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Abstract

We show that the discrete operators and spaces of gradient discretizations can be

designed so that the corresponding gradient scheme for a linear diffusion problem

be identical to the Raviart–Thomas RT k mixed finite element method for both

the primal mixed finite element formulation and the hybrid dual formulation.

We then give the hybrid dual RT 0 scheme for the approximation of a nonlinear

model for two-phase flow in porous media; its convergence is then known thanks

to a recent proof of the convergence of gradient schemes for this problem.

Keywords: mixed finite element, two phase flow, gradient schemes

1. Introduction

The numerical solution of environmental underground studies often involves

models which require the approximation of linear and nonlinear heterogeneous

and anisotropic diffusion operators for general piecewise regular coefficients and

on general meshes [5, 2, 1, 4]. A wide number of numerical schemes based on

several different approaches have been developed in the last fifteen years to this

purpose. An illustration of the variety of these approaches may be found in the

two benchmarks which were held in 2008 (two-dimensional case) and in 2011

(3D case) [15, 14]. The family of gradient schemes was introduced to synthesize
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some of these approaches and was proven to converge for a large number of

nonlinear problems [12, 7]. This family contains several well-known schemes,

such as conforming and lumped conforming schemes, the hybrid mixed mimetic

family of schemes [7], and some discrete duality finite volume schemes [6]. The

aim of this paper is to show that it also contains the RT k mixed finite element

method [16, 17] in the case of a linear diffusion problem, and then apply this

gradient discretization to two phase flow problems. Let us first recall the primal

and dual formulations of the mixed finite element method [8] for the following

linear anisotropic diffusion problem. Let Ω be an open bounded connected

polygonal subset of Rd, d ∈ N?, let λ and λ ∈ R, such that 0 < λ ≤ λ and let

Md(λ, λ) denote the set of d× d symmetric matrices with eigenvalues in (λ, λ).

Assuming that Λ is a measurable function from Ω toMd(λ, λ), and f ∈ L2(Ω),

let ū ∈ H1
0 (Ω) be the solution to:∫

Ω

Λ(x)∇ū(x) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx,∀v ∈ H1
0 (Ω). (1.1)

We now consider a regular simplicial mesh T of Ω. We denote by E the set

of edges (in 2D) or faces (in 3D) of the mesh, and Eint the subset of internal

faces, i.e. such that there exists (K,L) ∈ T 2 such that σ is an interface to K

and L, which we denote by σ = K|L. We introduce the following spaces

Hdiv(Ω) = {ϕ ∈ L2(Ω)d,divϕ ∈ L2(Ω)},

Vh = {v ∈ (L2(Ω))d;v|K ∈ RT k(K), ∀K ∈ T }, (1.2)

V div
h = Vh ∩Hdiv(Ω), (1.3)

Wh = {p ∈ L2(Ω) ; p|K ∈ Pk(K), ∀K ∈ T }, (1.4)

M0
h = {µ :

⋃
σ∈E

σ → R, µ|σ ∈ Pk(σ), µ|∂Ω = 0}, (1.5)

where

• RT k(K) is the Raviart-Thomas space of order k defined on K with di-

mension d
(
k+d
d

)
+
(
k+d−1
d−1

)
,

• Pk(K) is the space of polynomials of d variables of degree k; its dimension

is
(
k+d
d

)
.
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• Pk(σ) is the space of polynomials of d−1 variables of degree k; its dimen-

sion is
(
k+d−1
d−1

)
.

Let us now first recall the primal formulation of the mixed finite element method

for Problem (1.1). The primal formulation reads

(v, q) ∈ V div
h ×Wh, (1.6a)∫

Ω

w(x) · Λ−1(x)v(x)dx−
∫

Ω

q(x)divw(x)dx = 0, ∀w ∈ V div
h , (1.6b)∫

Ω

ψ(x)divv(x)dx =

∫
Ω

ψ(x)f(x)dx, ∀ψ ∈Wh. (1.6c)

We then introduce the Arnold-Brezzi formulation [3, 18].

(v, q, λ) ∈ Vh ×Wh ×M0
h , (1.7a)∫

K

w(x) · Λ−1(x)v(x)dx−
∫
K

q(x)divw(x)dx

+
∑
σ∈EK

∫
σ

λ(x) w|K(x) · nK,σdγ(x) = 0, ∀w ∈ Vh, (1.7b)∫
K

ψ(x)divv(x)dx =

∫
K

ψ(x)f(x)dx, ∀ψ ∈Wh,∀K ∈ T , (1.7c)∫
σ

µ(x) v|K(x) · nK,σdγ(x) +

∫
σ

µ(x) v|L(x) · nL,σdγ(x),

∀σ = K|L ∈ Eint, ∀µ ∈M0
h , (1.7d)

where nK,σ is the unit normal vector to σ outward K. It is shown in e.g. [3]

that the problems (1.6) and (1.7) admit a unique solution, and that the solutions

(v, q) to (1.6) and (1.7) are identical. Moreover, let us recall the error estimate

[8, Theorem 5.3 p. 39] (due to Brezzi): there exists δ, only depending on λ, λ,

on the regularity of the mesh and on Ω such that

‖q − u‖L2(Ω) + ‖v − Λ∇u‖Hdiv(Ω) ≤

δ( inf
ψ∈Wh

‖ψ − u‖L2(Ω) + inf
w∈V div

h

‖w − Λ∇u‖Hdiv(Ω)). (1.8)

In the sequel, we recall the definition of a gradient discretization, from which

it is possible to build a gradient scheme for a large class of problems. We then
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give two constructions of gradient discretization issued from the mixed finite

element method, one from the primal formulation and one from the dual formu-

lation, which lead to the same schemes in the case of a linear diffusion anisotropic

heterogeneous problem. We then apply these results to the discretization of a

nonlinear model of two-phase flow in porous media.

2. Gradient discretizations for diffusion problems

A gradient discretization D for a second order elliptic problem posed on the

domain Ω, with homogeneous Dirichlet boundary conditions on the boundary

∂Ω, is defined by D = (XD,0,ΠD,∇D), where:

• the set of discrete unknowns XD,0 is a finite dimensional vector space on R,

• the linear mapping ΠD : XD,0 → L2(Ω) is the reconstruction of an approxi-

mate function from the discrete unknowns (also often called “lifting operator”).

• the linear mapping ∇D : XD,0 → L2(Ω)d is the reconstruction of an approx-

imate gradient from the discrete unknowns; we shall call it “discrete gradient

operator”. It is chosen such that ‖ · ‖D := ‖∇D · ‖L2(Ω)d is a norm on XD,0.

Let us now give the fundamental properties that we seek when designing

a gradient discretization (or when recognizing a gradient discretization in an

existing scheme) in order to be able to prove the convergence of the result-

ing gradient schemes for the approximation of linear and nonlinear steady or

unsteady diffusion problems [7, 12, 9, 13, 11].

• Coercivity. Let CD be the norm of the linear mapping ΠD, defined by

CD = max
v∈XD,0\{0}

‖ΠDv‖L2(Ω)

‖v‖D
. (2.1)

A sequence (Dm)m∈N of gradient discretizations is said to be coercive if there

exists CP ∈ R+ such that CDm ≤ CP for all m ∈ N.

• Consistency. Let SD be defined by: ϕ ∈ H1(Ω) 7→ SD(ϕ) ∈ [0,+∞) with

SD(ϕ) = min
v∈XD,0

(
‖ΠDv − ϕ‖L2(Ω) + ‖∇Dv −∇ϕ‖L2(Ω)d

)
. (2.2)
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A sequence (Dm)m∈N of gradient discretizations is said to be consistent if, for

all ϕ ∈ H1
0 (Ω), SDm

(ϕ) tends to 0 as m→∞.

• Limit–conformity. Let WD: Hdiv(Ω)×XD,0 → [0,+∞) be defined by

∀(ϕ, u) ∈ Hdiv(Ω)×XD,0,

WD(ϕ, u) =

∫
Ω

(∇Du(x) ·ϕ(x) + ΠDu(x)divϕ(x)) dx.
(2.3)

Note that for a conforming finite element method, we have WD(ϕ, u) = 0.

A sequence (Dm)m∈N of gradient discretizations is said to be limit-conforming

if, for all sequence um ∈ XDm,0 such that ‖um‖Dm
is bounded, and for all

ϕ ∈ Hdiv(Ω), WDm
(ϕ, um) tends to 0 as m→∞.

• Compactness. A sequence (Dm)m∈N of gradient discretizations is said to

be compact if, for all sequence um ∈ XDm,0 such that ‖um‖Dm is bounded, the

sequence (ΠDm
um)m∈N is relatively compact in L2(Ω).

Let us illustrate these concepts on Problem (1.1). Let D = (XD,0,ΠD,∇D) be a

gradient discretization; then the related gradient scheme for the discretization

of (1.1) is to look for u ∈ XD,0 such that∫
Ω

Λ(x)∇Du(x) · ∇Dv(x)dx =

∫
Ω

f(x)ΠDv(x)dx,∀v ∈ XD,0. (2.4)

The coercivity, consistency and limit-conformity properties for a family of gra-

dient discretizations are sufficient to ensure the convergence of ΠDu to ū in

L2(Ω) and that of ∇Du to ∇ū in L2(Ω)d [11]. The compactness property is

only needed for the convergence of gradient schemes in the case of nonlinear

problems [7, 12, 9, 13].

3. Primal mixed finite element and gradient discretizations

Here we construct a gradient discretization (in the sense of Section 2) inspired

from the primal mixed finite element formulation (1.6) of Problem (1.1). Let

Wh be defined by (1.4) and let (χi)i∈I be a a family of piecewise polynomial

basis functions of degree k on each cell of the mesh, spanning Wh. Let us define
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the gradient discretization D = (XD,0,ΠD,∇D) by:

XD,0 = RI , (3.1a)

ΠDu =
∑
i∈I

uiχi,∀u ∈ XD,0, (3.1b)

∀u ∈ XD,0,

Λ∇Du ∈ V div
h , (3.1c)∫

Ω

v(x) · ∇Du(x)dx +

∫
Ω

ΠDu(x)divv(x)dx = 0, ∀v ∈ V div
h . (3.1d)

Remark 3.1. As we mentioned in the preceding section, a gradient discretiza-

tion only relies on the definition of discrete operators and therefore, should be

problem independent. However we use here the tensor Λ to define the discrete

gradient, which enables to ensure the Hdiv conformity in the sense that (3.1c)

holds, so that the discrete gradient is problem dependent. Another natural way

to obtain a gradient scheme is to construct a gradient discretization without Λ

(which is thus problem independent); in this case, we can still prove the con-

vergence, but the approximation is no longer Hdiv conforming; moreover, the

resulting approximate gradient is Hdiv consistent, but not Λ∇Du, and one can

expect lower convergence rate in the case of highly anisotropic and heterogeneous

problems.

In order for (3.1) to define a gradient discretization, the system (3.1d) should

define one and only one ∇Du, and ‖ · ‖D := ‖∇D · ‖L2(Ω)d has to be a norm on

XD,0. The existence and uniqueness of ∇Du results from the fact that (3.1d) is

a square linear system, whose solution vanishes if the right-hand-side vanishes.

The fact that it defines a norm results from the coercivity property shown in

the next theorem 3.2.

Let us now recall some known results on the RT k mixed finite element schemes.

The broken Sobolev space H1(T )is the set of functions whose restriction to each

simplex K of the mesh belongs to H1. First recall that, for (V div
h ,Wh) defined
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by (1.3)-(1.4) , there exists [8, Lemma 3.5 page 17] an interpolation operator

Pk defined by

Pk : HT = Hdiv(Ω) ∩ (H1(T ))d → V div
h ,

∀p ∈Wh, ∀v ∈HT ,

∫
Ω

p(x)div(v − Pkv)(x)dx = 0, (3.2)

and there exists α > 0, only depending on the regularity of the mesh [8, Theorem

3.1], such that

∀v ∈HT , ‖v − Pkv‖L2(Ω)d ≤ αh(
∑
T∈T
‖v‖2H1(T ))

1/2, (3.3)

where h denotes the size of the mesh T . Let us recall how we deduce from

the above properties the standard “inf-sup” condition [17]: let p ∈ Wh, let us

prolong p by 0 on a ball B with radius R containing Ω. Then there exists

w ∈ H1
0 (B) such that

∀q ∈ H1
0 (B),

∫
B

∇w(x) · ∇q(x)dx =

∫
B

p(x)q(x)dx. (3.4)

Moreover w ∈ H2(B) and there exists β only depending on d and R such that

‖w‖H2(B) ≤ β‖p‖L2(Ω). (3.5)

Therefore, since ∇w ∈HT , we have from (3.3)

‖∇w − Pk∇w‖L2(Ω)d ≤ αhβ‖p‖L2(Ω),

which shows that

‖Pk∇w‖L2(Ω)d ≤ (2Rα+ 1)β‖p‖L2(Ω), (3.6)

which leads to the inf-sup condition.

Theorem 3.2. Let (Tm)m∈N be a sequence of regular simplicial meshes in the

sense of [8, Theorem 3.1 p.14] such that the size hm of the mesh Tm, tends to 0

as m→∞. Let Dm = (XDm,0,ΠDm ,∇Dm) be defined by (3.1) for each m ∈ N,

then the family (Dm)m∈N is coercive, consistent, limit-conforming and compact

in the sense of the definitions of Section 2.
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Proof

• Coercivity. Let u ∈ XDm,0 (and therefore that p = ΠDm
u ∈ (Wh)m).

Using (3.6), let w ∈ H1
0 (B) be defined by (3.4), and let v = Pk∇w ∈ V div

h .

Thanks to (3.2), we get that

‖p‖2L2(Ω) = −
∫

Ω

p(x)divv(x)dx.

From (3.1), we get

‖ΠDm
u‖2L2(Ω) =

∫
Ω

v(x) · ∇Dm
u(x)dx.

Thanks to (3.6), we then get

‖ΠDmu‖L2(Ω) ≤ (αD + 1)β‖∇Dmu‖L2(Ω)d ,

which proves the coercivity property.

• Consistency. Let us check the consistency property on the set R = {ϕ ∈

H1
0 (Ω); there exists f ∈ C∞c (Ω) such that ϕ is solution to (1.1)}. Let ϕ ∈ R.

Considering Problem (1.6) with f = −div(Λ∇ϕ), we define u ∈ XDm,0 by

p = ΠDm
u and v = −Λ∇Dm

u. Then, we get from (1.8)

‖ΠDm
u− ϕ‖L2(Ω) + ‖Λ∇Dm

u− Λ∇ϕ‖Hdiv(Ω)

≤ δ( inf
ψ∈(Wh)m

‖ψ − ϕ‖L2(Ω) + inf
w∈(V div

h )m
‖w − Λ∇ϕ‖Hdiv(Ω)).

Since the right hand side of the above inequality tends to 0 as m → ∞, we

obtain that SDm
(ϕ) tends to 0 as m → ∞. The proof of consistency is then

concluded by density of R in H1
0 (Ω) (see Lemma 3.3 below).

• Limit-conformity. Let (um)m∈N such that um ∈ XDm,0 and ∇Dm
um re-

mains bounded in L2(Ω)d as m→∞. Let ϕ ∈ Hdiv(Ω), and ϕm ∈ (V div
h )m be

an interpolation of ϕ such that ‖ϕ−ϕm‖Hdiv(Ω) tends to 0 as m→∞. Then

WDm(ϕ, um) =

∫
Ω

(∇Dmum(x) ·ϕ(x) + ΠDmum(x)divϕ(x)) dx =∫
Ω

(
∇Dm

um(x) · (ϕ(x)−ϕm(x)) + ΠDm
um(x)(divϕ(x)− divϕm(x))

)
dx,
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thanks to (3.1). Applying the coercivity inequality, we get that the right term of

the preceding inequality tends to 0 as m→∞, which shows the limit conformity

of the sequence.

• Compactness. We consider a sequence (um)m∈N such that um ∈ XDm,0

and ∇Dm
um remains bounded in L2(Ω)d as m → ∞. Then, thanks to the

coercivity property, we first extract a subsequence (samely denoted), such that

ΠDmum weakly converges in L2(Rd) to some u ∈ L2(Rd) (prolonging by 0

outside Ω). Using the limit-conformity, we get that ∇Dm
um (prolonging by 0

outside Ω) weakly converges in L2(Rd)d to ∇u, which shows that u ∈ H1
0 (Ω).

Let wm ∈ H1
0 (B) ∩H2(B) (resp. w ∈ H1

0 (B) ∩H2(B)) be defined by (3.4) for

p = ΠDmum (resp. p = u). A classical result is that wm converges in H1
0 (B) to

w (from the weak convergence of the gradient and the convergence of its norm).

Applying (3.5), we get that

‖∇wm‖H1(Ω) ≤ β‖ΠDm
um‖L2(Ω). (3.7)

Letting v = Pk∇wm in (3.1), we get∫
Ω

Pk∇wm(x) · ∇Dm
um(x)dx +

∫
Ω

ΠDm
um(x)divPk∇wm(x)dx = 0,

which provides, thanks to (3.2),∫
Ω

Pk∇wm(x) · ∇Dmum(x)dx−
∫

Ω

(ΠDmum(x))2dx = 0.

Thanks to (3.3) (using (3.7)) and to the convergence of ∇wm to ∇w in L2(Ω)d,

we get that Pk∇wm converges in L2(Ω)d to ∇w. By strong/weak convergence

on the first term, we get

lim
m→∞

∫
Ω

(ΠDmum(x))2dx =

∫
Ω

∇w(x) · ∇u(x)dx

= −
∫

Ω

div(∇w(x))u(x)dx =

∫
Ω

u(x)2dx.

This shows the convergence of ΠDm
um to u in L2(Ω), hence concluding the

proof of the compactness of the discretization. �

Lemma 3.3 (A density result). Let R = {ϕ ∈ H1
0 (Ω); there exists f ∈

C∞c (Ω) such that ϕ solution of (1.1)}. Then R is dense in H1
0 (Ω).
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Proof The mapping T : H1
0 (Ω)→ H−1(Ω) defined by u 7→ T (u) = −divΛ∇u

is continuous and one-to-one thanks to the Lax-Milgram lemma. Therefore the

inverse mapping T−1 is also continuous. Since C∞c (Ω) is dense in H−1(Ω) and

R = T−1(C∞c (Ω)), the conclusion follows. �

We then have the following property, which establishes the link between the

gradient discretization (3.1) and the primal form of the mixed finite element

method.

Theorem 3.4. Using the gradient discretization (3.1), the gradient scheme

(2.4) for the approximation of Problem (1.1) is equivalent to the primal for-

mulation (1.6) of the mixed finite element method.

Proof Let u ∈ XD,0 be a solution to (2.4). Let us show that (v = −Λ∇Du, q =

ΠDu) is the solution of (1.6). We first observe that (3.1d) ensures (1.6b). Let us

now consider ψ ∈Wh, which can therefore be written ψ = ΠDv, with v ∈ XD,0.

We then write, thanks to (2.4),∫
Ω

Λ(x)∇Du(x) · ∇Dv(x)dx =

∫
Ω

f(x)ψ(x)dx.

Setting v = −Λ(x)∇Du in (3.1d) with u replaced by v, we have∫
Ω

v(x) · ∇Dv(x)dx +

∫
Ω

ΠDv(x)divv(x)dx = 0,

which implies ∫
Ω

Λ(x)∇Du(x) · ∇Dv(x)dx =

∫
Ω

ψ(x)divv(x)dx.

This completes the proof of (1.6c). Reciprocally, considering the solution (v, q)

to (1.6), since q ∈ Wh, there exists a unique u ∈ XD,0 such that q = ΠDu.

From (1.6b), we get that v = −Λ∇Du. Following the same computation lines

as the beginning of this proof and letting ψ = ΠDv for any v ∈ XD,0, we get

that (1.6c) implies (2.4), again using (3.1d) with u replaced by v. �

4. Mixed hybrid formulation and gradient schemes

Here we construct a gradient discretization (in the sense of Section 2) inspired

from the dual mixed finite element formulation (1.7) of Problem (1.1). Let Wh
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be defined by (1.4) and let again (χi)i∈I be a a family of piecewise polynomial

basis functions of degree k on each cell of the mesh, spanning Wh. Let M0
h be

defined by (1.5) and let (ξj)j∈J be a family spanning M0
h . Recall that Vh is

defined by (1.2). Let us define the gradient discretization D̃ = (XD̃,0,ΠD̃,∇D̃)

by:

XD̃,0 = RI∪J , (4.1a)

ΠD̃u =
∑
i∈I

uiχi and ΓD̃u =
∑
j∈J

ujξj , ∀u ∈ XD̃,0, (4.1b)

∀u ∈ XD̃,0,Λ∇D̃u ∈ Vh and:∫
K

w(x) · ∇D̃u(x)dx +

∫
K

ΠD̃u(x)divw(x)dx

−
∑
σ∈EK

∫
σ

ΓD̃u(x) w|K(x) · nK,σdγ(x) = 0, ∀w ∈ Vh. (4.1c)

Remark 4.1. In the case k = 0, the gradient discretization (4.1) has the same

degrees of freedom as the SUSHI scheme [10], which is also a gradient discretiza-

tion. Nevertheless, the definitions of the discrete gradients are different.

As in the previous section, in order for (4.1) to define a gradient discretization,

the system (4.1c) should define one and only one discrete gradient ∇D̃u, and

‖ · ‖D̃ := ‖∇D̃ · ‖L2(Ω)d has to be a norm on XD̃,0. The existence and uniqueness

of ∇D̃u again results from the fact that (4.1c) provides a square linear system,

whose solution vanishes if the right-hand-side vanishes. The fact that it defines

a norm results, on one hand, from the coercivity property shown in Theorem 4.2

below, and on the other hand, on [18, Proposition 3.1 p. 15], whose consequence

is that for given (ui)i∈I and ∇D̃u, there exists one and only one (uj)j∈J such

that (4.1c) hold.

Theorem 4.2. Let (Tm)m∈N be a sequence of regular simplicial meshes in the

sense of [8, Theorem 3.1 p.14] such that the size hm of the mesh Tm, tends to 0

as m→∞. Let D̃m = (XD̃m,0
,ΠD̃m

,∇D̃m
) be defined by (4.1) for each m ∈ N,
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then the family (D̃m)m∈N is coercive, consistent, limit-conforming and compact

in the sense of the definitions of Section 2.

Proof

Let us first denote by T : XD̃,0 → XD,0, T (u) = (ui)i∈I , where we use

the gradient discretization D defined by (3.1). The first remark is that the

definition of T implies ΠD̃u = ΠDT (u) a.e. in Ω. We observe that, selecting

w = Λ∇DT (u) ∈ V div
h ⊂ Vh in (4.1c) and summing on K ∈ T , all the integrals

on σ ∈ Eint vanish, and we obtain∫
Ω

Λ∇DT (u)(x) · ∇D̃u(x)dx +

∫
Ω

ΠD̃u(x)div(Λ∇DT (u))(x)dx = 0.

Now using (3.1d) with v = Λ∇DT (u), we get∫
Ω

Λ∇DT (u)(x) · ∇D̃u(x)dx =

∫
Ω

Λ∇DT (u)(x) · ∇DT (u)(x)dx.

We thus obtain, thanks to the Cauchy-Schwarz inequality,∫
Ω

Λ∇DT (u)(x) · ∇DT (u)(x)dx ≤
∫

Ω

Λ∇D̃u(x) · ∇D̃u(x)dx,

which leads to

‖∇DT (u)‖2L2(Ω)d ≤
λ

λ
‖∇D̃u‖

2
L2(Ω)d , ∀u ∈ XD̃,0. (4.2)

• Coercivity follows from the coercivity of the gradient discretization D and

(4.2).

• Consistency. Thanks to [18, Proposition 3.1 p. 15], for any u ∈ XD,0, there

exists ũ ∈ XD̃,0 such that T (ũ) = u and ∇Du = ∇D̃ũ. The consistency of D̃m
is then a consequence of that of Dm.

• Limit-conformity. Similarly to the study of the limit-conformity of Dm, we

get

WD̃m
(ϕ, um) =

∫
Ω

(
∇D̃m

um(x) ·ϕ(x) + ΠD̃m
um(x)divϕ(x)

)
dx =∫

Ω

(
∇D̃m

um(x) · (ϕ(x)−ϕm(x)) + ΠD̃m
um(x)(divϕ(x)− divϕm(x))

)
dx,
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thanks to (4.1c) and since the terms on σ ∈ Eint vanish, using that ϕm ∈

(V div
h )m. So the conclusion is identical.

• Compactness. This property is again an immediate consequence of the

compactness of the gradient discretization D and (4.2). �

Theorem 4.3. Using the gradient discretization (4.1), the gradient scheme

(2.4) for the approximation of Problem (1.1) is equivalent to the Arnold-Brezzi

formulation (1.7) of the mixed finite element method.

Proof Let u ∈ XD̃,0 be a solution to (2.4). Let us show that (v = −Λ∇D̃u, q =

ΠD̃u, λ = ΓD̃u) is the solution of (1.7). We first observe that (4.1c) ensures

(1.7b). Let us now consider ψ ∈Wh and µ ∈M0
h . Consider a particular K ∈ T ,

and take in (2.4) a function test v ∈ XD̃,0 such that ΠD̃v|K = ψ|K , ΠD̃v|L = 0

for all L ∈ T \{K} and ΓD̃v = 0. We remark that, thanks to (4.1c), the support

of ∇D̃u is also reduced to K, and that we may write, thanks to (2.4),∫
K

Λ(x)∇D̃u(x) · ∇D̃v(x)dx =

∫
K

f(x)ψ(x)dx.

Setting w = v in (4.1c) where u is replaced by v, we get, using ΓD̃v = 0,∫
K

v(x) · ∇D̃v(x)dx +

∫
K

ΠD̃v(x)divv(x)dx = 0,

which implies∫
K

Λ(x)∇D̃u(x) · ∇D̃v(x)dx =

∫
K

ΠD̃v(x)divv(x)dx =

∫
K

ψ(x)divv(x)dx.

This completes the proof of (1.7c). Then, we let v ∈ XD̃,0 in (2.4) such that

ΠD̃v = 0 and ΓD̃v|σ = λ|σ for a given σ = K|L ∈ Eint, and ΓD̃v|σ′ = 0 for all

σ′ ∈ E \ {σ}. Again setting w = v in (4.1c) where u is replaced by v, we get,

using ΠD̃v = 0,∫
K

v(x) · ∇D̃v(x)dx−
∫
σ

ΓD̃v(x) v|K(x) · nK,σdγ(x) = 0,

and ∫
L

v(x) · ∇D̃v(x)dx−
∫
σ

ΓD̃v(x) v|L(x) · nL,σdγ(x) = 0.

13



This implies (1.7d), using (2.4) and the fact that the support of ∇D̃v is reduced

to K ∪ L.

Conversely, considering the solution (v, q, λ) to (1.7), since q ∈Wh and λ ∈M0
h ,

there exists a unique u ∈ XD̃,0 such that q = ΠD̃u and λ = ΓD̃u. From (1.7b),

we get that v = −Λ∇D̃u. For any v ∈ XD̃,0, letting ψ = ΠD̃v and µ = ΓD̃v,

following the same computation lines as the beginning of this proof, we get that

(1.7c) and (1.7d) imply (2.4) using (4.1c) where u is replaced by v. �

Here again, the fact that we wish to obtain a mixed finite element scheme has

led us to a problem dependent discretization. For the linear problem (1.1), this

is not a difficulty. However if the diffusion tensor depends on the unknown, it

becomes very intricate to ensure the Hdiv conformity, and in fact quite useless

since one can get the approximate continuity of the flux from the gradient

discretization itself. This line of thought may lead to consider the scheme (4.1),

replacing Λ∇Du ∈ Vh by ∇Du ∈ Vh in (4.1c).

5. Application to two phase flow in porous media and Richards’ equa-

tion

We are interested here in the approximation of (u, v), solution to the incom-

pressible two-phase flow problem in the space domain Ω during the time period

(0, T ), which was studied in [12] in the case of a general gradient discretization;

here we propose to show that the specific gradient discretization (4.1) obtained

from the dual mixed finite element formulation is well adapted to this problem.

The continuous problem reads:

Φ(x)∂tS(x, p)− div(k1(x, S(x, p))Λ(x)∇u) = f1, (5.1a)

Φ(x)∂t(1− S(x, p))− div(k2(x, S(x, p))Λ(x)∇v) = f2, (5.1b)

p = u− v, for ∈ Ω× (0, T ), (5.1c)

considered with the following initial condition:

S(x, p(x, 0)) = S(x, pini(x)), for a.e. x ∈ Ω, (5.1d)

14



together with the following non-homogeneous Dirichlet boundary conditions:

u(x, t) = ū(x) and v(x, t) = v̄(x) on ∂Ω× (0, T ). (5.1e)

In Problem (5.1), u (resp. v) denotes the pressure of the phase 1, called the

wetting phase (resp. of the phase 2, which is the non-wetting phase), p is the

difference between the two pressures, called the capillary pressure, the satura-

tion of the phase 1 is denoted by S(x, p) (it is called the “water content” in the

framework of Richards’ equation), and where Φ, Λ, ki, and fi (i = 1, 2) respec-

tively denote the porosity, the absolute permeability, the relative permeabilities,

and the source terms, under the following assumptions:

• Ω is an open bounded connected polyhedral subset of Rd,

d ∈ N? and T > 0, (5.2a)

• Φ is a measurable function from Ω to R with

Φ(x) ∈ [Φmin,Φmax], Φmax ≥ Φmin > 0, (5.2b)

• Λ is a measurable function from Ω to Md, where

Md denotes the set of d× d matrices, such that for a.e. x ∈ Ω,

Λ(x) is symmetric, and the set of its eigenvalues is included in [λ, λ],

with 0 < λ ≤ λ, (5.2c)

• pini ∈ L2(Ω), (5.2d)

• S(x, q) ∈ [0, 1] for all (x, q) ∈ Ω× R with S(x, q) = Sj(q)

for a.e. x ∈ Ωj and all q ∈ R, where Sj is a non decreasing Lipschitz

continuous function with constant LS ,

(Ωj)j∈J is a family of disjoint connected polyhedral open sets such that⋃
j∈J

Ωj = Ω where J is a finite set, (5.2e)

• fi ∈ L2(Ω× (0, T )), i = 1, 2, (5.2f)

• ki(x, s) ∈ [kmin, kmax] for (x, s) ∈ Ω× [0, 1] with kmax ≥ kmin > 0 and

ki(·, s) measurable, ki(x, ·) continuous, i = 1, 2, (5.2g)
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• ū, v̄ ∈ H1(Ω). (5.2h)

Remark 5.1 (Gravity terms). Gravity terms are taken into account in the

mathematical analysis performed in [12]; we choose not to include them here for

the sake of brevity and clarity.

Assumptions (5.2) are quite general, except for kmin > 0 in Hypothesis (5.2g).

This assumption is needed in the mathematical proof of convergence [12]. As-

sumption (5.2e) is compatible with the so-called Van Genuchten model Sj(p) =

1/((max(−p, 0)/pj)
nj + 1)mj , with real parameters pj , nj ,mj > 0. The hypoth-

esis that the function S(x, p) is defined by given functions in a partition of the

domain is classical. Problem (5.1) is considered under the following weak sense.

u− ū, v − v̄ ∈ L2(0, T ;H1
0 (Ω)), p = u− v ; ∀ϕ ∈ C∞c (Ω× [0, T )),∫ T

0

∫
Ω

(
−Φ(x)S(x, p(x, t))∂tϕ(x, t)

+ k1(x, S(x, p(x, t)))Λ(x)∇u(x, t) · ∇ϕ(x, t)
)
dxdt (5.3a)

−
∫

Ω

Φ(x)S(x, pini(x))ϕ(x, 0)dx =

∫ T

0

∫
Ω

f1(x, t)ϕ(x, t)dxdt,∫ T

0

∫
Ω

(
Φ(x)S(x, p(x, t))∂tϕ(x, t)

+ k2(x, S(x, p(x, t)))Λ(x)∇v(x, t) · ∇ϕ(x, t)
)
dxdt (5.3b)

+

∫
Ω

Φ(x)S(x, pini(x))ϕ(x, 0)dx =

∫ T

0

∫
Ω

f2(x, t)ϕ(x, t)dxdt,

where we denote by C∞c (Ω × [0, T )) the set of the restrictions of functions

of C∞c (Ω × (−∞, T )) to Ω × [0, T ). Alternately, we also consider the case of

Richards’ equation, which can be obtained from (5.1) in two ways. One can

replace (5.1a) by

u(x, t) = ū(x) for (x, t) ∈ Ω× (0, T ), (5.4)

or one can replace (5.1b) by

v(x, t) = v̄(x) for (x, t) ∈ Ω× (0, T ). (5.5)
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Then the corresponding weak formulation of the problem is obtained by replac-

ing (5.3a) by (5.4) or (5.3b) by (5.5). Note that this sense is an extension of the

condition classically used in hydrogeological studies, which prescribes a constant

condition with respect to time and space for the air pressure. As shown in the

numerical examples of [12], this extension allows to use Richards’ equation as

a good approximation of the full two phase flow problem in other engineering

frameworks.

We consider a time interval (0, T ) and (t(n))n=0,...,N such that t(0) = 0 <

t(1) . . . < t(N) = T . We then set δt(n+ 1
2 ) = t(n+1) − t(n), for n = 0, . . . , N − 1.

Let us consider the following scheme for the approximation of Problem (5.1)

(let us emphasize that this discretization is not based on the global pressure

formulation of the problem). We consider the gradient discretization given by

(4.1) (we emphasize that we cannot consider the gradient discretization given by

(3.1), for an important reason explained below); recall that this discretization

is partially problem dependent since it depends on the diffusion tensor Λ. The

gradient scheme is then given by

Initialization: s
(0)

D̃
(x) = S(x,ΠD̃p

(0)(x)), (5.6a)

For n = 0, . . . , N − 1 :

u(n+1) − ūD̃ ∈ XD̃,0, v
(n+1) − v̄D̃ ∈ XD̃,0, (5.6b)

p(n+1) = u(n+1) − v(n+1), s
(n+1)

D̃
(x) = S(x,ΠD̃p

(n+1)(x)), (5.6c)

δ
(n+ 1

2 )

D̃
sD̃(x) =

s
(n+1)

D̃
(x)− s(n)

D̃
(x)

δt(n+ 1
2 )

, (5.6d)∫
Ω

(
Φ(x)δ

(n+ 1
2 )

D̃
sD̃(x)ΠD̃w(x)

+k1(x, s
(n+1)

D̃
(x))Λ(x)∇D̃u

(n+1)(x) · ∇D̃w(x)
)

dx = (5.6e)

1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

∫
Ω

f1(x, t)ΠD̃w(x)dxdt, ∀w ∈ XD̃,0,∫
Ω

(
−Φ(x)δ

(n+ 1
2 )

D̃
sD̃(x)ΠD̃w(x)

+k2(x, s
(n+1)

D̃
(x))Λ(x)∇D̃v

(n+1)(x) · ∇D̃w(x)
)

dx = (5.6f)
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1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

∫
Ω

f2(x, t)ΠD̃w(x)dxdt, ∀w ∈ XD̃,0.

In the case of the Richards equation, the scheme is obtained by replacing one

of the discrete conservation equations (5.6e) or (5.6f) by the imposed value for

the pressure.

Note that this scheme leads to sparse linear systems if Newton’s method is used

to solve (5.6) and that this scheme is implementable in practice. Indeed, let us

consider the equations corresponding to a test function w given by wi = 1 for

some i ∈ I, wi′ = 0 for all i′ ∈ I \ {i}, wj = 0 for all j ∈ J . Let us denote

by K the support of the basis function χi. Then the discrete equations thus

obtained only depend on the unknowns u
(n+1)
i′ and v

(n+1)
i′ , where i′ is such that

the support of χi′ is also K, and on the unknowns u
(n+1)
j and v

(n+1)
j , where j

is such that the support of ξj is some σ, where σ is a face of K. Let us now

consider the equations corresponding to a test function w given by wj = 1 for

some j ∈ J , wj′ = 0 for all j′ ∈ J \ {j}, wi = 0 for all i ∈ I. Let us denote

by σ the support of the basis function ξj , and by K and L the two cells having

the common face σ. Then the discrete equations thus obtained only depend on

the unknowns u
(n+1)
j′ and v

(n+1)
j′ where j′ is such that the support of ξj′ is a

face of K or L, and on the unknowns u
(n+1)
i and v

(n+1)
i where i is such that the

support of χi is K or L.

Let us remark that the use of the gradient discretization given by (3.1) would

not provide an easy discrete problem. Indeed, with this gradient discretiza-

tion, the discrete gradients involved in (5.6) cannot be reduced to a local equa-

tion, using the same computations as that of the proof of Theorem 3.4, since

the use of (3.1d) for the test functions gives no way to transform an expres-

sion such as
∫

Ω
k1(x, s

(n+1)

D̃
(x))Λ(x)∇D̃u

(n+1)(x) · ∇D̃w(x)dx in order to get∫
Ω

ΠD̃w(x)div(k1(x, s
(n+1)

D̃
(x))Λ(x)∇D̃u

(n+1))(x)dx: the Hdiv conformity of

k1(x, s
(n+1)

D̃
(x))Λ(x)∇D̃u

(n+1) is indeed not ensured by the scheme. Therefore

the practical implementation of this gradient discretization appears as impossi-

ble, if we do not replace Λ by k1(x, s
(n+1)

D̃
(x))Λ(x) in (3.1). This would lead to
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some complications (different gradient discretizations for u and v at least).

The convergence of the scheme (5.6) is proven in [12] for general gradient dis-

cretizations which are coercive, consistent, limit-conforming and compact in the

sense recalled in this paper, and which are such that ΠD is a piecewise con-

stant reconstruction operator. Therefore, this convergence proof applies to the

modified RT0 scheme (5.6) as stated below.

Theorem 5.2 (Convergence of the numerical scheme). Let (D̃m)m∈N be

a sequence of gradient discretizations given by (4.1) with k = 0, and, for all

m ∈ N, let (t
(n)
m )n=0,...,Nm

such that t
(0)
m = 0 < t(1) . . . < t

(Nm)
m = T be such

that limm→∞maxn(t
(n+1)
m − t(n)

m ) = 0. Then the scheme (5.6) has at least one

solution for any m ∈ N.

Moreover, we assume that are given p
(0)
m , ūD̃m

, v̄D̃m
∈ XD̃m

such that the se-

quences ‖ΠD̃m
p

(0)
m −pini‖L2(Ω), ‖ΠD̃m

ūD̃m
−ū‖L2(Ω), ‖ΠD̃m

v̄D̃m
−v̄‖L2(Ω), ‖∇D̃m

ūD̃m
−

∇ū‖L2(Ω)d , ‖∇D̃m
v̄D̃m
−∇v̄‖L2(Ω)d tend to 0 as m→∞. Let um, vm, sD̃m

be the

piecewise constant time implicit functions equal on (t(n), t(n+1)) to u
(n+1)
m , v

(n+1)
m ∈

XD̃m,0
, such that the scheme (5.6) holds for m ∈ N.

Then there exist u, v ∈ (L2(Ω × (0, T )))2 and p = u − v such that, for any

t0 ∈ (0, T ), up to a subsequence,

1. (ΠDmum,ΠDmvm) converges in L2(Ω× (0, t0))2 to (u, v) as m→∞,

2. (∇Dm
um,∇Dm

vm) converges in (L2(Ω × (0, t0))d)2 to (∇u,∇v) as m →

∞,

3. sDm
converges in L2(Ω× (0, T )) to s such that s(x, t) = S(x, p(x, t)), for

a.e. (x, t) ∈ Ω× (0, T ) as m→∞,

and (u, v) is a weak solution of Problem (5.3).

In conclusion, the gradient discretization concept gives a simple way to adapt

the mixed finite element context to the above nonlinear problem, by dropping

the requirement of the Hdiv conformity for the nonlinear part of the equations.
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