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Aqueous foams are suspensions of bubbles inside aqueous phases. Their multiphasic composition leads to a complex rheological behavior that is useful in numerous applications, from oil recovery to food/cosmetic processing. Their structure is very similar to the one of emulsions so that both materials share common mechanical properties. Meanwhile the gas-liquid interfaces and the presence of surfactants lead to peculiar interfacial and dissipative properties. Foam rheology has been an active research topics and is already reported in numerous reviews. Most of them cover rheometry measurements at the scale of the foam, coupled with interpretations at the local -bubble or gas-liquid interface -scale. In this review we first start following this approach, then we try to cover the multiscale features of aqueous foam flows, meaning that we emphasize here regimes where intermediate length scales need to be accounted for or regimes fast enough regarding internal time scales so that the flow goes beyond the quasistatic limit.

I. INTRODUCTION

Liquid foams are comprised of gas bubbles separated by a liquid continuous phase. The latter is generally an aqueous solution of amphiphilic molecules called surfactants, which stabilise the liquid films between bubbles. Foams are characterised by structural and geometric parameters, like the average bubble size and the polydispersity and, most importantly, the liquid fraction φ ℓ . In opposition to bubbly liquids, foams are usually classified as those bubble suspensions which are below a critical liquid fraction φ c ℓ , given by the random close packing fraction for a disordered foam (36% in 3D [START_REF] Katgert | The jamming perspective on wet foams[END_REF]). Its packing is characterized by the distance to the rigidity loss transition ∆φ ℓ = φ c ℓ -φ ℓ , where ∆φ ℓ = 0 corresponds to the loss of rigidity of the foam and a transition to a dilute gas-bubble suspension. The transition from a dilute gas-bubble suspension to a foam, called jamming transition, occurs for the same value φ c ℓ so that we will use both terms in what follows [START_REF] Katgert | The jamming perspective on wet foams[END_REF].

The properties of foams are intimately related to their structure, which we briefly describe in the static case; see e.g. Cantat et al. [START_REF] Cantat | Foams[END_REF], Weaire and Hutzler [START_REF] Weaire | The Physics of Foams[END_REF] for extensive discussion.

At low liquid fraction, bubbles are bounded by thin films, of thickness lower than 1 µm.

Such films meet threefold along lines, the so-called Plateau borders (Fig. 1a). Plateau borders meet fourfold at vertices (or nodes) (Fig. 1b). At equilibrium, the geometry of this structure obeys the so-called Plateau rules [START_REF] Plateau | Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires[END_REF] that films meet at 120 • , and Plateau borders at the tetrahedral angle arccos(-1/3) ≃ 109.5 • . At finite liquid fraction, liquid covers this "skeleton" of vertices and Plateau borders. The cross section of the Plateau borders occupied by the liquid forms a concave triangle, of constant radius R, hence of area

( √ 3 -π/2)R 2 .
The volume of liquid at a vertex is of order R 3 . For not too wet a 3D foam, most of the liquid is in the Plateau borders, whence a scaling relation between the liquid fraction φ ℓ , the typical size of the bubbles a, and the radius R: φ ℓ ≈ R 2 /a 2 . When bubbles are bounded by a flat wall, such is the case of 2D foams made of a bubble monolayer (Fig. 2), the films meet the wall at right angle. For an ideal 2D foam, there is an exact relation; since there are in average six threefold vertices around a bubble, we have:

φ ℓ = (2 √ 3 -π)R 2 /A,
with A the average area per bubble [START_REF] Raufaste | Yield drag in a two-dimensional foam flow around a circular obstacle: Effect of liquid fraction[END_REF].

Because of their multiscale structure, liquid foams display a complex mechanical behaviour: they have elastic, plastic and viscous properties. This qualifies foams as complex fluids, like colloidal and granular suspensions, polymers, pastes, slurries and emulsions [START_REF] Coussot | Rheometry of Pastes, Suspensions and Granular Materials[END_REF], [START_REF] Lambert | Coarsening foams robustly reach a self-similar growth regime[END_REF]). (b) A vertex or node is defined as the fourfold junction between four Plateau borders (image adapted from Koehler et al. [START_REF] Koehler | Liquid flow through aqueous foams: The node-dominated foam drainage equation[END_REF]).

and the measurement and understanding of their complex mechanical response belongs to the field of rheology [START_REF] Larson | The Structure and Rheology of Complex Fluids[END_REF][START_REF] Macosko | Rheology: Principles, Measurements and Applications[END_REF].

Foams share many common properties with emulsions, which are dispersions of liquid droplets in another liquid phase. In particular, they are ruled by the same structural properties, and they are athermal systems in the sense that their microstructural items (the bubbles or the droplets) are too big to feel thermal fluctuations, in contrast with other complex fluids like polymers or colloidal suspensions. As a natural consequence, foams and emulsions have a very similar rheological behaviour, and we shall henceforth mention several examples from experimental studies on emulsions.

Foam rheology has been an active research topics for at least the past thirty years, and there exists already many good reviews of this topic [START_REF] Cohen-Addad | Flow in foams and flowing foams[END_REF][START_REF] Denkov | The role of surfactant type and bubble surface mobility in foam rheology[END_REF][START_REF] Höhler | Rheology of liquid foams[END_REF][START_REF] Katgert | The jamming perspective on wet foams[END_REF][START_REF] Kraynik | Foam flows[END_REF], which is also covered in various book chapters [START_REF] Cantat | Foams[END_REF][START_REF] Stevenson | Foam Engineering: Fundamentals and Applications[END_REF][START_REF] Weaire | The Physics of Foams[END_REF]. Most of these reviews report experiments based on rheometry, giving macroscopic measurements at the level of the foam as a whole, and their interpretation at the local scale. Here, although we start following a similar path, we devote a large part on local measurements, especially velocity fields. On the other hand, we have chosen not to cover interesting subjects as the rheology of highly confined foams, found in porous media (see e.g. [START_REF] Jones | Structure-dependent mobility of a dry aqueous foam flowing along two parallel channels[END_REF][START_REF] Rossen | Theory of mobilization pressure gradient of flowing foams in porous media. I. Incompressible foam[END_REF]) and microfluidics (see [START_REF] Marmottant | Microfluidics with foams[END_REF] for a review), when the foam is reduced to organised structures or separated lamellae. We also focus on aqueous foams, although the rheology of non-aqueous foams [START_REF] Schramm | Foams: Fundamentals and Applications in the Petroleum Industry[END_REF] and of Langmuir foams [START_REF] Courty | Two-dimensional shear modulus of a Langmuir foam[END_REF][START_REF] Dennin | Experimental studies of bubble dynamics in a slowly driven monolayer foam[END_REF], formed at interfaces populated by insoluble surfactants in conditions of phase coexistence, would certainly deserve a discussion.

Our manuscript is organised as follows. In Sec. II, we review rheometric measurements on liquid foams, which have evidenced their viscoelastic and viscoplastic behaviours. In Sec. III, we report the models that have aimed at explaining the origin of such an intricate mechanical behaviour, from micromechanical models of elasticity, yield and dissipation to more generic approaches. In Sec. IV, we show that when the foam is confined, the connection between a local scale (typically that of a single bubble) and the global foam flow is not direct and other scales come into play, either because of the friction against a confining wall or because of the finite range of influence of individual plastic events. Finally in Sec. V, we present the peculiar behaviour of foams as they depart from their equilibrium structure, when they are subjected to high shear rates or high frequencies.

II. RHEOMETRY OF FOAMS

A most classical way to probe the mechanical properties of foams is rheometry, where foams are sheared at rate γ by a rheometer in various geometries: between two planes, or a cone and a plane, or two cylinders (the so-called Couette rheometer), at a shear stress τ as constant as possible [START_REF] Larson | The Structure and Rheology of Complex Fluids[END_REF][START_REF] Macosko | Rheology: Principles, Measurements and Applications[END_REF]. A classical experiment in rheometry consists in subjecting the foam to an oscillatory shear of angular frequency ω: γ = γ 0 cos ωt, of small strain amplitude γ 0 ≪ 1. Measuring a harmonic stress response:

τ = γ 0 [G ′ (ω) cos ωt + G ′′ (ω) sin ωt]
gives the elastic modulus G ′ and the loss modulus G ′′ : this is a linear viscoelastic characterisation of the foam. Plotting the elastic and loss moduli as functions of the frequency, three regimes are usually observed (Fig. 3). At intermediate frequency, G ′ and G ′′ display roughly plateaus, and G ′′ is usually one order of magnitude smaller than G ′ . Hence, foams respond mostly elastically, but with a significant dissipation accompanying the deformation.

As low frequency, both G ′ and G ′′ decrease, and G ′′ overtakes G ′ . This is a signature of the influence of coarsening on foam rheology [START_REF] Cohen-Addad | Origin of the slow linear viscoelastic response of aqueous foams[END_REF][START_REF] Marze | Oscillatory rheology of aqueous foams: surfactant, liquid fraction, experimental protocol and aging effects[END_REF]. At high frequency, G ′ and G ′′ increases with a nontrivial power law of exponent 1/2 [START_REF] Durian | Relaxing in foam[END_REF][START_REF] Krishan | Fast relaxations in foam[END_REF][START_REF] Liu | Anomalous viscous loss in emulsions[END_REF][START_REF] Mason | Elasticity of compressed emulsions[END_REF].

At a frequency such that G ′ and G ′′ are in the plateau regime, several groups have investigated the effect of the strain amplitude [START_REF] Marze | Oscillatory rheology of aqueous foams: surfactant, liquid fraction, experimental protocol and aging effects[END_REF][START_REF] Mason | Elasticity of compressed emulsions[END_REF][START_REF] Rouyer | Is the yield stress of aqueous foam a well-defined quantity?[END_REF][START_REF] Rouyer | The large amplitude oscillatory strain response of aqueous foam: Strain localization and full stress Fourier spectrum[END_REF][START_REF] Saint-Jalmes | Vanishing elasticity for wet foams: Equivalence with emulsions and rol of polydispersity[END_REF] (Fig. 3). Below a critical strain γ c which decreases with the liquid fraction, the elastic and loss modulus are roughly constant: this is a linear regime. Above γ c , G ′ is a decreasing function of the strain amplitude, whereas G ′′ usually shows a maximum and overtakes G ′ , before decreasing with the strain amplitude. Hence the critical strain γ c is identified as a yield strain, above which the foam start to flow.

To investigate flow regimes, many authors have measured the stress response of foams subjected to a constant shear rate γ (Fig. 4). The measurements are usually well fitted by the Herschel-Bulkley law:

τ = τ y + A γn , (1) 
with a finite yield stress at vanishing shear rate which decreases with liquid fraction, and a sublinear increase (notice that n = 1 would correspond to the so-called Bingham model).

Experiments show generally an exponent close to 0.5 [START_REF] Denkov | The role of surfactant type and bubble surface mobility in foam rheology[END_REF][START_REF] Marze | Aqueous foam slip and shear regimes determined by rheometry and multiple light scattering[END_REF][START_REF] Ovarlez | Wide-gap Couette flows of dense emulsions: Local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging[END_REF][START_REF] Ovarlez | Investigation of shear banding in threedimensional foams[END_REF][START_REF] Princen | Rheology of foams and highly concentrated emulsions. IV. An experimental study of the shear viscosity and yield stress of concentrated emulsions[END_REF][START_REF] Tcholakova | Theoretical model of viscous friction inside steadily sheared foams and concentrated emulsions[END_REF] or lower [START_REF] Denkov | The role of surfactant type and bubble surface mobility in foam rheology[END_REF][START_REF] Ovarlez | Investigation of shear banding in threedimensional foams[END_REF][START_REF] Tcholakova | Theoretical model of viscous friction inside steadily sheared foams and concentrated emulsions[END_REF] Rigidity of the foam is probed by measuring quantities such as G ′ and τ y as functions of the liquid fraction φ ℓ [START_REF] Marze | Oscillatory rheology of aqueous foams: surfactant, liquid fraction, experimental protocol and aging effects[END_REF][START_REF] Saint-Jalmes | Vanishing elasticity for wet foams: Equivalence with emulsions and rol of polydispersity[END_REF]. Such quantities vanish as the liquid fraction reaches the critical liquid fraction of the rigidity loss transition (Fig 5).

These rheometric studies show that below a yield strain or a yield stress, foams behave as viscoelastic solids, while they flow as non-Newtonian liquids above yield.

If edge bubbles of the foam sample are not fixed to the rheometer walls all inside the apparatus, for instance by roughening the rheometer walls with sandpaper, there is a certain amount of wall slip that has to be corrected to correctly interpret the measurements [START_REF] Marze | Aqueous foam slip and shear regimes determined by rheometry and multiple light scattering[END_REF][START_REF] Princen | Rheology of foams and highly concentrated emulsions. IV. An experimental study of the shear viscosity and yield stress of concentrated emulsions[END_REF].

If slip occurs, as for foams confined by smooth walls, there is an extra frictional stress depending on the slip velocity.

FIG. 5. Adapted from [START_REF] Saint-Jalmes | Vanishing elasticity for wet foams: Equivalence with emulsions and rol of polydispersity[END_REF]. Top: The yield stress τ y (here σ y ) or its dimensionless value τ y /(σ/a)

(here σ y /(σ/R)) as a function of the packing fraction φ = 1 -φ ℓ . The solid line, proportional to ∆φ 2 ℓ , represents the empirical results found for monodisperse emulsions [START_REF] Mason | Yielding and flow of monodisperse emulsions[END_REF]. Bottom: The shear modulus G ′ (here G, circles) or its dimensionless value G ′ /(σ/a) (here G/(σ/R)) as a function of the packing fraction φ = 1-φ ℓ . The continuous lines represent the Mason's formula, ∝ (1-φ ℓ )∆φ ℓ [START_REF] Mason | Elasticity of compressed emulsions[END_REF], while the dashed line is Princen's formula, ∝ (1 -φ ℓ ) 1/3 ∆φ ℓ [START_REF] Princen | Rheology of foams and highly concentrated emulsions. III. Static shear modulus[END_REF].

III. LOCAL ORIGINS AND MODELLING OF FOAM RHEOLOGY

A. Visualisation of elasticity and plasticity

The local manifestations of elasticity and plasticity are easy to visualise in 2D foams (Fig. 6). At equilibrium, bubbles are in average undeformed; they appear as polygons (or polyhedra in 3D), with more or less rounded vertices depending on the liquid fraction (Fig. 6a). Under forcing, they can deform (Fig. 6b). The total area of their bounding interface, hence their surface energy, then increases: they store some elastic energy, proportional to the surface tension. Above a certain level of deformation, they undergo topological re-arrangements, the so-called T1 events. An elementary T1 involves always four bubbles in 2D, and in most cases in 3D [START_REF] Biance | Topological transition dynamics in a strained bubble cluster[END_REF][START_REF] Reinelt | Simple shearing flow of a dry kelvin soap foam[END_REF][START_REF] Reinelt | Simple shearing flow of dry soap foams with tetrahedrally close-packed structure[END_REF]. During such an event, two bubbles lose contact, whereas two of their neighbours come into contact (Fig. 6c, d ande). This process leads to a saturation of the stored elastic energy, hence to the existence of a yield stress. 

B. Models of elasticity and yield

The elastic properties of foams are linked to the variation of their total interfacial area.

Batchelor [START_REF] Batchelor | The stress system in a suspension of force-free particules[END_REF] showed that the elastic stress calculated over a representative volume element of volume V equals:

τ el ij = σ V (δ ij -n i n j )dS
, where the integral is computed over all the gas/liquid interfaces comprised inside V . Hence for a monodisperse foam with a the radius of the undeformed bubbles, the elastic modulus and yield stress scales as σ/a; as an order of magnitude, for σ ≈ 3 × 10 -2 N/m and a ≈ 10 -4 m, this gives G ′ ≈ 3 × 10 2 Pa. This is much lower than the bulk modulus of foams which, since foams are constituted mostly of gas, is of the same order of magnitude as the ambient pressure, 10 5 Pa. As a consequence, foams can be considered as incompressible in most cases.

To predict the exact value of the shear modulus and yield stress, and their dependence on liquid fraction, several authors starting from Princen [START_REF] Princen | Rheology of foams and highly concentrated emulsions. I. Elastic properties and yield stress of a cylindrical model system[END_REF] have considered the quasistatic deformation of the perfectly ordered and monodisperse 2D hexagonal foam, invariant along the third direction. If the liquid fraction is zero, the foam is a honeycomb lattice (Fig. 7).

It is subjected to an external strain (simple shear, or elongation), and the midpoints of all edges are assumed to follow the applied strain. The position of the vertices then follows from the Plateau rule: three edges meet at equal angles of 120 • . This enables to compute the structure at any strain step (Fig. 7), hence the elastic stress as a function of strain. In particular, this gives the shear modulus as G ′ = dτ xy /dγ| γ=0 . The calculations show that

G ′ = σ √ 3/6a
, whatever the relative orientation of the lattice and the shear [START_REF] Khan | Rheology of foams I. Theory for dry foams[END_REF]. Here (and only here) a stands for the side length of a regular hexagon.

x y FIG. 7. Evolution of a honeycomb lattice subjected to a simple shear γ (here, aligned with the x direction). From left to right, γ = 0; 1/ √ 3; 2/ √ 3, where the T1 occurs; and relaxed state after the T1.

Moreover, the calculation gives the yield strain, as the strain at the moment where the shortest of the bubble edges shrinks to zero. In the particular case where the lattice and the shear are aligned (Fig. 7), it equals 2/ √ 3, but contrary to the shear modulus, it depends on orientation [START_REF] Khan | Rheology of foams I. Theory for dry foams[END_REF]. From the structure at the yield strain, the yield stress can also be deduced; in the present case, it equals τ y = σ/a √ 3, and it also depends on orientation [START_REF] Khan | Rheology of foams I. Theory for dry foams[END_REF].

At the yield strain, a topological rearrangement T1 occurs: the transient fourfold vertex is unstable, and the foam spontaneously relaxes towards a new equilibrium configuration.

During this relaxation, which is not described by the quasistatic model, some energy is dissipated, because the total surface energy decreases. The modes of dissipation then set the duration of the relaxation phase after a T1 [START_REF] Biance | Topological transition dynamics in a strained bubble cluster[END_REF][START_REF] Durand | Relaxation time of the topological T1 process in a twodimensional foam[END_REF][START_REF] Gittings | Statistics of bubble rearrangement dynamics in a coarsening foam[END_REF][START_REF] Merrer | Bubble rearrangement duration in foams near the jamming point[END_REF]. The order of magnitude of dissipated energy per T1 is thus σa.

At finite liquid fraction, the calculation is modified by the presence of the concave triangles at the vertices (Sec. I) [START_REF] Khan | Rheology of foams IV. Effect of gas volume fraction[END_REF][START_REF] Princen | Rheology of foams and highly concentrated emulsions. I. Elastic properties and yield stress of a cylindrical model system[END_REF]. This barely affects the shear modulus, but strongly reduces the yield strain and the yield stress, which vanish for φ ℓ = 1 -π/2 √ 3 ≃ 9.3% in the case of the perfectly ordered and monodisperse 2D hexagonal foam.

In the same spirit, in 3D, Reinelt and Kraynik [START_REF] Reinelt | Simple shearing flow of a dry kelvin soap foam[END_REF], Kraynik and Reinelt [START_REF] Kraynik | Linear elastic behavior of dry soap foams[END_REF] and Reinelt and Kraynik [START_REF] Reinelt | Simple shearing flow of dry soap foams with tetrahedrally close-packed structure[END_REF] have studied numerically the simple shear of ordered 3D foam structures, notably the Kelvin foam. The qualitative conclusions remain the same, with the extra feature that the shear modulus is anisotropic.

To model the influence of disorder on the elastic properties of foams, Derjaguin [START_REF] Derjaguin | Die elastischen Eigenschaften der Schäume[END_REF] considered in a pioneering paper that the foam is an assembly of randomly oriented films, which are sheared affinely. The shortcoming of such an approach is that it ignores the Plateau rules, and it overestimates the shear modulus. Stamenović [START_REF] Stamenović | A model of foam elasticity based upon the laws of Plateau[END_REF] considered a foam constituted of an assembly of tetrahedra, satisfying to the Plateau rules, and derived a more realistic shear modulus.

Area and edge length, polydispersity have also been considered as "perturbations" of the ordered case [START_REF] Kruyt | On the shear modulus of two-dimensional liquid foams: A theoretical study of the effect of geometrical disorder[END_REF] and measurements of shear modulus have been related to disorder in simulations [START_REF] Cox | Shear modulus of two-dimensional foams: The effect of area dispersity and disorder[END_REF], but both studies are performed in 2D. The only simulations of 3D

polydisperse foam [START_REF] Kraynik | Structure of random foams[END_REF] reveal the role of the surface-volume mean bubble radius to account for the effect of polydispersity. It remains a challenge to account for disorder yet retaining Plateau rules, and promising descriptions began to appear only recently [START_REF] Durand | Statistical mechanics of two-dimensional shuffled foams: Prediction of the correlation between geometry and topology[END_REF][START_REF] Miklius | Analytical results for size-topology correlations in 2D disk and cellular packings[END_REF].

The influence of the liquid fraction φ ℓ on the packing rigidity was first probed on emulsions [84, 100-102, 114, 115]. Regarding the yield stress, Princen suggested an extension in 3D [START_REF] Princen | Rheology of foams and highly concentrated emulsions. II. Experimental study of the yield stress and wall effects for concentrated oil-in-water emulsions[END_REF] of its 2D geometrical model [START_REF] Princen | Rheology of foams and highly concentrated emulsions. I. Elastic properties and yield stress of a cylindrical model system[END_REF], leading to τ y ∝ σ/a×φ

1/3 ℓ
Fmax (∆φ ℓ ), where Fmax is the dimensionless contribution per drop to the yield stress and is expected to vary from 0 at the jamming transition, ∆φ ℓ = 0, to a maximal value for φ ℓ = 0. Both Princen [START_REF] Princen | Rheology of foams and highly concentrated emulsions. II. Experimental study of the yield stress and wall effects for concentrated oil-in-water emulsions[END_REF] and Mason et al. [START_REF] Mason | Yielding and flow of monodisperse emulsions[END_REF] found empirically that Fmax ∼ ∆φ 2 ℓ for their emulsions. Under the same geometrical considerations, Princen and Kiss [START_REF] Princen | Rheology of foams and highly concentrated emulsions. III. Static shear modulus[END_REF] deduced an expression of the shear modulus G ′ versus the liquid fraction as G ′ ∝ σ/a × (1 -φ ℓ ) 1/3 ∆φ ℓ . Lacasse et al. [START_REF] Lacasse | Model for the elasticity of compressed emulsions[END_REF] suggested a model based on individual interactions between droplets. On the assumption of an anharmonic potential between droplets in contact, they found G ′ ∝ σ/a × (1 -φ ℓ )∆φ ℓ which was in better agreement with their experiments on emulsions, but also with experiments on foams performed latter on [START_REF] Saint-Jalmes | Vanishing elasticity for wet foams: Equivalence with emulsions and rol of polydispersity[END_REF] (Fig. 5). Contrary to elasticity, there is no clear consensus about the origin of dissipation in foams, owing to the complex dynamics of surfactants [START_REF] Langevin | Rheology of adsorbed surfactant monolayers at fluid surfaces[END_REF], which can lead to many different modes of dissipation [START_REF] Buzza | Linear shear rheology of incompressible foams[END_REF]. Here, we discuss only two limiting boundary conditions at the gas/liquid interfaces: free shear, and no-slip.

Let us examine first the simplest free shear case, where the origin of dissipation is yet quite subtle [START_REF] Reinelt | Viscous effects in the rheology of foams and concentrated emulsions[END_REF][START_REF] Schwartz | A theory of extensional viscosity for flowing foams and concentrated emulsions[END_REF]. It is related to the gradient of capillary pressure between the curved Plateau borders and the flat films. At equilibrium, this capillary suction from the Plateau borders is balanced by the disjoining pressure, arising from repulsive interactions between the two interfaces bounding the films (see e.g. [START_REF] Israelachvili | Intermolecular and Surface Forces[END_REF][START_REF] Stubenrauch | Disjoining pressure in thin liquid foam and emulsion films-new concepts and perspectives[END_REF]), which sets the thickness of soap films at rest of a few tens of nanometers. When the foam flows, the situation changes and the capillary suction is balanced by hydrodynamic forces. Assuming a relative velocity U between a film of thickness h and a Plateau border or radius R, the flow is driven by the capillary pressure gradient over a transition zone of extent ℓ: σ/Rℓ, which balances the viscous term: ηU/h 2 , assuming h ≪ ℓ, and with η the viscosity of the solution. Together with the scaling of the curvature of the transition region: 1/R ≈ h/ℓ 2 , this imposes the following scalings: ℓ ≈ RCa 1/3 and h ≈ RCa 2/3 , with Ca = ηU/σ the capillary number.

The dissipated power per unit length is thus of order η(U/h) 2 hℓ ≈ ηU 2 /Ca 1/3 . Hence, the dissipated power per unit volume of foam is

ηU 2 /Ca 1/3 /a 2 ≈ η(σ/η γa) 1/3 γ2 , since U ≈ γa.
Hence, in the frame of this approach, the viscous stress scales as

τ v ( γ) ≈ (σ/a) 1/3 (η γ) 2/3 .
In the opposite case of no-slip boundary condition, bubbles entrain their surrounding interfaces at their own velocity. This gives rise to a strong shear inside the appearing/disappearing films between bubbles sliding past each other (Fig 8). This case was treated in [START_REF] Denkov | Viscous friction in foams and concentrated emulsions under steady shear[END_REF][START_REF] Tcholakova | Theoretical model of viscous friction inside steadily sheared foams and concentrated emulsions[END_REF], who proposed a different scaling: τ v ( γ) ≈ σCa 0.465 (1 -φ ℓ ) 5/6 /aφ 0.5 ℓ , in good agreement with their experiments and where the small deviation from the exponents 1/2 regarding Ca is due to a geometrical factor. Considering both the foam films and the meniscus region, the authors derive a semiempirical formula for rigid interfaces considering the total viscous stress as a superposition of the friction in both regions [START_REF] Tcholakova | Theoretical model of viscous friction inside steadily sheared foams and concentrated emulsions[END_REF] 

τ v ( γ) ≃ σ a 0.7Ca 0.47 (1 -φ ℓ ) 5/6 φ 0.5 ℓ + 8Ca 0.7 (1 -φ ℓ ) 5/6 φ 0.15 ℓ ,
Experimentally, this formula works quite well for emulsions. For foams, dissipation inside the meniscus region seems overestimated and effect of the foam films is always dominant.

The authors suggest that the no-slip boundary condition does not hold in the meniscus region, which decreases locally the shear [START_REF] Tcholakova | Theoretical model of viscous friction inside steadily sheared foams and concentrated emulsions[END_REF].

Both these predictions of the viscous stress are sublinear in shear rate, in qualitative agreement with the experiments. This comes from the fact that the film thickness, over which the liquid is sheared and dissipates energy, is determined by a balance between capillarity and hydrodynamics, and thus increases with its velocity relative to the reservoir from which it is extracted. This result is known as Frankel's law [START_REF] Mysels | Soap Films: Study of Their Thinning and a Bibliography[END_REF] for films withdrawn from a pool of solution, and it has been shown to apply also between a film and a Plateau border, either indirectly [START_REF] Biance | How topological rearrangements and liquid fraction control liquid foam stability[END_REF] or directly [START_REF] Seiwert | Extension of a suspended soap film: a homogeneous dilatation followed by new film extraction[END_REF].

As mentioned in Sec. II, most experiments report exponents of order 1/2, or lower, for the dependence of the viscous stress on shear rate. As already pinpointed by Princen

and Kiss [START_REF] Princen | Rheology of foams and highly concentrated emulsions. IV. An experimental study of the shear viscosity and yield stress of concentrated emulsions[END_REF], this seems to rule out the assumption of free shear boundary condition at the gas/liquid interface, which leads to an exponent 2/3, and to favour the assumption of rigid condition. However, the crossover criterion between two such extremes remains an open issue, and motivates currently active research in the context of soap film formation [START_REF] Saulnier | What is the mechanism of soap film entrainment?[END_REF][START_REF] Seiwert | Theoretical study of the generation of soap films: role of interfacial visco-elasticity[END_REF]. Moreover, neither of the two limiting cases of free shear and no-slip boundary conditions explains the existence of exponents lower than 0.5. Since such exponents were observed with surfactants having high surface elasticity and viscosity, Tcholakova et al. [START_REF] Tcholakova | Theoretical model of viscous friction inside steadily sheared foams and concentrated emulsions[END_REF] argued that they could be associated to surface dissipation within the gas/liquid interfaces; however, they did not provide explicit predictions for the exponent.

Foam-wall friction

Foam-wall friction is the main source of dissipation in confined foams. It is closely related to dip coating [START_REF] Weinstein | Coating flows[END_REF], and to the motion of isolated bubbles in tubes [START_REF] Bretherton | The motion of long bubbles in tubes[END_REF]. Like for foam bulk dissipation, two limiting cases have been treated: free shear and no-slip boundary conditions.

For free shear boundary conditions, the arguments presented in Sec. III C 1 apply and the resulting prediction for the shear stress at the wall is [START_REF] Denkov | Wall slip and viscous dissipation in sheared foams: Effect of surface mobility[END_REF]: τ w ≈ σCa 2/3 w /a, with a capillary number based on the sliding velocity U w : Ca w = ηU w /σ. The no-slip case was treated by Denkov et al. [START_REF] Denkov | Foam-wall friction: Effect of air volume fraction for tangentially immobile bubble surface[END_REF] who showed that τ w ≈ σCa 1/2 w /a, although Cantat [START_REF] Cantat | Liquid meniscus friction on a wet plate: Bubbles, lamellae, and foams[END_REF] proposed a correction for the 1/2 exponent. These expressions of the wall shear stress have been found to be in good agreement with experiments [START_REF] Denkov | Wall slip and viscous dissipation in sheared foams: Effect of surface mobility[END_REF][START_REF] Denkov | Foam-wall friction: Effect of air volume fraction for tangentially immobile bubble surface[END_REF]. However, here also, the crossover between the two extreme regimes remains to be quantified and explained.

D. Other approaches

Instead of building a model from realistic local details of the foams, several approaches have attempted to predict from generic ingredients the rheological behaviour of foams, and more generally of complex fluids, like the existence of a yield stress, or the scaling of the viscous stress.

A popular approach is the Soft Glassy Rheology model [START_REF] Sollich | Rheology of soft glassy materials[END_REF], inspired from glass models.

It describes the evolution of a system described by an internal strain ℓ i and a shear modulus k, and a distribution of elastic energy at yield, E. As an external shear is applied, the system can either elastically increase its strain, or plastically relax it, at a rate exp[-(E -kℓ 2 i /2)/x], with x an effective temperature related to the mechanical noise within the system. This theory captures many rheological behaviours: Newtonian fluids, power-law fluids, or yield stress fluids, depending on the value of the mechanical noise. However, it does not describe the full dynamics of relaxation in foams [START_REF] Cohen-Addad | Origin of the slow linear viscoelastic response of aqueous foams[END_REF][START_REF] Durian | Relaxing in foam[END_REF]. Another popular approach is the Shear Transformation Zone theory [START_REF] Falk | Dynamics of viscoplastic deformation in amorphous solids[END_REF]. It described the evolution of the population of plastic sites (the so-called shear transformation zones) in a sheared material. These zones have two possible states: fluid and jammed. They are created, annihilated, and they undergo transitions between the two states, at rates depending on the stress and strain rate. Like the SGR theory, this model captures many rheological behaviours.

More recently, models of complex fluids have been proposed by focussing on the distance to the jamming transition [START_REF] Katgert | The jamming perspective on wet foams[END_REF]. In the spirit of the so-called bubble model [START_REF] Durian | Bubble-scale model of foam mechanics: Melting, nonlinear behavior, and avalanches[END_REF], Tighe et al. [START_REF] Tighe | Model for the scaling of stresses and fluctuations in flows near jamming[END_REF] assumed that neighbouring bubbles i and j of radii R i,j , positions r i,j and velocities v i,j interact with an elastic force f el ∼ δ α el if they overlap by an amount δ = R i +R j -| r i -r j | > 0, and with a sliding friction force f visc ∼ |∆ v| α visc with ∆ v = v i -v j , where α el and α visc stand for the exponent of the elastic and viscous interactions. The system subjected to a shear rate γ receives a power σ γ, which is dissipated by friction, hence the power balance σ γ ∼ f visc |∆ v|. A relation σ = gγ eff is then postulated between the stress and an effective strain γ eff ∼ ∆φ ℓ + a γ/|∆ v|, with two contributions: a yield strain assumed to be of the order of the distance to the jamming transition ∆φ ℓ , and a dynamic strain which is the typical strain between plastic events, the time between two consecutive such events being of order a/|∆ v|. The shear modulus g is assumed to scale with ∆φ ℓ and γ eff , considering the jamming transition as a critical point [START_REF] Van Hecke | Jamming of soft particles: geometry, mechanics, scaling and isostaticity[END_REF][START_REF] Wyart | Elasticity of floppy and stiff random networks[END_REF]

: g = σ/a × √ ∆φ ℓ × g(γ eff / √ ∆φ ℓ ), with
a dimensionless function g having a finite limit at 0 and g(x) ∼ x→+∞ x; recently, Jorjadze et al. [START_REF] Jorjadze | Microscopic approach to the nonlinear elasticity of compressed emulsions[END_REF] has confirmed this leading order, but with significant corrections, from a precise visualisation using confocal microscopy of the contacts in an emulsion. Tighe et al. [START_REF] Tighe | Model for the scaling of stresses and fluctuations in flows near jamming[END_REF] predict four rheological regimes (yield stress, transition, critical and viscous) with different scalings of the stress on both shear rate and distance to jamming. A particularly interesting outcome of this approach is that it predicts relations between the exponents of the local elastic and friction laws α el and α visc , and those of the macroscopic rheological response, and in good agreement with some experiments.

Finally, let us point out that the peculiar behaviour of the complex shear modulus of foams and emulsions at high frequency: G * ∼ √ iω (Sec. II) has attracted some attention.

Liu et al. [START_REF] Liu | Anomalous viscous loss in emulsions[END_REF] have proposed that it could be the signature of the presence of "weak planes" within the materials, along which bubbles (or droplets) slip with minimal mechanical stress.

Alternatively, Tighe [START_REF] Tighe | Relaxations and rheology near jamming[END_REF] have related this behaviour of G * to the density or relaxation modes in the material.

IV. MULTISCALE FEATURES OF FOAM FLOWS

The processes at the scale of the bubbles are crucial to understand foam rheology at the macroscopic scale: as we have shown in Sec. III, the elastic modulus and the effective viscosity depend on the bubble size, and the elementary plastic event involves four bubbles.

However, the connection between the sole scales of the bubble and of the foam is insufficient to understand foam rheology in several cases. First, new length scales appear as foams are confined in 2D. Then, we will show that several recent experimental results have been rationalised by the introduction of another, intermediate length scale, the cooperativity length. Finally, we will mention some specific features of strongly confined systems, when the scales of the bubble and of the full system are of the same order of magnitude.

A. Confinement effects

Experiments

Since foams are opaque, many experiments have focused on 2D foams to complement rheometric measurements with local measurements of velocity [START_REF] Debrégeas | Deformation and flow of a two-dimensional foam under continuous shear[END_REF][START_REF] Katgert | Rate dependence and role of disorder in linearly sheared two-dimensional foams[END_REF][START_REF] Lauridsen | Velocity profiles in slowly sheared bubbles rafts[END_REF][START_REF] Wang | Impact of boundaries on velocity profiles in bubble rafts[END_REF], plasticity [START_REF] Dennin | Statistics of bubble rearrangements in a slowly sheared two-dimensional foam[END_REF][START_REF] Dollet | Two-dimensional flow of foam around a circular obstacle: local measurements of elasticity, plasticity and flow[END_REF], and stresses [START_REF] Dollet | Local description of the two-dimensional flow of foam through a contraction[END_REF]. All 2D systems resort to confining the foams with plates, with the notable exception of bubble rafts, which are dense monolayers of bubbles floating at the free surface of a soap solution.

Except some studies of complex foam flows, around obstacles [START_REF] Dollet | Two-dimensional flow of foam around a circular obstacle: local measurements of elasticity, plasticity and flow[END_REF][START_REF] Dollet | Anti-inertial lift in foams: A signature of the elasticity of complex fluids[END_REF] or in constrictions [START_REF] Bertho | Dense bubble flow in a silo: an unusual flow of a dispersed medium[END_REF][START_REF] Dollet | Local description of the two-dimensional flow of foam through a contraction[END_REF], most experiments have focussed on unidimensional Couette flows. A seminal study was performed by Debrégeas et al. [START_REF] Debrégeas | Deformation and flow of a two-dimensional foam under continuous shear[END_REF], who studied the flow of a 2D foam, confined by a top plate, in a cylindrical Couette cell. In such a cell, the foam is placed between an inner rotating cylinder, and an outer fixed cylinder, both with cogs to prevent slip (Fig. 9). They reported an exponentially decaying velocity profile (Fig. 9), thus with a new localisation length emerging. They proposed an explanation in a stochastic model, which relates plastic flow to the stress fluctuations, as for what is commonly observed in granular systems, and reproduced localisation in simulations [START_REF] Kabla | Local stress relaxation and shear banding in a dry foam under shear[END_REF]. This study triggered a lot of interest, and different results soon appeared: Lauridsen et al. [START_REF] Lauridsen | Shear-induced stress relaxation in a twodimensional wet foam[END_REF][START_REF] Lauridsen | Velocity profiles in slowly sheared bubbles rafts[END_REF] reported no such localisation for a bubble raft in a cylindrical Couette cell, but rather a smooth decrease followed by a jammed state, from the inner to the outer cylinder. This kind of velocity profile was also found in 3D emulsions in a cylindrical Couette cell [START_REF] Coussot | Coexistence of liquid and solid phases in flowing soft-glassy materials[END_REF], and was consistent with a Herschel-Bulkley relation. However, this viewpoint was later questioned by Katgert et al. [START_REF] Katgert | Couette flow of two-dimensional foams[END_REF], who compared the flow profiles with and without confining plates in a cylindrical Couette geometry: they showed that there was no clear hint of a jammed region close to the outer cylinder, and rationalised their results with nonlocal ingredients (see also Sec. IV B).

Other experiments have focussed on plane Couette geometries, where the foam is between two parallel plates moving at opposite velocities. In this geometry, the stress is constant across the foam, contrary to the cylindrical Couette geometry. It is actually in a plane Couette geometry that Wang et al. [START_REF] Wang | Impact of boundaries on velocity profiles in bubble rafts[END_REF], who studied the flow with and without confining plate, showed that localisation appeared only in the presence of a confining plate, whereas the flow profile remained essentially linear in the absence of confinement (Fig. 10). Katgert et al. [START_REF] Katgert | Rate dependence and role of disorder in linearly sheared two-dimensional foams[END_REF][START_REF] Katgert | Flow in linearly sheared twodimensional foams: From bubble to bulk scale[END_REF] confirmed that the flow profile is localised in the presence of a confining top plate, with a localisation length decreasing at increasing velocity and liquid fraction. They also reported an effect of the foam polydispersity, which remains hitherto unexplained. 

Models

Several models aimed at rationalising the effect of confining plates and the appearance of shear bands. Janiaud et al. [START_REF] Janiaud | Two-dimensional foam rheology with viscous drag[END_REF] considered simple shear flows like the plane Couette configuration, and studied a force balance including shear elastic stress, a viscous stress proportional to the shear rate, and an external friction force proportional to the velocity. This model was successful in explaining the existence of a localised profile in the presence of friction, and a linear velocity profile in its absence. Clancy et al. [START_REF] Clancy | The response of 2D foams to continuous applied shear in a Couette rheometer[END_REF] studied the same model in cylindrical Couette geometry, and Weaire et al. [START_REF] Weaire | Velocity dependence of shear localisation in a 2D foam[END_REF][START_REF] Weaire | A simple analytical theory of localisation in 2D foam rheology[END_REF] proposed generalisations to nonlinear laws for friction and viscous stress. Katgert et al. [START_REF] Katgert | Rate dependence and role of disorder in linearly sheared two-dimensional foams[END_REF][START_REF] Katgert | Flow in linearly sheared twodimensional foams: From bubble to bulk scale[END_REF] used the nonlinear version of this model, with exponents deduced from rheometric measurements, to interpret the velocity profiles in their experiments. In a different spirit, Cheddadi et al. [START_REF] Cheddadi | Numerical modelling of foam couette flows[END_REF][START_REF] Cheddadi | Steady couette flows of elastoviscoplastic fluids are non-unique[END_REF] used a fully tensorial viscoelastoplastic model, which was successful in reproducing flows in complex geometries like around an obstacle Cheddadi et al. [START_REF] Cheddadi | Understanding and predicting viscous, elastic, plastic flows[END_REF]. In Couette geometries, they also reproduced the appearance of localisation and discussed transient effects [START_REF] Cheddadi | Numerical modelling of foam couette flows[END_REF], and suggested that normal stress differences could play a major role of the flow profiles [START_REF] Cheddadi | Steady couette flows of elastoviscoplastic fluids are non-unique[END_REF].

B. Cooperativity/nonlocal effects 1. Effect of a plastic event in the surrounding foam

The importance of plastic events in foam and emulsion rheology has long been recognised.

First, a T1 may be viewed as a local increment of plastic deformation, the plastic flow of foams then resulting from the superposition of many T1s, such that the local rate of strain is proportional to the rate of plastic events. Moreover, as a topological rearrangement occurs, the neighbour swapping of four bubbles (Fig. 6c-e) acts as a quadrupole of force [START_REF] Picard | Elastic consequences of a single plastic event: A step towards the microscopic modeling of the flow of yield stress fluids[END_REF] or of displacement [START_REF] Chen | Topological rearrangements and stress fluctuations in quasi-two-dimensional hopper flow of emulsions[END_REF] (Fig. 11a) on the surroundings; this has nonlocal effects in the surrounding foam, entraining other bubbles to be displaced and redistributing the elastic stress around, or even triggering avalanches of T1 events.

It is not yet clear how this nonlocal effect is mediated. Picard et al. [START_REF] Picard | Elastic consequences of a single plastic event: A step towards the microscopic modeling of the flow of yield stress fluids[END_REF] proposed that the medium reacts as an elastic continuum to the quadrupole of force, with an algebraically decaying influence. On the other hand, using Surface Evolver simulations, Cox et al. [START_REF] Cox | Screening in dry two-dimensional foams[END_REF] have reported an exponentially decaying influence, with a characteristic range of a few bubble size only. Moreover, some authors have recently mentioned extremely long-range effects, reminiscent of chain forces as in granular media, either in Surface Evolver simulations (Fig. 11b) [START_REF] Evans | Networklike propagation of cell-level stress in sheared random foams[END_REF], or in experiments on 2D emulsions [START_REF] Desmond | Experimental study of forces between quasi-two-dimensional emulsion droplets near jamming[END_REF]. Overall, the important point is that an individual T1 has an effect over a typical size ξ significantly larger than the bubble size.

Macroscopic consequences: nonlocal rheology

Recent studies on the flow of emulsions in a straight channel of rectangular cross-section [START_REF] Goyon | Spatial cooperativity in soft glassy flows[END_REF][START_REF] Goyon | How does a soft glassy material flow: finite size effects, non local rheology, and flow cooperativity[END_REF] have called the Herschel-Bulkley law found in rheometry into question. This geometry is particularly interesting, because it enforces a linear variation across the channel of the shear stress, which vanishes at the centre and reaches its maximum at the side walls. Together with an evaluation of the shear rate from the measured velocity profile, it gives access to the relation σ( γ) at the local scale. In particular, Goyon et al. [START_REF] Goyon | Spatial cooperativity in soft glassy flows[END_REF][START_REF] Goyon | How does a soft glassy material flow: finite size effects, non local rheology, and flow cooperativity[END_REF] have measured this Actually, the Herschel-Bulkley relation is a purely local relation between the shear stress and the shear rate, hence it overlooks both the elastic contribution to the stress, and the aforementioned nonlocal influence of plastic events. This is at the basis of the fluidity model, based on a kinetic theory approach [START_REF] Bocquet | Kinetic theory of plastic flow in soft glassy materials[END_REF]. It predicts that the fluidity, defined as f = γ/τ , is proportional to the rate of plastic events, and follows a diffusion equation:

f = f bulk + ξ 2 ∆f,
when it deviates from its bulk value, defined as f bulk = γ/τ bulk , where τ bulk is given by the Herschel-Bulkley law [START_REF] Arif | Speed of crack propagation in dry aqueous foams[END_REF]. The diffusive term quantifies in a simple way the nonlocal influence of plastic events on their surroundings. Goyon et al. [START_REF] Goyon | Spatial cooperativity in soft glassy flows[END_REF][START_REF] Goyon | How does a soft glassy material flow: finite size effects, non local rheology, and flow cooperativity[END_REF] showed that such a model was capable to reproduce well their experimental observations. The range of influence ξ appearing in this equation, called the spatial cooperativity, was shown to be of the order of a few times (typically, five) the droplet size. Moreover, the spatial cooperativity was shown to appear only above the jamming transition, and to be an increasing function of the packing fraction (Fig. 12, bottom).

Katgert et al. [START_REF] Katgert | Couette flow of two-dimensional foams[END_REF] studied a bubble raft under shear in a cylindrical Couette geometry, with a gap between the two cylinders equal to approximately twenty bubble radii. Like Goyon et al. [START_REF] Goyon | Spatial cooperativity in soft glassy flows[END_REF][START_REF] Goyon | How does a soft glassy material flow: finite size effects, non local rheology, and flow cooperativity[END_REF], they showed that local and global rheology did not match. In particular, they observed flow in region where the shear stress is below the rheometrically determined global yield stress. They were able to convincingly rationalise their data with the fluidity model, and obtained the cooperativity length as a fitting parameter: ξ/ d = 3 with d the bubble diameter. They claimed that ξ encodes the spatial extent of plastic rearrangements.

Hence, the fluidity model provides a convenient framework to rationalise the confined flow of complex fluids.

However, at least two points remain unclear and deserve further investigation. The first is the boundary condition at solid walls, and the role of roughness. As a matter of fact, the slip velocity was let as a free fitting parameter, which certainly improves the agreement between the measurements and the predictions from the fluidity model, but does not provide any insight on the role of the walls. Only recently, Mansard et al. [START_REF] Mansard | Boundary conditions for soft glassy flows: slippage and surface fluidization[END_REF] explored the role surface boundary conditions for the flow of a dense emulsion. They show that both slippage and wall fluidisation depend non-monotonously on the roughness, a behaviour that has been interpreted with a simple model invoking the building of a stratified layer and the activation of plastic events by the surface roughness. Second, the fluidity parameter f has not been yet convincingly related to an independent measure of the local density of plastic events. In experiments, only indirect indications of such a relation have been proposed, based on the correlations of the fluctuations of the shear rate [START_REF] Jop | Microscale rheology of a soft glassy material close to yielding[END_REF]. Using numerical simulations based on the bubble model [START_REF] Durian | Bubble-scale model of foam mechanics: Melting, nonlinear behavior, and avalanches[END_REF], Mansard et al. [START_REF] Mansard | A molecular dynamics study of nonlocal effects in the flow of soft jammed particles[END_REF] were able to measure independently the fluidity and the density of plastic events, but they show that the two quantities are not proportional; more precisely, the rearrangement rate was found to be a sublinear power (with an exponent 0.4) of the fluidity. 

V. LARGE SHEAR RATES AND FREQUENCIES

A. Beyond the quasistatic limit

As long as the shear rate remains much lower than the duration t d of the relaxation after a T1 (Sec. III B), foam rheology is quasistatic is the sense that the structure remains most of the time at equilibrium, the Plateau rules being satisfied. The rheology of foam when departing from this quasistatic limit has been studied experimentally first by Gopal and Durian [START_REF] Durian | Shear-induced "melting" of an aqueous foam[END_REF], coupling rheometric measurements in a Couette cell with diffusive wave spectroscopy. They have showed the existence of three regimes: as very low shear rate, a regime dominated by coarsening-induced rearrangements, which has been later studied in details by Cohen-Addad et al. [START_REF] Cohen-Addad | Origin of the slow linear viscoelastic response of aqueous foams[END_REF]; at intermediate shear rate, a regime dominated by shear-induced rearrangements; and at large shear rate, a regime compatible with a laminar flow of the foam, compatible with a smooth, continuous motion of the bubbles. The latter transition was found to take place a shear rate of order γ c /t d , with γ c the yield strain.

Interestingly, t d ≈ 0.1 s was also found to set the transition where the dynamic contribution of the stress overcomes the yield stress in the Herschel-Bulkley law (1): τ /τ y = 1 + (t d γ) n in good approximation; but this simple picture breaks down at even larger shear rates. Later Rouyer et al. [START_REF] Rouyer | Dynamics of yielding observed in a three-simensional aqueous dry foam[END_REF] studied the onset of yielding in a shear startup experiment, i.e. the imposed strain γ y at which a significant rate of rearrangements begin to occur, which is the signature of the solid-like to a liquid-like behaviour. They found a strong dependence of this strain on the shear rate, of the form γ y = γ c + t ′ d γ, with γ c = 0.05 and t ′ d = 1 s. Once again, this behaviour was ascribed to the relaxation after a T1. Recently, Marmottant and Graner [START_REF] Marmottant | Plastic and viscous dissipations in foams: cross-over from low to high shear rates[END_REF] have proposed a simple toy model to reproduce this kind of behaviour, and its effect on the stress vs. shear rate curve. However, in these 3D experimental studies, there is no direct link between the shear rate at which a change of flow behaviour is observed, and the local relaxation towards equilibrium of the structure after a T1. In order to access locally to the effect of the relaxation and the structure of the foam at high shear rate, 2D experiments, simulations and calculations have been proposed. In 2D experiments and in some simulations like the viscous froth model [START_REF] Kern | Two-dimensional viscous froth model for foam dynamics[END_REF], the dissipation is dominated by the friction between the foam at confining walls (Sec. III C 2) instead of the viscous stress, and it is the velocity, rather than the shear rate, that controls the departure from the quasistatic limit. At finite velocity, distorted shapes of bubbles or films are observed in experiments (Fig. 13a,b) [START_REF] Dollet | Local description of the two-dimensional flow of foam through a contraction[END_REF][START_REF] Drenckhan | Rheology of ordered foams-on the way to discrete microfluidics[END_REF] and simulations [START_REF] Cox | The viscous froth model: steady states and the high-velocity limit[END_REF][START_REF] Embley | Viscous froth simulations with surfactant mass transfer and Marangoni effects: Deviations from Plateau's rules[END_REF], with effects to delay the onset of T1s [START_REF] Embley | Viscous froth simulations with surfactant mass transfer and Marangoni effects: Deviations from Plateau's rules[END_REF] and to modify the elastic stress [START_REF] Dollet | Local description of the two-dimensional flow of foam through a contraction[END_REF]. If the resulting foam-wall friction overcomes surface tension, the foam even ruptures [START_REF] Arif | Speed of crack propagation in dry aqueous foams[END_REF][START_REF] Arif | Spontaneous brittle-to-ductile transition in aqueous foam[END_REF][START_REF] Salem | Response of a two-dimensional liquid foam to air injection: swelling rate, fingering and fracture[END_REF]. In some other simulations [START_REF] Cantat | Gibbs elasticity effect in foam shear flows: a non quasi-static 2D numerical simulation[END_REF] and calculations [START_REF] Grassia | A Princen hexagonal foam out of physicochemical equilibrium[END_REF][START_REF] Kraynik | Foam rheology: A model of viscous phenomena[END_REF], the effect of shear rate is accounted for by a modification of the surface tension of the films, proportional to their extension rate, and the departure from quasistaticity comes from an imbalance in surface concentration. There also, the elastic stress is shown to be an increasing function of the shear rate, associated to bubble shape distortion and to delayed T1s (Fig. 13c). Hence, the increase of shear stress with shear rate contains two contributions: a viscous stress, coming from the dissipation processes within the foam structure, and also an increase of the elastic stress beyond its quasistatic value.

These two contributions may be intertwined, especially if the surface tension entering the elastic stress is modified by interfacial compression or dilatation [START_REF] Cantat | Gibbs elasticity effect in foam shear flows: a non quasi-static 2D numerical simulation[END_REF].

B. High frequency: waves in foams

Oscillatory rheometry is usually limited to 100 Hz. The domain of higher frequencies has been seldom explored, either to extended rheometry at higher frequencies, or to study acoustics in foams. Recently, Wintzenrieth et al. [START_REF] Wintzenrieth | Laser-speckle-visibility acoustic spectroscopy in soft turbid media[END_REF] exerted shear waves inside a Gillette foam using a vibrating blade. Using diffusive wave spectroscopy, they were able to extract the complex shear modulus, and they showed that the relationship G * ∼ √ iω holds up to 1.3 kHz. Erpelding et al. [START_REF] Erpelding | Investigating acoustic-induced deformations in a foam using multiple light scattering[END_REF] insonified a Gillette foam placed in a cuvette for frequencies between 0.4 and 10 kHz, and showed, also by diffusive wave spectroscopy, that the acoustically-forced foam is sheared in a thin layer close to the cuvette boundaries; they also used the relation G * ∼ √ iω to interpret their results. Hence, this relationship seems quite robust towards high frequencies.

Acoustic forcing is another way to probe foam rheology in a less conventional way that foam rheometry, but it is complementary, because of the higher range of frequency and because it is sensitive to compressibility, which is usually neglected in rheology. Most of the existing experimental studies reported speeds of sound of order c = 50 m/s [START_REF] Goldfarb | Sound and weak shock wave propagation in gas-liquid foams[END_REF][START_REF] Goldfarb | Heat transfer effect on sound propagation in foam[END_REF][START_REF] Mujica | Sound velocity absorption in a coarsening foam[END_REF], close to the so-called Wood model [START_REF] Wood | A Textbook on Sound[END_REF]. The latter applies in the limit where the bubble size is much smaller than the acoustic wavelength, and treats foams as an effective medium, which density ρ eff and compressibility χ eff are given by the mixture law, i.e. averages of those of the gas and liquid phases, weighted by their respective volume fractions: c = (ρ eff χ eff ) -1/2 . However, much higher speeds of sound, of order 200 m/s, were also measured [START_REF] Moxon | The attenuation of acoustic signals by aqueous and particulate foams[END_REF]. Another model was then proposed by Kann [START_REF] Kann | Sound waves in foams[END_REF], who considered the foam as an assembly of thin soap films (of thickness h) surrounded by air, and derived: c = c g /(1 + ρ ℓ h/ρ g a), with c g the speed of sound in the gas, ρ ℓ the density of liquid and ρ g that of gas. Moreover, some studies reported a resonant behaviour [START_REF] Salem | Propagation of ultrasound in aqueous foams: bubble size dependence and resonance effects[END_REF][START_REF] Ding | Acoustical observation of bubble oscillations induced by bubble popping[END_REF]. Recently, these seemingly contradictory results were explained in a unified framework by Pierre et al. [START_REF] Pierre | Resonant acoustic propagation and negative density in liquid foams[END_REF]. They showed experimentally and theoretically that Wood's model is the limit of low frequencies and small bubbles, Kann's model is the limit of high frequencies and large bubbles, and that there is a resonance in between, with a maximum of attenuation. This was explained by considering that the liquid contained within the foam is distributed either in thin soap films, or in much thicker Plateau borders and vertices. In particular, while all these elements vibrate in phase with the pressure wave at low frequency (and small bubble size), which is the implicit assumption justifying the use of an average density in Wood's model, the inertia of the Plateau borders and vertices is such that their vibration amplitude becomes negligible with respect to that of the films at high frequency (and large bubble size), justifying Kann's model in this limit.

The dissipative properties of foams, discussed in Sec. III C, are also used to mitigate the huge pressure waves associated to shocks, blasts and explosions [START_REF] Britan | Mitigation of sound waves by wet aqueous foams[END_REF][START_REF] Del Prete | Blast wave mitigation by dry aqueous foams[END_REF][START_REF] Raspet | The reduction of blast noise with aqueous foams[END_REF], although it is still unclear which is the dominant dissipative mechanism at stake in such extreme conditions.

VI. CONCLUSIONS

The local mechanisms dominating dissipation in foams still remain elusive. Notably, more research is needed to understand the precise links between surfactant dynamics (namely, their surface elasticity and their exchanges between interfaces and bulk) and macroscopic measurements of dissipation, such as the loss modulus.

There is still a lack of data at the local scale in the bulk of a 3D foam. Time and spaceresolved measurements of the deformations, elastic stresses, and distribution of plastic events still remains an experimental challenge. The progress of fast X-ray tomography [START_REF] Mader | Quantitative 3D characterization of cellular materials: Segmentation and morphology of foam[END_REF][START_REF] Mokso | Real-time tomography at the swiss light source[END_REF] and confocal microscopy (at least for index-matched emulsions) [START_REF] Jop | Microscale rheology of a soft glassy material close to yielding[END_REF][START_REF] Jorjadze | Microscopic approach to the nonlinear elasticity of compressed emulsions[END_REF] brings some hope that this challenge will be overcome in the near future.

Finally, if most of the research focuses on interpreting rheometry measurements at the scale of the foam with considerations at the microstructure scale, little is known about the effect of the flow on the microstructure and its potential feedback. Regarding emulsions, this question was already raised by Taylor [START_REF] Taylor | The formation of emulsions in definable fields of flow[END_REF] in the context of the formation of emulsions.

Droplets can either break [START_REF] Derkach | Rheology of emulsions[END_REF] or coalesce [START_REF] Bremond | Propagation of drop coalescence in a twodimensional emulsion: a route towards phase inversion[END_REF] due to the interaction with the flow. Such coupling might be very relevant for foams deformed at high shear rates.
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 1 FIG. 1. (a) Reconstruction of the Plateau border network inside a 3D dry foam by X-ray tomography (from Lambert et al. [85]). (b) A vertex or node is defined as the fourfold junction between
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 2 FIG. 2. 2D foam. (a) Monolayer of a ferrofluid foam between two glass plates. Image courtesy of Eric Janiaud. (b) Bubble inside an ideal 2D foam. The Plateau border cross-section is formed of three arcs of a circle of radius R that meet tangentially along the bubble faces [118].
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 3 FIG. 3. Oscillatory rheometry. a) Elastic modulus G ′ (open symbols) and loss modulus G ′′ (filled symbols) as a function of the angular frequency. The sample is a Gillette foam, of bubble size 60 µm and liquid fraction 8%. The different symbols stand for different values of the shear amplitude γ 0 . From Gopal and Durian [58]. b) Elastic modulus G ′ (open symbols) and loss modulus G ′′ (filled symbols) as a function of the strain amplitude. The sample is a SDS foam, slightly polydisperse, of mean bubble radius 60 ± 5 µm and liquid fraction 15%. From Marze et al. [99].
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 6 FIG. 6. (a) Snapshot of undeformed bubbles in a dry 2D foam (liquid fraction 0.3%). (b) Deformed bubbles, storing elastic energy. Illustration of a plastic rearrangement T1, whereby bubbles labelled 1 and 2 lose contact whereas 3 and 4 come into contact; (c) before the T1, (d) at the instant of the T1, with a transient fourfold vertex; (e) after the T1.

  FIG. 8. Bubble friction inside a liquid foam, from Tcholakova et al. [137]. (a) Images of the process of bubble friction of bubbles passing along each other in sheared foam. (b) Schematic representation of the relative motion of planes of bubbles sliding along each other and of the process of film formation and disappearance between two bubbles.
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 9 FIG. 9. Cylindrical Couette geometry from Debrégeas et al. [30] (top). The velocity field exhibits a exponential decay (bottom), with a decay length increasing with the liquid fraction (here, φ).
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 10 FIG. 10. Plane Couette geometry from Wang et al. [141]: velocity as a function of the spanwise coordinate y (with origin at the centre of the channel). The velocity is rescaled by that of the side belts, and y by the bubble diameter d. Velocity field without (top) and with (bottom) an upper glass plate.
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 11 FIG. 11. (a) Quadrupolar displacement field induced by a single T1. From Surface Evolver simulations of Cox et al. [28]. (b) From Evans et al. [51]. A typical plastic zone, composed of all cells that change topology during T1 avalanche, during a Couette simulation. The stress release domain during the same T1 avalanche.
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 12 FIG. 12. Non local rheological law Goyon et al. [59]. Top left: shear stress as a function of the shear rate in Couette rheometer of wide gap (1.8 cm). The different colours stand for different rotation rates. All the data collapse on a single master curve, described by a Herschel-Bulkley relation. Inset: corresponding velocity profiles across the rheometer. Top right: shear stress as function of the shear rate across a narrow channel (width 0.25 mm), the shear rate being deduced from the measured velocity profiles across the channel (inset). The different colours stand for different pressure drops. The stress-shear rate relations do not collapse anymore onto a single curve. Bottom: cooperativity length, extracted from a fit of the velocity profiles with the fluidity model, as a function of the packing fraction φ = 1 -φ ℓ .
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 13 FIG. 13. (a) Staircase foam (solution of dish-washing Fairy liquid at 0.4% concentration) flowing from left to right in a microchannel (width 7 mm, depth 0.5 mm, velocity 1.5 cm/s) [45]. The films do not meet the side walls at right angles. (b) Hexagonal foam (SLES/CAPB/MAc mixture with 0.4% weight of MAc, see Golemanov et al. [56]) in a wide channel of depth 2 mm flowing from left to right and bubble area 15 mm 2 . The films do not meet at 120 • , and the hexagons are distorted.(c) Shear stress as a function of imposed shear strain on a Princen-like model, with a surface tension varying with the length of the films, and relaxing towards equilibrium with a relaxation time[START_REF] Grassia | A Princen hexagonal foam out of physicochemical equilibrium[END_REF]. The Deborah number De is the product of the shear rate and of the relaxation time of the surfactant. As De increases, the T1s are delayed, and the average shear stress increases.

  

  

ACKNOWLEDGMENTS

We acknowledge funding support from the GDR 2983 Mousses (CNRS) for supporting travel expenses.