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We measured the dispersion relation for acoustic longitudinal waves in liquid foams, over a broad

frequency range (60–600 kHz). Strong dispersion was found, with two non-dispersive behaviors,

separated by a negative density regime. A new model, based on the coupled displacements of films,

Plateau borders and gas in the foam, rationalizes all the experimental findings.

Liquid foams, dispersions of gas bubbles in a liquid
matrix stabilized by surfactants [1], are present in a wide
range of industrial applications, from food and personal
care to ore flotation and enhanced oil recovery [2]. They
are opaque materials, hence difficult to characterize in
depth, and new ways of probing them are highly desir-
able. Acoustic probes are good candidates, since they are
unexpensive and nonintrusive, and widely used as such
in nondestructive testing [3]. However, surprisingly little
is known about liquid foam acoustics, contrary to other
multiphasic media such as porous media [4], colloidal sus-
pensions, or emulsions [5, 6]. Most of the few existing
experimental studies reported speeds of sound of order
50 m/s [7–9], close to the so-called Wood model [10]. The
latter treats foams as an effective medium, which density
and compressibility are averages of those of the gas and
liquid phases, weighted by their respective volume frac-
tions. However, much higher speeds of sound, of order
200 m/s, were also measured [11, 12], and some studies
reported a resonant behavior [13, 14], reminiscent of the
Minnaert resonance of a single bubble in an unbounded
liquid [15], which is the key ingredient of acoustic prop-
agation through dilute bubbly liquids [16, 17]. In this
Letter, we use a novel setup [18] to measure speed of
sound and attenuation through liquid foams over a large
range of frequencies f (60–600 kHz) and bubble radii
(15–50 µm). Our results are explained by a new model,
which fully reconciles all aforementioned different view-
points on liquid foam acoustics. In particular, we show
that liquid foams are natural acoustic metamaterials, ex-
hibiting a negative effective density over a large range of
frequencies and bubble sizes.

The general principle of our technique is to measure the
complex transmission of short ultrasonic pulses through
a foam sample of known thickness. From this complex
transmission, we can determine the effective complex
wavevector as a function of frequency: k = ω/v+iα, with
ω = 2πf , and v and α the phase velocity and attenuation
of sound. In an ageing foam, the bubble median radius R
increases over time by Ostwald ripening [1]. Hence, mak-
ing measurements at different times, we obtain k(ω, R),
the complex wavevector as a function of frequency and
median radius. Some aspects of the ultrasonic technique
and the foam production and characterization are briefly

described below; more details can be found in [18] for the
former, and [19] for the latter.

Transmission measurements were performed with two
broadband air transducers. The thickness of the foam
samples was set to 0.5 mm by sandwiching them be-
tween two plastic films, which were as thin as possible
to allow a good transmission of ultrasound. An inver-
sion procedure was used to deduce the effective wavevec-
tor k of sound in the foam from the complex transmis-
sion measured through the three-layer system {film-foam-
film}. This procedure relied on the assumption that ei-
ther the effective density ρeff or the effective compress-
ibility χeff were known. Guided by the model presented
below, we assumed that the effective compressibility of
the liquid foam was given by the usual mixture law:
χeff = Φχ! + (1 − Φ)χg, where Φ is the liquid volume
fraction and χ!,g the compressibility of the liquid and
gaseous phase.

Liquid foams with liquid volume fractions ranging from
3% to 22% were obtained by the two-syringe method [19].
The foaming liquid was an aqueous solution containing
10 g/L of sodium dodecyl sulfate to ensure good foama-
bility, and 0.5 g/L of xanthane to reduce drainage. Given
the small thickness of the samples (0.5 mm), the typical
radius of the bubbles (less than 50µm) and the presence
of xanthane, we were able to neglect the gradient of liq-
uid fraction due to gravity [20]. The gaseous phase was
air saturated with vapor of C6F14, an insoluble gas that
slows down Ostwald ripening. Thus, the typical time
over which the foam was changing (∼ 10 minutes) was
long enough not only to consider the acoustic measure-
ments as instantaneous, but also to perform bubble size
measurements [19]. To do that, we took a small sub-
sample of the foam from the syringe, and pour it on a
liquid bath to obtain a bubble raft, a two-dimensional
structure easy to image. Assuming that the left-over in
the syringe was ageing the same way as the foam be-
tween the films, we were able to follow the time evolu-
tion of the bubble size distribution. We found lognormal
distributions exp{−[ln(r/R)]2/2ǫ2}/(rǫ

√
2π) with a me-

dian radius R going from 15 to 50µm in 90 minutes, and
a polydispersity of ǫ $ 0.4 without significant time evo-
lution (Fig. 1c).

Measurements shown in Fig. 1a clearly indicate that
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FIG. 1: (a) Real part of the wavenumber as a function of

the frequency, measured at three di erent ageing times in a

liquid foam with  = 11%. Lines show dispersion curves

for constant velocities of 32 m/s (dash) and 220m/s (solid).

(b) Imaginary part of the wavenumber. (c) Median radius

of the bubbles (◦) and polydispersity (•) as functions of the

ageing time. (d) Frequency of the maximum of attenuation

as a function of the median radius; solid line is the Minnaert

frequency fM , dashed line is 1.6fM .

the propagation of acoustic waves in a liquid foam is dis-
persive. The phase velocity at low frequencies is close
to the value predicted by Wood law: v = [(Φρ! + (1 −
Φ)ρg)(Φχ! +(1−Φ)χg)]

−1/2 = 32 m/s for Φ = 11%. But
it significantly deviates from this value as the frequency
increases and the foam ages. At t = 90 min the phase
velocity is of the order of 220 m/s.

The attenuation (Fig. 1b) is also frequency-dependent
and evolves as the foam ages. For the longest times (i.e.
largest bubbles), a peak is clearly visible. One can report
the frequency of the maximum of attenuation fmax as a
function of R (Fig. 1d), and compare it with the Min-
naert frequency fM =

√

3γP0/ρ/(2πR) [15], where P0 is
the pressure of the gas in the bubbles, and γ the ratio of
the specific heat capacities. Taking fmax = 1.6fM gives
a reasonable law (dashed line in Fig. 1d), suggesting an
effective Minnaert resonance, as proposed in previous ex-
periments [13, 14]. However, the Minnaert frequency is
calculated for a single bubble in an infinite volume of liq-
uid of density ρ, and for highly concentrated media such
as foams, it seems unrealistic. Replacing ρ by the ac-
tual density of the surrounding medium Φρ would lead
to 3fM for Φ = 11%, larger than the 1.6 factor we mea-

sured. Moreover, it predicts a resonance frequency that
decreases with Φ, contrary to our experiments (Fig. 2).
Finally, the range of radii over which we measured a max-
imum of attenuation (Fig. 1d) is too small to validate a
scaling law in fmax ∼ 1/R. Instead of limiting our anal-
ysis to the peak of attenuation, we can take advantage of
all the radii by collapsing the data on a master curve: we
plot kRp as a function of fRp, with an exponent p. As
shown in Fig 3, a good collapse is obtained for p = 1.5,
as suggested by the model we present below. This indi-
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FIG. 2: Frequency of the maximum of attenuation as a func-

tion of the liquid fraction, for median radii of 40µm. Dashed

line is the Minnaert resonance frequency with an e ective den-

sity: ωM/
√

 . Solid line is the prediction of our model.

cates that R is the key parameter that governs the fre-
quency dependence of the acoustic behavior of the foam
(the polydispersity being almost constant with time).
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Contrary to usual bubbly media, bubbles in a foam
are in contact through thin films, separated by Plateau
borders and vertices [1]. Usually films contain a very
small amount of water, hence films and Plateau borders
have very different inertia, whose influence we shall now
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model. In first approximation, we neglect polydispersity,
and we idealize the foam as a one-dimensional array of
spatial periodicity d of the following unit cell (Fig. 4a): a
flexible, circular film of thickness e and radius a, attached
to a rigid Plateau border of mass mp, forming a ring of
external radius b, and surrounded by air of density ρa.
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FIG. 4: (a) Sketch of the idealized foam structure: a periodic

array of films and Plateau borders, separated by a distance

d. (b) Zoom on one unit cell: the flexible film is attached to

a rigid Plateau border sketched as a square. (c) Profiles of a

20µm radius film at three di erent frequencies, as predicted

by the model.

To predict the acoustic wavevector, we need to model
the behavior of the unit cell under compression (effective
compressibility χeff), as well as its average displacement
(effective density ρeff): k2 = ω2ρeffχeff . Our model geom-
etry is similar to that of Lee et al. [21], who studied sound
propagation through an array of elastic membranes; in
particular, it can be shown exactly as in [21] that the
effective compressibility is given by the mixture law.

The effective density, on the other hand, is more com-
plicated. As sound propagates, the films vibrate in re-
sponse to pressure variations, and entrain the Plateau
borders. On a given unit cell, a pressure difference
∆P = P2 −P1 across the film tends to curve it, owing to
the surface tension σ. With hf (r, t) = Re[zf(r)e−iωt], we

get zf(r) = AJ0(qr)+∆P/(2σq), where q = ω
√

ρe/2σ is
the wavenumber of capillary waves on the film [27], and
J0 the Bessel function of order 0 of the first kind [22].

The unknown constant A is determined by matching
the film motion with that of the Plateau border, which
is driven by the pressure difference ∆P and by the trac-
tion of the film −4πσa(∂hf/∂r)r=a. Furthermore, it is
well known in foam rheology that the relative motion of
a film and a Plateau border involves a significant dissipa-
tion in the transition region [23], but it has not been yet
investigated in the kHz range. Hence, we simply assume
that there is a force on the Plateau border opposite to
its motion relative to the film in contact, of the form:
−2πaξ(∂2hf/∂t∂r)r=a. With hp(t) = Re(zpe

−iωt), we
finally get the full profile

zf (r) =
∆P

ρeω2

[

1 − mp − mf (b2 − a2)/a2

mp + mf (1 − iδ)H(qa)

J0(qr)

J0(qa)

]

, (1)

where mf = πa2eρ is the mass of the film, δ =
ωξ/2σ a viscous damping constant, and H(qa) =
2J1(qa)/[qaJ0(qa)].

We now consider the motion of air between two con-
secutive films, which is driven by the pressure differ-
ence P2 − P3. As the acoustic wavelength λ is much
larger than the typical bubble size (in air λ = 485 µm
at 700 kHz), we may consider that the whole air of the
unit cell moves as one block with displacement za given
by −maω2za = (P2 − P3)πb2, where ma is the mass of
the air in the cell. Moreover, the air in contact with the
film and Plateau border is also entrained by their mo-
tion. By continuity of displacement, we simply assume
that za equals the average displacement of the film and
Plateau border: za = (1 − x)zp + 2x

a2

∫ a

0
rzf (r)dr, where

x = a2/b2 is the fraction of the surface covered by the
film, whose empirical dependence on Φ has been estab-
lished by Princen [24]: x = 1−3.20[7.70+(1−Φ)/Φ]−1/2.
Hence we find that the average displacement za of the
unit cell is ω2ρeffza = (P3 −P1)/d, with an effective den-
sity ρeff = (1−Φ)ρa+Φ′ρ, where the frequency-dependent
effective liquid volume fraction Φ′ is given by

Φ′ =
Φp + Φf (1 − iδ)H(qa)

1 +
(

x2 Φf +Φp

Φf
− 2x

)

[1 −H(qa)] − iδxH(qa)
, (2)

with Φp and Φf the volume fraction of liquid respectively
in the Plateau border and in the film: Φp + Φf = Φ.
Eq. (2) predicts two asymptotic non-dispersive behav-
iors. At low frequencies, H(qa) $ 1, hence ReΦ′ = Φ:
the Wood approximation is recovered. At high frequen-
cies, H(qa) tends towards 0, leading to Re (1/Φ′) =
(1 − x)2/Φp + x2/Φf . If Φf % Φp[x/(1 − x)]2 (i.e.
films contain a negligible part of water, but with a non-
negligible surface) this last formula reduces to x2/Φf ,
similar to Kann’s model [12], which considers sound prop-
agation as that in air, modified only by the inertia of the
films.

The transition between the two asymptotic regimes can
be inspected by noting that 1 − H(qa) ∼0 −(qa)2/8.
Thus, within the approximation Φp & Φf |1 − 2/x|,
Eq. (2) becomes Φ′ $ Φp/[1 − (ω/ω0)

2 − ixδ], simi-
lar to the response function of an harmonic oscillator
with a resonance frequency ω2

0 = 16σΦf/(ρa2ex2Φ) and
a damping factor xδ. Interestingly, this resonance fre-
quency depends neither on a nor on e since Φf = nfπa2e,
nf being the number per unit volume of films perpen-
dicular to the direction of propagation. If we consider
that there are N such films per bubble, we obtain nf =
3NΦ/[4πR3exp(9ǫ2/2)] and the resonance frequency be-
comes

ω2
0 =

12Nσ(1 − Φ)

x2ρΦR3exp(9ǫ2/2)
, (3)

which predicts the experimentally observed R−1.5 scal-
ing law. The mechanism of this resonance is different
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from Minnaert’s one: inertia also comes from water, but
here the restoring force is due to the tension of the film,
not the compressibility of air. Eq. (3) captures well the
dependence on Φ of the frequency of the maximum of
attenuation, as shown in Fig. 2. For an increasing liquid
fraction, the increase of density (1/

√
Φ term, as in the

modified-Minnaert relation) is balanced by the shrinkage
of the films (1/x term).

To go beyond and get a quantitative prediction
over the full range of frequencies and sizes, we refine
the model and include polydispersity, as explained in
SM1. Briefly, this amounts to changing H(qa) by I =
∫

H(qa)a2n(a)da/
∫

a2n(a)da in the expression (2) of the
effective liquid fraction, with n(a) the distribution of
film radii. If we assume that this distribution is log-
normal with a median radius a0, a polydispersity ǫf and
a total number of films per unit volume nf , the model
counts a total of nine parameters. Three are known:
σ = 35 mN/m, Φp = 11%, ǫ = 0.4. Four can be esti-
mated: x(Φ = 11%) = 0.2, nf = 1620 films per mm3 (as-
suming N = 1), a0 = 15 µm (taking an average of 6 films
per bubble imposes x = 1.5(a0/R)2) and ǫf = 0.4 (same
polydispersity as for bubble radii). The two remaining
parameters were fitted to the experimental data: ξ gov-
erns the width of the resonance, e the high-frequency ef-
fective density. With ξ = 7.4× 10−7 kg/s and e = 70 nm,
the model agrees well with the experimental data (Fig. 5).
This value of e is compatible with the usual measure-
ments of film thickness, of a few tens of nm [1]. It is less
easy to compare ξ to any standard measurement, and the
study of the microscopic dissipation mechanisms at high
frequency is left as a perspective of our work.

A salient feature of our study is the existence of a neg-
ative real part of the density over an extended range of
frequencies (100 to 350 kHz). The mechanism of this neg-
ative effective density is well illustrated by looking at the
displacement of a film and a Plateau border predicted
by (1) (see Fig. 4c). At low frequencies, both the film
and the Plateau border move in phase with the incoming
pressure. At high frequencies, only the film moves. At
intermediate frequencies, while the Plateau border has a
small in-phase displacement, the film moves out of phase
with an amplitude large enough to compensate for its
small inertia. The net average movement of the system
is then out of phase, which leads to a negative effective
density [28].

As a conclusion, we have evidenced two regimes for the
sound propagation in a liquid foam, separated by a reso-
nance. Our study reconciles the seemingly contradictory
results previously reported: a low speed of sound, com-
patible with Wood’s model, at low frequency and small
bubble size; a much higher one, slightly lower than that
in air, at high frequency and large bubble size; and a
resonance in between, with a maximum of attenuation.
This rich variety of behaviors is fully captured by a model
coupling the motion of air, films and Plateau borders.
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FIG. 5: Comparison between the measured e ective complex

density (◦ real part, • imaginary part) and prediction of the

equivalent of Eq. (2) in the polydisperse model (see SM1).

This makes acoustic probing of foams promising, since
each of these regimes is sensitive to different parameters.
The low frequency regime gives access to the liquid frac-
tion. The resonance is linked to surface tension. The high
frequency regime depends on the film thickness, which is
interesting in practice since no existing technique enables
to measure it in a bulk of foam.

Finally, we have shown for the first time that liq-
uid foams are naturally acoustic metamaterials, with
an effective negative density over an extended range of
frequency and bubble size (e.g. 100 to 350 kHz for
R = 40 µm). Moreover, in contrast with most exist-
ing metamaterials [25, 26], which are synthetic, highly
ordered materials, this property exists even though the
foam is isotropic and polydisperse. Our findings could
thus bring fresh insight to design metamaterials for ap-
plications such as acoustic insulation.
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DISPERSION RELATION OF CAPILLARY

WAVES ON A SOAP FILM

The dispersion relation q2 = ρeω2/2σ of capillary
waves on a soap film neglects both air inertia, and dis-
sipative effects. This is questionable, and air inertia is
indeed known to have a significant effect on the vibra-
tions of soap films [1]. Accounting for it usually requires
to solve the full velocity field in air, coupled locally with
the film motion through the continuity of normal stress
at the air/liquid interface. Our approach is simpler: we
model this coupling not locally, but globally, by impos-
ing the continuity of displacement between air and the
system {film–Plateau border} as a global constraint.

Dissipation is also essential in our model. Without it,
q is real, the function a !→ H(qa) diverges as soon as
qa is a zero of J0, and our model does not capture the
high-frequency regime. Any source of dissipation adds an
imaginary part on q, which suppresses these divergences
and smoothes out the behavior of H(qa).

Among possible sources of dissipation, the role of liquid
viscosity has been previously investigated [2, 3]. It modi-
fies the dispersion relation, which becomes ω̄2+2iζω̄−1 =
0, with a rescaled frequency ω̄ = ω

√

ρe/(2σq2), and a di-

mensionless viscous damping ζ = 1

6
νq3

√

ρe5/2σ. With
ν = 10−6 m2/s the kinematic viscosity of our solution,
and taking from the data e = 70 nm, and q = 2π/a0

with a0 = 15 µm, we compute ζ = 2 × 10−6 % 1, hence
q & (1+iζ)ω

√

ρe/2σ. This imaginary correction is much
too small to fit the experimental data (see Fig. 1); in par-
ticular, it does not regularize enough the behavior of the
effective density at high frequency. Hence we neglected
liquid viscosity, and investigated viscous dissipation in
the air put into motion close to the film.

Briefly, this is done by solving Navier–Stokes equation
in the air and the potential flow for the liquid within
the film, which are coupled by the following boundary
conditions: continuity of normal and tangential stress,
and continuity of normal velocity, at the interface. The
calculations give:

0 =

(

1

2
qe − i

νaq3e

ω

)

(ω̄2 − 1) +
ρa

ρ
ω̄2.

Treating the effect of air as a perturbation, we deduce
from this dispersion relation that q = (1 + iζa)ω

√

ρe/2σ

with ζa = ηa/
√

ρeσ/2. With ηa = 1.8 × 10−5 Pa s the

dynamic viscosity of air, we compute ζa = 0.02, which
is four orders of magnitude larger than ζ: viscous dissi-
pation in the liquid is negligible compared to that in air
in our range of experimental parameters. Including this
correction is necessary to give a satisfactory agreement
between the data and the model at high frequency, since
it enables H(qa) to tend smoothly towards 0 (see Fig. 1).
However, it is still insufficient to fit the data over the full
range of frequency and size. In particular, it predicts a
much too peaked resonance, and an increase of the real
part of the effective density, which is not seen in experi-
ments (Fig. 5 in the Letter). This is why we plugged an
extra dissipation in the model, at the transition region
between the film and the Plateau border.

0 100 200 300 400 500 600 700
−100

−50

0

50

100

150

200

f (kHz)

!!
!r

  
 (

k
g
/m

!!
!e

ff

3
)

FIG. 1: Prediction of the model for the real part of the ef-
fective density as a function of frequency for two sources of
dissipation: viscous losses in the liquid (dashed line), and
viscous losses in the air (solid line). The dissipation in the
meniscus is neglected (ξ = 0) and the other parameters are
as in Fig. 5 of the Letter.

EXTENSION OF THE MODEL TO THE

POLYDISPERSE CASE

The monodisperse model (Eq. (2) of the Letter) does
not lead to a good comparison with the experimental
data. In particular, the regime of negative effective den-
sity cannot be described properly (see Fig. 2). A refined
model that takes the polydispersity into account is thus
needed.

Let us consider a thin slice of foam oriented perpen-
dicularly to the direction of propagation of the acoustic
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FIG. 2: Comparison of the monodisperse and polydisperse
models for the effective density (real part) as a function of
frequency for R = 40 µm; see the Letter for the value of the
other parameters.

wave. We note n(a)da the number of films per unit vol-
ume whose radius is between a and a + da and whose
orientation is perpendicular to the direction of propaga-
tion. We choose the volume V of the slice in such a
way that there is in average one film across its thickness:
V

∫

πa2n(a)da = xS, where S is the surface of the con-
sidered slice. Each film has a profile given by zf (a; r) =
A(a)J0(qr) + ∆P/(2σq2), i.e. as in the monodisperse
case but with A that depends on a. The wavenumber q
may also depend on a, through the thickness of the film;
nevertheless, for simplicity, we consider that all the films
have the same thickness e. This approximation is en-
couraged by the good collapse of the experimental data
with a scaling on R only, indicating that film thickness
variations with ageing time can be neglected. The A(a)
constant is still given by continuity of displacement on the
border of each film: zf(a; r = a) = zp, where zp it the dis-
placement of all the Plateau borders. We indeed assume
that the network of Plateau borders in the slice move as
a block, with no deformation. These Plateau borders, of
total mass mp, are driven by the pressure difference ∆P
and by the traction of all the films, leading to−mpω

2zp =

−(1−x)S∆P −4πσ(1− iδ)V
∫

an(a)da
∂zf

∂r
(a; r = a). Di-

viding by V , and noting that
∫

πa2n(a)da = Φf/e, we
get

−ρΦpω
2zp = − (1 − x)Φf∆P

xe
+ 4πσ(1 − iδ)Σ, (1)

with Σ =
∫

an(a)daA(a)qJ1(qa). Continuity of displace-
ment gives the second condition on zp: zp = A(a)J0(qa)+
∆P/(2σq2), hence:

Σ =
1

2π

(

q2zp − ∆P

2σ

)
∫

n(a)daπa2H(qa). (2)

Inserting Eq. (2) into Eq. (1), we get

zp = − ∆P

ω2ρe

(x − 1)/x − (1 − iδ)I
Φp/Φf + (1 − iδ)I ,

with I = (e/Φf )
∫

H(qa)n(a)πa2da. The profile of a film
of radius a can then be calculated, from which we deduce
the average displacement of a film of radius a:

〈zf (a)〉 =
1

πa2

∫ a

0

2πrdrzf (a; r)

=
∆P

ω2ρe

[

1 −H(qa)
Φp/Φf − (1 − x)/x

Φp/Φf + (1 − iδ)I

]

.

Then the average amplitude of displacement of the films
and Plateau borders, which we assume identical to the
air displacement za, can be calculated:

za = (1 − x)zp +
V

S

∫

n(a)daπa2〈zf (a)〉

=
∆PS

V ω2ρ

1 +
(

x2 Φf +Φp

Φf
− 2x

)

(1 − I) − iδxI
Φp + Φf (1 − iδ)I ,

leading at the same effective density as in the monodis-
perse case with I instead of H (see Eq. (2) in the Letter).

Assuming a lognormal distribution for the films radii:
n(a) = exp{−[ln(a/a0)]

2/2ε2f}/(aεf

√
2π), we can use the

relation
∫

n(a)apdp = nfap
0exp(p2ε2f/2) where nf is the

number of films per unit volume, a0 their median radius
and εf their polydispersity. The low-frequency limit of
Φ′ then becomes

Φ′ % Φp

1 − (ω/ω0)2 − ixδ
, (3)

with a polydisperse resonance angular frequency given by

ω2
0 =

12Nσ(1 − Φ)

x2ρΦR3exp(9ε2/2 + 4ε2f)
. (4)

Note that, as in the monodisperse case, the radii and
thicknesses of the films are not parameters of the reso-
nance. On the other hand, the polydispersity of the films
plays a role, and decreases significantly the resonance fre-
quency (Fig. 2). It is therefore necessary to include it to
get a good prediction of the resonance, and also of the
extent of the range of negative density.

The maximum of attenuation of the acoustic waves
in the foam is reached when the real part of the den-
sity is minimum and negative, which is given by ωmax =
ω0

√
1 + xδ. We used this relation in Fig. 2 of the Letter,

in which ωmax is reported as a function of Φ.
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