequencies; and in particular
for the two-layer extension of the classical Green-Naghdi model introduced by Miyata [31, 32],
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Mal’tseva [29] and Choi and Camassa [10].1 Somewhat surprisingly, it turns out that the original
Green-Naghdi system, as already noticed in [10], behaves similarly as the full-Euler system: a
linear stability analysis shows that surface tension is needed in order to avoid the appearance of
high-frequency instabilities. However, a more precise study [27] indicates that the model actually
overestimates Kelvin-Helmholtz instabilities, in the sense that the threshold on the velocity shear
above which instabilities are triggered is always smaller for the original Green-Naghdi system than
for the full Euler system.

Many attempts have been made in order to “regularize” the Green-Naghdi model, that is propos-
ing new models with formally the same precision as the original model, but which are not subject
to high-frequency Kelvin-Helmholtz instabilities, even without surface tension [33, 9, 12, 6, 16, 27].
The strategies adopted in these works rely on change of unknowns and/or Benjamin-Bona-Mahony
type tricks; see [26, Section 5.2] for a thorough presentation of such methods in the water-wave
setting. In this work, we present a new class of modified Green-Naghdi systems obtained through
a different, somewhat simpler mean. We find numerous advantages in our method:

• The original Green-Naghdi model is only lightly modified, and the physical interpretations of
variables and identities of the original model are preserved.

• The method is quite flexible. It allows in particular to construct models which completely
suppress large-frequency Kelvin-Helmholtz instabilities; or a model which conforms perfectly
with the linear stability analysis of the full Euler system.

• The rich structure of the original Green-Naghdi system (Hamiltonian formulation, groups of
symmetry, conserved quantities) is maintained. This is generally not the case when change of
unknowns or BBM tricks are involved; see discussion in [11, 18].

Our models may be viewed as Green-Naghdi systems with improved frequency dispersion. In
particular, one of our models shares with full dispersion models such as in [5] the property that
their dispersion relation is the same as the one of the full Euler system. A noteworthy feature of
our models is that, by construction, they involve non-local operators (Fourier multipliers). Such
operators are common in deep-water models, such as the Benjamin-Ono or Whitham equations for
instance, but appear to be original in the shallow-water setting.

In the present work, we motivate our models through the study of Kelvin-Helmholtz instabilities,
by linearizing the systems around solutions with constant shear. This formal study is supported
by numerical simulations, which demonstrate how the predictions of the modified Green-Naghdi
models may vary dramatically depending on their large-frequency dispersion properties, and the
significant influence of small surface tension. We also provide a rigorous analysis for a class of our
models by proving the well-posedness of the Cauchy problem as well as consistency and stability
results, which together offer the full justification of our asymptotic models, in the sense described
in [26]. This includes the original Green-Naghdi model as well as the Saint-Venant (hydrostatic
shallow-water) system with surface tension; such results are new as far as we know.

For the sake of simplicity, our study is restricted to the setting of a flat bottom, rigid lid and
one-dimensional horizontal variable. The construction of our models, however, is straightforwardly
extended to the two-dimensional case. We also expect that our strategy can be favorably applied
to more general configurations (non-trivial topography, free surface, multi-layer, etc.)

1.2 The full Euler system
For the sake of completeness and in order to fix the notations, we briefly recall the governing
equations of a two-layer flow in our configuration, that we call full Euler system. We let the
interested reader refer to [5, 1, 15] for more details.

1In the following, we will refer to this system, precisely recalled thereafter, as the original Green-Naghdi system,
in contrast with our modified Green-Naghdi systems.
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The setting consists in two layers (infinite in the horizontal variable, vertically delimited by a
flat rigid lid and a flat bottom) of immiscible, homogeneous, ideal, incompressible and irrotational
fluid under only the external influence of gravity.

We assume that the interface between the two layers is given as the graph of a function, ζ(t, x),
so that the domain of the two fluids at time t is given as

Ωt1
def
= {(x, y), ζ(t, x) ≤ z ≤ d1}, Ωt2

def
= {(x, z), −d2 ≤ z ≤ ζ(t, x)}.

Here and thereafter, the subscript i = 1 (resp. i = 2) always refer to the upper (resp. lower) layer.
The fluids being irrotational, we consider the velocity potentials in each layer, that we denote φi.
Finally, Pi denotes the pressure inside each layer.

Let a be the maximum amplitude of the deformation of the interface. We denote by λ a
characteristic horizontal length, say the wavelength of the interface. Then the typical velocity of
small propagating internal waves (or wave celerity) is given by

c0 =

√
g

(ρ2 − ρ1)d1d2

ρ2d1 + ρ1d2
,

where d1 (resp. d2) is the depth of the upper (resp. lower) layer and ρ1 (resp. ρ2) its mass density.
g denotes the acceleration of gravity. Consequently, we introduce the dimensionless variables

z̃
def
=

z

d1
, x̃

def
=

x

λ
, t̃

def
=

c0
λ
t,

the dimensionless unknowns

ζ̃(t̃, x̃)
def
=

ζ(t, x)

a
, φ̃i(t̃, x̃, z̃)

def
=

d1

aλc0
φi(t, x, z), P̃i(t̃, x̃, z̃)

def
=

d1

aρ2c20
Pi(t, x, z) (i = 1, 2),

as well as the following dimensionless parameters

γ
def
=

ρ1

ρ2
, ε

def
=

a

d1
, µ

def
=

d2
1

λ2
, δ

def
=

d1

d2
, Bo

def
=

g(ρ2 − ρ1)λ2

σ
.

The last parameter is the Bond number, and measures the ratio of gravity forces over capillary
forces (σ is the surface tension coefficient). After applying the above scaling, but withdrawing the
tildes for the sake of readability, the system may be written as

(1.1)





µ∂2
xφi + ∂2

zφi = 0 in Ωti (i = 1, 2),
∂zφ1 = 0 on {(x, z), z = 1},
∂zφ2 = 0 on {(x, z), z = −δ−1},
∂tζ = 1

µ

√
1 + µε2|∂xζ|2∂nφ1 = 1

µ

√
1 + µε2|∂xζ|2∂nφ2 on {(x, z), z = εζ(t, x)},

∂tφi + ε
2 |∇µx,zφi|2 = − P

γi
− γ+δ

1−γ z in Ωti (i = 1, 2),

JP (t, x)K = −γ+δ
Bo

k(ε
√
µ∂xζ)

ε
√
µ on {(x, z), z = εζ(t, x)},

where k(∂xζ)
def
= −∂x

(
1√

1+|∂xζ|2
∂xζ
)
, JP (t, x)K def

= lim
κ→0

(
P (t, x, εζ(t, x)+κ)−P (t, x, εζ(t, x)−κ)

)
,

γi = ρi
ρ2
,∇µx,z

def
= (
√
µ∂x, ∂z)

> and
(√

1 + µε2|∂xζ|2∂nφi
) ∣∣

z=εζ
= −µε(∂xζ)(∂xφi)

∣∣
z=εζ

+(∂zφi)
∣∣
z=εζ

.
We may conveniently rewrite the above system as two evolution equations, thanks to the use of

Dirichlet-Neumann operators. In order to do so, we define

ψ(t, x)
def
= φ1(t, x, εζ(t, x)),
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and

Gµψ = Gµ[εζ]ψ
def
=
√

1 + µ|ε∂xζ|2
(
∂nφ1

) ∣∣
z=εζ

= −µε(∂xζ)(∂xφ1)
∣∣
z=εζ

+ (∂zφ1)
∣∣
z=εζ

,

Hµ,δψ = Hµ,δ[εζ]ψ
def
=
(
φ2

) ∣∣
z=εζ

= φ2(t, z, εζ(t, x)),

where φ1 and φ2 are uniquely defined (up to an additive constant for φ2) as the solutions of the
Laplace problems implied by (1.1). The full system (1.1) then becomes

(1.2)





∂tζ −
1

µ
Gµψ = 0,

∂t

(
∂xH

µ,δψ − γ∂xψ
)

+ (γ + δ)∂xζ +
ε

2
∂x

(
|∂xHµ,δψ|2 − γ|∂xψ|2

)

= µε∂xN µ,δ − γ + δ

Bo

∂x
(
k(ε
√
µ∂xζ)

)

ε
√
µ

,

where N µ,δ = N µ,δ[εζ, ψ]
def
=

(
1
µG

µψ + ε(∂xζ)(∂xH
µ,δψ)

)2 − γ
(

1
µG

µψ + ε(∂xζ)(∂xψ)
)2

2(1 + µ|ε∂xζ|2)
.

1.3 Our new class of modified Green-Naghdi models
The original Green-Naghdi system may be obtained from (1.2) by replacing the Dirichlet-Neumann
operators with their truncated asymptotic expansions with respect to µ, the shallowness parameter.
We let the reader refer to [17] and references therein for full details.

The Green-Naghdi system is usually written in terms of layer-averaged horizontal velocities,
that is defining

u1(t, x) =
1

h1(t, x)

∫ 1

εζ

∂xφ1(t, x, z)dz, u2(t, x) =
1

h2(t, x)

∫ εζ

−δ−1

∂xφ2(t, x, z)dz.

Here and thereafter, h1 = h1(εζ) = 1− εζ (resp. h2 = h2(εζ) = δ−1 + εζ) always denotes the depth
of the upper (resp. lower) layer.

One benefit of such a choice of unknowns is the exact identities (in contrast with O(µ2) approx-
imations) due to mass conservation (see [17, Proposition 3 and (23)]):

(1.3) ∂tζ = ∂x(h1u1) = −∂x(h2u2).

These identities are then supplemented with the following O(µ2) approximations:

(1.4) ∂t

(
ui + µQi[εζ]ui

)
+

γ + δ

1− γ ∂xζ +
ε

2
∂x
(
|ui|2

)
= µε∂x

(
Ri[εζ, ui]

)
− 1

γi
∂xPi,

where P2 − P1 = −γ+δ
Bo ∂x

(
1√

1+µε2|∂xζ|2
∂xζ
)
and

(1.5) Qi[εζ]ui
def
=
−1

3
h−1
i ∂x

(
h3
i ∂xui

)
, Ri[εζ, ui] def

=
1

2

(
hi∂xui

)2
+

1

3
h−1
i ui ∂x

(
h3
i ∂xui

)
.

Equations (1.3)-(1.4) form a closed system which corresponds to the classical two-layer Green-
Naghdi model introduced in [32, 10],2 with our choice of scaling in the non-dimensionalization
procedure.

2 These equations may be found with slightly different but equivalent formulations in the literature. Notice in
particular that

µ∂t(Qi[εζ]ui)− µε∂x(Ri[εζ, ui]) = µQi[εζ]∂tui −
µε

3
h−1
i ∂x

(
h3i

(
ui∂

2
xui − ε(∂xui)2

))
=
−µ
3
h−1
i ∂x

(
h3i

(
∂x∂tui + εui∂

2
xui − ε(∂xui)2

))
.
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We find it convenient to use the following unknown:

w
def
=

h1h2

h1 + γh2
(u2 − γu1) = −h1u1 = h2u2,

where the last identities are a consequence (in the one-dimensional setting) of (1.3) and the as-
sumption ui → 0 (|x| → ∞). One can then rewrite system (1.3)-(1.4) with only two evolution
equations:

(1.6)





∂tζ + ∂xw = 0,

∂t

(
h1 + γh2

h1h2
w + µQ[εζ]w

)
+ (γ + δ)∂xζ +

ε

2
∂x

(h2
1 − γh2

2

(h1h2)2
|w|2

)

= µε∂x
(
R[εζ, w]

)
+ γ+δ

Bo ∂
2
x

(
1√

1+µε2|∂xζ|2
∂xζ
)

with Q[εζ]w
def
= Q2[εζ](h−1

2 w)− γQ1[εζ](−h−1
1 w) and R[εζ, w]

def
= R2[εζ, h−1

2 w]− γR1[εζ,−h−1
1 w].

Our new class of modified Green-Naghdi models are now obtained by slightly modifying the
dispersion components: we replace the operators Q and R in (1.6) with the following.

(1.7)





QF[εζ]w
def
= −1

3
h−1

2 ∂xF
µ
2

{
h3

2∂xF
µ
2{h−1

2 w}
}
− γ

3
h−1

1 ∂xF
µ
1

{
h3

1∂xF
µ
1{h−1

1 w}
}
,

RF[εζ, w]
def
=

1

3
wh−2

2 ∂xF
µ
2

{
h3

2∂xF
µ
2{h−1

2 w}
}
− γ

3
wh−2

1 ∂xF
µ
1

{
h3

1∂xF
µ
1{h−1

1 w}
}

+
1

2

(
h2∂xF

µ
2{h−1

2 w}
)2 − γ

2

(
h1∂xF

µ
1{h−1

1 w}
)2
.

where Fµi
def
= Fi(

√
µD) (i = 1, 2) is a Fourier multiplier:

F̂µi ϕ = Fi(
√
µξ)ϕ̂(ξ).

The choice of the Fourier multipliers does not need to be precised yet. Natural properties for
our purpose, however, include Fi(0) = 1 and F′i(0) = 0 (so that Fµi − Id is formally of size O(µ)),
Fi(k) = Fi(|k|) and 0 ≤ Fi ≤ 1. A class of Fourier multipliers for which our rigorous results hold is
precised in Definition 1.1, thereafter, and we present three relevant examples below.

• Fid
i (
√
µD) ≡ 1 yields, of course, to the original model of [32, 10], namely (1.3)-(1.4). The

classical Green-Naghdi model can therefore be treated as a particular case in all our results.

• Freg
i (
√
µD) = (1 + µθi|D|2)−1/2, with θi > 0 is an operator of order −1, and √µ∂xFµi is a

bounded operator in L2, uniformly with respect to µ ≥ 0. As a consequence, this choice yields
a well-posed system for sufficiently small and regular data, even in absence of surface tension.

• Fimp
i (
√
µD) =

√
3

δ−1
i

√
µ|D| tanh(δ−1

i

√
µ|D|) −

3
δ−2
i µ|D|2 , with convention δ1 = 1, δ2 = δ. The

modified Green-Naghdi system with this choice conforms perfectly with the full Euler system,
as far as the linear stability analysis of Section 3 is concerned. In particular, its dispersion
relation is the same as the one of the full Euler system. One may thus expect (at least
qualitatively) an improved precision when only weak nonlinearities (ε� 1) are involved.

1.4 Outline of the paper
Some elementary properties of our models are studied in Section 2. More precisely, we show that
all of our models enjoy a Hamiltonian structure, symmetry groups and conserved quantities, con-
sistently with the already known properties of the original Green-Naghdi model (which themselves
are inherited from the full Euler system).
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In Section 3, we recall the linear analysis of Kelvin-Helmholtz instabilities for the full Euler
system, and extend the study to our models. In particular, we recover that the classical Green-
Naghdi model overestimates Kelvin-Helmholtz instabilities, whereas our modified model with the
choice Fi = Fimp

i recovers perfectly the behavior of the full Euler system.
Section 4 is dedicated to numerical illustrations of this phenomenon. We give two examples

(with and without surface tension) where the original, improved and regularized Green-Naghdi
models predict very different behavior. Roughly speaking, the flows are very similar as long as no
instabilities are present, but the threshold above which Kelvin-Helmholtz instabilities are triggered
varies dramatically from one model to the other.

The main and rigorous results concerning our models are restricted to the following class of
Fourier multipliers in (1.7).

Definition 1.1. The operator Fµi = Fi(
√
µD) (i = 1, 2) is admissible if it satisfies:

i. Fi : R→ R+ is even and positive;

ii. Fi is of twice differentiable, Fi(0) = 1, F′i(0) = 0 and supk∈R |F′′i (k)| ≤ CF <∞;

iii. k 7→ |k|Fi(k) is sub-additive, namely for any k, l ∈ R, |k + l|Fi(k + l) ≤ |k|Fi(k) + |l|Fi(l).
In that case, one can define appropriate pairs KFi ∈ R+ and σ ∈ [0, 1] such that

(1.8) ∀k ∈ R, Fi(k) ≤ KFi |k|−σ.

Proposition 1.2. The three aforementioned examples, namely Fid
i ,F

reg
i ,Fimp

i are admissible, and
satisfy (1.8) with (respectively) σ = 0, 1, 1/2.

Section 5 is dedicated to the proof that for any admissible choice Fi, the Cauchy problem
for system (1.6)-(1.7) with sufficiently regular initial data is well-posed under some hyperbolicity
conditions. Roughly speaking, we show that provided

ΥF = ε2
(
1 + (γK1 +KF2

)(µBo)1−σ) is sufficiently small,

then our system is well-posed (in the sense of Hadamard) for sufficiently regular and bounded initial
data, on a time interval uniform with respect to compact sets of parameters; see Theorem 5.1 for
details.

In section 6, we supplement the above result with consistency (Proposition 6.1) and stability
(Proposition 6.2) results, which together offer the full justification of our models (Proposition 6.3).

Finally, we present in Section A some improved results in the limiting case µ = 0, that is on
the so-called Saint-Venant, or shallow-water system (with surface tension). Section B is dedicated
to the detailed presentation of our functional setting and some notations; and Section C provides
preliminary results concerning our functional spaces.

We conclude this section with the proof of Proposition 1.2.

Lemma 1.3. A sufficient condition for Fµi to be admissible is, in addition to i. and ii.,

iii’. k 7→ kFi(k) is non-decreasing on R+ and k 7→ Fi(k) is non-increasing on R+.

Proof. Let k + l ≥ k ≥ l ≥ 0. Since Fi(k) is non-increasing on R+, one has 0 ≤ Fi(k + l) ≤
Fi(k) ≤ Fi(l), and therefore (k + l)Fi(k + l) ≤ kFi(k) + lFi(k) ≤ kFi(k) + lFi(l). This shows
k ∈ R+ 7→ kFi(k) = |k|Fi(k) is sub-additive.

Since Fi is even, k 7→ Fi(k) is non-decreasing for k ∈ R−, and one shows in the same way that
k ∈ R− 7→ |k|Fi(k) is sub-additive.

There remains the case k ≤ 0 ≤ l. In that situation, since Fi is even and k ∈ R+ 7→ kFi is non-
decreasing, one has |k+ l|Fi(k+ l) = |k+ l|Fi(|k+ l|) ≤ (|k|+ |l|)Fi(|k|+ |l|) and the sub-additivity
in R+ yields the desired result.
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Proposition 1.2 is now obtained as a direct consequence of Lemma 1.3.
Only the last example requires clarifications. That Fimp

i (0) = 1 and Fimp
i

′
(0) = 0 is given by

standard Taylor expansion at the origin: Fimp
i (k) = 1− 1

15δ
−2
i k2 +O(k4).

We first remark that f : k 7→ k
tanh(k) is non-decreasing for k ∈ R+, since f ′(k) = cosh(k) sinh(k)−k

sinh(k)2 ,

and cosh(k)× sinh(k) ≥ 1×k for k ∈ R+. It follows that k ∈ R+ 7→ kFimp
i (k) =

√
3δi

√
f(δ−1

i k)− 1

is non-decreasing.
Now, we have to prove that k 7→ Fimp

i (k) is non-increasing for k ∈ R+. Equivalently, we show
that g : k 7→ 1

k tanh(k) − 1
k2 is non-increasing. Notice

g′(k) =
−k2 − k sinh(k) cosh(k) + 2 sinh(k)2

k3 sinh(k)2
=
−k2 − 1

2k sinh(2k) + cosh(2k)− 1

k3 sinh(k)2
.

One can show that h(k) = −k2− 1
2k sinh(2k)+cosh(2k)−1 is negative for k > 0 by differentiating

several times with respect to k. One easily checks that h(0) = h′(0) = h′′(0) = 0 and one has

h′′′(k) = 2 sinh(2k)− 4k cosh(2k) = 2 cosh(2k)(tanh(2k)− 2k) < 0 (k > 0).

It follows, iteratively, that h′′(k) > 0, h′(k) > 0, and finally h(k) > 0 for any k > 0. We conclude
that g and therefore k 7→ Fimp

i (k) are non-increasing for k ∈ R+.
By Lemma 1.3, k 7→ |k|Fimp

i (k) is sub-additive, and the proof of Proposition 1.2 is complete.

2 Hamiltonian structure, group of symmetries and conserved
quantities

It is known from the seminal work of Zakharov [43] that the full Euler system (with one layer)
admits a Hamiltonian structure. This Hamiltonian structure has been extended to the two-layer
case in [3, 28, 13]. The classical Green-Naghdi system also admits a Hamiltonian structure, which
is directly inherited from the one of the full Euler system [14, 2]. We show in Section 2.1 that
this structure is preserved in our models. Such a Hamiltonian structure has not been exhibited
for regularized Green-Naghdi system in the literature [33, 9, 6, 27], with the noteworthy exception
of [12].

We then enumerate the group of symmetries of the system (Section 2.2) that originates from
the full Euler system (see [4]), and deduce the related conserved quantities (Section 2.3).

2.1 Hamiltonian formulation
Let us recall the well-known Hamiltonian structure of the full Euler system. The discussion below
is loosely based on [14]. We introduce

H(ζ, v) =
1

2

∫

R
(γ + δ)ζ2 +

2(γ + δ)

µε2 Bo

(√
1 + µε2|∂xζ|2 − 1

)
− vG1(γG2 + G1)−1G2v,

where Gi = Gi[εζ] are such that ∂x(Gi∂xϕ) = Giϕ, and Gi are Dirichlet-to-Neumann operators:

• G1 : ϕ 7→ 1
µ (∂nφ)

∣∣
z=εζ

, where φ is the unique solution to

µ∂2
xφ+ ∂2

zφ = 0 in Ωt1, φ(x, εζ) = ϕ and ∂zφ(x, 1) = 0.

• G2 : ϕ 7→ 1
µ (∂nφ)

∣∣
z=εζ

, where φ is the unique solution to

µ∂2
xφ+ ∂2

zφ = 0 in Ωt2, φ(x, εζ) = ϕ and ∂zφ(x,−δ−1) = 0.
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The operators Gi are well-defined if h1(εζ), h2(εζ) ≥ h0 > 0 (see [26, Chapter 3]), and consequently
Gi∂xϕ as well, thanks to the identity [26, Prop. 3.35]

Gi[εζ]ψ = −∂x(hiui) (i = 1, 2).

In that way, recalling the construction of the full Euler in Section 1.2, we define

ψ(t, x)
def
= φ1(t, x, εζ(t, x))

v(t, x)
def
= ∂x (φ2(t, x, εζ(t, x))− γφ1(t, x, εζ(t, x))) ,

and deduce v = G−1
2 G1∂xψ − γ∂xψ = G−1

2 (G1 + γG2)∂xψ.
With these definitions, one can check that the full Euler system (1.2) can be written as 3

∂tζ = −∂x
(
δH

δv

)
, ∂tv = −∂x

(
δH

δζ

)
,

with the usual notation for functional derivatives of Fréchet differentiable functionals, i.e. for any
Φ ∈ S(R),
(
δH

δζ
,Φ

)

L2

= lim
κ→0

H(ζ + κΦ, v)−H(ζ, v)

κ
;

(
δH

δv
,Φ

)

L2

= lim
κ→0

H(ζ, v + κΦ)−H(ζ, v)

κ
.

Let us now deduce the Hamiltonian structure of the Green-Naghdi systems. We use the following
O(µ2) approximations (see e.g. [26, Prop. 3.37] when Fµi ≡ 1, the general case adds only a O(µ2)
perturbation):

G−1
i = −Ai +O(µ2), Ai[εζ] : w 7→ 1

hi
w − µ1

3
h−1
i ∂xF

µ
i

{
h3
i ∂xF

µ
i {h−1

i w}
}
.

Notice that A[εζ]
def
= γA1[εζ] + A2[εζ] is a symmetric, coercive thus positive definite operator, if

h1(εζ), h2(εζ) ≥ h0 > 0 (see Section 5.2 below). The full Euler’s Hamiltonian becomes, plugging
the above (truncated) approximation,

(2.1) HGN(ζ, v)
def
=

1

2

∫

R
(γ + δ)ζ2 +

2(γ + δ)

µε2 Bo

(√
1 + µε2|∂xζ|2 − 1

)
+ vA[εζ]−1v.

Consistently with Section 1.3 and the above approximation G−1
i = −Ai, one may introduce the

notation
w

def
= A[εζ]−1v and ui

def
= (−1)iw/hi (i = 1, 2).

The new Hamiltonian may then be written as

HGN(ζ, v) =
1

2

∫

R
(γ + δ)ζ2 +

2(γ + δ)

µε2 Bo

(√
1 + µε2|∂xζ|2 − 1

)
+ wA[εζ]w

=
1

2

∫

R
(γ + δ)ζ2 +

2(γ + δ)

µε2 Bo

(√
1 + µε2|∂xζ|2 − 1

)
+ γh1|u1|2 + h2|u2|2

+ µ
γ

3
h1(h1∂xF

µ
1u1)2 + µ

1

3
h2(h2∂xF

µ
2u2)2.

3The first identity is easily seen from the above, since

δH

δv
= G1(γG2 + G1)−1G2v = G1∂xψ =

1

µ
(∂nφ)

∣∣∣z=εζ .
The second is less straightforward, we let the reader refer to [3, 13, 14] for more details.
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Let us now check the Hamiltonian structure of our modified systems (1.6)-(1.7) by computing
the fractional derivatives, δHGN

δζ and δHGN

δv . One has immediately

δHGN

δv
= A[εζ]−1v = w.

Calculations are longer but straightforward for the second term. One has

δHGN

δζ
= (γ + δ)ζ − γ + δ

Bo
∂x

(
(∂xζ)

(1 + µε2|∂xζ|2)1/2

)
− 1

2
(A[εζ]−1v)

δA
δζ

(A[εζ]−1v)

= (γ + δ)ζ − γ + δ

Bo
∂x

(
(∂xζ)

(1 + µε2|∂xζ|2)1/2

)
+
ε

2

h2
1 − γh2

2

h2
1h

2
2

|w|2 − µεRF[εζ, w].

One now recognizes the Hamiltonian structures of system (1.6)-(1.7):

∂tζ = −∂x
(
δHGN

δv

)
; ∂tv = −∂x

(
δHGN

δζ

)
.

2.2 Symmetry groups

Based on the work of [4], one may list symmetry groups of our systems. Most of the symmetry
groups of the full Euler system have no equivalent for the Green-Naghdi model, because they involve
variations on the vertical variable, which is not accessible anymore. The most physical symmetries,
however, remain. We list them below.

Assume (ζ, ui, Pi) (with i = 1, 2) satisfies (1.3)-(1.4). Then for any κ ∈ R, (ζκ , uκi , P
κ
i ) also

satisfies (1.3)-(1.4), where

i. Horizontal translation

(ζκ , uκi , P
κ
i )(t, x)

def
=
(
ζ(t, x− κ), ui(t, x− κ), Pi(t, x− κ)

)

ii. Time translation

(ζκ , uκi , P
κ
i )(t, x)

def
=
(
ζ(t− κ, x), ui(t− κ, x), Pi(t− κ, x)

)

iii. Variation of base-level for potential pressure

(ζκ , uκi , P
κ
i )(t, x)

def
=
(
ζ(t, x), ui(t, x), Pi(t, x) + κ

)

iv. Horizontal Galilean boost

(ζκ , uκi , P
κ
i )(t, x)

def
=
(
ζ(t, x− κt), ui(t, x− κt) + κ, Pi(t, x− κt)

)

It is interesting to notice that when working with formulation (1.6). i.,ii.,iii. induce symmetry
groups as well (although iii. is trivial), but not iv.. Indeed, because the Galilean boost breaks the
conditions ui → 0 at infinity, the identity w = −h1u1 = h2u2 is invalid for any non-trivial κ. Such
a discrepancy is attributable to the rigid-lid assumption, and in particular vanishes in the limit
γ → 0 (one layer of fluid); see also the discussion of the following section.
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2.3 Conserved quantities

Again, we find it more convenient at first to work with formulation (1.3)-(1.4)-(1.7), and deduce
the conserved quantities of (1.6) afterwards.

The first obviously conserved quantity, given by (1.3), is the (excess of) mass:

d

dt
Z = 0, Z(t)

def
=

∫

R
ζ(t, x)dx.

Equations (1.4) yield other conserved quantities: the “horizontal velocity mass”

d

dt
Vi = 0, Vi def

=

∫

R
ui + µQF

i [εζ]uidx (i = 1, 2).

Choi and Camassa [10] observed a similar conservation law of the original model, and related this
result to the irrotationality assumption of the full Euler system. Indeed, by the discussion of
Section 2.1, one has

Vi ≈
∫

R
∂x
(
φi(t, x, εζ(t, x))

)
dx,

where φ1 (resp. φ2) is the velocity potential of the upper (resp. lower) layer, and the approximation
is of size O(µ2). Thus one has by construction d

dtVi = O(µ2), and it turns out that this approxi-
mately conserved quantity is actually exactly conserved by the Green-Naghdi flow (see also [20]).
Of course, the linear combination

V2 − γV1 =

∫

R

h1 + γh2

h1h2
w + µQF[εζ]w dx

is a conserved quantity of system (1.6)-(1.7).
After long but straightforward manipulations, one may check that the total horizontal momen-

tum satisfies

d

dt
M = −

∫ ∞

−∞
h1∂xP1 + h2∂xP2 = [h1P1 + h2P2]

+∞
−∞ , M def

=

∫ ∞

−∞
γh1u1 + h2u2dx.

The horizontal momentum is in general not conserved. This somewhat unintuitive result is a
consequence of the rigid-lid assumption (the momentum is conserved in the one-layer case with free
surface), and has been thoroughly studied in [7, 8].

One has the conservation of total energy:

d

dt
E = 0, E def

=

∫

R
HGNdx =

∫

R
(γ + δ)ζ2 +

2(γ + δ)

µε2 Bo

(√
1 + µε2|∂xζ|2 − 1

)

+ γh1|u1|2 + h2|u2|2 + µ
γ

3
h1(h1∂xF

µ
1u1)2 + µ

1

3
h2(h2∂xF

µ
2u2)2dx.

The conservation of energy may be deduced from the Hamiltonian structure of the system; see
e.g. [39]. Let us denote for simplicity U = (ζ, v)>, δHGN = ( δHGN

δζ , δHGN

δv )> and J =
(

0 −∂x
−∂x 0

)
, so

that system (1.6)-(1.7) reads simply (by the discussion of Section 2.1)

(2.2) ∂tU = JδHGN.

One deduces

0 = {HGN, HGN} def
=

∫

R
δHGN · JδHGN dx =

∫

R
δHGN · ∂tU dx =

∫

R
∂t
(
HGN(ζ, v)

)
dx,
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where the first identity owes to the skew-symmetry of J , and the last identity follows from the
invariance of the Hamiltonian with respect to time translation. This yields immediately

d

dt

∫

R
HGN(ζ, v) dx =

d

dt
E = 0.

Similarly, the invariance of the Hamiltonian with respect to space translation yields

{HGN, I} def
=

∫

R
δHGN · JδI dx =

∫

R
δHGN · (−∂xU) dx =

∫

R
−∂x

(
HGN(ζ, v)

)
dx = 0,

where I(ζ, v)
def
= ζv, so that δI = ( δIδζ ,

δI
δv )> = (v, ζ)>. By (2.2) and the skew-symmetry of J , the

horizontal impulse is thus conserved:

d

dt
I def

=
d

dt

∫

R
I(ζ, v) dx =

∫

R
δI · ∂tU dx =

∫

R
δI · JδHGN dx = −{HGN, I} = 0.

This conserved quantity of the bi-fluidic Green-Naghdi model seems to have been unnoticed until
now. In the one-layer case, that is when γ = 0, it is related to the momentum (which is conserved
in this situation) through the horizontal velocity mass:

δ−1V + εI =

∫

R
h2v dx =

∫

R
h2u2 + µh2QF

2[εζ]u2 dx =

∫

R
h2u2 dx =M.

When considering the case of one-layer with free surface, the symmetry with respect to Galilean
boost yields an additional conserved quantity, which is the counterpart of the “horizontal coordinate
of mass centroid times mass” for the full Euler system as defined in [4], namely

C(t) def
=

∫

R
C(t, x)dx, with C(t, x) = ζx− th2v or, equivalently, C(t, x) = ζx− tw.

The conservation of C can be deduced as above, or simply from the conservation of momentum in
the one-layer case. Indeed, one deduces from (1.3)

d

dt
C =

∫

R
x∂tζ − w − t∂tw dx =

∫

R
−x∂xw − w dx− t d

dt

∫

R
wdx = −t d

dt
M.

3 Kelvin-Helmholtz instabilities

In this section, we formally investigate the conditions for the appearance of Kelvin-Helmholtz
instabilities for the full Euler system as well as for our Green-Naghdi models. In order to do so,
we linearize the system at stake around the solution of constant shear (flat interface, ζ = 0; and
constant, horizontal velocity in each layer). This yields a linear system which may be then explicitly
solved through Fourier analysis. In particular, one obtains sufficient and necessary conditions for
the existence of unstable modes, that is planewave solutions growing exponentially in time. We will
say that the system suffers from Kelvin-Helmholtz instabilities when such modes exist.

Such a study has been thoroughly worked out by Lannes and Ming [27] for the full Euler system
and the original Green-Naghdi model (as well as some regularized models derived therein), and
the fact that the original Green-Naghdi model overestimates Kelvin-Helmholtz instabilities was
highlighted. Thus we only briefly recall the result concerning the full Euler system in Section 3.1,
and extend the results of the original Green-Naghdi system to our class of modified systems in
Section 3.2. The fact that our models can be tailored to improve their behavior with respect to
Kelvin-Helmholtz instabilities is brought to light, and serves as the main motivation for this work.
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3.1 The full Euler system
We linearize (1.1) around the constant shear solution: (ζ = 0+κζ̃, φ1 = u1x+κφ̃1, φ2 = u2x+κφ̃2)
where u1 and u2 are constants, and κ � 1. Notice that by (1.3), one has necessarily u1 +δ−1u2 = 0,
and therefore u1 = −v

γ+δ and u2 = δv
γ+δ , where v

def
= u2 − γu1. When withdrawing O(κ2) terms, one

obtains the following linear system (see [27]):

(3.1)





∂tζ̃ + c(D)∂xζ̃ + b(D)∂xṽ = 0,

∂tṽ + a(D)∂xζ̃ + c(D)∂xṽ = 0

where ṽ def
= ∂x

(
(φ̃2 − γφ̃1)

∣∣
z=εζ

)
, and

c(k)
def
=

δ tanh(
√
µ|k|)− γ tanh(

√
µδ−1|k|)

tanh(
√
µ|k|) + γ tanh(

√
µδ−1|k|)

εv

γ + δ
, b(k)

def
=

1√
µ|k|

tanh(
√
µ|k|) tanh(

√
µδ−1|k|)

tanh(
√
µ|k|) + γ tanh(

√
µδ−1|k|)

and

a(k)
def
= (γ + δ)(1 +

|k|2
Bo

)−
√
µ|k|γ

tanh(
√
µ|k|) + γ tanh(

√
µδ−1|k|)

(δ + 1)2

(δ + γ)2
|εv|2.

Since b(k) > 0, the mode with wavenumber k is stable (namely the planewave solutions ei(kx−ω±(k)t)

satisfy ω±(k) ∈ R) if and only if a(k) > 0.
For small values of k, this yields the necessary condition

γε2|v|2 δ(δ + 1)2

(δ + γ)3
< γ + δ.

For large values of k, one approximates tanh(
√
µ|k|) + γ tanh(

√
µδ−1|k|) ≈ 1 + γ, and deduce

min
|k|

{
a(k)} ≈ (γ + δ)− γ2µBo (δ + 1)4

4(1 + γ)2(γ + δ)5
ε4|v|4.

The full Euler system is therefore stable for each wavenumber provided

Υ|v|2 def
= γ

(
1 +

√
µBo

)
ε2|v|2 is sufficiently small.

Again, we refer to [27] for much a more involved analysis.

3.2 Our class of Green-Naghdi systems

When linearizing (1.6)-(1.7) around the constant shear solution, U def
= (ζ, w)>

def
= (0+κζ̃, w+κṽ)>,

where w is constant, one obtains the following system:

(3.2)





∂tζ̃ + ∂xw̃ = 0,

b
F
(D)∂tw̃ − cF(D)∂tζ̃ + aF(D)∂xζ̃ + cF(D)∂xṽ = 0,

with

b
F
(k)

def
= γ + δ + µ

|Fµ2 |2 + γδ|Fµ1 |2
3δ

|k|2, cF(k) = εw(δ2 − γ) + µεw
|Fµ2 |2 − γ|Fµ1 |2

3
|k|2,

and

aF(k)
def
= (γ + δ) − ε2|w|2(δ3 + γ) − µε2|w|2 δ|F

µ
2 |2 + γ|Fµ1 |2

3
|k|2 +

γ + δ

Bo
|k|2
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where (with a slight abuse of notations) Fµi = Fi(
√
µk).

The stability criterion is more easily seen when rewriting system (3.2) with unknown 4

ṽ = (γ + δ)w̃ − εw(δ2 − γ)ζ̃ − µ
{ |Fµ2 |2 + γδ|Fµ1 |2

3δ
∂2
xw̃ − εw

|Fµ2 |2 − γ|Fµ1 |2
3

∂2
xζ̃
}
.

Indeed, one obtains in that case

(3.3)





∂tζ̃ + cF(D)∂xζ̃ + bF(D)∂xṽ = 0,

∂tṽ + aF(D)∂xζ̃ + cF(D)∂xṽ = 0

with

cF(k) = εw

δ2−γ
γ+δ + µ

|Fµ2 |
2−γ|Fµ1 |

2

3(γ+δ) |k|2

1 + µ
|Fµ2 |2+γδ|Fµ1 |2

3δ(γ+δ) |k|2
, bF(k) =

1
γ+δ

1 + µ
|Fµ2 |2+γδ|Fµ1 |2

3δ(γ+δ) |k|2

and

aF(k) = (γ + δ) +
γ + δ

Bo
|k|2 − |εw|2 γ(δ + 1)2

δ(γ + δ)

(δ2 + 1
3µ|k|2|F

µ
2 |2)(1 + 1

3µ|k|2|F
µ
1 |2)

1 + µ
|Fµ2 |2+γδ|Fµ1 |2

3δ(γ+δ) |k|2
.

As for the full Euler system, since bF(k) > 0, the mode with wavenumber k is stable (namely
the planewave solutions ei(kx−ω±(k)t) satisfy ω±(k) ∈ R) if and only if aF(k) > 0.

Let us quickly discuss the three examples introduced in Section 1.3.

• In the case of the original Green-Naghdi system, Fid
i (
√
µD) ≡ 1, the condition to ensure that

all modes are stable is (see [27] for a more detailed discussion)

ΥGN|w|2 def
= γ(1 + µBo)ε2|w|2 is sufficiently small.

This is more stringent than the similar condition of the full Euler system in the oceanographic
context, where one expects µBo� 1.

• If Fimp
i (
√
µD) =

√
3

δ−1
i

√
µ|D| tanh(δ−1

i

√
µ|D|) −

3
δ−2
i µ|D|2 (with convention δ1 = 1, δ2 = δ), then

the linearized system (3.3) is exactly (3.1) (recall that by (1.3), w = 1
γ+δv):

aF(k) = a(k) ; bF(k) = b(k) ; cF(k) = c(k)

In particular, the stability criterion of this Green-Naghdi model corresponds to the one of
the full Euler system. As previously mentioned, this also shows that the model has the same
dispersion relation as the full Euler system, as this corresponds to setting w = 0. Models
with such a property were already obtained and discussed; see [42, 5, 37, 34] and references
therein, but never to our knowledge in the shallow-water regime.

• In the case Freg
i (
√
µD) = 1√

1+µθi|D|2
, one remarks that

(γ + δ) > |εw|2 γ(δ + 1)2

δ(γ + δ)

(
δ2 +

1

3θ2

)(
1 +

1

3θ1

)
,

4This change of unknown is not without signification. It consists in writing the system with the “original” variables
of the full Euler system: ζ, v = ∂x

(
(φ2 − γφ1)

∣∣∣z=εζ )
, or more precisely O(µ2) approximations of these variables,

instead of using the flux w. It is interesting to compare our nonlinear results and in particular Theorem 5.1 with the
naive sufficient condition for stability, aF(k) > 0 which comes from (3.2). We see that our hyperbolicity conditions
are natural generalizations of this instability criterion, and explains the discrepancy with respect the sharp condition
aF(k) > 0 (in particular when γ → 0); see also Remark 5.3.
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is a sufficient condition to ensure that all modes are stable, and does not require the presence
of surface tension. A natural choice is θi = 1

15δ2i
with convention δ1 = 1, δ2 = δ, motivated by

the fact that the Taylor expansion of the dispersion relation around µ = 0 fits the one of the
improved model, and therefore the one of the full Euler system, at augmented order O(µ3),
instead of the O(µ2) precision of the original Green-Naghdi system.

In Figure 1, we plot the instability curves corresponding to aF(k) for the three above examples.
More precisely, for fixed k ∈ R, we plot the value of ε2|w|2 above which aF(k) > 0, and thus
instabilities are triggered. One clearly sees a great discrepancy for large wavenumbers. In particular
the minimum of the curve, which corresponds to the domain where all wavenumbers are stable, not
only varies for each model but also is obtained at different values of k.
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Figure 1: Instability curves of the modified Green-Naghdi models with Fi = 1 (original), Fi = Freg
i

(regularized) and Fi = Fimp
i (improved). The last one coincides with the full Euler system counter-

part. The dimensionless parameters are γ = 0.95, δ = 0.5, ε = 0.5, µ = 0.1, Bo = 103.

4 Numerical illustrations
We numerically compute several of our Green-Naghdi systems, with and without surface tension,
in order to observe how the different frequency dispersion may affect the appearance of Kelvin-
Helmholtz instabilities.

As in Figure 1, we focus on the three aforementioned examples: Fi = 1 (original), Fi = Freg
i

with θi = 1
15δ2i

(regularized) and Fi = Fimp
i (improved). Values for the dimensionless parameters are

γ = 0.95, δ = 0.5, ε = 0.5, µ = 0.1; and Bo−1 = 10−3 (with surface tension) or Bo−1 = 0 (without
surface tension).

The initial data is ζ(0, x) = −e−4|x+1/3|2 and w(0, x) = e−4|x−1/3|2 , so as to produce a smooth
and localized flow, but to avoid any cancellation due to symmetries.

Figures 2 and 3 represent the predicted flow at time t = 1 and t = 1.5, in the situation with
surface tension. Figure 4 represents the predicted flow at time t = 1 in the situation without
surface tension. Each time, the left panel plots the flux, w(t, x) (or rather 1 + w for the sake of
readability) as well as the interface deformation, ζ(t, x); while the right panel plots the spatial
Fourier transform of the interface deformation, ζ̂(t, k). The dashed line represents the initial data,
and the three colored lines the predictions of each model.
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Figure 2: Prediction of the Green-Naghdi models, with surface tension, at time t = 1.
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Figure 3: Prediction of the Green-Naghdi models, with surface tension, at time t = 1.5.
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Figure 4: Prediction of the Green-Naghdi models, without surface tension, at time t = 1.
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Discussion In the situation with surface tension, we see that at time t = 1 (Figure 2), the pre-
dictions of the three models are similar. Only the original model shows small but clear discrepancy,
and in particular early signs of instabilities on the deformation of the interface (located, remark-
ably, where the flux w has highest amplitude). This situation is clearer when looking at the Fourier
transform, right panel. We see the existence of a strong large frequency component which has grown
from machine precision noise. As expected, modes with higher wavenumbers grow faster.

The regularized model also exhibits a non-trivial (although very small) high-frequency com-
ponent. This component is however stable in time and of the size of the precision of the time
evolution (Runge-Kutta) scheme. It is not produced by Kelvin-Helmholtz instabilities, but rather
by numerical errors. It does not appear when surface tension is absent (Figure 4).

At later time t = 1.5 (Figure 3), the Kelvin-Helmholtz instabilities have completely destroyed
the flow of the original model. The flows predicted by the regularized and improved models remain
smooth and very similar. When running the numerical simulation for much larger time, our com-
putations indicate that the flow of the regularized and improved models remains smooth for any
positive time.

When surface tension is neglected from the models, we see (Figure 4) that at time t = 1,
Kelvin-Helmholtz instabilities have appeared for both the original and the improved model (again,
located mostly where the flux has maximal amplitude). The flow predicted by the improved model,
however, remains smooth and is very similar to the flow with surface tension.

Numerical scheme Let us now briefly present our numerical scheme. It is very natural in
our context to use spectral methods [41] as for the space discretization, since Fourier multipliers
thus do not require any particular attention. Such methods yield an exponential accuracy with
respect to the spatial mesh size for smooth data. In our simulations, we used 29 = 512 equally
distributed points (with periodic boundary conditions) on x ∈ [−4; 4]. As for the time evolution,
we use the Matlab solver ode45, which is based on the fourth and fifth order Runge-Kutta-Merson
method [38], with a relative tolerance of 10−10 and absolute tolerance of 10−12. It is convenient
to solve the system written in terms of ζ and v def

= h1+γh2

h1h2
w + µQF[εζ]w, although this requires to

solve at each time step w as a function of ζ and v.
In Table 1 we display the numerical variations, between time t = 1 and initial time t = 0, of

the conserved quantities (discussed in Section 2.3) as a very rough mean to appreciate the precision
of the numerical scheme. One sees that the agreement is excellent, except when the horizontal
impulse is concerned. In that case, one sees a great sensibility to the presence of large frequency
components. In other words, when Kelvin-Helmholtz instabilities have induced a strong high-
frequency component (i.e. for the classical Green-Naghdi model, or the improved Green-Naghdi
model without surface tension), then the size of this component, which we can see in Figures 2
and 4, is reflected in the precision of the numerical scheme. It is remarkable that the other conserved
quantities do not suffer from such a loss of precision.

With surface tension Without surface tension
original regularized improved original regularized improved

Mass Z 2.3315 10−15 1.7764 10−15 2.2204 10−15 8.8818 10−16 2.5535 10−15 6.6613 10−16

Velocity V -1.199 10−14 -1.1102 10−14 -8.6597 10−15 -1.7319 10−14 -1.1768 10−14 -9.3259 10−15

Impulse I -3.3755 10−4 -4.5686 10−14 -1.2024 10−13 5.5151 10−2 -1.068 10−13 1.8664 10−2

Energy E -2.5935 10−13 -1.7319 10−13 -3.6282 10−13 -4.5741 10−14 -3.2574 10−13 -3.0531 10−13

Table 1: Difference between conserved quantities at time t = 1 and time t = 0.
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5 Well-posedness analysis
This section is dedicated to the proof of the main result of this work, namely the well-posedness
theory for the class of modified Green-Naghdi systems introduced in Section 1.3 and that we recall:

(5.1)





∂tζ + ∂xw = 0,

∂t

(
h1+γh2

h1h2
w + µQF[εζ]w

)
+ (γ + δ)∂xζ + ε

2∂x

(
h2
1−γh

2
2

(h1h2)2 |w|2
)

= µε∂x
(
RF[εζ]w

)
+ γ+δ

Bo ∂
2
x

(
1√

1+µε2|∂xζ|2
∂xζ
)
,

where

QF[εζ]w = −1

3
h−1

2 ∂xF
µ
2

{
h3

2∂xF
µ
2{h−1

2 w}
}
− γ

3
h−1

1 ∂xF
µ
1

{
h3

1∂xF
µ
1{h−1

1 w}
}
,

RF[εζ, w] =
1

3
wh−2

2 ∂xF
µ
2

{
h3

2∂xF
µ
2{h−1

2 w}
}
− γ

3
wh−2

1 ∂xF
µ
1

{
h3

1∂xF
µ
1{h−1

1 w}
}

+
1

2

(
h2∂xF

µ
2{h−1

2 w}
)2 − γ

2

(
h1∂xF

µ
1{h−1

1 w}
)2
.

Here and thereafter, we always denote h1 = h1(εζ) = 1 − εζ and h2 = h2(εζ) = δ−1 + εζ. Let us
also recall that Fµi (i = 1, 2) denotes a Fourier multiplier:

Fµi = Fi(
√
µD) i.e. F̂µi f(ξ) = Fi(

√
µξ)f̂(ξ).

In this section (and subsequently in Section 6), we restrict ourselves to admissible Fourier multipliers
Fµi , as defined in Definition 1.1. This permits the functional analysis detailed in Section C.

For reasons explained below, our energy space involves both space and time derivatives of the
unknowns. For U = (ζ, w)>, we define

(5.2) E0(U)
def
=
∣∣ζ
∣∣2
X0

Bo−1

+
∣∣w
∣∣2
Y 0
Fµ
, EN (U)

def
=

N∑

|α|=0

E0(∂αU)
def
=
∣∣ζ
∣∣2
XN

Bo−1

+
∣∣w
∣∣2
Y N
Fµ
,

where N always denotes an integer and α a multi-index. The functional setting and in particular
the definitions of functional spaces XN

Bo−1 and Y NFµ are given in Section B, in annex of this paper.
Finally, in addition to γ, µ, ε, δ,Bo−1 ≥ 0, it is convenient to introduce the following dimension-

less parameters:

(5.3) ΥF
def
= ε2

(
1 + (γKF1

+KF2
)(µBo)1−σ) <∞

where σ, KF1 , KF2 are specified in Definition 1.1, (1.8); and

(5.4) m
def
= max{ε, γ, δ, δ−1, µ,Bo−1} <∞.

Theorem 5.1 (Well-posedness). Let U0 def
= (ζ0, w0)> ∈ XN

Bo−1 × Y NFµ with N ≥ 4, satisfying

h0
1

def
= 1− εζ0 ≥ h0 > 0, h0

2
def
= δ−1 + εζ0 ≥ h0 > 0;

(γ + δ)− ε2 max
x∈R

{
((h0

2)−3 + γ(h0
1)−3)|w0|2

}
≥ k0 > 0.

One can define K = C(m, h−1
0 , k−1

0 , ε
∣∣ζ
∣∣
H3
x
) such that if ΥF

∣∣w0
∣∣2
Z1

Fµ
≤ K−1, there exists T > 0 and

a unique U def
= (ζ, w)> ∈ C0

w([0, T );XN
Bo−1 × Y NFµ ) solution to (5.1) and U |

t=0
= U0. Moreover,

there exists C0 = C(m, h−1
0 , k−1

0 ,K,EN (U0)) such that

T−1 ≤ C0 ×
(
ε+ Υ

1/2
F

∣∣w0
∣∣
Z1

Fµ
+ ΥF

∣∣w0
∣∣2
Z2

Fµ

)
and sup

t∈[0,T )

EN (U) ≤ C0 × EN (U0).
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Before the proving this result, let us discuss a few of its implications.

Remark 5.2 (Initial data). Since our functional spaces involve time derivatives, it is not a priori
clear how to define

∣∣ζ0
∣∣
Y 0
Fµ

and
∣∣w0
∣∣
Y N
Fµ
. As it is manifest from the proof, the definition of (∂αU0) |

t=0

for sufficiently regular ζ0(x), w0(x) is given by system (5.1) itself. More precisely, for α = (0, α2),
then the definition is clear. We then define (∂αU0) |

t=0
for α = (α1, α2) with α1 > 0 by finite

induction on α1, through the identities obtained from (5.1) differentiated |α1|− 1 times with respect
to time. These identities are exactly the ones given in Lemma 5.5, and are uniquely solved by
Lemma 5.7 (below).

Remark 5.3 (Domain of hyperbolicity and time of existence). Hypotheses on the initial data
ensure that the flow lies in the “domain of hyperbolicity” of the system; see Lemma 5.6. They
may be seen as the nonlinear version of the stability criterion presented in Section 3.2, as they
provide sufficient conditions for Kelvin-Helmholtz instabilities not to appear. However, remark that
our “Kelvin-Helmholtz instability parameter”, ΥF, is not multiplied by γ, in contrast with Υ and
ΥGN in Section 3, as well as the nonlinear result for the full Euler system obtained by Lannes [25,
(5.1)]. The latter results imply that the large-frequency Kelvin-Helmholtz instabilities disappear in
the limit γ → 0, so that surface tension is not necessary for the well-posedness of the system when
γ = 0. We do not recover such property with our rigorous analysis, although numerical simulations
indicate that our models are well-posed when γ = 0 and Bo = ∞, as long as the non-vanishing
depth condition is satisfied.

A second setback is that the time of existence involves Υ
1/2
F

∣∣w0
∣∣
Z1

Fµ
, and not only ΥF

∣∣w0
∣∣2
Z2

Fµ
.

In practice, this means that when ΥF � 1, and in particular when ΥF ≤ ε � 1, then the time of
existence of our result is significantly smaller than the one in [26, Theorem 6].

However, let us note that our conclusions, in particular with the choice Fi = Fimp
i where σ = 1/2,

are in complete agreement with aforementioned results in the oceanographic setting of internal waves,
where one expects large values of ε and γ ≈ 1.

We believe that the above limitations originate from the choice of unknowns used when quasilin-
earizing the equation. This was quickly discussed in footnote 4 in Section 3.2 as for the occurrence of
γ. The restriction on the time of existence originates from estimates (5.6) and (5.7) in Lemma 5.5,
and more precisely the lack of an analogue of [25, Lemma 7] thanks to which “good unknowns”
could be constructed. We show in Section A how the techniques used in this work, applied to the
Saint-Venant system (that is setting µ = 0) written with different unknowns, yields sharp results. It
would be interesting to obtain similar results on Green-Naghdi systems, but would possibly require
to construct new models with different variables.

Remark 5.4 (Regularized systems). In the case σ = 1, one sees that Theorem 5.1 does not depend
on Bo (through ΥF). In particular, the results hold true even when surface tension is neglected, that
is Bo−1 = 0. Notice that we recover in that case the “quasilinear timescale” T−1 . ε. However,
without the surface tension component, our strategy relying on the use of space-time energy is
certainly not needed, and we expect that classical methods can be applied to prove the well-posedness
for initial data in Sobolev spaces: (ζ0, w0)> ∈ Hs ×Hs, s > 3/2.

Strategy and outline Our strategy is similar to the one used for the full Euler system with
surface tension by Lannes [26, 25], and originates from an idea of Rousset and Tzvetkov [35, 36].
The main difference with respect to the traditional methods for quasilinear systems is that we treat
time derivatives in the same way as space derivatives. In particular, the main tool of the analysis
is the control of a space-time energy. The reason for such a strategy is that

• the two unknowns, ζ and w, are controlled in different functional spaces, one being contin-
uously embedded in the other but to the price of a non-uniform constant (see Lemma C.1),
and the inclusion being strict;
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• the most singular term of the system, namely the one which involves the operator of highest
order, comes from the surface tension component, and couples the two unknowns (it appears
as an off-diagonal component of the quasilinearized system).

This is why one cannot use standard energy methods in Sobolev-based functional spaces, as com-
mutator estimates fail to control all coupling terms.

More precisely, our strategy is as follows. In Lemma 5.5 below, we “quasilinearize” the system.
We differentiate several times the equations with respect to space and time, and extract the leading
order components. The quasilinear system we consider is the complete system of all the equations
satisfied by the original unknowns and their space-time derivatives up to sufficiently high order.
Thus only L2-type estimates on the aforementioned linear “block” systems will be required. In
Section 5.2, we study the operators involved in the block systems. In particular, we derive sufficient
conditions for hyperbolicity in Lemma 5.6, that is assumptions on the data which allow to exhibit
a coercive symmetrizer of the system. Thanks to such results, one obtains as usual some a priori
energy estimates in Section 5.3. Finally, in Section 5.4, we explain how to deduce from these
energy estimates the well-posedness of the linear block systems (Lemma 5.12), and in turn the
well-posedness of the nonlinear system (Theorem 5.1).

5.1 Quasilinearization of the Green-Naghdi systems
The following Lemma introduces the quasilinear systems which are central in our analysis.

Lemma 5.5. Let U = (ζ, w)> ∈ XN
Bo−1 × Y NFµ with N ≥ 4, solution to (5.1) and satisfying

(5.5) h1(εζ) = 1− εζ ≥ h0 > 0, h2(εζ) = δ−1 + εζ ≥ h0 > 0.

For any α = (α1, α2) such that |α| ≤ N , denote U (α) def
= (∂αζ, ∂αw)> and ζ〈α̌〉 def

= (∂α−e1ζ, ∂α−e2ζ)>

(if αj = 0, then ∂α−ejζ = 0 by convention). Then one can define r(α) = r(α)[εζ, εw] ∈ (Y 0
Fµ)? such

that U (α) satisfies:

• If |α| = N ,




∂tζ
(α) + ∂xw

(α) = 0,

b[εζ]∂tw
(α) + ∂xa[εζ, εw]ζ(α) + ∂xǎα[εζ]ζ〈α̌〉 + c[εζ, εw]∂xw

(α) = r(α),

• If |α| ≤ N − 1,




∂tζ
(α) + ∂xw

(α) = 0,

b[εζ]∂tw
(α) + ∂xa[εζ, εw]ζ(α) + c[εζ, εw]∂xw

(α) = r(α),

where

a[εζ, εw]• def
=
(

(γ + δ)− ε2h
3
1 + γh3

2

(h1h2)3
|w|2

)
× • − µε2

(
d1RF

2[εζ, w]− γd1RF
1[εζ, w]

)
•

− γ + δ

Bo
∂x

(
∂x•

(1 + µε2|∂xζ|2)3/2

)

b[εζ]• def
=

h1 + γh2

h1h2
• + µ(QF

2[εζ] + γQF
1[εζ])•,

c[εζ, εw]• def
= ε

h2
1 − γh2

2

(h1h2)2
w × • − µε

(
dQF

2[εζ](w) + γdQF
1[εζ](w)

)
•

− µε
(
d2RF

2[εζ, w]− γd2RF
1[εζ, w]

)
•,
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with QF
i ,dQF

i ,d1RF
i ,d2RF

i defined in (5.12),(5.14),(5.18),(5.19) below; and

ǎα[εζ]ζ〈α̌〉
def
=

γ + δ

Bo
∂x


 ∑

j∈{1,2}

3αjµε
2

(∂x∂
ejζ)(∂xζ)(∂xζ

〈α̌〉
j )

(1 + µε2|∂xζ|2)5/2


 .

Moreover, r(α) = r(α)[εζ, εw] satisfies

(5.6)
∣∣r(α)

∣∣
(Y 0

Fµ
)?
≤ C(m, h−1

0 , EN (U))× E|α|(U)1/2 × (ε+ Υ
1/2
F

∣∣w
∣∣
Z1

Fµ
+ ΥF

∣∣w
∣∣2
Z1

Fµ
),

and

(5.7)
∣∣r(α)[εζ1, εw1]− r(α)[εζ2, εw2]

∣∣
(Y 0

Fµ
)?
≤ C(m, h−1

0 , EN (U1), EN (U2))× E|α|(U1 − U2)1/2

× (ε+ Υ
1/2
F

∣∣w1

∣∣
Z1

Fµ
+ ΥF

∣∣w1

∣∣2
Z1

Fµ
).

Proof. The proof simply consists in differentiating α times the Green-Naghdi system (5.1). The
higher order terms contribute to a, b, c and ǎ, while lower order terms contribute to r(α). In the
following, we explain how the estimates concerning r(α) are obtained, by treating separately the
first order terms, dispersive terms and the surface tension term.

Contribution from the first order terms, ∂t
(
h1+γh2

h1h2
w
)

+ ε
2∂x
(h2

1−γh
2
2

(h1h2)2 |w|2
)
.

Consider the identity

ε

2
∂x

(h2
1 − γh2

2

(h1h2)2
|w|2

)
= ε

h2
1 − γh2

2

(h1h2)2
w∂xw − ε2

h3
1 + γh3

2

(h1h2)3
|w|2∂xζ.

It follows, by Leibniz’s rule,

(5.8) ∂α
(
ε

2
∂x

(h2
1 − γh2

2

(h1h2)2
|w|2

))
= ∂x

(
− ε2h

3
1 + γh3

2

(h1h2)3
|w|2∂αζ

)
+ ε

h2
1 − γh2

2

(h1h2)2
w∂x∂

αw + εr
(α)
1 ,

with

r
(α)
1 =

|α|+1∑

n=0

∑

βi,β′j

εnC(βi,β
′
j)G(n)(εζ)

(
n∏

i=1

∂βiζ

)


2∏

j=1

∂β
′
iw


 def

=

|α|+1∑

n=0

∑

βi,β′j

εnC(βi,β
′
j)r

(βi,β
′
j)

1 ,

where (βi, β
′
j) is any n+ 2-tuple of multi-index satisfying

1 ≤ |β1| ≤ · · · ≤ |βn| ≤ |α|, 0 ≤ |β′1| ≤ |β′2| ≤ |α| and
n∑

i=1

βi +

2∑

j=1

β′j = α+ (0, 1),

C(βi,β
′
j) is a constant and G(n) the n-th derivative of G(X) =

h2
1(X)−γh2

2(X)
(h1h2)2(X) = (1−X)2−γ(δ−1+X)2

(1−X)2(δ−1+X)2 .
We estimate each of these terms as follows :

• if |βn| = |α|, then 0 ≤ |β1|, . . . , |βn−1|, |β′1|, |β′2| ≤ 1, and

∣∣r(βi,β
′
j)

1

∣∣
L2 ≤

∣∣G(n)(εζ)
∣∣
L∞

∣∣∂βnζ
∣∣
L2

(
n−1∏

i=1

∣∣∂βiζ
∣∣
L∞

)


2∏

j=1

∣∣∂β′iw
∣∣
L∞


 ;

• otherwise 0 ≤ |β1|, . . . , |βn|, |β′1| ≤ |α| − 1, and

∣∣r(βi,β
′
j)

1

∣∣
L2 ≤

∣∣G(n)(εζ)
∣∣
L∞

(
n∏

i=1

∣∣∂βiζ
∣∣
L∞

)(∣∣∂β′1w
∣∣
L∞

∣∣∂β′2ζ
∣∣
L2

)
.
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One has
∣∣G(n)(εζ)

∣∣
L∞
≤ C(m, h−1

0 ) since εζ satisfies (5.5); and by Sobolev embedding,

∣∣∂βu
∣∣
L∞
≤
∣∣∂βu

∣∣
H1
x
≤
∣∣∂βu

∣∣
H1 ≤ min

{∣∣u
∣∣
X

1+|β|
Bo−1

,
∣∣u
∣∣
Y

1+|β|
Fµ

}

(recall that by definition,
∣∣∂βu

∣∣2
H1

def
=
∣∣∂βu

∣∣2
L2 +

∣∣∂x∂βu
∣∣2
L2 +

∣∣∂t∂βu
∣∣2
L2). We deduce immediately,

since N ≥ 4 and |α| ≤ N ,

(5.9)
∣∣r(α)

1

∣∣
L2 ≤ C

(
m, h−1

0 , EN (U)
)
× E|α|(U)1/2.

Similarly, we write

∂α∂t

(
h1 + γh2

h1h2
w

)
=
h1 + γh2

h1h2
∂t∂

αw − εwh
2
1 − γh2

2

h1h2
∂t∂

αζ + εr
(α)
2

=
h1 + γh2

h1h2
∂t∂

αw + εw
h2

1 − γh2
2

h1h2
∂x∂

αw + εr
(α)
2 ,(5.10)

where we used ∂tζ = −∂xw, from the first equation of (5.1). One obtains as above the following
estimate:

(5.11)
∣∣r(α)

2

∣∣
L2 ≤ C

(
m, h−1

0 , EN (U)
)
× E|α|(U)1/2.

Contribution from the dispersive terms, µ∂t
(
QF[εζ]w

)
− µε∂x

(
RF[εζ]w

)
.

Define (with a slight abuse of notation with respect to (1.5))

(5.12) QF
i [εζ]w

def
= −1

3
h−1
i ∂xF

µ
i

{
h3
i ∂xF

µ
i {h−1

i w}
}
,

so that QF[εζ]w = QF
2[εζ]w + γQF

1[εζ]w. Differentiating α+ e1 times and using ∂tζ = −∂xw yields

∂α∂tQF
i [εζ]w = QF

i [εζ]∂α∂tw + dQF
i [εζ](w)(ε∂α∂tζ) + r

(α)
3,i

= QF
i [εζ]∂α∂tw − dQF

i [εζ](w)(ε∂α∂xw) + r
(α)
3,i(5.13)

where we defined

(5.14) (−1)idQF
i [εζ](w)• =

1

3
h−2
i

(
∂xF

µ
i

{
h3
i ∂xF

µ
i {h−1

i w}
})
× •

− h−1
i ∂xF

µ
i

{
h2
i ∂xF

µ
i {h−1

i w} × •
}

+
1

3
h−1
i ∂xF

µ
i

{
h3
i ∂xF

µ
i {h−2

i w × •}
}

;

and
r

(α)
3,i =

∑

βj

C(βj)(∂β1h−1
i )∂xF

µ
i

{
(∂β2h3

i )∂xF
µ
i {(∂β3h−1

i )(∂β4w)}
} def

=
∑

βj

C(βj)r
(βj)
3,i ,

where C(βj) is a constant and (βj) is any 4-tuple of multi-index satisfying

0 ≤ |β1|, |β2|, |β3|, |β4| ≤ |α| and
4∑

j=1

βj = α+ e1,
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We estimate each of these terms by assuming that U = (ζ, w)> ∈ S(R)× S(R), so that for any
f ∈ S(R), the following identities are immediately valid:

〈r(βj)
3,i , f〉(Y 0

Fµ
)? =

(
(∂β1h−1

i )∂xF
µ
i

{
(∂β2h3

i )∂xF
µ
i {(∂β3h−1

i )(∂β4w)}
}
, f
)
L2

= −
(

(∂β2h3
i )∂xF

µ
i {(∂β3h−1

i )(∂β4w)} , ∂xFµi {(∂β1h−1
i )f}

)
L2
.

The estimates hold as well for U = (ζ, w)> ∈ XN
Bo−1 ×Y NFµ (N ≥ 4) and f ∈ Y 0

Fµ by density of S(R)
in Y 0

Fµ and X0
Bo−1 using standard continuity arguments.

• if |β1| = |α|, then 0 ≤ |β2|, |β3|, |β4| ≤ 1 and

γ2−i
∣∣∣µ〈r(βj)

3,i , f〉(Y 0
Fµ

)?

∣∣∣ ≤ γ2−iµ
∣∣∂β1h−1

i

∣∣
L2

∣∣∂xFµi
{

(∂β2h3
i )∂xF

µ
i {(∂β3h−1

i )(∂β4w)}
}∣∣
L∞

∣∣f
∣∣
L2 .

Notice first, since |β1| = |α| ≥ 1 (otherwise this term does not appear), there exists j ∈ {1, 2}
such that ej ≤ β1 and

∣∣∂β1h−1
i

∣∣
L2 =

∣∣∂β1−ej
(
h−2
i ε∂ejζ

)∣∣
L2 ≤ C(m, h−1

0 ,
∣∣εζ
∣∣
W |α|−1,∞)× ε

∣∣ζ
∣∣
H|α|

.

Now, using several times Lemma C.3, and since ∂β2h3
i = 3h2

i ε∂
β2ζ if |β2| = 1 or ∂β2h3

i = h3
i

if |β| = 0 (and similarly for ∂β3h−1
i ), one has

γ2−iµ
∣∣∂xFµi

{
(∂β2h3

i )∂xF
µ
i {(∂β3h−1

i )(∂β4w)}
}∣∣
L∞

≤
√
γ2−iµ

∣∣(∂β2h3
i )∂xF

µ
i {(∂β3h−1

i )(∂β4w)}
∣∣
Z0

Fµ

≤
√
γ2−iµC(m, h−1

0 ,
∣∣εζ
∣∣
H3)
∣∣∂xFµi {(∂β3h−1

i )(∂β4w)}
∣∣
Z0

Fµ

≤
√
γ2−iµC(m, h−1

0 ,
∣∣εζ
∣∣
H3)
∣∣(∂β3h−1

i )(∂β4w)
∣∣
Z1

Fµ

≤
√
γ2−iµC(m, h−1

0 ,
∣∣εζ
∣∣
H4)
∣∣w
∣∣
Z2

Fµ
.

Therefore, since max{4, |α|} ≤ N ,
∣∣∣γ2−iµ〈r(βj)

3,i , f〉(Y 0
Fµ

)?

∣∣∣ ≤ C(m, h−1
0 ,
∣∣εζ
∣∣
HN

)× ε
√
γ2−iµ

∣∣w
∣∣
Z2

Fµ

∣∣ζ
∣∣
X
|α|
Bo−1

∣∣f
∣∣
L2 .

• if |β2| = |α|, then 0 ≤ |β1|, |β3|, |β4| ≤ 1 and
∣∣∣γ2−iµ〈r(βj)

3,i , f〉(Y 0
Fµ

)?

∣∣∣ ≤ γ2−iµ
∣∣∂β2h3

i

∣∣
L2

∣∣∂xFµi {(∂β3h−1
i )(∂β4w)}

∣∣
L∞

∣∣∂xFµi
{

(∂β1h−1
i )f

}∣∣
L2 .

One has as above
∣∣∂β2h3

i

∣∣
L2 ≤ ε

∣∣ζ
∣∣
H|α|

C(m,
∣∣εζ
∣∣
W |α|−1). As for the other terms, using

Lemma C.3, and ∂β1h−1
i = −εh−2

i ∂β1ζ if |β1| = 1 or ∂β1h−1
i = h−1

i if |β1| = 0, one has
√
γ2−iµ

∣∣∂xFµi
{

(∂β1h−1
i )f

}∣∣
L2 ≤

∣∣(∂β1h−1
i )f

∣∣
Y 0
Fµ
≤ C(m, h−1

0 ,
∣∣εζ
∣∣
H3)
∣∣εζ
∣∣|β1|
Z1

Fµ

∣∣f
∣∣
Y 0
Fµ
.

The last term is treated identically and one obtains eventually
∣∣∣γ2−iµ〈r(βj)

3,i , f〉(Y 0
Fµ

)?

∣∣∣ ≤ C(m, h−1
0 ,
∣∣εζ
∣∣
HN

)× ε
∣∣w
∣∣
Z1

Fµ

∣∣ζ
∣∣
X
|α|
Bo−1

∣∣f
∣∣
Y 0
Fµ
.

• if |β4| = |α|, then 0 ≤ |β1|, |β2|, |β3| ≤ 1 and
∣∣∣γ2−iµ〈r(βj)

3,i , f〉(Y 0
Fµ

)?

∣∣∣ ≤
∣∣∂β2h3

i

∣∣
L∞

√
γ2−iµ

∣∣∂xFµi {(∂β3h−1
i )(∂β4w)}

∣∣
L2

√
γ2−iµ

∣∣∂xFµi
{

(∂β1h−1
i )f

}∣∣
L2 .
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One has
∣∣∂β2h3

i

∣∣
L∞
≤ C(m,

∣∣εζ
∣∣
L∞

)
∣∣εζ
∣∣|β2|
W 1,∞ . We have already seen that

√
γ2−iµ

∣∣∂xFµi
{

(∂β1h−1
i )f

}∣∣
L2 ≤ C(m, h−1

0 ,
∣∣εζ
∣∣
H3)
∣∣εζ
∣∣|β1|
Z1

Fµ

∣∣f
∣∣
Y 0
Fµ

and similarly
√
γ2−iµ

∣∣∂xFµi {(∂β3h−1
i )(∂β4w)}

∣∣
L2 ≤ C(m, h−1

0 ,
∣∣εζ
∣∣
H3)
∣∣εζ
∣∣|β3|
Z1

Fµ

∣∣w
∣∣
Y
|α|
Fµ
.

Since |β1|+ |β2|+ |β3| = 1, it follows
∣∣∣γ2−iµ〈r(βj)

3,i , f〉(Y 0
Fµ

)?

∣∣∣ ≤ C(m, h−1
0 ,
∣∣εζ
∣∣
H3)× ε

∣∣ζ
∣∣
Z1

Fµ

∣∣w
∣∣
Y
|α|
Fµ

∣∣f
∣∣
Y 0
Fµ
.

• if |β3| = |α|, one obtains as above
∣∣∣γ2−iµ〈r(βj)

3,i , f〉(Y 0
Fµ

)?

∣∣∣ ≤ C(m, h−1
0 ,
∣∣εζ
∣∣
H3 ,

∣∣εζ
∣∣
W |α|−1,∞)× ε

∣∣w
∣∣
Z1

Fµ

∣∣ζ
∣∣
Y
|α|
Fµ

∣∣f
∣∣
Y 0
Fµ
.

By Lemma C.1 and (5.3), it follows
∣∣∣γ2−iµ〈r(βj)

3,i , f〉(Y 0
Fµ

)?

∣∣∣ ≤ C(m, h−1
0 ,
∣∣εζ
∣∣
HN

)×Υ
1/2
F

∣∣w
∣∣
Z1

Fµ

∣∣ζ
∣∣
X
|α|
Bo−1

∣∣f
∣∣
Y 0
Fµ
.

• otherwise 0 ≤ |β1|, |β2|, |β3|, |β4| ≤ |α| − 1.
If |β1| ≤ |α| − 2, we use
∣∣∣γ2−iµ〈r(βj)

3,i , f〉(Y 0
Fµ

)?

∣∣∣ ≤
∣∣∂β2h3

i

∣∣
L∞

√
γ2−iµ

∣∣∂xFµi {(∂β3h−1
i )(∂β4w)}

∣∣
L2

√
γ2−iµ

∣∣∂xFµi
{

(∂β1h−1
i )f

}∣∣
L2 .

If |β1| = |α| − 2, then we use
∣∣∣γ2−iµ

(
r

(βj)
3,i , f

)
L2

∣∣∣ ≤ µ
∣∣∂β1h−1

i

∣∣
L2

∣∣∂xFµi
{

(∂β2h3
i )∂xF

µ
i {(∂β3h−1

i )(∂β4w)}
}∣∣
L∞

∣∣f
∣∣
L2 .

Proceeding as above, this yields
∣∣∣γ2−iµ〈r(βj)

3,i , f〉(Y 0
Fµ

)?

∣∣∣ ≤ C(m, h−1
0 ,
∣∣εζ
∣∣
H|α|

)× ε
∣∣w
∣∣
Y
|α|
Fµ

∣∣ζ
∣∣
X
|α|
Bo−1

∣∣f
∣∣
Y 0
Fµ
.

Plugging these estimates into (5.13), we proved
(5.15)
µ∂α∂t

(
QF[εζ]w

)
= µ(Q2[εζ] + γQ1[εζ])∂α∂tw − µ

(
dQ2[εζ](w) + γdQ1[εζ](w)

)
(ε∂α∂xw) + r

(α)
3 ,

with (recalling max{|α|, 4} ≤ N)

(5.16)
∣∣r(α)

3

∣∣
(Y 0

Fµ
)?
≤ C(m, h−1

0 , EN (U))× E|α|(U)1/2 × (ε+ Υ
1/2
F

∣∣w
∣∣
Z1

Fµ
).

The other contribution is treated similarly. We define

(5.17) RF
i [εζ, εw]

def
=

1

3
wh−2

i ∂xF
µ
i

{
h3
i ∂xF

µ
i {h−1

i w}
}

+
1

2

(
hi∂xF

µ
i {h−1

i w}
)2
,

and

(−1)id1RF
i [εζ, w]• def

= −2

3
wh−3

i ∂xF
µ
i

{
h3
i ∂xF

µ
i (h−1

i w)
}
× •(5.18)

+ wh−2
i ∂xF

µ
i

{
h2
i ∂xF

µ
i {h−1

i w} × •
}
− 1

3
wh−2

i ∂xF
µ
i

{
h3
i ∂xF

µ
i {h−2

i w•}
}

+
(
hi∂xF

µ
i {h−1

i w}
)
×
((
∂xF

µ
i {h−1

i w}
)
× • −

(
hi∂xF

µ
i {h−2

i w × •}
))
,
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and

(5.19) d2RF
i [εζ, w]• def

=
1

3

(
h−2
i ∂xF

µ
i

{
h3
i ∂xF

µ
i {h−1

i w}
})
× •+

1

3
wh−2

i ∂xF
µ
i

{
h3
i ∂xF

µ
i {h−1

i × •}
}

+
(
hi∂xF

µ
i {h−1

i w}
)
×
(
hi∂xF

µ
i {h−1

i × •}
)
.

It follows
∂x∂

αRF
i [εζ, w] = ∂x

(
d1Ri[εζ, w]∂αζ

)
+ ∂x

(
d2RF

i [εζ, w]∂αw
)

+ r
(α)
4,i ,

with

r
(α)
4,i =

∑

(βj)

C(βj)(∂β1w)(∂β2h−2
i )∂xF

µ
i

{
(∂β3h3

i )∂xF
µ
i {(∂β4h−1

i )(∂β5w)}
}

+
∑

(β′j)

C(β′j)
(
(∂β

′
1hi)∂xF

µ
i {(∂β

′
2h−1
i )(∂β

′
3w)}

)(
(∂β

′
4hi)∂xF

µ
i {(∂β

′
5h−1
i )(∂β

′
6w)}

)

where C(βj), C(β′j) are constants and (βj), (β′j) are tuples of multi-index satisfying

0 ≤ |βj |, |β′j | ≤ |α| and
5∑

j=1

βj =

6∑

j=1

β′j = α+ e2,

All these terms may be estimated as previously, and one obtains without any additional difficulty
(5.20)
µε∂α∂x

(
RF[εζ, w]

)
= µε2∂x

((
d1R2[εζ, w]−γd1R1[εζ, w]

)
∂αζ

)
+µε∂x

((
d2R2[εζ, w]−γd2R1[εζ, w]

)
∂αw

)
+r

(α)
4 ,

with

(5.21)
∣∣r(α)

4

∣∣
(Y 0

Fµ
)?
≤ C(m, h−1

0 , EN (U))× E|α|(U)1/2 × (ε+ ΥF

∣∣w
∣∣2
Z1

Fµ
).

Contribution from the surface tension term, γ+δ
Bo ∂

2
x

(
1√

1+µε2|∂xζ|2
∂xζ
)
.

Let us denote s(∂xζ) = 1√
1+µε2|∂xζ|2

∂xζ and notice ∂s = 1
(1+µε2|∂xζ|2)3/2

∂∂xζ. It follows

(5.22) ∂α∂2
xs = ∂2

x

(
1

(1 + µε2|∂xζ|2)3/2
∂α∂xζ

)
−

2∑

j=1

3αj∂
2
x

(
µε2(∂xζ)(∂ej∂xζ)

(1 + µε2|∂xζ|2)5/2
∂α−ej∂xζ

)
+ r

(α)
5 ,

with

r
(α)
5 =

N+1∑

k=1

(µε2)k

(1 + µε2|∂xζ|2)k+3/2

∑

(βj)

C(βj)r
(βj)
k , r

(βj)
k

def
=

2k+1∏

j=1

∂βj∂xζ,

where for any k ∈ {1, . . . , N + 1}, (βj) is a 2k+ 1-uple such that for all j ∈ {1, . . . , 2k+ 1}, one has

0 ≤ |β1| ≤ · · · ≤ |β2k+1| ≤ |α| ≤ N and
2k+1∑

j=1

βj = α+ 2e2,

and C(βj) is a constant.
Assume first that |β2k+1| = N . Then for any j ∈ {1, . . . , k}, |βj | ≤ 2. It follows

1

Bo

∣∣r(βj)
k

∣∣
L2 ≤

1

Bo1/2
C(
∣∣∂xζ

∣∣
W 2,∞)

∣∣∂β2k+1ζ
∣∣
X0

Bo−1

≤ 1

Bo1/2
C(
∣∣ζ
∣∣
H4)
∣∣ζ
∣∣
XN

Bo−1

.



A new class of two-layer Green-Naghdi systems with improved frequency dispersion 25

Now, if |β2k+1| = N − 1, then either |β2k| = 3 and |βj | = 0 for any j ≤ 2k − 1, or |βj | ≤ 2 for
any j ≤ 2k. The latter case is estimated as above, while in the former case, one has

1

Bo

∣∣r(βj)
k

∣∣
L2 ≤

1

Bo1/2
C(
∣∣∂xζ

∣∣
W 2,∞)

∣∣∂β2kζ
∣∣
W 0

Bo−1

∣∣∂β2k+1∂xζ
∣∣
L2 ≤

1

Bo1/2
C(
∣∣ζ
∣∣
X4

Bo−1

)
∣∣ζ
∣∣
XN

Bo−1

.

Otherwise, one has |βj | ≤ N − 2 for any j ∈ {1, . . . , 2k + 1}, and in that case,

1

Bo

∣∣r(βj)
5

∣∣
L2 ≤

1

Bo
C(
∣∣ζ
∣∣
XN

Bo−1

)
∣∣ζ
∣∣
XN

Bo−1

.

Altogether, this yields for N ≥ 4

(5.23)
1

Bo

∣∣r(α)
5

∣∣
L2 ≤

µε2

Bo1/2
C(Bo−1, µε2,

∣∣ζ
∣∣
XN

Bo−1

)
∣∣ζ
∣∣
XN

Bo−1

.

Finally, there remains to estimate for 1 ≤ |α| ≤ N − 1,

∂xǎαζ
〈α̌〉 def

= −γ + δ

Bo

2∑

j=1

3αj∂
2
x

(
µε2(∂xζ)(∂ej∂xζ)

(1 + µε2|∂xζ|2)5/2
∂α−ej∂xζ

)

= −γ + δ

Bo

2∑

j=1

3αj

(
µε2(∂xζ)(∂ej∂xζ)

(1 + µε2|∂xζ|2)5/2
∂α−ej∂3

xζ

)
+ r

(α)
6 .

The remainder r(α)
6 is easily estimated as above, and we use

1

Bo

∣∣(∂xζ)(∂ej∂xζ)∂α−ej∂3
xζ
∣∣
L2 ≤

∣∣∂xζ
∣∣
L∞

1

Bo1/2

∣∣∂ej∂xζ
∣∣
L2

1

Bo1/2

∣∣∂α−ej∂3
xζ
∣∣
L2 .

for the most singular term. Since N ≥ 4, one has for 1 ≤ |α| ≤ N − 1,

(5.24)
∣∣∂xǎαζ〈α̌〉

∣∣
L2 ≤ µε2C(Bo−1, µε2,

∣∣ζ
∣∣
XN

Bo−1

)
∣∣ζ
∣∣
X
|α|
Bo−1

.

The definition of the operators a, b, c, ǎ
(α)
α , r(α) and estimate (5.6) now follows from (5.8)-

(5.9), (5.10)-(5.11), (5.15)-(5.16), (5.20)-(5.21), (5.22)-(5.23) as well as (5.24) when 1 ≤ |α| ≤ N−1.
Estimate (5.7) is obtained identically, using in particular the trivial estimates
∣∣H(εζ1)−H(εζ2)

∣∣
L∞
≤ H1,h0ε

∣∣ζ1 − ζ2
∣∣
L∞

,
∣∣H(εζ1)−H(εζ2)

∣∣
L2 ≤ H1,h0ε

∣∣ζ1 − ζ2
∣∣
L2 ,

and
∣∣Ĥ(εζ1)− Ĥ(εζ2)

∣∣
L1 ≤

∣∣H(εζ1)−H(εζ2)
∣∣
H1 ≤ C(H2,h0 ,

∣∣εζ1
∣∣
W 1,∞ ,

∣∣εζ2
∣∣
W 1,∞)ε

∣∣ζ1 − ζ2
∣∣
H1 ,

where H and H1,h0
are as in Lemma C.3.

This concludes our proof of Lemma 5.5.

5.2 Preliminary results
In this section, we prove that the operator a[εζ, εw] (resp. b[εζ]), introduced in Lemma 5.5, is
symmetric, continuous and coercive with respect to the space X0

Bo−1 (resp. Y 0
Fµ), provided that

some conditions are satisfied by (εζ, εw). These requirements can be seen as sufficient conditions
for the hyperbolicity of the system, and permit to control the energy solutions to the quasilinear
system for positive times (Section 5.3), and eventually prove the well-posedness of our system
(Section 5.4).
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Lemma 5.6. Let (ζ, w)> ∈ H3
x×Z1

Fµ be such that εζ satisfies (5.5) with h0 > 0. Then a[εζ, εw] ∈ L(X0
Bo−1 ; (X0

Bo−1)?),
b[εζ] ∈ L(Y 0

Fµ ; (Y 0
Fµ)?) and c[εζ, εw] ∈ L(Y 0

Fµ ; (Y 0
Fµ)?). Moreover, there exists K0,K1 = C(m, h−1

0 , ε
∣∣ζ
∣∣
H3
x
)

such that

∀f, g ∈ X0
Bo−1 ,

∣∣〈a[εζ, εw]f , g〉(X0
Bo−1 )?

∣∣ ≤ K1(1 + ΥF

∣∣w
∣∣2
Z1

Fµ
)
∣∣f
∣∣
X0

Bo−1

∣∣g
∣∣
X0

Bo−1

∀f, g ∈ Y 0
Fµ ,

∣∣〈b[εζ]f , g〉(Y 0
Fµ

)?
∣∣ ≤ K1

∣∣f
∣∣
Y 0
Fµ

∣∣g
∣∣
Y 0
Fµ

∀f, g ∈ Y 0
Fµ ,

∣∣〈c[εζ, εw]f , g〉(Y 0
Fµ

)?
∣∣ ≤ εK1

∣∣w
∣∣
Z1

Fµ

∣∣f
∣∣
Y 0
Fµ

∣∣g
∣∣
Y 0
Fµ
,

∀f ∈ Y 0
Fµ , 〈b[εζ]f , f〉(Y 0

Fµ
)? ≥

1

K0

∣∣f
∣∣2
Y 0
Fµ
.

Assume additionally that there exists k0 > 0 such that

(5.25) (γ + δ)− ε2 max
x∈R

{
(h−3

2 + γh−3
1 )|w|2

}
≥ k0 > 0.

Then there exists K,K ′0 = C(m, h−1
0 , k−1

0 , ε
∣∣ζ
∣∣
H3
x
) such that if

(5.26) ΥF

∣∣w
∣∣2
Z1

Fµ
≤ K−1,

then
∀f ∈ X0

Bo−1 , 〈a[εζ, εw]f , f〉(X0
Bo−1 )? ≥

1

K ′0

∣∣f
∣∣2
X0

Bo−1

.

Proof. We establish each result for f, g ∈ S(R) so that all the terms are obviously well-defined and
in particular the (X? −X) duality product (with X = X0

Bo−1 or Y 0
Fµ) coincides with the L2 scalar

product; the result for f, g ∈ X0
Bo−1 or Y 0

Fµ is then obtained by density of S(R) in X0
Bo−1 and Y 0

Fµ ,
and continuous linear extension.

One has, after integration by parts,

(5.27) 〈b[εζ]f , g〉(Y 0
Fµ

)? =
(
b[εζ]f, g

)
L2

=

∫

R

h1 + γh2

h1h2
fg +

µ

3
h3

2(∂xF2{h−1
2 f})(∂xF2{h−1

2 g}) +
µγ

3
h3

1(∂xF1{h−1
1 f})(∂xF1{h−1

1 g}) dx.

It follows easily ∣∣〈b[εζ]f , g〉(Y 0
Fµ

)?
∣∣ ≤ K1

∣∣f
∣∣
Y 0
Fµ

∣∣g
∣∣
Y 0
Fµ
.

We write again for the coercivity inequality,

〈b[εζ]f , f〉(Y 0
Fµ

)? =

∫

R

h1 + γh2

h1h2
|f |2 +

µ

3
h3

2|∂xF2{h−1
2 f}|2 +

µγ

3
h3

1|∂xF1{h−1
1 f}|2 dx.

It follows immediately, since εζ satisfies (5.5),

〈b[εζ]f , f〉(Y 0
Fµ

)? ≥
1 + γ

1 + δ−1

∣∣f
∣∣2
L2 +

µh3
0

3

∣∣∂xF2{h−1
2 f}

∣∣2
L2 +

µγh3
0

3

∣∣∂xF1{h−1
1 f}

∣∣2
L2 .

Now, by Lemma C.2, one has
∣∣∂xF1f

∣∣
L2 =

∣∣∂xF1{(1 + εζ)h−1
1 f}

∣∣
L2 ≤

(∣∣∂xF1{h−1
1 f}

∣∣
L2 +

∣∣∂xF1{εζh−1
1 f}

∣∣
L2

)

≤ (1 + ε
∣∣ζ
∣∣
Z0

Fµ
)
∣∣∂xF1{h−1

1 f}
∣∣
L2 ,

and similarly for
∣∣∂xF2{h−1

2 f}
∣∣2
L2 . We conclude

∣∣f
∣∣2
Y 0
Fµ
≤ C(m, h−1

0 , ε
∣∣ζ
∣∣
Z0

Fµ
)× 〈b[εζ]f , f〉(Y 0

Fµ
)? .
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By similar argumentation, one easily shows that the operator c[εζ, εw] is well-defined and con-
tinuous from Y 0

Fµ to (Y 0
Fµ)?, and satisfies the third estimate of the statement.

We show now the coercivity of a[εζ, εw] under additional assumption (5.25). We write

〈a[εζ, εw]f , f〉(X0
Bo−1 )? =

(
a[εζ, εw]f, f

)
L2

=

∫

R

(
(γ + δ)− ε2h

3
1 + γh3

2

(h1h2)3
|w|2

)
|f |2 +

γ + δ

Bo

|∂xf |2
(1 + µε|∂xζ|2)3/2

dx+ µε2(R2 − γR1),

with

Ri =

((
hi
(
∂xF

µ
i {h−1

i w}
)2 − 2

3
wh−3

i ∂xF
µ
i

{
h3
i ∂xF

µ
i {h−1

i w}
})
× f, f

)

L2

+
1

3

(
h3
i ∂xF

µ
i {h−2

i wf}, ∂xFµi {h−2
i wf}

)
L2
− 2
(
∂xF

µ
i

{
(h−2
i w)× f

}
,
(
h2
i ∂xF

µ
i {h−1

i w}
)
× f

)
L2
.

Using Cauchy-Schwarz inequality and Lemmata C.2, and C.3, one has the following estimate

µε2|R2 − γR1| ≤ ε2
∣∣w
∣∣2
Z1

Fµ
C(m, h−1

0 , ε
∣∣ζ
∣∣
H3
x
)
∣∣f
∣∣2
Y 0
Fµ

≤ ΥF

∣∣w
∣∣2
Z1

Fµ
C(m, h−1

0 , ε
∣∣ζ
∣∣
H3
x
)
∣∣f
∣∣2
X0

Bo−1

,

where the last identity follows from Lemma C.1.
From (5.25), one has immediately

〈a[εζ, εw]f , f〉(X0
Bo−1 )? − µε2(R2 − γR1) ≥ min

{
k0,

γ + δ

(1 + µε
∣∣∂xζ

∣∣2
L∞

)3/2

}
×
∣∣f
∣∣2
X0

Bo−1

.

The existence of K ′0,K such that (5.26) implies

∣∣f
∣∣2
X0

Bo−1

≤ K ′0〈a[εζ, εw]f , f〉(X0
Bo−1 )?

is now straightforward. Again, the previous inequality is still true for f ∈ X0
Bo−1 by continuity and

density arguments.
One shows similarly that a[εζ, εw] : X0

Bo−1 → (X0
Bo−1)? is well-defined and continuous, and

satisfies the first estimate of the statement. This concludes the proof of Lemma 5.6.

The following Lemma is a direct consequence of Lemma 5.6.

Lemma 5.7. Let (ζ, w)> ∈ H3
x × Z1

Fµ be such that εζ satisfies (5.5). Then b[εζ] : Y 0
Fµ → (Y 0

Fµ)? is
a topological isomorphism with:

∀f ∈ Y 0
Fµ ,

∣∣(b[εζ])−1f
∣∣
Y 0
Fµ
≤ K0

∣∣f
∣∣
(Y 0

Fµ
)?
,

with K0 as in Lemma 5.6.
If, additionally, (εζ, εw) satisfies (5.25)-(5.26), then a[εζ, εw] : X0

Bo−1 → (X0
Bo−1)? is a topolog-

ical isomorphism with:

∀f ∈ X0
Bo−1 ,

∣∣(a[εζ, εw])−1f
∣∣
X0

Bo−1

≤ K ′0
∣∣f
∣∣
(X0

Bo−1 )?
,

with K ′0 as in Lemma 5.6.
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Proof. By Lemma 5.6, b[εζ] : Y 0
Fµ → (Y 0

Fµ)? is well-defined, continuous and coercive. We then
deduce by the operator version of Lax-Milgram theorem that b[εζ] is an isomorphism from Y 0

Fµ onto
(Y 0

Fµ)?. The continuity of the inverse follows from the continuity and coercivity of b[εζ]:
∣∣b[εζ]−1f

∣∣2
Y 0
Fµ
≤ K0〈b[εζ]b[εζ]−1f , b[εζ]−1f〉(Y 0

Fµ
)? ≤ K0

∣∣f
∣∣
(Y 0

Fµ
)?

∣∣b[εζ]−1f
∣∣
Y 0
Fµ
.

The whole discussion is identical for a[εζ, εw], replacing Y 0
Fµ with X0

Bo−1 , and K0 with K ′0.

We conclude this section with the following result.

Lemma 5.8. Let (ζ, w)> ∈ H3
x × Z1

Fµ be such that εζ satisfies (5.5). Then the operator a[εζ, εw] :
X0

Bo−1 → (X0
Bo−1)? is symmetric:

∀f, g ∈ X0
Bo−1 , 〈a[εζ, εw]f , g〉(X0

Bo−1 )? = 〈a[εζ, εw]g , f〉(X0
Bo−1 )? .

The same result holds true for b[εζ] and c[εζ, εw], replacing X0
Bo−1 with Y 0

Fµ .

Proof. The symmetry property for b[εζ] is straightforwardly seen from (5.27). The other operators
require a slight rewriting. In particular, notice

(−1)id1Ri[εζ, w]• =
(
hi
(
∂xF

µ
i {h−1

i w}
)2 − 2

3
wh−3

i ∂xF
µ
i

{
h3
i ∂xF

µ
i {h−1

i w}
})
× •

+ (h−2
i w)× ∂xFµi

{(
h2
i ∂xF

µ
i {h−1

i w}
)
× •
}
−
(
h2
i ∂xF

µ
i {h−1

i w}
)
× ∂xFµi

{
(h−2
i w)× •

}

− 1

3
(h−2
i w)∂xF

µ
i

{
h3
i ∂xF

µ
i {(h−2

i w)•}
}

and

(
(−1)idQi[εζ](w) + d2Ri[εζ, w]

)
• =

(2

3
h−2
i ∂xF

µ
i

{
h3
i ∂xF

µ
i {h−1

i w}
})
× •

− h−1
i ∂xF

µ
i

{(
h2
i ∂xF

µ
i {h−1

i w}
)
× •
}

+
(
h2
i ∂xF

µ
i {h−1

i w}
)
× ∂xFµi {h−1

i × •}

+
1

3
h−1
i × ∂xFµi

{
h3
i ∂xF

µ
i {(h−2

i w)× •}
}

+
1

3
(h−2
i w)× ∂xFµi

{
h3
i ∂xF

µ
i {h−1

i × •}
}

are obviously symmetric, since ∂xF
µ
i is skew-symmetric. The result is now clear.

5.3 A priori estimates
We now consider the quasi-linearized system arising from Lemma 5.5:

(5.28)





∂tζ̇ + ∂xẇ = r1,

b∂tẇ + ∂xaζ̇ + ∂xǎαζ̌ + c∂xẇ = r2,

where we denote for conciseness a = a[εζ, εw] (and similarly for ǎα, b, c), as defined in Lemma 5.5,
and r1, r2 are remainder terms to be precised.

More precisely, we introduce a regularized version of (5.28). Denote Jν = (1 − ν∂2
x)−1/2 and

consider

(5.29)





∂tζ̇ + J2
ν∂xẇ = r1,

b∂tẇ + J2
ν∂xaζ̇ + J2

ν∂xǎαζ̌ + JνcJν∂xẇ = r2.

The following Lemma provides an a priori control of the energy of any solution (ζ̇, ẇ) over
a uniformly bounded from below time interval. This in turn allows to obtain the existence and
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uniqueness of a solution to the initial value problem of the linearized system (5.28), as stated in
Lemma 5.12. Lemma 5.11, below, offers a similar estimate on the difference between two solutions,
and will be used in the proof of the well-posedness and stability of the nonlinear system (5.1);
Theorem 5.1 and Proposition 6.2.

Lemma 5.9. Let U̇ def
= (ζ̇, ẇ)>, U

def
= (ζ, w)> ∈ L∞([0, T ];X4

Bo−1 × Y 4
Fµ), ζ̌ ∈ L∞([0, T ]; (X1

Bo−1)2)

and r = (r1, r2)> ∈ L1([0, T );X0
Bo−1 × (Y 0

Fµ)?) satisfying (5.29) with ν ∈ [0, 1]. Assume moreover
that U(t) satisfies(5.5),(5.25) and (5.26) with h−1

0 , k−1
0 ,K−1 uniformly for t ∈ [0, T ]. Then one has

E0(U̇)1/2 ≤ C0

(
E0(U̇ |t=0 )1/2 + (µε2)

∥∥ζ̌
∥∥
L∞([0,T ];(X0

Bo−1 )2)

)
eλt + C0

∫ t

0

f(t′)eλ(t−t′)dt′,

with
λ = C0 ×

(
ε+ ΥF

∥∥w
∥∥2

L∞([0,T ];Z2
Fµ

)

)
, f(t) =

∣∣r
∣∣
X0

Bo−1×(Y 0
Fµ

)?
+ µε2

∣∣ζ̌
∣∣
(X1

Bo−1 )2

and C0 = C(m, h−1
0 , k−1

0 ,K,
∥∥U
∥∥
L∞([0,T ];X4

Bo−1×Y 4
Fµ

)
).

Remark 5.10. The energy estimate is uniform with respect to ν ∈ [0, 1]. It holds in particular for
solutions to the non-regularized system (5.28).

Proof. Since U, U̇ ∈ L∞([0, T ];X4
Bo−1 × Y 4

Fµ), all the components of equation (5.29) are obviously
well-defined in L2. We compute the L2 inner product of the first equation with aζ̇ + ǎαζ̌, and
add the L2 inner product of the second equation with ẇ. Recalling that a, b, c are symmetric (by
Lemma 5.8), and since Jν is symmetric and ∂x is skew-symmetric, we obtain after straightforward
manipulations

(5.30)
d

dt

(
1

2

(
aζ̇, ζ̇

)
L2 +

(
ζ̇, ǎαζ̌

)
L2 +

1

2

(
bẇ, ẇ

)
L2

)
=

1

2

([
∂t, a

]
ζ̇, ζ̇
)
L2 +

(
ζ̇, ∂t(ǎαζ̌)

)
L2 +

1

2

([
∂t, b

]
ẇ, ẇ

)
L2 +

1

2

([
∂x, c

]
Jνẇ, Jνẇ

)
L2

+
(
r1, aζ̇ + ǎαζ̌

)
L2 +

(
r2, ẇ

)
L2 .

We estimate below each of the components of the right-hand-side. These estimates follow from the
product estimates of Section C, as in the proof of Lemma 5.5. For the sake of conciseness, we do
not detail all calculations but rather provide the precise estimates for each component.

(I)
def
=
([
∂t, a

]
ζ̇, ζ̇
)
L2 . One has, by definition,

[∂t, a
]
ζ̇ = −ε2ζ̇∂t

(
G(εζ)|w|2

)
− µε2

([
∂t,d1RF

2[εζ, w]
]
ζ̇ − γ

[
∂t,d1RF

1[εζ, w]
]
ζ̇
)

− γ + δ

Bo
∂x

(
∂t

( 1

(1 + µε2|∂xζ|2)3/2

)
∂xζ̇
)
,

where G(εζ) =
h3

1 + γh3
2

(h1h2)3
and RF

i [εζ, w] is defined in (5.17).

The first component of
([
∂t, a

]
ζ̇, ζ̇
)
L2 is easily estimated:

∣∣∣
(
− ε2ζ̇∂t

(
G(εζ)|w|2

)
, ζ̇
)
L2

∣∣∣ ≤ C0ε
2
∣∣w
∣∣2
W 1,∞

∣∣ζ̇
∣∣2
L2 ,

with C0 = C(m, h−1
0 ,
∣∣εζ
∣∣
W 1,∞).
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The third term follows from one integration by parts:
∣∣∣∣
(
−γ + δ

Bo
∂x

(
∂t
(
(1 + µε2|∂xζ|2)−3/2

)
∂xζ̇
)
, ζ̇

)

L2

∣∣∣∣ =
γ + δ

Bo

∣∣∣
(
∂t
(
(1 + µε2|∂xζ|2)−3/2

)
∂xζ̇, ∂xζ̇

)
L2

∣∣∣

≤ µε2C0
1

Bo

∣∣∂xζ̇
∣∣2
L2 ,

with C0 = C(m,
∣∣ζ
∣∣
W 2,∞).

Finally, the second term of
([
∂t, a

]
ζ̇, ζ̇
)
is more involved, as

[
∂t,d1RF

1[εζ, w]
]
is the sum of many

terms. However, they may all be treated as in the proof of Lemma 5.5. Using integration by parts
if necessary, one may ensure that the operator ∂xF

µ
i applies only once to each ζ̇ and since much

regularity is assumed on ζ ∈ X4
Bo−1 , Lemmata C.2 and C.3 yield

∣∣∣µε2γ2−i([∂t,d1RF
i [εζ, w]

]
ζ̇, ζ̇
)
L2

∣∣∣ ≤ C0ε
2|w|2Z2

Fµ
|ζ̇|2Y 0

Fµ
,

with C0 = C(m, h−1
0 ,
∣∣ζ
∣∣
X4

Bo−1

). Using Lemma C.1, one deduces

∣∣∣µε2γ2−i([∂t,d1RF
i [εζ, w]

]
ζ̇, ζ̇
)
L2

∣∣∣ ≤ C0ΥF|w|2Z2
Fµ
|ζ̇|2X0

Bo−1
.

Altogether, we proved

(5.31) |(I)| ≤ C0

(
µε2 + ΥF

∣∣w
∣∣2
Z2

Fµ

) ∣∣ζ̇
∣∣2
X0

Bo−1

,

where C0 = C(m, h−1
0 ,
∣∣ζ
∣∣
X4

Bo−1

).

(II)
def
=
([
∂t, b

]
ẇ, ẇ

)
L2 . One has, by definition,

[
∂t, b

]
ẇ = ∂t

(h1 + γh2

h1h2

)
ẇ + µε

(
dQF

2[εζ](ẇ) + γdQF
1[εζ](ẇ)

)
∂tζ,

where dQF
i is defined in (5.14). The first term is estimated as

∣∣∣∣
(
∂t

(h1 + γh2

h1h2

)
ẇ, ẇ

)
L2

∣∣∣∣ ≤ εC0

∣∣ẇ
∣∣2
L2 ,

where C0 = C(m, h−1
0 ,
∣∣∂tζ

∣∣
L∞

). For the second term we have after integration by parts and by
triangular inequality

∣∣∣
(

dQF
i [εζ](ẇ)∂tζ, ẇ

)
L2

∣∣∣ ≤ 2

3

∣∣(h3
i ∂xF

µ
i {h−1

i ẇ} , ∂xFµi {h−2
i ∂tζẇ}

)
L2

∣∣

+
∣∣(h2

i (∂tζ)∂xF
µ
i {h−1

i ẇ}, ∂xFµi {h−1
i ẇ}

)
L2

∣∣ .

By Lemmata C.2 and C.3, one immediately deduces

(5.32) |(II)| ≤ εC0

∣∣ẇ
∣∣2
Y 0
Fµ
,

where C0 = C(m, h−1
0 ,
∣∣ζ
∣∣
X4

Bo−1

).

(III)
def
=
([
∂x, c

]
Jνẇ, Jνẇ

)
L2 . One may proceed similarly as above, and one obtains without any

additional difficulty

(5.33) |(III)| ≤ εC0

∣∣Jνẇ
∣∣2
Y 0
Fµ
≤ εC0

∣∣ẇ
∣∣2
Y 0
Fµ
,
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where C0 = C(m, h−1
0 ,
∣∣ζ
∣∣
X4

Bo−1

,
∣∣w
∣∣
Y 4
Fµ

), and the last inequality follows from
∥∥Jν
∥∥
L2→L2 = 1.

(IV )
def
=
(
ζ̇, ∂t(ǎαζ̌)

)
L2 . After one integration by parts, one has

(IV ) = −3µε2
γ + δ

Bo

∑

j∈{1,2}

αj

(
∂xζ̇, ∂t

(
(∂x∂

ejζ)(∂xζ)(∂xζ̌j)

(1 + µε2|∂xζ|2)5/2

))

L2

.

Recall ζ̌ = (ζ̌0, ζ̌1)> ∈ X1
Bo−1 ×X1

Bo−1 , so we easily deduce by Cauchy-Schwarz inequality

(5.34) |(IV )| ≤ µε2C(m,
∣∣ζ
∣∣
W 3,∞)

∣∣ζ̇
∣∣
X0

Bo−1

∣∣ζ̌
∣∣
(X1

Bo−1 )2
.

(V )
def
=
(
r1, aζ̇ + ǎαζ̌

)
L2 +

(
r2, ẇ

)
L2 . The remainder terms are straightforward to estimate, using

in particular the estimates of Lemma 5.6. One obtains

(5.35) |(V )| ≤ C0

∣∣r1

∣∣
X0

Bo−1

∣∣ζ̇
∣∣
X0

Bo−1

+ µε2C(m,
∣∣ζ
∣∣
W 2,∞)

∣∣r1

∣∣
X0

Bo−1

∣∣ζ̇
∣∣
(X0

Bo−1 )2
+
∣∣r2

∣∣
(Y 0

Fµ
)?

∣∣ẇ
∣∣
Y 0
Fµ
,

with C0 = C(m, h−1
0 , k−1

0 , ε
∣∣ζ
∣∣
H3
x
).

Altogether, plugging (5.31),(5.32)(5.33),(5.34),(5.35) into (5.30) yields
(5.36)

d

dt

(
1

2

(
aζ̇, ζ̇

)
L2 +

(
ζ̇, ǎαζ̌

)
L2 +

1

2

(
bẇ, ẇ

)
L2

)
≤ C0

(
ε+ ΥF

∣∣w
∣∣2
Z2

Fµ

)
E0(U̇) + C0C1E

0(U̇)1/2,

with C0 = C(m, h−1
0 , E4(U)), and C1 =

∣∣r
∣∣
X0

Bo−1×(Y 0
Fµ

)?
+ µε2

∣∣ζ̌
∣∣
(X1

Bo−1 )2
.

The proof is concluded as follows. By Lemma 5.6, there existsK0,K1 = C(m, h−1
0 , k−1

0 ,K,E4(U))
such that

(5.37)
1

K0
E0(U̇) ≤ 1

2

(
aζ̇, ζ̇

)
L2 +

1

2

(
bẇ, ẇ

)
L2 ≤ K1E

0(U̇).

Notice then that one has ∣∣∣
(
ζ̇, ǎαζ̌

)
L2

∣∣∣ ≤ µε2C2

∣∣ζ̇
∣∣
X0

Bo−1

∣∣ζ̌
∣∣
X0

Bo−1

,

with C2 = C(
∣∣∂xζ

∣∣
m,W 2,∞). It follows, for any M > 0,

∣∣∣
(
ζ̇, ǎαζ̌

)
L2

∣∣∣ ≤ 1

2
µε2C2 ×

(
M−1

∣∣ζ̇
∣∣2
X0

Bo−1

+M
∣∣ζ̌
∣∣2
X0

Bo−1

)
.

Using the above with M = µε2C2K0 and recalling E0(U̇) ≥
∣∣ζ̇
∣∣
X0

Bo−1

by definition (5.2), (5.37)
yields

1

2K0
E0(U̇)− 1

2
K0(µε2C2)2

∣∣ζ̌
∣∣2
X0

Bo−1

≤ 1

2

(
aζ̇, ζ̇

)
L2 +

(
ζ̇, ǎαζ̌

)
L2 +

1

2

(
bẇ, ẇ

)
L2

and

1

2

(
aζ̇, ζ̇

)
L2 +

(
ζ̇, ǎαζ̌

)
L2 +

1

2

(
bẇ, ẇ

)
L2 ≤ (K1 +

1

2K0
)E0(U̇) +

1

2
K0(µε2C2)2

∣∣ζ̌
∣∣2
X0

Bo−1

.

Thus defining M̃
def
= maxt∈[0,T ]

{
1
2K0(µε2C2)2

∣∣ζ̌
∣∣2
X0

Bo−1

}
and

Ẽ0(U̇)
def
=

1

2

(
aζ̇, ζ̇

)
L2 +

(
ζ̇, ǎαζ̌

)
L2 +

1

2

(
bẇ, ẇ

)
L2 ,
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one has

(5.38)
1

2K0
E0(U̇)− M̃ ≤ Ẽ0(U̇) ≤ (K1 +

1

2K0
)E0(U̇) + M̃.

The estimate (5.36) may therefore be reformulated as

d

dt
(Ẽ0(U̇) + M̃) ≤ 2K0C0

(
ε+ ΥF

∣∣w
∣∣2
Z2

Fµ

)(
Ẽ0(U̇) + M̃

)
+
√

2K0C0C1

(
Ẽ0(U̇) + M̃

)1/2

.

We deduce as usual

(
Ẽ0(U̇) + M̃

)1/2 ≤
(
Ẽ0(U̇ |

t=0
) + M̃

)1/2
eλt + C0

∫ t

0

C1(t′)eλ(t−t′)dt′,

where λ,C0 are as in the statement of the Lemma. Using (5.38) and augmenting C0 if necessary,
the energy estimate is now straightforward.

Lemma 5.11. Define two tuple of solutions to (5.28), (U̇1, U1, r1) and (U̇2, U2, r2), satisfying the
same properties as in Lemma 5.9 (with ζ̌1 = ζ̌2 = 0). Then one has

E0(U̇1 − U̇2)1/2 ≤ C0 E
0(U̇1 |t=0

− U̇2 |t=0
)1/2eλt + C0

∫ t

0

f(t′)eλ(t−t′)dt′,

with

λ = C0×
(
ε+ΥF

∥∥w1

∥∥2

L∞([0,T ];Z2
Fµ

)

)
, f(t) =

∣∣r1−r2

∣∣
X0

Bo−1×(Y 0
Fµ

)?
+ε
∣∣U̇2

∣∣
(W 3,∞

x )2

∣∣U1−U2

∣∣
X2

Bo−1×Y 2
Fµ

and C0 = C(m, h−1
0 , k−1

0 ,K,
∥∥U1

∥∥
L∞([0,T ];X4

Bo−1×Y 4
Fµ

)
,
∥∥U2

∥∥
L∞([0,T ];X4

Bo−1×Y 4
Fµ

)
).

Proof. The difference between the two solutions satisfies the system




∂t(ζ̇1 − ζ̇2) + ∂x(ẇ1 − ẇ2) = r1
1 − r1

2,

b1∂t(ẇ1 − ẇ2) + ∂xa1(ζ̇1 − ζ̇2) + c1∂x(ẇ1 − ẇ2) = r2
1 − r2

2 + rdiff ,

where we denote ai = a[εζi, εwi] (and similarly for bi, ci), and

rdiff
def
= (b2 − b1)∂tẇ2 + (∂xa2 − ∂xa1)ζ̇2 + (c2 − c1)∂xẇ2

def
=

3∑

i=1

r
(i)
diff .

The Lemma is a straightforward consequence of Lemma 5.9 (with ν = 0), once rdiff is estimated.
We focus on the most difficult term, namely r(2)

diff = (∂xa2 − ∂xa1)ζ̇2; the other terms are obtained
similarly.

Let f ∈ Y 0
Fµ . One has

(
r

(2)
diff , f

)
L2 =

∫

R
−ε2f∂x

((
G(εζ2)|w2|2 −G(εζ1)|w1|2

)
ζ̇2

)

− µε2f∂x
((

d1R2[εζ2, w2]− d1R2[εζ1, w1]− γd1R1[εζ2, w2] + γd1R1[εζ1, w1]
)
ζ̇2

)

+
γ + δ

Bo
f∂2

x

((
1

(1 + µε2|∂xζ2|2)3/2
− 1

(1 + µε2|∂xζ1|2)3/2

)
∂xζ̇2

)

where G(εζ)
def
=

h3
1 + γh3

2

(h1h2)3
.
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Since
∣∣G(εζ2 − εζ1)

∣∣
L2 ≤ ε

∣∣ζ2 − ζ1
∣∣
L2 × supy∈[εζ2,εζ1]G

′(y), it is straightforward that

∣∣∂x
((
G(εζ2)|w2|2 −G(εζ1)|w1|2

)
ζ̇2

)∣∣
L2 ≤ C0

(
ε
∣∣ζ1 − ζ2

∣∣
H1 +

∣∣w1 − w2

∣∣
H1

)∣∣ζ̇2
∣∣
W 1,∞
x

,

with C0 = C(m, h−1
0 ,
∣∣ζ1
∣∣
L∞

,
∣∣ζ2
∣∣
L∞

,
∣∣w1

∣∣
L∞

,
∣∣w2

∣∣
L∞

).
Similarly,

1

Bo−1

∣∣∂2
x

((
(1 + µε2|∂xζ2|2)−3/2 − (1 + µε2|∂xζ1|2)−3/2

)
∂xζ̇2

)∣∣
L2

≤ µε2C0

∣∣∂xζ1 − ∂xζ2
∣∣
X1

Bo−1

∣∣∂xζ̇2
∣∣
W 2,∞
x

,

with C0 = C(m,
∣∣∂xζ1

∣∣
W 1,∞
x

,
∣∣∂xζ2

∣∣
W 1,∞
x

).
As for the last component, recall d1Ri is defined in (5.17). Proceeding as in the proof of

Lemma 5.5, we obtain

γ2−iµε2
∣∣(d1Ri[εζ2, w2]ζ̇2 − d1Ri[εζ1, w1]ζ̇2, f

)
L2

∣∣

≤ ε2C0 ×
(∣∣w1 − w2

∣∣
Y 1
Fµ

+ ε
∣∣ζ1 − ζ2

∣∣
Y 1
Fµ

)∣∣ζ̇2
∣∣
Z1

Fµ

∣∣f
∣∣
Y 0
Fµ

with C0 = C(m, h−1
0 ,
∣∣ζ1
∣∣
H3
x
,
∣∣ζ2
∣∣
H3
x
,
∣∣w1

∣∣
Z1

Fµ
,
∣∣w2

∣∣
Z1

Fµ
).

Altogether, we find
∣∣r(2)

diff

∣∣
(Y 0

Fµ
)?
≤ εC0

∣∣ζ̇2
∣∣
W 3,∞
x

∣∣U2 − U1

∣∣
X2

Bo−1×Y 2
Fµ
,

with C0 = C(m, h−1
0 , k−1

0 ,K,
∣∣U1

∣∣
X4

Bo−1×Y 4
Fµ
,
∣∣U2

∣∣
X4

Bo−1×Y 4
Fµ

).

All the other terms in rdiff are estimated in the same way, and Lemma 5.11 now directly follows
from Lemma 5.9.

5.4 Well-posedness results; proof of Theorem 5.1

In this section we conclude the proof of the main result of the paper, Theorem 5.1, namely the well-
posedness of the Cauchy problem for our class of system (5.1). We first prove in Lemma 5.12 the
existence and uniqueness of solutions of the linearized system (5.28) for smooth data, and provide
a uniform energy estimate. A solution of the nonlinear system (5.1) is then constructed using a
Picard iteration scheme. Uniqueness, and continuous dependence with respect to the initial data
follow from Lemma 5.11.

Lemma 5.12. Let ζ, w, ζ̌, r1, r2 ∈ H∞([0, T ] × R) be such that (5.5),(5.25),(5.26) hold. Then for
any U̇0 def

= (ζ̇0, ẇ0)> ∈ H∞x (R)2, there exists a unique solution U̇
def
= (ζ̇, ẇ)> ∈ H∞([0, T ] × R)2

satisfying (5.28) and U̇ |t=0 = U̇0.

Remark 5.13. One could assume only continuity in time and finite (but large enough) regularity
in space on ζ, w, ζ̌, r, but this is unnecessary since Lemma 5.12 is always used with smooth data.

Proof. We first consider the regularized system introduced in (5.29) and that we recall. For any
ν > 0, define Jν

def
= (1− ν∂2

x)−1/2 and consider

(5.39)





∂tζ̇ν + J2
ν∂xẇν = r1,

b∂tẇν + J2
ν∂xaζ̇ + J2

ν∂xǎαζ̌ + JνcJν∂xẇν = r2;
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or, equivalently (recall that, by Lemma 5.7, b−1 : (Y 0
Fµ)? → Y 0

Fµ is well-defined and continuous)

(5.40)





∂tζ̇ν + J2
ν∂xẇν = r1,

∂tẇν + b−1J2
ν∂xaζ̇ + b−1J2

ν∂xǎαζ̌ + b−1JνcJν∂xẇν = b−1r2.

One straightforwardly checks that system (5.40) is a system of ordinary differential equations on
X0

Bo−1 × Y 0
Fµ , which is solved uniquely by Cauchy-Lipschitz theorem. More precisely, for any ν > 0

and r = (r1, r2) ∈ C0([0, T ];X0
Bo−1× (Y 0

Fµ)?), ζ̌ ∈ C0([0, T ]; (X1
Bo−1)2) and U̇0 ∈ X0

Bo−1×Y 0
Fµ , there

exists a unique U̇ν
def
= (ζ̇ν , ẇν)> ∈ C1([0, T ];X0

Bo−1×Y 0
Fµ), solution to (5.40) with U̇ |

t=0
= (ζ̇0, ẇ0)>.

Differentiating N times (5.39) and proceeding as in the proof of Lemma 5.5, one can check that
∂Nx U̇ν satisfies (5.39) with obvious modifications to r1, r2 and ζ̌. Thus, by the above argument,
∂Nx U̇ν ∈ C1([0, T ];X0

Bo−1 × Y 0
Fµ), and it follows (since N may be chosen arbitrarily large) that

U̇ν ∈ C1([0, T ];H∞x (R)). In particular, ∂tUν |t=0
∈ H∞x .

Applying the above argument to ∂tUν after differentiating (5.39) with respect to time, one
deduces ∂tU̇ν ∈ C1([0, T ];H∞x (R)), and by induction Uν ∈ H∞([0, T ]× R).

Applying the estimate of Lemma 5.9 to ∂Nx Uν with N ∈ N given, one has

E0(∂Nx U̇ν) ≤ M,

withM = C(m, h−1
0 , k−1

0 ,K, T,E0(∂Nx U̇
0),
∥∥(ζ, w, ζ̌, r)

∥∥
H∞([0,T ]×R)6

)
uniform with respect to ν > 0.

Let us now consider Vν,ν′ = U̇ν − U̇ν′ . Vν,ν′ satisfies (5.39) with ζ̌ = 0, Vν,ν′ |t=0
= 0 and

r1
ν,ν′ = (J2

ν − J2
ν′)∂xẇν′ , r2

ν,ν′ = (J2
ν − J2

ν′)∂xaζ̇ν′ + (J2
ν − J2

ν′)∂xǎαζ̌ + (JνcJν − Jν′cJν′)∂xẇν′ .

Since for any s ∈ R,
∥∥Jν
∥∥
Hsx→Hsx

= 1 and
∥∥Jν − Jν′

∥∥
Hsx→Hsx

→ 0 (ν → ν′) and thanks to the above
energy estimates, one has

∣∣rν,ν′
∣∣
X0

Bo−1×(Y 0
Fµ

)?
≤
∣∣rν,ν′

∣∣
L2 → 0(ν → ν′). Thus applying Lemma 5.9

to Vν,ν′ , one deduces that U̇ν is a Cauchy sequence of C0([0, T ];X0
Bo−1 × Y 0

Fµ). Therefore there
exists a limit, U̇ ∈ C0([0, T ];X0

Bo−1 × Y 0
Fµ), which is a solution of the non-regularized (i.e. ν = 0)

system, namely (5.28).
The above energy estimates on ∂Nx U̇ν being uniform with respect to ν, one has U̇ ∈ L∞([0, T ];H∞x ).

By (5.28), we deduce ∂tU̇ ∈ L∞([0, T ];H∞x ), and by induction U̇ ∈ H∞([0, T ]× R).
Uniqueness of the solution follows when applying the energy estimate of Lemma 5.9 to the

difference between two solutions.

We can now conclude this section with the proof of our main result, Theorem 5.1.

Proof of Theorem 5.1. We construct the solution of our problem as the limit of a Picard iteration
scheme. We first define Friedrichs mollifiers, jκ = 1(|D| ≤ κ), in order to regularize the initial data:

Un |t=0 = U0
n

def
= {(∂αj2nζ0, ∂αj2nw

0)}|α|≤N .

For each n ≥ 1, we define, thanks to Lemma 5.12, Un
def
= {(ζ(α)

n , w
(α)
n )}|α|≤N as the unique solution

to Un |t=0 = U0
n as well as (5.28), where (using the notations and definitions of Lemma 5.5)

a = a[εζn−1, εwn−1] and similarly for b, c, r = r(α); ǎζ̌ = 0 if |α| ≤ N − 1 and ǎζ̌ = ǎαζ̌
〈α̌〉
n−1

otherwise. This iteration scheme is initialized with smooth and time-constant U0 = U0
0.

Since we mollified the initial data, Lemma 5.12 defines at each step Un ∈ C([0, Tn];H∞x ), where

Tn(h′0, k
′
0,K

′,M ′)
def
= max

{
T ≥ 0, such that EN (ζn, wn)1/2 ≤M ′EN (U0)1/2

and (ζn, wn) satisfies (5.5),(5.25),(5.26) with h′0, k
′
0,K

′
}
.
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One has Tn > 0 as soon as h′0 < h0, k′0 < k0, K ′ > K and M ′ > 1, by standard continuity
arguments. We will now prove that Tn can be bounded from below, uniformly with respect to
n ∈ N.

By Lemma 5.9, we have the energy estimate for U (α)
n

def
= (ζ

(α)
n , w

(α)
n )> with any |α| ≤ N :

E0(U (α)
n )1/2 ≤ C0

(
E0(U (α)

n |
t=0

)1/2 + µε2M ′EN (U0)1/2
)
eλt + C0

∫ t

0

f(t′)eλ(t−t′)dt′,

for any t ∈ [0, Tn−1(h′0, k
′
0,K

′,M ′)] and with

λ = C0 ×
(
ε+ ΥF

∥∥wn−1

∥∥2

L∞([0,T );Z2
Fµ

)

)
, f(t) =

∣∣r(α)
∣∣
(Y 0

Fµ
)?

+ µε2M ′EN (U0)1/2,

and where C0 = C(m, (h′0)−1, (k′0)−1,K ′,M ′).
Notice that ∂αUn 6= U

(α)
n but one can check (differentiating the equations satisfied by Un)

that ∂αUn satisfies (5.28) with a remainder term r̃(α)[εζn, εwn, εζn−1, εwn−1] which is estimated
identically as in Lemma 5.5. This yields, for any t ∈ [0,min{Tn−1, Tn}],

EN (Un)1/2 ≤ C0e
λtEN (U0)1/2

(
1 + C′0M

′t×
(
ε+ Υ

1/2
F

∣∣wn−1

∣∣
Z1

Fµ
+ ΥF

∣∣wn−1

∣∣2
Z1

Fµ

))
,

with λ,C0 as above, and C′0 = C(m, (h′0)−1,M ′, EN (U0)).
This allows to define M?, 1

T? = C(m, h−1
0 , k−1

0 ,K,EN (U0)), independent of n, such that

(
ε+ Υ

1/2
F

∣∣wn−1

∣∣
Z1

Fµ
+ ΥF

∣∣wn−1

∣∣2
Z2

Fµ

)
t ≤ min{T ?, Tn−1, Tn} =⇒ EN (Un)1/2 ≤ M?EN (U0)1/2.

In particular, one has on the above defined time interval, EN−1(∂tUn)1/2 ≤ M?EN (U0)1/2, and
therefore

∣∣εζn − εζn |t=0

∣∣
L∞

(t) ≤ ε
∫ t

0

∣∣∂tζ
∣∣
L∞
≤ M?EN (U0)1/2 × (εt).

Thus, restricting T ? if necessary, (5.5) is uniformly satisfied with h′0 = h0/2 > 0. Similarly, one
guarantees that (5.25),(5.26) hold with k′0 = k0/2 and K ′ = 2K, and

∣∣wn−1

∣∣
Z2

Fµ
≤ 2
∣∣w0
∣∣
Z2

Fµ
.

Altogether, this proves that there exists M?, 1
T? ,C0 = C(m, h−1

0 , k−1
0 ,K,EN (U0)) such that

Tn(h0/2, k0/2, 2K,M
?) ≥ T ?/λ′, λ′

def
= ε+ Υ

1/2
F

∣∣w0
∣∣
Z1

Fµ
+ ΥF

∣∣w0
∣∣2
Z2

Fµ
,

uniformly with respect to n ∈ N; and that for any t ∈ [0, T ?/λ′], one has

(5.41) EN (Un)1/2 ≤ M? EN (U0)1/2.

Let us now consider Vn = Un − Un−1. Notice first that

Ej(Vn |t=0
) = Ej((Un − Un−1) |

t=0
) . 2−2n(N−j)EN (U0).

One can control E0(Vn) from Lemma 5.11, using the above, the estimate on r(α)
n − r(α)

n−1 given by
Lemma 5.5 as well as the energy estimate (5.41). Similar estimates on ∂αV n for 0 ≤ |α| ≤ 2 yield

E2(Vn)1/2 ≤ C02−n(N−2)eλ
′t + C0λ

′
∫ t

0

E2(Vn−1)1/2eλ
′(t−t′)dt′,

with C0, λ
′ as above. Therefore, restricting T ] ≤ T ? if necessary, the sequence Un = U0 +

∑n
j=1 Vj

converges in C0([0, T ]/λ′];X2
Bo−1 × Y 2

Fµ).
Using that Un is uniformly bounded in C0([0, T ]/λ′];XN

Bo−1×Y NFµ ), standard interpolation argu-
ments yields that Un converges strongly in C0([0, T ]/λ′];XN−1

Bo−1×Y N−1
Fµ ). The limit U = limn→∞ Un
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belongs to L∞([0, T ]/λ′];XN
Bo−1 × Y NFµ ) ∩ C0([0, T ]/λ′];XN−1

Bo−1 × Y N−1
Fµ ) and then by classical ar-

gument belong to C0
w([0, T ]/λ′];XN

Bo−1 × Y NFµ ). It is now straightforward to check that U satisfies
system (5.28), and therefore (by Lemma 5.5) (5.1).

By passing to the limit the energy estimate (5.41), one deduces the energy estimate of the
statement. The uniqueness of the solution is a consequence of Lemma 5.11, applied to the difference
between two solutions (see also Proposition 6.2, below). Theorem 5.1 is proved.

6 Full justification of our models
We show in this section how the above well-posedness analysis can be supplemented with consistency
and stability results, which together provide the full justification of our models, (5.1). We recall
that 0 ≤ γ, µ, ε, δ, δ−1,Bo−1 <∞ and that Fi is admissible, in the sense of Definition 1.1.

Proposition 6.1 (Consistency). Let U def
= (ζ, ψ)> be a solution of the full Euler system (1.2) such

that such that there exists C0, T > 0 with
∥∥ζ
∥∥
L∞([0,T );Hs+5

x )
+
∥∥∂tζ

∥∥
L∞([0,T );Hs+4

x )
+
∥∥∂xψ

∥∥
L∞([0,T );H

s+11
2

x )
+
∥∥∂t∂xψ

∥∥
L∞([0,T );H

s+9
2

x )
≤ C0,

for given s ≥ t0 + 1/2, t0 > 1/2. Moreover, assume that there exists h0 > 0 such that (5.5) holds.
Define w by ∂xw = − 1

µG
µ[εζ]ψ = −∂tζ. Then (ζ, w)> satisfies (by definition) the first equation

of (5.1), and the second up to a remainder, r, bounded as
∥∥r
∥∥
L∞([0,T );Hsx)

≤ C1µ
2,

with C1 = C(m, h−1
0 , C0, CF).

Proof. The Proposition has been stated and proved, in the case of the original Green-Naghdi system,
Fid
i ≡ 1, in [15, Proposition 2.4]. By triangular inequality, there only remains to estimate

rQ
def
= µ

∣∣∂t
(
QFid

[εζ]w −QF[εζ]w
)∣∣
Hsx

and
rR

def
= µε

∣∣∂x
(
RFid

[εζ, w]−RF[εζ, w]
)∣∣
Hsx
.

We first show that w ∈ L∞([0, T );Hs+5
x ). By definition, ∂xw = −∂tζ ∈ L∞([0, T );Hs+4

x ), and
w ∈ L∞([0, T );L2) is a consequence of the identity (1.3) and the uniform control of ui; see e.g. [17,
Proposition 4]. Similarly, one has ∂tw ∈ L∞([0, T );Hs+4

x ).
Since by Definition 1.1, F′′i is uniformly bounded, Fi(0) = 1 and F′i(0) = 0; thus one has

∣∣Fi(
√
µk)− 1

∣∣ ≤ 1

2
CFµ|k|2.

The remainders rQ and rR are now treated as follows. One has

rQ ≤
2∑

i=1

µ

3

∣∣∂t
(
h−1
i ∂x

(
Fµi − Id

){
h3
i ∂xF

µ
i {h−1

i w}
})∣∣

Hsx
+
µ

3

∣∣∂t
(
h−1
i ∂x

{
h3
i ∂x
(
Fµi − Id

)
{h−1

i w}
})∣∣

Hsx
.

Since Hs
x is an algebra for s > 1/2 and by Lemma C.3, one has immediately

rQ ≤ µ2CF C(m, h−1
0 ,
∣∣∂tζ

∣∣
L∞([0,T );Hs+4

x )
,
∣∣∂tw

∣∣
L∞([0,T );Hs+4

x )
).

Similarly, one can check

rR ≤ µ2CF C(m, h−1
0 ,
∣∣ζ
∣∣
L∞([0,T );Hs+5

x )
,
∣∣w
∣∣
L∞([0,T );Hs+5

x )
),

and the Proposition is proved.
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Proposition 6.2 (Stability). Let N ≥ 4 and Ui = (ζi, wi)
> ∈ L∞([0, T );XN

Bo−1 × Y NFµ ) solution
to (5.1) with remainder terms (0, ri)

>. Assume ζi satisfies (5.5),(5.25),(5.26) with h0, k0,K > 0.
Set 2 ≤ n ≤ N − 1 and assume that ∂αri ∈ L1([0, T ); (Y 0

Fµ)?) for any |α| ≤ n.
Then there exists 0 < T ? ≤ T such that for all t ∈ [0, T ?)

En(U1 − U2)1/2 ≤ C0E
n(U1 |t=0 − U2 |t=0 )1/2eλt + C0

∫ t

0

eελ(t−t′)fn(t′)dt′.

with
λ = C0 ×

(
ε+ ΥF

∥∥w1

∥∥2

L∞([0,T ];Z2
Fµ

)

)
, fn(t) =

∑

|α|≤n

∣∣∂αr1 − ∂αr2

∣∣
(Y 0

Fµ
)?
,

and C0 = C(m, h−1
0 , k−1

0 ,K,
∥∥U1

∥∥
L∞([0,T ];X4

Bo−1×Y 4
Fµ

)
,
∥∥U2

∥∥
L∞([0,T ];X4

Bo−1×Y 4
Fµ

)
). Moreover, one has

(T ?)−1 ≤ C0(ε+ Υ
1/2
F

∥∥w1

∥∥2

L∞([0,T ];Z1
Fµ

)
+ ΥF

∥∥w1

∥∥2

L∞([0,T ];Z2
Fµ

)
).

Proof. By Lemma 5.5, for any |α| ≤ n ≤ N − 1, U (α)
i

def
= (∂αζi, ∂

αwi)
> satisfies (5.28) with

remainder terms r̃(α)
i

def
= r

(α)
i + ∂αri ∈ L1([0, T ); (Y 0

Fµ)?), and

∣∣r̃(α)
1 − r̃(α)

2

∣∣
(Y 0

Fµ
)?
≤
∣∣∂αr1 − ∂αr2

∣∣
(Y 0

Fµ
)?

+C0 × (ε+ Υ
1/2
F

∣∣w1

∣∣
Z1

Fµ
+ ΥF

∣∣w1

∣∣2
Z1

Fµ
)×E|α|(U1 − U2)1/2,

with C0 = C(m, h−1
0 , EN (U1), EN (U2)). By Lemma 5.11, one has

E0(U
(α)
1 − U (α)

2 )1/2 ≤ C0 E
0(U

(α)
1 |

t=0
− U (α)

2 |
t=0

)1/2eλt + C0

∫ t

0

f (α)(t′)eλ(t−t′)dt′,

with λ and C0, λ as in the statement and

f (α)(t) =
∣∣r̃(α)

1 − r̃(α)
2

∣∣
(Y 0

Fµ
)?

+ ε
∣∣U2

∣∣
(W 3,∞

x )2

∣∣U1 − U2

∣∣
X2

Bo−1×Y 2
Fµ
.

Since n ≥ 2 and N ≥ 4, one can restrict T ? as in the statement and augment C0 if necessary so
that the estimate holds.

The following Proposition is now a straightforward consequence of Theorem 5.1 and Proposi-
tions 6.1 and 6.2.

Proposition 6.3 (Full justification). Let U0 ≡ (ζ0, w0)> ∈ XN
Bo−1 × Y NFµ with N sufficiently large,

and satisfying (5.5),(5.25),(5.26). Define ψ0 with ∂xw0 = − 1
µG

µ[εζ0]ψ0 and assume that (ζ0, ψ0)>

satisfies the hypotheses of Theorem 5 in [25]. Then there exists C, T > 0 such that

• There exists a unique solution U ≡ (ζ, ψ)> to the full Euler system (1.2), defined on [0, T ]
and with initial data (ζ0, ψ0)> (provided by Theorem 5 in [25]);

• There exists a unique solution UF ≡ (ζF, wF)> to our modified Green-Naghdi model (5.1),
defined on [0, T ] and with initial data (ζ0, w0)> (provided by Theorem 5.1);

• Defining ∂xw = − 1
µG

µ[εζ]ψ = −∂tζ, one has for any t ∈ [0, T ],

∥∥(ζ, w)− (ζF, wF)
∥∥
L∞([0,t];X0

Bo−1×Y 0
Fµ

)
≤ C µ2 t.
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A The Saint-Venant system
The Saint-Venant system (with surface tension) is obtained from our Green-Naghdi models (5.1)
by setting µ = 0. The results of Sections 5 thus apply as a particular case. However, it is possible
to obtain sharper results by considering the system obtained after the following change of variable
v

def
= h1+γh2

h1h2
w = u2 − γu1:

(A.1)





∂tζ + ∂x
(
H(εζ)v

)
= 0,

∂tv + (γ + δ)∂xζ + ε
2∂x

(
H ′(εζ)|v|2

)
− γ+δ

Bo ∂
3
xζ = 0,

where we denote H(εζ) = h1h2

h1+γh2
.

In the following, we quickly review the steps of the method developed in Section 5, pointing out
the differences, and providing results without proof.

The analogue of Lemma 5.5 is the following:

Lemma A.1. Let U = (ζ, v)> ∈ XN
Bo−1 ×HN with N ≥ 2, solution to (A.1) and satisfying

(A.2) h1(εζ) = 1− εζ ≥ h0 > 0, h2(εζ) = δ−1 + εζ ≥ h0 > 0.

For any α = (α1, α2) such that |α| ≤ N , denote U (α) def
= (∂αζ, ∂αv)> and v〈α̌〉 def

= (∂α−e1v, ∂α−e2v)>

(if αj = 0, then ∂α−ejv = 0 by convention). Then U (α) satisfies:




∂tζ
(α) + ∂x

(
H(εζ)v(α)

)
+ εH ′(εζ)v∂xζ

(α) + ∂xďα[εζ]v〈α̌〉 = r
(α)
1 ,

∂tv
(α) + ∂xaSV[εζ, εv]ζ(α) + εH ′(εζ)v∂xv

(α) = r
(α)
2 ,

with ďα[εζ]v〈α̌〉
def
=
∑
j∈{1,2} αjH

′(εζ)(ε∂ejζ)(∂α−ejv) and

aSV[εζ, εv]• def
=
(

(γ + δ) +
ε2

2
H ′′(εζ)|v|2

)
• −γ + δ

Bo
∂2
x•;

and r(α)[εζ, εv] = (r
(α)
1 [εζ, εv], r

(α)
2 [εζ, εv])> ∈ X0

Bo−1 × L2 satisfies
∣∣r(α)[εζ, εv]

∣∣
X0

Bo−1×L2 ≤ ε C(m, h−1
0 ,
∣∣ζ
∣∣
XN

Bo−1

,
∣∣v
∣∣
HN

)×
(∣∣ζ
∣∣
XN

Bo−1

+
∣∣v
∣∣
HN

)
.

Notice that we have to keep a second-order term on the first equation, namely ∂xďα[εζ]v〈α̌〉 .
This is due to the fact that we have to control the remainder term r

(α)
1 [εζ, εv] ∈ X0

Bo−1 , so as to be
able to bootstrap the energy estimates in the appropriate space: EN (ζ, v) =

∣∣ζ
∣∣2
XN

Bo−1

+
∣∣v
∣∣2
HN

.
One has immediately the following analogue of Lemma 5.6.

Lemma A.2. Let (ζ, v)> ∈ L∞ × L∞ be such that εζ satisfies (A.2) with h0 > 0, and

(A.3) (γ + δ) +
ε2

2
H ′′(εζ)|v|2 = (γ + δ)− γε2 (h1 + h2)2

(h1 + γh2)3
|v|2 ≥ k0 > 0.

Then there exists K0,K1 = C(m, h−1
0 , k−1

0 , ε
∣∣ζ
∣∣
L∞

) such that

∀f, g ∈ X0
Bo−1 ,

∣∣〈aSV[εζ, εv]f, g
〉

(X0
Bo−1 )?

∣∣ ≤ K1

∣∣f
∣∣
X0

Bo−1

∣∣g
∣∣
X0

Bo−1

,

∀f, g ∈ L2,
∣∣(H(εζ)f, g

)
L2

∣∣ ≤ K1

∣∣f
∣∣
L2

∣∣g
∣∣
L2 ,

∀f ∈ X0
Bo−1 ,

〈
aSV[εζ, εv]f, f

〉
(X0

Bo−1 )?
≥ 1

K0

∣∣f
∣∣2
X0

Bo−1

,

∀f ∈ L2,
(
H(εζ)f, f

)
L2 ≥

1

K0

∣∣f
∣∣2
L2 .
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A priori energy estimates are obtained by adding the L2 inner product of the first equation
with aSVζ

(α), and the one of second one with H(εζ)v(α) + ďα[εζ]v〈α̌〉, and following the proof of
Lemmata 5.9 and 5.11.

Applying the strategy of Section 5.4, one then obtains the following analogue of Theorem 5.1.

Theorem A.3. Let N ≥ 2 and U0 def
= (ζ0, v0)> ∈ XN

Bo−1 × HN , satisfying (A.2),(A.3) with

h0, k0 > 0. Then there exists T > 0 and a unique solution U def
= (ζ, v)> ∈ C0

w([0, T );XN
Bo−1 ×HN )

satisfying (A.1). Moreover, there exists C0 = C(m, h−1
0 , k−1

0 ,
∣∣U0
∣∣
XN

Bo−1×HN
) such that

T−1 ≤ C0 × ε and sup
t∈[0,T )

(∣∣ζ
∣∣
XN

Bo−1

+
∣∣v
∣∣
HN

)
≤ C0

(∣∣ζ0
∣∣
XN

Bo−1

+
∣∣v0
∣∣
HN

)
.

The following remarks indicate that the above result is sharp in many ways, in contrast with
the discussion of Remark 5.3.

Remark A.4. Theorem A.3 is valid uniformly with respect to the parameter Bo−1, and the result
holds in particular in the case without surface tension: Bo−1 = 0. This case is however straightfor-
ward as the Saint-Venant system is then a quasilinear system, and the result was stated in particular
in [21]. (A.3) corresponds exactly to the hyperbolicity condition provided therein.

Remark A.5. Setting ζ = 0 in (A.3) yields

(γ + δ)− γε2 δ(δ + 1)2

(δ + γ)3
|v|2 > 0.

One thus recovers the necessary and sufficient condition for stability of all models provided in
Section 3 when setting µ = 0 (recall w = h1h2

h1+γh2
v).

Remark A.6. In the limit γ → 0, notice that (A.3) is automatically satisfied: Kelvin-Helmholtz
instabilities disappear in the water-wave case, and (A.2) suffices to ensure the stability of the flow.

B Notations and functional setting
The notation a . b means that a ≤ C0 b, where C0 is a nonnegative constant whose exact expres-
sion is of no importance. We denote by C(λ1, λ2, . . . ) a nonnegative constant depending on the
parameters λ1, λ2,. . . and whose dependence on the λj is always assumed to be nondecreasing.

In this paper, we sometimes work with norms involving derivatives in both space and time
variables. We find it convenient to use the following sometimes non-standard notations.

• For 1 ≤ p < ∞, we denote Lpx = Lp = Lp(R) the standard Lebesgue spaces associated with
the norm

|f |Lp =

(∫

R
|f(x)|pdx

) 1
p

<∞.

The real inner product of any functions f1 and f2 in the Hilbert space L2(R) is denoted by

(
f1, f2

)
L2 =

∫

R
f1(x)f2(x)dx.

The space L∞ = L∞x = L∞(R) consists of all essentially bounded, Lebesgue-measurable
functions f with the norm

∣∣f
∣∣
L∞

= ess supx∈R|f(x)| <∞.
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• We acknowledge the fact that only space derivatives are involved by the use of a subscript.
For k ∈ N, we denote by W k,∞

x (R) = {f, s.t. ∀0 ≤ j ≤ k, ∂jxf ∈ L∞(R)} endowed with its
canonical norm.
For any real constant s ∈ R, Hs

x = Hs
x(R) denotes the Sobolev space of all tempered distri-

butions f with the norm |f |Hsx = |Λsf |L2 < ∞, where Λ is the pseudo-differential operator
Λ = (1− ∂2

x)1/2. We denote H∞x = ∩N∈NHN
x .

• In absence of subscript, the derivatives are with respect to space and time, and thus apply
to functions defined on (t, x) ∈ [0, T ) × R. Thus for N ∈ N, WN,∞ is the space of functions
endowed with the following norm:

∣∣f
∣∣
WN,∞ =

∑

|α|≤N

∣∣∂αf
∣∣
L∞x

,

where we use the standard multi-index notation: α ∈ N2, ∂(α1,α2) = ∂α1
t ∂α2

x and |α| = α1+α2.
In particular, ∂e1 = ∂(1,0) = ∂t and ∂e2 = ∂(0,1) = ∂x.
Similarly, HN is the space of functions endowed with

∣∣f
∣∣2
HN

=
∑

|α|≤N

∣∣∂αf
∣∣2
L2
x
.

We denote H∞ = ∩N∈NHN .

• Given µ, γ,Bo−1 ≥ 0 and Fi (i = 1, 2) admissible functions (in the sense of Definition 1.1),
we define X0

Bo−1 , Y 0
Fµ , W

0
Bo−1 , Z0

Fµ as the completion of the Schwartz space, S(R), for the
following norms:

∣∣f
∣∣2
X0

Bo−1

def
=
∣∣f
∣∣2
L2 +

1

Bo

∣∣∂xf
∣∣2
L2 ,

∣∣f
∣∣2
Y 0
Fµ

def
=
∣∣f
∣∣2
L2 + µγ

∣∣∂xFµ1f
∣∣2
L2 + µ

∣∣∂xFµ2f
∣∣2
L2 ,

∣∣f
∣∣
W 0

Bo−1

def
=
∣∣f̂
∣∣
L1 +

1

Bo

∣∣∂̂xf
∣∣
L1 ,

∣∣f
∣∣
Z0

Fµ

def
=
∣∣f̂
∣∣
L1 +

√
µγ
∣∣∂̂xFµ1f

∣∣
L1 +

√
µ
∣∣∂̂xFµ2f

∣∣
L1 .

For N ∈ N we define consistently with above the norms controlling space and time derivatives:
∣∣f
∣∣2
XN

Bo−1

def
=

∑

|α|≤N

∣∣∂αf
∣∣2
X0

Bo−1

,
∣∣f
∣∣2
Y N
Fµ

def
=

∑

|α|≤N

∣∣∂αf
∣∣2
Y 0
Fµ
,

∣∣f
∣∣
WN

Bo−1

def
=

∑

|α|≤N

∣∣∂αf
∣∣
W 0

Bo−1

,
∣∣f
∣∣
ZN

Fµ

def
=

∑

|α|≤N

∣∣∂αf
∣∣
Z0

Fµ
.

• Denoting X any of the previously defined functional spaces, we denote by X? its topological
dual, endowed with the norm

∣∣ϕ
∣∣
X?

= sup∣∣f
∣∣
X
≤1
|ϕ(f)|; and by 〈·, ·〉(X)? the (X?−X) duality

brackets.

• For any function u = u(t, x) defined on [0, T ) × R with T > 0, and any of the previously
defined functional spaces, X, we denote L∞([0, T );X) the space of functions such that u(t, ·)
is controlled in X, uniformly for t ∈ [0, T ), and use double bar symbol for the associated
norm: ∥∥u

∥∥
L∞([0,T );X)

= ess supt∈[0,T )

∣∣u(t, ·)
∣∣
X

< ∞.
For k ∈ N, Ck([0, T );X) denotes the space of X-valued continuous functions on [0, T ) with
continuous derivatives up to the order k. Finally, C0

w([0, T );X) is the space of continuous
functions with values in X, given the weak topology.
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C Functional analysis

In this section, we provide tools (injections and product estimates) similar to the classical ones
concerning Sobolev spaces, for the functional spaces XN

Bo−1 , Y NFµ , Z
N
Fµ , as defined in Section B.

Let us fix µ, γ,Bo−1 ≥ 0 and Fi (i = 1, 2) admissible functions (in the sense of Definition 1.1).
In particular there exists KFi > 0 and σ ∈ [0, 1] such that

(C.1) |Fi(ξ)|2 ≤ min
{

1,KFi |ξ|−2σ
}
.

The following standard injections, which will be frequently used, sometimes without notice:

(C.2)
∣∣f
∣∣
L∞
≤
∣∣f̂
∣∣
L1 .

∣∣f
∣∣
H
t0
x

(t0 > 1/2); thus
∣∣f
∣∣
ZN

Fµ
.
∣∣f
∣∣
Y N+1
Fµ

and
∣∣f
∣∣
ZN

Fµ
.
∣∣f
∣∣
HN+t0+1 .

One immediately sees that the space X0
Bo−1 is continuously embedded in Y 0

Fµ ; the following
Lemma precises the norm of the inclusion map.

Lemma C.1. If Fi satisfies (C.1), then

(C.3) ∀f ∈ X0
Bo−1(R),

∣∣f
∣∣2
Y 0
Fµ
≤
(
1 + (γKF1

+KF2
)(µBo)1−σ) ∣∣f

∣∣2
X0

Bo−1

.

Proof. The inequality is a simple consequence of Parseval’s identity and Young’s inequality:

µ
∣∣∂xFi(

√
µD)f

∣∣2
L2 ≤ KFiµ

1−σ
∫
|ξ|2−2σ|f̂(ξ)|2 dξ ≤ KFi(µBo)1−σ

∫
(1 +

1

Bo
|ξ|2)|f̂(ξ)|2 dξ,

where we used Boσ |ξ|2−2σ ≤ σBo +(1− σ)|ξ|2.

Sobolev spaces HN
x and WN,∞

x enjoy straightforward product estimates, which are immediately
extended to XN

Bo−1 and WN
Bo−1 :

(C.4)
∣∣fg
∣∣
X0

Bo−1

.
∣∣g
∣∣
W 0

Bo−1

∣∣f
∣∣
X0

Bo−1

.
∣∣g
∣∣
X1

Bo−1

∣∣f
∣∣
X0

Bo−1

,
∣∣fg
∣∣
W 0

Bo−1

.
∣∣f
∣∣
W 0

Bo−1

∣∣g
∣∣
W 0

Bo−1

;

and therefore
∀N ≥ 1,

∣∣fg
∣∣
XN

Bo−1

.
∣∣f
∣∣
XN

Bo−1

∣∣g
∣∣
XN

Bo−1

.

Spaces Y NFµ and ZNFµ enjoys similar estimates, thanks to the sub-additivity property of admissible
functions (recall Definition 1.1).

Lemma C.2. Let Fi : R→ R+ (i = 1, 2) be admissible functions. Then for any 1 ≤ p, q, p̃, q̃, r ≤ ∞
satisfying 1 + 1

r = 1
p + 1

q = 1
p̃ + 1

q̃ , one has

(C.5)
∣∣ ̂∂xF

µ
i {fg}

∣∣
Lr
≤
∣∣f̂
∣∣
Lp

∣∣∂̂xFµi g
∣∣
Lq

+
∣∣ĝ
∣∣
Lp̃

∣∣∂̂xFµi f
∣∣
Lq̃
.

It follows in particular:
∣∣fg
∣∣
Y 0
Fµ

.
∣∣g
∣∣
Z0

Fµ

∣∣f
∣∣
Y 0
Fµ

.
∣∣g
∣∣
Y 1
Fµ

∣∣f
∣∣
Y 0
Fµ
,(C.6)

∀N ≥ 1,
∣∣fg
∣∣
Y N
Fµ

.
∣∣f
∣∣
Y N
Fµ

∣∣g
∣∣
Y N
Fµ
,(C.7)

∣∣fg
∣∣
Z0

Fµ
.
∣∣f
∣∣
Z0

Fµ

∣∣g
∣∣
Z0

Fµ
.(C.8)
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Proof. From the sub-additivity, one has √µ|ξ|Fi(√µξ) ≤ √µ|η|Fi(√µη) +
√
µ|ξ − η|Fi(√µ(ξ − η)).

Thus

∣∣ ̂∂xF
µ
i {fg}

∣∣r
Lr

=

∫

R

(
|ξ|Fi(

√
µξ)
)r|f̂ ? ĝ|r(ξ)dξ =

∫

R
dξ

∣∣∣∣
∫

R
dη|ξ|Fi(

√
µξ)f̂(η)ĝ(ξ − η)

∣∣∣∣
r

≤
∫

dξ

∣∣∣∣
∫

dη|η|Fi(
√
µη)|f̂ |(η)|ĝ|(ξ − η) + |ξ − η|Fi(

√
µ(ξ − η))|f̂ |(η)||ĝ|(ξ − η)

∣∣∣∣
r

≤
∫

dξ
∣∣∣(|∂̂xFµi f | ? |ĝ|)(ξ) + (|f̂ | ? |∂̂xFµi g|)(ξ)

∣∣∣
r

,

where we used that |∂̂xFµi f |(ξ) = |iξFi(√µξ)f̂(ξ)| = |ξ|Fi(√µξ)|f̂(ξ)| since Fi(
√
µξ) ≥ 0. Esti-

mate (C.5) follows from Young’s inequality for convolutions.
Estimate (C.6) is deduced with r = p = q̃ = 2 and p̃ = q = 1, and using (C.2).
Estimate (C.7) follows from the above result and triangular inequality,

∣∣fg
∣∣
Y N
Fµ
≤

∑

|α+β|≤N

Cα,β,N
∣∣(∂αf)(∂βg)

∣∣
Y 0
Fµ

.
∑

|α|≤N−1,|β|≤N

∣∣∂αf
∣∣
Y 1
Fµ

∣∣∂βf
∣∣
Y 0
Fµ

.

Estimate (C.8) follows from (C.5) with p = p̃ = q = q̃ = r = 1.

The following Lemma allows to estimate products which are not covered by the above Lemma
because one of the element is regular but has a non-zero limit at infinity (typically a rational fraction
of h1 = 1− εζ and h2 = δ−1 + εζ).

Lemma C.3. Let H ∈ C∞(−δ−1, 1) and εζ ∈ L∞ such that

h1(εζ) = 1− εζ ≥ h0 > 0, h2(εζ) = δ−1 + εζ ≥ h0 > 0.

Then, denoting Hn,h0

def
=
∣∣H
∣∣
Cn([−δ−1+h0,1−h0])

and fixing t0 > 1/2, one has

• For any s ≥ 0, if ζ ∈ Hs and f ∈ Hs
x, then one has with n ∈ N, n ≥ max{s, t0}:

∣∣H(εζ)f
∣∣
Hsx
≤ C(h−1

0 , Hn,h0
,
∣∣εζ
∣∣
H

max{s,t0}
x

)
∣∣f
∣∣
Hsx
.

• For any f̂ ∈ L1, one has
∣∣Ĥ(εζ)f

∣∣
L1 ≤ C(h−1

0 , H1,h0
,
∣∣εζ
∣∣
H
t0
x

)
∣∣f̂
∣∣
L1 .

• For any N ∈ N, if ζ ∈ Ht0+1+N
x and f ∈ ZNFµ , then one has

∣∣H(εζ)f
∣∣
ZN

Fµ
≤ C(h−1

0 , H2+N,h0 ,
∣∣εζ
∣∣
H
t0+1+N
x

)
∣∣f
∣∣
ZN

Fµ
.

• For any N ∈ N, if ζ ∈ Ht0+1+N
x and f ∈ Y NFµ , then one has

∣∣H(εζ)f
∣∣
Y N
Fµ
≤ C(h−1

0 , H2+N,h0
,
∣∣εζ
∣∣
H
t0+1+N
x

)
∣∣f
∣∣
Y N
Fµ
.

Proof. In each case, we decompose H(εζ)f = H(0)f +
(
H(εζ)−H(0)

)
f = H(0)f +Gh0

(εζ)f where
Gh0

is such that Gh0
∈ C∞(R), Gh0

(x) = H(x)−H(0) for x ∈ [−δ−1 + h0, 1− h0] and Gh0
(x) = 0

for x ∈ R \ [−δ−1, 1]. It is clear that, since min{h1(εζ), h2(εζ)} ≥ h0 > 0, one can construct such a
Gh0 satisfying additionally: for any n ∈ N,

∣∣Gh0

∣∣
Cn

= C(h−1
0 , Hn,h0).

The first estimate is a direct consequence of a classical Schauder-type estimates in Sobolev
spaces; see e.g. [40].
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The other estimates are then deduced. Indeed, one has

∣∣Ĥ(εζ)f
∣∣
L1 ≤

∣∣Ĥ(0)f
∣∣
L1 +

∣∣Ĝh0
(εζ) ? f̂

∣∣
L1 ≤ H(0)

∣∣f̂
∣∣
L1 +

∣∣Ĝh0
(εζ)

∣∣
L1

∣∣f̂
∣∣
L1 .

The second estimate now follows from (C.2) and applying the above result:

∣∣Ĝh0
(εζ)

∣∣
L1 .

∣∣Gh0
(εζ)

∣∣
H
t0
x
≤ C(h−1

0 ,
∣∣H
∣∣
C1 ,
∣∣εζ
∣∣
H
t0
x

).

The third estimate is estimated similarly. First, since we have seen that Z0
Fµ is an algebra,

∣∣H(εζ)f
∣∣
Z0

Fµ
≤
∣∣H(0)f

∣∣
Z0

Fµ
+
∣∣Gh0

(εζ)f
∣∣
Z0

Fµ
≤ H(0)

∣∣f
∣∣
Z0

Fµ
+
∣∣Gh0

(εζ)
∣∣
Z0

Fµ

∣∣f
∣∣
Z0

Fµ
.

Since
∣∣u
∣∣
Z0

Fµ
≤
∣∣u
∣∣
H
t0+1
x

for any u ∈ Ht0+1
x , one deduces the desired result for N = 0 as above. The

case N ≥ 1 is obtained by induction, deriving N times H(εζ)f and applying Leibniz’s rule.
The last estimate is obtained identically since by Lemma C.2

∣∣H(εζ)f
∣∣
Y 0
Fµ
≤
∣∣H(0)f

∣∣
Y 0
Fµ

+
∣∣Gh0(εζ)f

∣∣
Y 0
Fµ
≤ H(0)

∣∣f
∣∣
Y 0
Fµ

+
∣∣Gh0(εζ)

∣∣
Z0

Fµ

∣∣f
∣∣
Y 0
Fµ
.

The proof is now complete.
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