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Static and dynamic stiffness analyses of cable-driven parallel robots with non-
negligible cable mass and elasticity

Han Yuan, Eric Courteille ⁎, Dominique Deblaise
Université Européenne de Bretagne, INSA-LGCGM-EA 3913, 20, avenue des Buttes de Cöesmes, 35043 Rennes Cedex, France

This paper focuses on the stiffness analysis of cable-driven parallel robots (CDPRs), including the static stiffness and the dynamic stiffness 
analyses. Static and dynamic cable models are introduced considering the effect of both cable mass and elasticity. Based on these models, the 
static stiffness of CDPRs is evaluated by the variation of the end-effector pose error, and the dynamic stiffness of CDPRs is analyzed by 
identifying the robot natural frequencies. Simulations and experiments are made on a 6-DOF prototype to validate the theoretical models. 
Comparison with other methods available in literature is presented. Results show the important effect of cable mass and elasticity on the static 
and dynamic stiffness of CDPRs.

1. Introduction

Cable-driven parallel robots (CDPRs) are a special variant of traditional rigid-link parallel robots. There are some advantages to use

flexible cables instead of rigid links, such as high dynamics due to small movingmass, large workspace, and low cost [1]. However, as

cables present the particularity of not being rigid and are only able to act in tension, the stiffness of CDPRs becomes a vital concern

[2,3]. Stiffness performances have a significant effect on the static and dynamic behaviors of CDPRs, such as kinematics, positioning

accuracy, force distribution, vibration and control [1,4]. Deficient static stiffness can decrease the positioning accuracy of CDPRs,

and bad dynamic stiffness characteristics can lead to vibration and long settling time. Although stiffness has been well studied in

the last few decades for rigid-link parallel robots [1,4–8], there is little literature on the stiffness problem of CDPRs.

When it comes to the static stiffness analysis of CDPRs, an important issue is cable modeling. Many studies used linear or non-

linear spring as cable model [9–17]. This approach only considers the elasticity along cable axis and assumes cable asmassless spring.

This assumption is not accurate, especially for CDPRs with heavy and/or long-span cables. In fact, the axial cable stiffness is not the

only source of the static stiffness. Sag-introduced stiffness should also be considered. Another well knownmodel is the static sagging

cable model derived from civil engineering [18]. It is used in several previous researches [2,3,19–21]. The sagging cable model con-

siders the effect of cable mass and elasticity. It is more accurate than the spring cable model in the static stiffness analysis of CDPRs.

In previous researches, the effect of cable sag on the static stiffness of CDPRs is verified [3,19,21]. However, to our best knowledge,

the verification is limited to numerical investigations. Experimental verification of the static stiffness is only performed on a single sag-

ging cable [18,19] but not on CDPRs.

Another issue for the static analysis is the index of stiffness performance evaluation. Most studies [9,10,21] use Cartesian stiffness

matrix or its mathematical properties (such as determinant, trace, norm, and etc) as evaluation indices. For massless cable
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assumption, the static stiffness of CDPRs only depends on the axial stiffness of cables. In linear-elastic range, the axial stiffness is in-

dependent of cable forces. Thus the Cartesian stiffness matrix is independent of the external wrench applied to the end-effector. It

is easy to compute the Cartesian stiffness matrix through the Jacobian matrix of CDPRs. However, with non-negligible cable mass,

the cable profile between two attachment points is not a straight line but a sagging curve. So the direction of cable force is not

along the chord of the curve but along the tangent line of the curve. In this case, Jacobian matrix cannot be used to calculate the Car-

tesian stiffness matrix, and partial differential equations should be employed instead. This increases calculation complexity. Further-

more, taking the cable sag into consideration, the stiffness of cables is relevant to cable forces and thus depends on the external

wrench. Previous researches do not present the variation of the static stiffness with the external wrench.

Some applications of CDPRs require high performances, especially the dynamic performances. For examples: the ultrahigh speed

FALCON robot [11,12], the wind-induced vibration problem of the large radio telescope [22] and the wind tunnels [23]. Vibration can

be induced by initial position and velocity of the end-effector, wind disturbance, and/or friction of the cables aroundfixed pulleys [24].

Vibration can affect the positioning accuracy of the end-effector, and bring fluctuation on the trajectory. These applications lead to re-

searches on the dynamic stiffness of CDPRs in recent years. Natural frequency is widely used in literature as an index for the dynamic

stiffness evaluation of CDPRs [19,24–28]. Most of these researches [25,26,28] only consider cable elasticity, while neglect cable mass.

Although cablemass is considered for the static analysis in [19], it is ignored in the computation of robot natural frequencies. As amat-

ter of fact, in many situations, both cablemass and elasticity will affect system dynamics by changing the value of natural frequencies

and/or adding new resonances. Therefore, both cable mass and elasticity should be taken into consideration for the dynamic analysis

of CDPRs. The finite element cable model in [24,27] considers the effect of cable mass. This method uses distributed mass points and

ideal lines between them to simulate continuous cable, but it leads to a system with partial differential equations. In addition, the

accuracy offinite elementmethod depends on the number of elements. To ensure a good accuracywill result in further computational

complexity.

This paper focuses on the static and dynamic stiffness analyses of CDPRs. Static sagging cablemodel is introduced. This cablemodel

considers cable mass and elasticity, and describes the static cable profile with a set of non-linear equations. Cable stiffness contains

both axial flexibility and sag-introduced flexibility. Based on this sagging cable model, the variation of pose error with external load

is used as an index for evaluating the static stiffness performance of CDPRs. The pose error of the end-effector can be calculated

through the kinematic model of CDPRs. Based on this method, the static stiffness of CDPRs is analyzed by both simulations and exper-

iments on a 6-DOF CDPR prototype. The effect of cable sag on the static stiffness is validated by experiment for the first time. The var-

iation of the static stiffness with external load is presented.

A new dynamic stiffness model of CDPRs is proposed in this paper. This model is based on the Dynamic Stiffness Matrix

(DSM) method. DSM is used to solve the vibration problems of structures. It is often regarded as an exact method, because

DSM is based on the exact shape functions obtained from the exact solution of the element differential equations [29]. This

method provides better accuracy compared with finite element method. Firstly, the dynamic stiffness matrix of a single cable

proposed by [30,31] is introduced in this paper. This dynamic cable model considers the effect of cable mass and elasticity.

Then the dynamic stiffness matrix of CDPRs is deduced, considering the coupling between end-effector vibration and cable

vibration. The dynamic response functions of CDPRs are achieved to identify the system natural frequencies. In addition, experiments

on a 6-DOF CDPR prototype are performed to verify the proposed dynamic stiffness model. The Frequency Response Functions of the

prototype are calculated, and natural frequencies are identified. Experimental results are also comparedwith othermethods available

in literature.

This paper is organized as follow. Static cable model and dynamic cable model are firstly introduced in Section 2. Then the static

and dynamic stiffness analyses of CDPRs are presented in Section 3. In this section, the kinematic model of CDPRs is set up. Based

on this model, the pose error of CDPRs is defined, and the variation of the end-effector pose error with the external load is regarded

as an index for the static stiffness evaluation. The dynamic stiffnessmatrix of CDPRs is formulated, and dynamic response functions are

deduced to identify the natural frequencies. Section 4 presents a 6-DOF CDPR prototype. Simulations and experiments are carried out

to investigate the static and dynamic stiffness performance of the prototype. Section 5 analyzes the stiffness characteristics of the pro-

totype over its workspace. Applications of the proposed method on the design procedures of suspended CDPRs and non-suspended

CDPRs are discussed. Finally, conclusions are made in Section 6.

2. Cable modeling

Cable modeling is the basis of the stiffness analysis of CDPRs. In this section, the static sagging cable model and the DSM cable

model are introduced. Compared with massless spring model, the proposed cable models considering both cable mass and elasticity

are more accurate in describing the static and dynamic cable behavior.

2.1. Static cable model

The static sagging cablemodel, also known as elastic catenary model, considers the effect of both cablemass and elasticity. It gives

the static cable profile by a set of non-linear equations. This model has been studied and used in civil engineering since 1930s [18].

However, it is quite new in the analysis of CDPRs [3]. In addition, this cable model is the theoretical basis of this paper. It is necessary

to briefly introduce this model with variables familiar to robotics.
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The diagram of an inclined cable is presented in Fig. 1. One of the cable-ends is fixed, and an external force is applied to the other

end.With the effect of both external force and gravity, the shape of the cable between pointsA andB is not a straight line, but a sagging

curve in the xOz plane.

Assuming that P is an arbitrary point on the cable, the constraints for a differential cable element around the point P are:

1. The geometric constraint:

dx

dp

� �2

þ
dz

dp

� �2

¼ 1: ð1Þ

2. The constraint of static equilibrium:

fP
dx

dp
¼ fPx ¼ fAx; ð2Þ

fP
dz

dp
¼ fPz ¼ fAz−ρg lus−sð Þ: ð3Þ

3. The constraint according to Hooke's law:

fP ¼ EA
dp

ds
−1

� �

: ð4Þ

where:

• (x, z) is the Cartesian coordinate of point P in frame ℜO(O, x, y, z);

• lus and ls are the unstrained and strained cable length between points A and B respectively;

• s and p are the Lagrangian coordinate in the unstrained and strained cable profile respectively, where 0 ≤ s ≤ lus and 0 ≤ p ≤ ls;

• fA is the cable force on point A; fAx and fAz are the components of fA along x and z axis respectively;

• fP is the cable force on point P; fPx and fPz are the components of fP along x and z axis respectively;

• ρ is the cable mass per unit length;

• g is the gravitational acceleration;

• A is unstrained cross section area;

• E is the Young's modulus.

According to Eqs. (1) to (3), the force on point P can be written as:

f P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2Px þ f 2Pz

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2Ax þ f Az−ρg lus−sð Þ½ �
2

q

: ð5Þ

Fig. 1. Diagram of a sagging cable.
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As dx
ds ¼

dx
dp

dp
ds, both

dx
dp and

dp
ds can be written as functions of fP by Eqs. (2) and (4), dx

ds can be written as:

dx

ds
¼

dx

dp

dp

ds
¼

fAx
fP

fP
EA

þ 1

� �

: ð6Þ

Substituting Eq. (5) into Eq. (6) yields:

dx

ds
¼

fAx
EA

þ
fAx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2Ax þ fAz−ρg lus−sð Þ½ �
2

q : ð7Þ

Applying the same procedures for z-axis, we can get:

dz

ds
¼

dz

dp

dp

ds
¼

fPz
f P

f P
EA

þ 1

� �

¼
fAz−ρg lus−sð Þ

EA
þ

fAz−ρg lus−sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2Ax þ fAz−ρg lus−sð Þ½ �
2

q : ð8Þ

After integration with the boundary condition x (0) = 0 and z (0) = 0, the static cable profile can be described as:

x sð Þ ¼
fAxs

EA
þ

fAxj j

ρg
sinh

−1 fAz−ρg lus−sð Þ

fAx

� �

−sinh
−1 fAz−ρglus

fAx

� �� �

; ð9Þ

z sð Þ ¼
fAzs

EA
þ

ρg

EA

s2

2
−luss

!

þ
1

ρg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2Ax þ fAz−ρg lus−sð Þ½ �
2

q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2Ax þ fAz−ρglusð Þ2
q� �

: ð10Þ

The sagging cablemodel considers both sag-introduced stiffness and axial stiffness. It describes the static cable profile with a set of

non-linear equations.

2.2. Dynamic cable model

In this section, the dynamic model of a single cable is expressed in terms of the dynamic stiffness matrix. The Dynamic Stiffness

Matrix method is an exact method providing good accuracy in the analysis of vibration problem. The dynamic stiffness matrix of

an inclined cable is formulated in [29–31] by considering the cable mass, elasticity and damping. As presented in Fig. 1, the cable is

considered as a continuumand its shape is given by lc (the chord length), d (the sag perpendicular to the chord), andα (the inclination

angle). According to [29–31], the following assumptions are made:

• The cable is assumed to be uniform;

• Only small displacements are admitted to meet the requirement of linear theory;

• Only small cable sag is allowed, where d
lc
(the sag to span ratio) is no more than 1/20;

• Viscous damping is taken into consideration.

2.2.1. Dynamic stiffness matrix in 2 dimensions

For the sake of convenience, the dynamic stiffness matrix is firstly deduced in xOz plane (Fig. 1). The planar stiffness matrix K of a

single sagging cable can be defined as the relationship between the forces [ fAx, fAz] applied at the end point of the cable and the dis-

placements [δAx, δAz] at the same point by Eq. (11). The displacements [δAx, δAz] are defined as differentials that represent small chang-

es in position from static equilibrium.

fAx
fAz

� �

¼ K
δAx
δAz

� �

ð11Þ

According to [31], the stiffnessmatrixK of a planar sagging cable is a function of τ (the static cable tension at the sectionwhere the

cable is parallel to the chord), c (the damping force per unit length and velocity), andω (the frequency of harmonic motion). The ex-

pression of K is given by:

K ωð Þ ¼
Kxx ωð Þ Kxz ωð Þ
Kzx ωð Þ Kzz ωð Þ

� �

; ð12Þ

where:

Kxx ωð Þ ¼ ka cos
2
α−2kb sinα cos α þ kc sin

2
α; ð13Þ

Kxz ωð Þ ¼ ka cos α sin α−kb sin
2
α þ kb cos

2
α−kc sinα cos α; ð14Þ
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Kzx ωð Þ ¼ Kxz; ð15Þ

Kzz ωð Þ ¼ ka sin
2
α þ 2kb sinα cos α þ kc cos

2
α: ð16Þ

The relative parameters in the stiffness matrix K components are:

ka ωð Þ ¼
EA

Le

1

1þ λ2

Ω2
c
κ−1ð Þ

; ð17Þ

kb ωð Þ ¼
EA

Le

1
2 ε κ−1ð Þ

1þ λ2

Ω2
c
κ−1ð Þ

; ð18Þ

kc ωð Þ ¼
EA

Le

ε2

λ2

1

κ
− EA

Le

1
4
ε2

λ2 Ω
2
c κ þ λ2

Ω2
c
κ−1ð Þ

h i

1þ λ2

Ω2
c
κ−1ð Þ

; ð19Þ

where:

• λ2 ¼
ρg lc
τ

	 
2
EAlc
τLe

cos2α is the fundamental cable parameter which represents the elastic stiffness relative to the catenary stiffness,

where lc is the chord length and α is the inclination angle;

• ε ¼ ρglc
τ cos α ¼ 8d

lc
is the ratio between horizontal cable weight and cable tension, where d is the sag perpendicular to the chord;

• Le ¼ ∫
lc

0

ds

dx

	 
3

dx≃ lc 1þ 8
d

lc

	 
2
� �

is the cable length parameter;

• ξ ¼ c
2ρω is the damping ratio;

• ωc ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−2ξi
p

is the frequency–damping parameter;

• Ω ¼ ωlc

ffiffi

ρ
τ

q

is the dimensionless frequency parameter;

• Ω ¼ ωclc

ffiffi

ρ
τ

q

is the dimensionless frequency–damping parameter;

• κ ¼
tan Ωc

2ð Þ
Ωc
2ð Þ

is an auxiliary term.

2.2.2. Dynamic stiffness matrix in 3 dimensions

Similar to the deduction of the planar dynamic stiffness matrix, with the consideration of the out-of-plane motion (cable motion

along y-axis), the spatial dynamic stiffness matrix in 3 dimensions can be expressed as:

K
3D

ωð Þ ¼
Kxx ωð Þ 0 Kxz ωð Þ

0 Kyy ωð Þ 0
Kzx ωð Þ 0 Kzz ωð Þ

2

4

3

5: ð20Þ

In linear theory the in-plane motion is uncoupled with the out-of-plane motion [29,30]. So the interaction coefficients in Eq. (20)

are zeros. According to [29], the stiffnessmatrix coefficient for the out-of-planemotion is:Kyy ωð Þ ¼
τ 4−κ2Ω2

cð Þ
4κlc

. The other coefficients are

the same with those in Eq. (12).

2.2.3. Dynamics of an example cable

The coefficient of the dynamic stiffness matrix Kxx (ω) is calculated for an example cable whose properties are: E = 20 Gpa, A =

1.26× 10−5m2, lc= 6.848m, τ=77.6 N,α=36°, ξ= 0.003. The relevant parameters are: Le
lc
¼ 1:0003≈ 1, λ2=7.57 and ε= 0.048.

For comparison, the coefficient of the equivalent static stiffnessmatrix for the same cable is calculated using themethod presented in

[19].

The amplitude variation of a coefficient (such as Kxx (ω)) of the dynamic and static stiffness matrix is plotted with respect to the

frequency of harmonic motion ω in Fig. 2. As expected, the static stiffness coefficient is constant. However, the dynamic stiffness co-

efficient is variablewith frequency. Considerable variations of the dynamic stiffness amplitude are presentwithin the range of the nat-

ural frequencies, and these variations are associated with symmetric and antisymmetric modes of the cable. Therefore, the

contribution of the cable dynamics and the coupling between the cable vibration and the end-effector vibration should be considered

in the dynamic stiffness analysis of CDPRs.

3. Stiffness analysis of CDPRs

3.1. Problem description

According to the arrangement of cables, two kinds of CDPRs can be considered. One is suspended CDPRs, where all the driven ca-

bles are above the end-effector and gravity acts as a virtual cable to keep equilibrium, such as the CoGiRo robot [32]. The other is non-
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suspended CDPRs or fully constrained CDPRs, where at least one driven cable is below the end-effector, such as the FALCON robot

[11,12].

For non-suspended CDPRs, sag-introduced flexibility can be reduced by increasing internal cable forces. As long as the internal

cable forces are big enough, the effect of cable sag can be neglected, and the assumption of massless linear spring cable can be used

in the static stiffness analysis. However, the method of increasing internal forces cannot be applied to suspended CDPRs. Because

there does not exist a cable below the end-effector, and the cable forces mainly depend on the external load applied to the end-

effector. Therefore, sag-introduced stiffness should be considered in the stiffness analysis of CDPRs, especially when the external

load is small.

This paper mainly focuses on the suspended CDPRs. But the proposed method is also significant in the analysis of non-suspended

CDPRs. In fact, increasing internal cable forces is a passive method, which leads directly the increase onmotor power and energy con-

sumption. In practical applications, it is impossible to eliminate sag-introduced flexibility entirely, especially for the CDPRswith heavy

and long-span cables. Therefore, the proposed method is also useful for the stiffness analysis of non-suspended CDPRs.

Fig. 3 presents a general configuration of cable-suspended parallel robot, where:

• Ai is the attachment point in the end-effector and Bi is the attachment point in the fixed base;

• ℜG (OG, xG, yG, zG) is the fixed global frame;

• ℜe (Oe, xe, ye, ze) is the local frame fixed on the end-effector;

• Li is the i th cable;

• ℜBi
Bi;X;Y ; Zð Þ is parallel to ℜG (OG, xG, yG, zG);

• ℜci (Oci, xci, yci, zci) is the local cable frame, where points Oci and Bi are coincident, axis zci is parallel to zG, axis xci is in the cable plane,

and axis yci is perpendicular to the cable plane.

Fig. 3. General configuration of cable-suspended parallel robot.
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Fig. 2. The amplitude variation of a coefficient of the dynamic and static stiffness matrix for an example cable.

6



Acc
ep

te
d 

M
an

us
cr

ip
t

3.2. Static stiffness analysis of CDPRs

For CDPRs using massless spring cable model, the platform pose error can be calculated by its static Cartesian stiffness matrix, as-

suming the compliant displacements of the platform are small [5]. However,with non-negligible cablemass, sag-introduced flexibility

should be considered, and the small compliant displacement assumption is no longer valid. Therefore, the Cartesian stiffness matrix

cannot be used to calculate the pose error. Here, the kinematic model of CDPRs is used to define the pose error of the end-effector. In

this section, the kinematicmodel is firstly presented, then the variation of the end-effector pose errorwith the external load is defined

as an index for the static stiffness evaluation.

3.2.1. Kinematic model

3.2.1.1. a) Inverse kinematics. The objective of inverse kinematics is to get all the actuated cable lengths for a given pose of the end-

effector. If the cable mass and elasticity cannot be neglected, the inverse kinematics of CDPRs is coupled with the static equilibrium,

whichmeans that the cable lengths and the cable forcesmust be solved at the same time. The procedures of solving inverse kinematics

are as following:

(1) Get the coordinate of Ai in the cable frame ℜci (equations from geometric relationship)

The coordinate of Ai in the global frame ℜG is:

G

OGAi

��!
¼

G

OGOe

���!
þ

G

OeAi

��!
¼

G

OGOe

���!
þ

G
Te

e
OeAi

��!
; ð21Þ

where GTe is the rotation matrix that transfers the coordinates in ℜe to their corresponding coordinates in ℜG.

The coordinate of Ai in the cable frame ℜci is:

ci

OciAi

���!
¼

G
T
−1
ci

G

OciAi

���!
¼

G
T
−1
ci

G

OGAi

��!−
G

OGOci

���!
� �

; ð22Þ

where GTci is the rotation matrix that maps the coordinates in ℜci to their corresponding coordinates in ℜG.

(2) Equations from the static cable model

The coordinates of Ai in the cable frameℜci can also be obtained by substituting s = lusi into Eqs. (9) and (10):

x
OciAi

���! ¼ x lusið Þ ¼
fAxilusi
EA

þ
fAxij j

ρg
sinh

−1 fAzi
fAxi

� �

− sinh
−1 fAzi−ρglusi

fAxi

� �� �

; ð23Þ

z
OciAi

���! ¼ z lusið Þ ¼
fAzilusi
EA

−ρgl2usi
2EA

þ
1

ρg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2Axi þ f 2Azi

q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2Axi þ fAzi−ρglusið Þ2
q� �

; ð24Þ

where i = 1, 2, ⋯m. For a CDPR driven bym cables, the number of equations from the static cable model is 2m.

(3) Equations from static equilibrium of the end-effector

The equations for static equilibrium of the end-effector are:

G

FAi
�!

þ
G
Fex
�!

¼ 0
!
; ð25Þ

G

OeAi

��!
�

G
FAi
�!

þ
G
Mex

��!
¼ 0

!
; ð26Þ

where
G Fex
�!

and
GMex

��!
are respectively the external forces andmoments expressed in global frame.

G

FAi
�!

are the forces exerted by

the cables on the end-effector at points Ai, and
G

FAi
�!

¼
G
Tci

ci

FAi
�!

;
ci

FAi
�!

¼ − fAxi0− fAzi½ �
T
. For a CDPR of nDOFs, the number of static

equilibrium equations is n, where n ≤ 6.

(4) Solving the equations

As the coupling of the cable forces and the cable lengths, there is no analytic solution for the above nonlinear equations. So op-

timization methods are employed. The ‘fmincon’ function in Matlab 1 is used to solve Eqs. (23) to (26). The unknowns in the

equations are: lusi, fAxi, fAzi (i = 1, 2 ⋯m). Finally, there are 3m unknowns and 2m + n equations.

There are three cases according to the relationship between m and n.

1. m = n, there are as many unknowns as the equations.

2. m b n, there aremore equations than the unknowns, and the solutionsmay not exist. Thismeans that the end-effector cannot be

positioned arbitrarily in 6 DOFs.

1 Matlab is software of MathWorks® company (http://www.mathworks.com).
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3. m N n, the unknowns outnumber the equations, so the solutionwill not be unique. In this case, different sets of cable lengths and

forces can be obtained for the same givenpose of the end-effector. Tomake the solution unique, constrained optimizationwith a

cost function can be used.

(5) Initial guess for the iteration

Good initial guess is important for the convergence and the efficiency of the optimization method. Assuming that cables are

ideal straight lines without mass and elasticity, thus the cable forces and cable lengths are uncoupled. The ideal cable lengths

can be calculated through the inverse kinematics (l0i ¼ jAiBi

��!
j). The ideal cable forces can be calculated through the static equi-

librium (JTF+Wex =0), where JT is the transposition of Jacobianmatrix, F= [ fA1 fA2⋯ fAm]T is the ideal cable forces, andWex is

the external wrench (force andmoment) applied on the end-effector. Then the calculated cable lengths and forces can be used

as the initial guess.

During the calculation of cable forces, three cases should be considered according to the rank of JT:

1. m = n, JT is full rank and reversible except for the singulary poses. The ideal cable forces can be calculated by F = −J−TWex.

2. m b n, JT is not full rank. There are more equations than variables in JTF+Wex=0. The ideal cable forces F can be calculated by

choosing anym equations from the n equations. Then the solution should be substituted back into the remaining n−m equa-

tions to be tested.

3. m N n, JT is not full rank. There are less equations than variables in JTF+Wex = 0. Different force distribution methods [33–35]

can be used to calculate the ideal cable forces.

3.2.1.2. b) Direct kinematics. The objective of direct kinematics is to get the pose of the end-effector for a given set of actuated cable

lengths. The constraints of direct kinematics are the same with that of inverse kinematics (Eqs. (23) to (26)). With non-negligible

cablemass andelasticity, thedirect kinematics is coupledwith the static equilibrium. The end-effector pose and the cable forces should

be calculated at the same time. For annDOFs CDPRwithm cables, there are 2m+ n equations (Eqs. (23) to (26)) and2m+ n unknown

variables. Various kinds ofmethods canbe used for solving the direct kinematic problem [36–38]. In this paper, optimizationmethod is

used to solve the direct kinematic problem.

3.2.2. Static pose error definition

Fig. 4 presents the definition of the pose error of the end-effector. For a given set of unstrained cable lengths lusi, the pose (position

and orientation) of the end-effector can be obtained through direct kinematic model. In the modeling of direct kinematics, different

cable models can be used, such as the ideal cable model where the cable is considered to be an inextensible straight line, the spring

cable model where the cable is simplified as linear spring without mass, and the sagging cable model where elastic catenary is

employed considering both cable mass and elasticity. The difference between the pose obtained through the spring cable model or

the sagging cable model and the reference pose obtained through the ideal cable model defines the static pose error of the robot. It

should be noted that the cable lengths lusi are not given arbitrarily. In fact, it is a two step procedure. Firstly, a pose of the end-

effector in its workspace is chosen as a reference. Then the reference cable lengths are obtained from the ideal inverse kinematics

model, and the set of cable lengths lusi is given according to the reference lengths. In this way, the reference pose of the end-

effector can be used as a good initial guess for the direct kinematics.

In this paper, the variation of the end-effector pose error is regarded as the index for static stiffness evaluation. First of all, this

method is simple. It has a direct natural interpretation as it is associated with the compliant displacement of the end-effector

under the effect of external load. Furthermore, the static stiffness of CDPRs has two sources: sag-introduced flexibility and axial

cable flexibility. The variation of the end-effector pose error calculated by the sagging cablemodel presents the global system stiffness.

While the variation of the end-effector pose error calculated by the spring cablemodel only reflects the contribution of axial cableflex-

ibility to the system stiffness. The difference between the results obtained by sagging cable model and the results by spring cable

model expresses the contribution of sag-introduced flexibility. Thus, the effect of each source on the system stiffness can be clearly

defined. In addition, pose error is easy to measure, which is convenient for experimental validation. It should be noticed that stiffness

matrix and itsmathematical properties are also powerful for stiffness analysis (as illustrated in [21]). In this paper, these twomethods

are not compared with each other.

Fig. 4. Static pose error definition.
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3.3. Dynamic stiffness analysis of CDPRs

A new dynamic stiffness model of CDPRs is proposed in this section. This model is based on the DSMmethod. Firstly, the dynamic

stiffness matrix of CDPRs is calculated by assembling the dynamic matrix of the driven cables. Then system dynamic equation is for-

mulated and the Frequency Response Functions (FRFs) are calculated to identify the robot natural frequencies.

3.3.1. Computation of dynamic stiffness matrix

Eq. (20) gives the dynamic stiffnessmatrix of a single cable ciKi(ω) in its local cable frameℜci. As the robot stiffness is affected by all

the driven cables, it is necessary to express the cable stiffness matrix in the global frameℜG (Fig. 3).

G
Ki ωð Þ¼

G
Tci

ci
Ki ωð Þ

G
T
−1
ci : ð27Þ

Then the stiffness matrix of the robot GKM(ω) can be assembled by considering all driven cables:

G
KM ωð Þ ¼

Xm

i¼1

A
T
i

G
Ki ωð ÞAi; ð28Þ

where:

Ai ¼

1 0 0 0 −z
oeAi

��! y
oeAi

��!

0 1 0 z
oeAi

��! 0 −x
oeAi

��!

0 0 1 −y
oeAi

��! x
oeAi

��! 0

2

6
4

3

7
5: ð29Þ

Furthermore, the robot stiffnessmatrix can also be expressed as eKM(ω) in the end-effector frameℜe using the rotationmatrix GTe.

Fig. 5. A 6-DOF CDPR prototype.

Table 1

Configuration parameters: coordinates of the points Bi in global frame and that of Ai in local frame.

(m) x y z x y z

A1 −0.025 −0.143 0 B1 5.327 −2.267 4.193

A2 0.136 −0.050 0 B2 5.327 −2.267 3.822

A3 0.136 0.050 0 B3 5.327 2.267 4.193

A4 −0.025 0.143 0 B4 5.327 2.267 3.822

A5 −0.111 0.093 0 B5 −5.775 0.010 4.193

A6 −0.111 −0.093 0 B6 −5.775 0.010 3.822
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For CDPRs, the system stiffness ismainly affected by the stiffness of their cables, actuators, and end-effector. Comparedwith cables,

the compliance of the actuators and the end-effector is much lower and therefore neglected. The free vibration equations of a CDPR

can be written as:

Mx
::
tð Þþ

e
KM ωð Þx tð Þ ¼ 0; ð30Þ

wherex tð Þ represents the perturbation of the end-effector in position and orientation from the static equilibrium.M is the 6 by 6mass

matrix of the end-effector.

In the previous study [19,26,28], cable mass is neglected on the vibration analysis. The system stiffness matrix eKM is constant in fre-

quency. According to the free vibration theory of multi-degree-of-freedom system, the natural frequencies of the CDPR can be calculated

by transforming system dynamic equation into its modal space, and then solving the classic eigenvalue and eigenvector problems.

However, in this paper, both cable mass and elasticity are considered. As a result, the system stiffness matrix eKM(ω) is function of

the frequency ω. The above method for linear multi-degree-of-freedom system is not suitable. The analysis of the dynamic response

functions of the robot to a harmonic excitation can be used.

For each pose of the end-effector path, the dynamic equation of a CDPR under a harmonic excitation can be written as:

Mx
::
tð Þþ

e
KM ωð Þx tð Þ ¼ Fe

jωt
: ð31Þ

Assuming that the vibration response of the end-effector is x tð Þ ¼ Xe jωt , the solution of Eq. (31) can be written as:

X ¼ −ω
2
Mþ

e
KM ωð Þ

h i−1
F: ð32Þ

The dynamic amplification due to resonance will enable to identify the robot natural frequencies.

4. Experimental validation

In this section, a 6-DOF suspended CDPR is presented as an example to verify the proposed method. The effects of cable mass and

elasticity on the static and dynamic stiffness performances are investigated by simulations and experiments.

The configuration of the prototype is similar to the CDPR presented in [2]. There are 6 attachment points on the three vertical poles

and 6 attachment points on the end-effector (Fig. 5). These points are connected by 6 cables. The dimensions of this prototype are

about 10 m long, 6 m wide and 5 m high. Table 1 gives the detailed parameters of the 6-DOF CDPR prototype. Because the purpose

of this prototype is to verify the effect of cable sag on the stiffness characteristics of CDPRs at some poses in the workspace, the pro-

totype is built without motors andwinches. The attachment points are fixed on the top of the poles. Two sets of anti-rust steel cables

are used. One set isϕ4mm in diameter and 6863, 6565, 6756, 6663, 6801, and 6604mm in length. The other set isϕ8mm in diameter

and 4859, 4552, 4830, 4586, 9417, and 9284mm in length. Thus two poses of the end-effector can be achieved. The coordinates of the

end-effector center in the global frameℜG are (0, 0, 0.5m) and (3, 0, 0.5m) respectively, and the rotational angles are zeros. The cable

Young's modulus is identified using a material testing machine. All the cables work within their linear elastic region. The relevant

cable parameters are given in Table 2.

4.1. Static experiments

In order to study the static stiffness performance of CDPRs, experiments are carried out in this section. The effect of cable sag on the

static stiffness behavior is validated, and the variation of system stiffness with external load is presented.

The experimental setup (Fig. 6) consists of the 6-DOF cable robot, a precise multi-camera system for tracking the pose of the end-

effector and a loading device connected to the center of the end-effector. The measurement device is the Nikon Metrology K600-10

system 2 based on three CCD linear cameras and infra-red light active LEDs. Three LEDs are attached to the end-effector and its

Table 2

Cable parameters.

Diameter 4 mm 8 mm

Length lus1 –lus3 6863 6565 6756 4859 4552 4830

(mm) lus4 – lus6 6663 6801 6604 4586 9417 9284

Young's modulus 19.9 GPa 20.1 GPa

Mass per meter 0.067 kg/m 0.251 kg/m

2 This is a product of Nikon® company: http://www.nikonmetrology.com.
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poses (both position and orientation) are measured by the camera. The system has a positionmeasuring accuracy up to±37 μm for a

single point. The mass of the end-effector can be adjusted from 10 to 86 kg by adding dead weights as shown in Fig. 6.

Fig. 7 shows the variation of the pose error of the end-effector along z-axis with the external load. Firstly, it is shown that the ex-

perimental data are quite close to the computational data obtained by the sagging cablemodel. Through these data, the effect of cable

sag on the static stiffness of CDPRs is validated by experiment for the first time. In addition, the effect of external load on the static

stiffness is illustrated. When the external load is small, the variation of the end-effector pose error with the external load is quite

big, which means that the system stiffness is low. Also, there is a big difference between the pose error calculated by the sagging

cable model and that by the spring cable model, which indicates that the sag-introduced cable flexibility is themain source of system

stiffness. In this case, the sagging cable model is necessary to have a good evaluation for the system stiffness. After the external load

increases beyond a certain value, the variation of the end-effector pose error with the external load becomes much smaller, and the

results obtained by the sagging cablemodel are quite close to that by the springmodel. This means that the system stiffness becomes

higher and the sag-introduced flexibility is negligible. In this case, both the sagging model and the spring model have a good evalu-

ation for system stiffness.
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(a) Cable diameter: 4 mm
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(b) Cable diameter: 8 mm

Fig. 7. Effect of external load on the static pose error of the CDPR prototype.

Fig. 6. Static experimental setup.
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(a) Cable L5: 8 mm in diameter
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(b) Cable L5: 4 mm in diameter

Fig. 9. Frequency Response Functions between the cable acceleration response and the excitation force.

(a) End-effector (b) The 6-DOF CDPR prototype

Fig. 8. Dynamic experimental setup.
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4.2. Dynamic experiments

In order to verify the dynamic stiffnessmodel proposed in Section 3, tests have been performed to identify the dynamic character-

istics of the 6-DOF CDPR prototype. Fig. 8 represents the experimental setup. It contains the 6-DOF cable robot, the two sets of steel

cables, an electro-dynamic shaker, several sensors, the data acquisition and analysis system. As shown in Fig. 8(a), the shaker is

mounted on the end-effector. A small mass block is fixed to the mobile stick of the shaker. A force sensor lies between the mass

block and themobile stick. Thus, the shaker can deliver a vertical force to the end-effector. The force is proportional to the acceleration

amplitude of the mass block, and can be measured by the force sensor. A triaxial accelerometer is fixed on the platform. It is used to

obtain the response of the end-effector along three mutually perpendicular directions. Several other accelerometers are fixed along

the cables. The weight of the accelerometer is 5.8 g. Compared to the linear weight of the cables (67 g/m for 4 mm cable, and

251 g/m for 8 mm cable), its weight can be negligible. The total mass of the end-effector and other equipments fixed on it is 30 kg,

with a rotational inertia Ixx=0.9, Iyy=0.9 and Izz=0.77 kgm2measured in the end-effector frameℜe. The cable parameters are listed

in Table 2.

Experiments have been performed with a stepped sine excitation, i.e. a harmonic excitation at a fixed frequency changed step by

step. The step size is 0.05 Hz. At each step, there is a stabilization time of 8 s. As the low-order natural frequencies are important to
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(b) Cable diameter: 4 mm

Fig. 10. Frequency Response Function between the acceleration response of the platform along y-axis and the excitation force along z-axis in the end-effector frameℜe.

Table 3

Cable natural frequency identification.

Diameter Data sources Cable natural frequencies (range: 2–20 Hz)

4 mm cable Experiment (±0.1 Hz) 4.4 9.3 13.1 16.5 19.9

Dynamic stiffness matrix 4.9 9.9 14.9 19.9 24.8

Diameter Data sources Cable natural frequencies (range: 2–20 Hz)

8 mm cable Experiment (±0.1 Hz) 2.4 4.7 6.3 8.1 9.0 9.6 11.4 12.2 12.5 14.6 15.7 18.6

Dynamic stiffness matrix 2.5 4.9 7.4 7.4 9.9 9.9 12.4 12.4 12.4 14.8 17.3 19.8
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evaluate the dynamic stiffness of CDPRs, the dynamic experimentmainly focuses on the low frequency. However, the electro-dynamic

shaker is not suitable for the dynamic test below 2 Hz. Therefore, the examined frequency range in this section is 2–20 Hz.

As explained before, we consider the Frequency Response Function (FRF) plot as a useful tool when dealing with resonance iden-

tification for non-linear system. The FRF plots presented in Fig. 9 have been calculated referring to the output of the accelerometers

fixed along the cable and the output of the force sensor in the cable frame ℜci. It should be noticed that Fig. 9 presents the results

of the cable L5. Similar measurements are made for another two cables, L4 and L6. Conclusions are the same. For the sake of brevity,

only the results for cable L5 are given in this paper. From these FRF plots, it is possible to identify the natural frequencies of the cables

through the resonances. Table 3 compares the cable natural frequencies identified by the FRF plots with those calculated using the

cable dynamic stiffness matrix (Section 2.2). The correlation between the theoretical model and the experimental data is good for

the low frequencies, but there exists some difference for the high frequencies. The CDPR prototype consists of the 6 cables and the

end-effector. In the experiment, each cable is not isolated, but relevant with the end-effector and the other cables. Therefore, the

cable response in the FRF plot can be affected by the response of other cables and/or the end-effector. In addition, as we can see

from Fig. 9 and Table 3, the correlation for ϕ4 mm cable is better than that of ϕ8 mm cable. This can be explained by the smaller ε

of theϕ4mmcable. As presented in Section 2.2, ε is the ratio between the horizontal cableweight and the cable tension. It is positively

relevant to the cable sag. The cable dynamic stiffness matrix is based on the assumption of linear theory and small cable sag. Big cable

sag can increase the non-linearity of the cable, and result in error of the theoretical model. The tension of the two cables is almost the

same, 278N for theϕ4mmcable and 264 N for theϕ8mmcable. But there exists a big difference on the horizontal cableweight, 4.2 N

for the ϕ4mm cable and 16.1 N for the ϕ8mm cable. Thus it leads to an obvious difference in the value of ε: ε= 0.013 for the ϕ4mm

cable and ε= 0.053 for the ϕ8 mm cable. Therefore, the sag of the ϕ4 mm cable is smaller due to the smaller value of ε, and the cor-

relation is better. In spite of this, the relative error is less than 20% for the first five modes.

As presented in Fig. 10, the FRF plots have been calculated referring to the acceleration response of the platform along y-axis and

the excitation force of the shaker along z-axis in the end-effector frameℜe. The 6-DOFCDPR prototype exhibits several dampedmodes

in the frequency range studied. The natural frequencies of the prototype with 4mmcables and 8mmcables are identified respective-

ly. Results are listed in thefirst line of Table 4. Aswe can see, the difference between experimental results and simulation results is less

than 1 Hz in the studied frequency range. For the configuration with 4 mm cables, the difference is up to 0.9 Hz for the intermediate

frequencies. In simulation, themode at 3.8 Hz is a doublemode. However, due to experimental errors (such as cable length, fixing de-

vice and etc.), these two modes are separated in the experiment (4.2 and 4.7 Hz). These results allow concluding that the proposed

dynamic stiffness model of CDPRs is effective for the natural frequency identification, although some critical aspects remain. In the

experimental setup, metal rings are used as joints to connect the cable and the end-effector. However it is assumed that the cable

end is fixed on the end-effector in the simulation. The metal rings can affect the natural frequencies of the CDPR prototype. Also,

(a) Global pose error (b) Pose error caused by

       cable sag

(c) Pose error caused by axial

       cable elasticity

Fig. 11. Static pose error of the end-effector along vertical direction over the sub-workspace for ϕ4 mm cable and 30 kg external load.

Table 4

Robot's natural frequency comparison among different methods.

Diameter Data sources Robot's natural frequencies (range: 2–20 Hz)

4 mm cable Experiment (±0.1 Hz) 2.2 2.7 4.2 4.7 5.9 7.8

Proposed dynamic model 2.1 3.0 3.8 3.8 5.9 7.9

Static sagging model [19] 2.3 3.9 4.5 6.6 8.6 –

Massless spring model [28] 2.5 4.0 4.8 7.8 9.1 –

Diameter Data sources Robot's natural frequencies (range: 2–20 Hz)

8 mm cable Experiment (±0.1 Hz) 2.0 2.5 4.0 4.7 5.6 6.3 7.7 8.6 9.5 11.1 12.0 12.3 13.8 15.3 18.5

Proposed dynamic model 2.0 2.0 4.3 4.6 5.4 6.3 7.8 9.4 9.4 10.5 12.4 12.8 13.7 16.3 18.6

Static sagging model [19] 2.1 4.6 6.0 7.7 11.1 – – – – – – – – – –

Massless spring model [28] 2.8 5.6 8.2 9.5 15.8 18.2 – – – – – – – – –
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the cable damping ratio ξ is estimated as 0:01= Ω
πð Þ [31]. Although the value of ξ has little effect on the robot natural frequencies, it can

affect the amplitude of the FRF plots.

The results obtained by the dynamic stiffness model of the CDPR are compared with that obtained by the static sagging cable

model [19] and themassless spring cable model [28]. The latter twomodels neglect the coupling between the end-effector dynamics

and the cable resonances. From the comparison in Table 4, it is indicated that the dynamics of the cables change the value of natural

frequencies and add new resonances. Furthermore, as we can see, the change of natural frequency between different models is more

significant forϕ8mmcable than that forϕ4mmcable. Thismeans that the effect of cable dynamics on systemdynamic stiffness char-

acteristics is more significant for heavier cable, as expected. Therefore, the evaluation of the dynamic stiffness of CDPRs should take

cable dynamics into consideration, especially for heavy and/or long-span cables.

5. Application and discussion

Static and dynamic stiffness analyses are valuable and necessary to improve the performances of CDPRs, such as increasing the

static positioning accuracy and attenuating the vibration in trajectory tracking. The proposed method for stiffness analysis in this

paper is useful for design, optimization, identification, simulation and control purposes.

In previous sections, the effect of cable sag, cablemass and external load on the stiffness behavior of CDPRs is studied through sim-

ulations and experiments only for certain poses of the end-effector. As is known, the robot stiffness is also posture dependent. It is

necessary to be considered over the workspace.

Figs. 11 and 12 present the pose error of the CDPR prototype along vertical direction over a sub-workspace with a fixed external

load of 30 kg, for ϕ4 mm cable and ϕ8 mm cable respectively. The sub-workspace is defined by −0.5m ≤ X ≤ 0.5m,

−0.5m ≤ Y ≤ 0.5m, Z = 0.5 m, and the rotational angles around axis-x, y, and z are all zeros. As we can see from Figs. 11(a) and

12(a), the static pose error of the end-effector varies significantly with the robot posture. The absolute value of the pose error

tends to increase as the distance from the end-effector to the x-axis becomes larger. It tends to decrease as the end-effector moves

along the positive direction of the x-axis. In addition, as explained in Section 4.1, the static pose error of CDPRs is caused by both

cable sag and axial cable elasticity. Figs. 11(b) and 12(b) present the sag-introduced pose error of the end-effector along z-axis,

while Figs. 11(c) and 12(c) present the pose error of the end-effector along z-axis caused by axial cable elasticity. As illustrated, the

static pose error of the CDPR prototype is mainly dependent on the axial cable elasticity for CDPRs with ϕ4 mm cable (Fig. 11),

while it is mainly dependent on the sag-introduced flexibility for CDPRs with ϕ8 mm cable (Fig. 12).

(a) φ4 mm cable and 30 kg

      external load

(b) φ8 mm cable and 30 kg

       external load

Fig. 13. Dynamic stiffness evaluation through the first natural frequency of the prototype over the sub-workspace.

(a) Global pose error (b) Pose error caused by

       cable sag

(c) Pose error caused by axial

      cable elasticity

Fig. 12. Static pose error of the end-effector along vertical direction over the sub-workspace for ϕ8 mm cable and 30 kg external load.
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Figs. 13 and 14 present the dynamic stiffness evaluation of the CDPR prototype over the sub-workspace through the first natural

frequency of the end-effector and the 6 driven cables respectively. As shown, the robot natural frequency varies with the end-effector

pose. Thefirst natural frequency of the end-effectorwithϕ4mmcable and 30 kg external load changes from 0.24 Hz to 1.63 Hz.While

(a) 1st cable (b) 2nd cable (c) 3rd cable

(d) 4th cable (e) 5th cable (f) 6 th cable

(g) 1st cable (h) 2nd cable (i) 3 rd cable

(j) 4 th cable (k) 5 th cable (l) 6 th cable

Fig. 14. First natural frequency of the cables over the sub-workspace: (a)–(f) is for ϕ4 mm cable, 30 kg external load; (g)–(l) is for ϕ8 mm cable, 30 kg external load.
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for ϕ8 mm cable and 30 kg external load, the frequency varies from 0.25 Hz to 0.78 Hz. The end-effector natural frequency tends to

increase as the robot moves along the positive direction of the x-axis.

The proposed method in this paper is helpful in the design procedures of CDPRs. It can help choosing the cable parameters, the

end-effector mass, motor parameters, the control scheme and etc. Take a pick-and-place application of the suspended CDPRs for ex-

ample. Using cables with lower density and/or higher Young's modulus is helpful to improve the stiffness of CDPRs. Keeping the tra-

jectory in the center of the workspace can also increase their stiffness. Furthermore, stiffness can be enhanced with heavier end-

effector. However, heavy end-effector will increase the power consumption and decrease the load capacity. Therefore it is necessary

to choose suitable end-effector mass and cable parameters according to design requirements. In addition, an optimization of the con-

trol scheme can bemade to ameliorate the stiffness performances of CDPRs.When the end-effector is empty, sag-introduced stiffness

should be considered in the control model to get a good prediction of the end-effector pose. After picking up the cargo, the total mass

of the end-effector becomes bigger and cable sag can be attenuated. Axial cable elasticity becomes themainly source of the robot stiff-

ness. A controller only considering axial cable elasticity can be used. It can accelerate calculation without losing accuracy.

For non-suspended CDPRs, the proposedmethod in this paper is also applicable. Increasing internal cable force can decrease cable

sag and improve the stiffness of CDPRs. But larger cable force requires higher power motor andmore energy supply. So a tradeoff be-

tween robot stiffness and cable force should be considered according to different application requirements. In addition, using light

cable can weaken the effect of cable dynamics on robot dynamic stiffness. If the cable mass is negligible compared with the mass of

the end-effector, spring cable model with axial elasticity can be used in the controller to simplify calculation and improve dynamic

response. While cable mass is non-negligible, the coupling between cable dynamics and end-effector dynamics must be considered

in the controller to ensure calculation accuracy.

For most applications of CDPRs, cable vibration is caused by internal factors, such as the acceleration of the end-effector and/or the

winch, and the change of cable force and length duringmotion. However, for some applications, there exists external excitation on the

cables of CDPRs, such as thewind-induced vibration problemof the large radio telescope (an application of the suspended CDPR [19])

and thewind-tunnel (an application of the non-suspended CDPR [23]). For these applications, external wind-induced excitation is the

main reason for cable vibration. The cable resonance can directly lead to the vibration of the end-effector, and cable dynamics are

strongly coupled with end-effector dynamics. In this case, cable dynamics (Fig. 14) should be considered to have a good evaluation

of the CDPR performances.

6. Conclusion

This paper analyzes the static and dynamic stiffness of CDPRs with non-negligible cable mass and elasticity. Cable model is intro-

duced. The static pose error of the end-effector is defined, and the variation of the end-effector pose error with the external load is

used to evaluate the static stiffness of CDPRs. A new dynamic model of CDPRs is proposed, which is based on the dynamic stiffness

matrix of a single cable. It considers the coupling of cable dynamics and end-effector vibration. Based on this dynamic model, robot

natural frequencies are identified through the Frequency Response Functions of CDPRs, with the purpose of dynamic stiffness evalu-

ation. Experiments are carried out on a 6-DOF CDPR prototype. The effect of cable sag and external load on the static stiffness of CDPRs

is validated. Results show that sag-introduced flexibility is themain source of static robot stiffness with small external load, and axial

cable flexibility becomes the main source with big external load. Vibration experiments are performed on the CDPR prototype. Dy-

namic response functions of the driven cables and the end-effector are calculated to identify the natural frequencies. Compared

with other methods available in literature, it is indicated that cable dynamics have an obvious effect to the robot dynamic stiffness

by changing the value of robot natural frequencies and/or add new resonances. In addition, static pose error and the first natural fre-

quency of CDPRs over the workspace are calculated. Applications of suspended CDPRs and non-suspended CDPRs are discussed. Re-

sults show that the proposed method in this paper is useful for the design, simulation and control procedures of CDPRs. Our current

and future work contains high-accurate trajectory tracking and active vibration control of CPRRs considering the effect of cable sag

and elasticity.
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