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Abstract
This paper introduces a new type of statistical model: the interval-

valued linear model, which describes the linear relationship between an
interval-valued output random variable and real-valued input variables.
Firstly, notions of variance and covariance of set-valued and interval-valued
random variables are introduced. Then, we give the definition of the
interval-valued linear model and its least square estimation, as well as
some properties of the least square estimator (LSE). Thirdly, we show that,
whereas the best linear unbiased estimation does not exist, the best binary
linear unbiased estimator exists and it is the LSE. Finally, we present sim-
ulation experiments and an application example regarding temperatures
of cities affected by their latitude, which illustrates the application of the
proposed model.
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1 Introduction

Traditional statistical models have played a significant role in a wide range of areas.

However, in real life situations, many problems cannot be handled by traditional statis-

tical models due to imperfectness of data. Therefore, specialized statistical techniques

are needed. In many practical cases, we have to face a particular kind of imperfect data:

interval-valued data [8, 9, 13].

Interval-valued data may represent uncertainty or variability. In the former case, the

interval data represent incomplete observations, i.e., we just know the true data belong to a

range (an interval), rather than precise values. For example, researchers test the service life

of a group of products, such as light bulbs. Since testing time is very long, they cannot stay

in the laboratory at any time. Alternatively, they could come to the laboratory to observe

how many bulbs are burnt out every two or three hours. Thus, the data of service life of

bulbs are interval-valued. In contrast, in the variability case, an interval is not interpreted

as a set containing a single true value, but the observation themselves are interval-valued.

For instance, a weather forecast typically provides the highest and lowest temperature

of the next day, which is an interval including almost all the useful information about

tomorrow’s temperature. This interval reflects the variability of temperature in one day.

The linear model is probably the simplest and most frequently-used statistical model.

It describes a random output variable influenced by a few input variables and an error term

in a linear way. In this paper, we consider the situation of interval-valued observations,

i.e., the output variable is an interval-valued random variable, which is determined by real-

valued variables in a linear way. This interval-valued linear model could play a significant

role in dealing with imperfect data, e.g., to investigate how (interval-valued) temperature

is impacted by (point-valued) intensity of solar radiation, air pressure, latitude of location,

or the statistical relationship between interval-valued service life of light bulbs and point-

valued properties of materials used in making bulbs.

Interval-valued random variables are a special kind of set-valued random variables,

whose values are compact convex subsets of real line R1. Since we have at our disposal

many results on the theory of set-valued random variables [18, 19, 29], this is a suitable

framework to tackle the problem addressed in this paper. Until recently, however, there

has been only a few works discussing the variance and covariance of set-valued random

variables, since the difference between two sets is difficult to define and the hyperspace

(e.g., the space of all intervals) is not linear with respect to addition and multiplication.

Vital [23] studied the metric for compact convex sets via the support functions. In 2005,

Yang and Li [27], Yang [28] investigated the dp metric for sets and the Dp metric in the
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space of set-valued random variables. They proposed to use the Dp metric to define the

variance and covariance of set-valued and interval-valued random variables, which proved

to be a good approach to deal with this problem. In Chapter 5 of [28], Yang also built a

linear regression model with interval-valued regression coefficients. The underlying space

in [27] and [28] is Rd. In 2008, Blanco et al. [4] defined dK-variance for interval-valued

random variables with underlying space being R1, which is a special case of [27] and [28].

Other authors studied interval-valued and set-valued statistical models. Tanaka and

Lee [21] introduced the interval linear regression model, which is not based on the interval-

valued random variable framework, and estimated the coefficients using a quadratic opti-

mization method. Blanco-Fernandez et al. [5] and Sinova et al. [20] investigated the linear

relationship between two interval-valued random variables considering the input variable as

two real-valued random variables (center and radius of the interval). They gave the LSE

of the coefficients under the d2 metric of intervals. Blanco-Fernandez et al. [6] studied

the strong consistency and asymptotic distributions of the LSE. Hsu and Wu [14] inves-

tigated interval-valued time series and gave three evaluation criteria of estimation and

forecast efficiency for interval-valued time series. Wang and Li [24] introduced a new type

of interval-valued time series (the interval autoregressive time series model) and gave the

estimation method of parameters and forecast method based on the evaluation criteria in

[14]. Wang and Li [25] investigated set-valued and interval-valued stationary time series,

which is based on the definition of variance and covariance of set-valued and interval-valued

random variables introduced in [27] and [28].

In this paper, we start with the set-valued framework and consider interval-valued

random variables as a special case. We then introduce the interval-valued linear model and

its LSE, prove its unbiasedness and discuss the best binary unbiased estimation. Treating

an interval-valued random variable as two separate point-valued random variables (the

left- and right-endpoints of the interval, or the center and radius of the interval) has some

drawbacks. One reason is that it is possible to obtain estimation or forecast results such

that the left-endpoint is larger than the right-endpoint, because these two linear models are

unrelated. In this paper, we also show the limitation of using two separate linear models

in terms of forecast efficiency via a simulation experiment.

This paper is a complete version of the results presented by the authors in [26]. The

organization of this paper is as follows. In Section 2, we define the variance and covariance

of set-valued random variables based on the dp metric for sets and the Dp metric for

interval-valued random variables. In Section 3, we introduce the interval-valued linear

model and its LSE, prove the unbiasedness of this LSE and give the covariance matrix of

this estimator. Section 4 shows that the best linear unbiased estimation does not exist
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in general, but the best binary linear unbiased estimation (BBLUE) exists, is unique and

equal to the LSE. In Section 5, we present a simulation study to show the methodology,

and illustrate the efficiency of estimation method introduced in Sections 3 and 4. We

then present another simulation experiment to compare our model with using two separate

linear models. Finally, in Section 6, we use the interval-valued linear model to investigate

the relationship between city temperature and latitude. This example also shows how this

model can be used to deal with some practical problems.

2 Variance and Covariance of Set-Valued Random Variables

2.1 dp Metric of Sets

In this section, we assume that (Ω,A, P ) is a probability space, (X , ‖ · ‖X ) is a Banach

space, K(X ) is the family of all nonempty closed subsets of X , Kkc(X ) is the family of all

nonempty compact convex subsets of X .
For any A,B ∈ K(X ), λ ∈ R, define

A+B = {a+ b : a ∈ A, b ∈ B},

λA = {λa : a ∈ A},

and denote

A⊕B = cl{a+ b : a ∈ A, b ∈ B}.

If A,B ∈ Kkc(X ), then A+B ∈ Kkc(X ).

For each A ∈ Kkc(X ), the support function is defined by

s(x∗, A) = sup{x∗(a) : a ∈ A}, x∗ ∈ X ∗,

where X ∗ is the dual space of X , i.e., the set of all bounded linear functionals on X . For

example, if X = R1, X ∗ = R1. Take an interval [a, b] with 0 ≤ a < b, x ∈ R1, then the

support function is s(x, [a, b]) =

{
bx, x ≥ 0
ax, x < 0

. The support function has the following

properties:

s(x∗, A⊕B) = s(x∗, A+B) = s(x∗, A) + s(x∗, B),

s(x∗, λA) = λs(x∗, A), λ ≥ 0.

For 1 ≤ p <∞, take A,B ∈ Kkc(X ). We define the metric dp onKkc(X ) (cf. [2, 18, 27])

by

dp(A,B) =

∫
S∗

|s(x∗, A)− s(x∗, B)|pdµ

1/p

,
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where S∗ is the unit sphere of X ∗, i.e. S∗ = {x∗ ∈ X ∗ : ‖x∗‖X ∗ = 1}, µ is a measure on

(X ∗,B(X ∗)).

Remark 2.1. If X = R1, then Kkc(R1) = {[a, b] : −∞ < a ≤ b < ∞} is the family of all

intervals on R1. If A1, A2 ∈ Kkc(R1) with A1 = [a1, b1] = (c1; r1), A2 = [a2, b2] = (c2; r2),

where ci = (ai + bi)/2 and ri = (bi − ai)/2 for i = 1, 2, then

A1 +A2 = [a1 + a2, b1 + b2] = (c1 + c2; r1 + r2),

kA1 = (kc1; |k|r1),

and

dp(A1, A2) = [|a2 − a1|p + |b2 − b1|p]1/p

= [|(c2 − c1)− (r2 − r1)|p + |(c2 − c1) + (r2 − r1)|p]1/p.

Theorem 2.1. [27] (Kkc(Rd), dp) is a complete, separable metric space for each p ∈ [1,∞).

2.2 Dp Metric Space of Set-Valued Random Variables

A set-valued mapping F : Ω → K(X ) is called a set-valued random variable [11, 18]

if, for each open subset O of X , F−1(O) ∈ A, where F−1(O) = {ω ∈ Ω : F (ω) ∩ O 6= ∅}
and ∅ is the empty set. Any two set-valued random variables are considered identical if

F1(ω) = F2(ω) for almost every ω ∈ Ω (for short, denoted by "a.s.(P )").

Let U [Ω,Kkc(X )] denote the family of set-valued random variables taking values in

Kkc(X ). The Dp metric with respect to set-valued random variables is defined by

Dp(F1, F2) = [E(dpp(F1(ω), F2(ω)))]1/p,

where F1, F2 ∈ U [Ω,Kk(X )] ([27]).

Remark 2.2. If X = R1, U [Ω,Kkc(X )] = U [Ω,Kkc(R1)] is the family of all interval-valued

random variables. For Fi ∈ U [Ω,Kkc(R1)], Fi(ω) = [fi(ω), gi(ω)] = (ci(ω); ri(ω)), where

fi(ω), gi(ω) are random variables and fi(ω) ≤ gi(ω), and ci(ω) = (fi(ω)+gi(ω))/2, ri(ω) =

(gi(ω)− fi(ω))/2, i = 1, 2. By the definition of Dp, we have

Dp(F1(ω), F2(ω))

= [E|f2(ω)− f1(ω)|p + E|g2(ω)− g1(ω)|p]1/p

= [E|(c2(ω)− c1(ω))− (r2(ω)− r1(ω))|p + E|(c2(ω)− c1(ω)) + (r2(ω)− r1(ω))|p]1/p.

Let Lp[Ω,Kkc(X )] = {F : F ∈ U [Ω,Kkc(X )], E[‖F‖pdp ] < +∞}. Then we have the

following theorem:

Theorem 2.2. [27] (Lp[Ω,Kkc(Rd)], Dp) is a complete metric space for each p ∈ [1,∞).
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2.3 Variance and Covariance of Set-Valued Random Variables

The expectation of a set-valued random variable F was introduced by Aumann [3].

Definition 2.1. For each integrable set-valued random variable F , which means S(F ) 6= ∅
has finite expectation, the Aumann integral of F , denoted by E[F ], is defined by

E[F ] =

{∫
Ω
fdP : f ∈ SF

}
,

where SF = {f : f(ω) ∈ F (ω) a.s.(P ) and f is integrable} is called the selection of

set-valued random variable F ,
∫

Ω fdP is the usual Bochner integral.

The properties of the expectation of set-valued random variables have been discussed

in [11] and [18]. However, since the space of subsets of X is not a linear space with

respect to the addition and multiplication, the minus between two sets is difficult to define.

Thus, extending the important notions of variance and covariance to the case of set-valued

random variables is not a trivial task. Yang and Li [27] proposed to define the variance

and covariance using the Dp metric on U [Ω,Kkc(Rd)], based on the fact that the support

functions of sets are subtractive.

Definition 2.2. For each set-valued random variable F ∈ U [Ω,Kkc(X )], the variance of

F , denoted by Var(F ), is defined as

Var(F ) = [D2(F,E(F ))]2 = E


∫
S∗

[s(x∗, F (ω))− s(x∗, E(F (ω)))]2dµ

 .

For two set-valued random variables F1, F2 ∈ U [Ω,Kkc(X )], the covariance of F1 and F2,

denoted by Cov(F1, F2), is defined as

Cov(F1, F2) = E


∫
S∗

[s(x∗, F1(ω))− s(x∗, E(F1))][s(x∗, F2(ω))− s(x∗, E(F2))]dµ

 .

The correlation coefficient of F1 and F2, denoted by ρ(F1,F2), is defined as

ρ(F1, F2) =
Cov(F1, F2)√

Var(F1) ·Var(F2)
.

The variance and covariance of set-valued random variables have the following proper-

ties. The proofs of Theorems 2.3-2.5 can be found in [25].

Theorem 2.3. The variance Var(F ) of F ∈ U [Ω,Kkc(X )] has the following properties:

(1) Var(C) = 0 for any constant C ∈ Kkc(X ).

(2) Var(aF ) = a2Var(F ) for any a ≥ 0.

(3) Var(F1 + F2) = Var(F1) + 2Cov(F1, F2) + Var(F2).

(4) (Chebyshev Inequality) P (d2(F,E(F )) ≥ ε)) ≤ Var(F )/ε2, for any ε > 0.
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Theorem 2.4. The covariance Cov(F1, F2) of F1, F2 ∈ U [Ω,Kkc(X )] has the following

properties:

(1) Cov(aF1, F2) = Cov(F1, aF2) = aCov(F1, F2) for any a ≥ 0.

(2) Cov(F1 + F2, F3) = Cov(F1, F3) + Cov(F2, F3), Cov(F1, F2 + F3) = Cov(F1, F2) +

Cov(F1, F3).

Theorem 2.5. For any two interval-valued random variables X1(ω) = [a1(ω), b1(ω)] =

(c1(ω); r1(ω)), X2(ω) = [a2(ω), b2(ω)] = (c2(ω); r2(ω)), where ci(ω) = (ai(ω) + bi(ω))/2 is

the center and ri(ω) = (bi(ω) − ai(ω))/2 is the radius of Xi(ω), i = 1, 2, their covariance

matrix is

Cov(X1(ω), X2(ω)) = Cov(a1(ω), a2(ω)) + Cov(b1(ω), b2(ω))

= 2Cov(c1(ω), c2(ω)) + 2Cov(r1(ω), r2(ω)).

Remark 2.3. For an interval-valued random variable F ∈ U [Ω,Kkc(R1)], denoted as

F (ω) = [f(ω), g(ω)] = (c(ω); r(ω)), where f(ω), g(ω) are real-valued random variables and

f(ω) ≤ g(ω), c(ω) = (f(ω)+g(ω))/2, r(ω) = (g(ω)−f(ω))/2, by the definition of Aumann

integral and variance of set-valued random variables, we have

E(F (ω)) = [E(f(ω)), E(g(ω))] = (E(c(ω));E(r(ω)))

and

Var(F(ω)) = E(|f(ω)− E(f)|2) + E(|g(ω)− E(g)|2)

= E(|c(ω)− E(c)− (r(ω)− E(r))|2) + E(|c(ω)− E(c) + (r(ω)− E(r))|2).

For interval-valued random variables F1, F2 ∈ U [Ω,Kkc(R1)],

Cov(F1(ω),F2(ω))

= E(|f1(ω)− E(f1)||f2(ω)− E(f2)|) + E(|g1(ω)− E(g1)||g2(ω)− E(g2)|)

= E(|c1(ω)− E(c1)− (r1(ω)− E(r1))||c2(ω)− E(c2)− (r2(ω)− E(r2))|)

+E(|c1(ω)− E(c1) + (r1(ω)− E(r1))||c2(ω)− E(c2) + (r2(ω)− E(r2))|).

3 Interval-Valued Linear Model and Least Square Estimation

In this section, we consider an interval-valued linear model with the following general

form

E(y) = Xβ, (3.1)
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where y = (y1, y2, · · · , yn)T is an n-dimensional vector of interval-valued observations,

X = (xij)
n,p
i=1,j=1 is an n× p design matrix, β = (β1, β2, · · · , βp)T is a p× 1 interval-valued

parameter vector.

Definition 3.1. If (yi;xi1, xi2, · · · , xip), i = 1, 2, · · · , n are n independent observations of

interval-valued linear model (3.1), the least square estimator (LSE) of unknown parameters

β is the estimator which minimizes d2(y,Xβ).

From the definition of the dp metric, we have

d2
2(y,Xβ) =

n∑
i=1

d2
2(yi, xi1β1 + xi2β2 + · · · ,+xipβp)

=
n∑
i=1

[(cyi − xi1cβ1 − · · · − xipcβp)− (ryi − |xi1|rβ1 − · · · − |xip|rβp)]2

+
n∑
i=1

[(cyi − xi1cβ1 − · · · − xipcβp) + (ryi − |xi1|rβ1 − · · · − |xip|rβp)]2

= 2
n∑
i=1

[(cyi − xi1cβ1 − · · · − xipcβp)2 + (ryi − |xi1|rβ1 − · · · − |xip|rβp)2],

where cA and rA stand for the center and radius of interval A respectively. This is a

quadratic function of cβ1 , · · · , cβp , rβ1 , · · · , rβp and d2
2(y,Xβ) ≥ 0, so there exists a mini-

mum value, which satisfies

∂d2
2(y,Xβ)

∂cβj
= 0,

∂d2
2(y,Xβ)

∂rβj
= 0, j = 1, 2, · · · , p,

that is 
n∑
i=1

(cyi − xi1cβ1 − · · · − xipcβp)(−xij) = 0

n∑
i=1

(ryi − |xi1|rβ1 − · · · − |xip|rβp)(−xij) = 0,

for j = 1, 2, · · · , p. Rewriting these equations in matrix form, we get{
XT cy = XTXcβ
|X|T ry = |X|T |X|rβ,

(3.2)

where |X| = (|xij |)n,pi=1,j=1.

We conclude the above discussions by the following theorem.

Theorem 3.1. If rank(X) = rank(|X|) = p, the LSE of the interval-valued linear model

(3.1), denoted as β̂LS, is unique and

β̂LS = ((XTX)−1XT cy; (|X|T |X|)−1|X|T ry). (3.3)
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Moreover, we may obtain following theorems about the LSE β̂LS .

Theorem 3.2. The LSE β̂LS is an unbiased estimator of β.

Proof Since E(y) = Xβ = (Xcβ;Xrβ), we have

E(β̂LS) = E((XTX)−1XT cy; (|X|T |X|)−1|X|T ry)

= ((XTX)−1XTE(cy); (|X|T |X|)−1|X|TE(ry))

= ((XTX)−1XTXcβ; (|X|T |X|)−1|X|T |X|rβ)

= (cβ; rβ) = β. �

Theorem 3.3. If E(y) = Xβ, rank(X) = rank(|X|) = p and Cov(cy) = σ2
1In, Cov(ry) =

σ2
2In, then the covariance matrix of β̂LS is

Cov(β̂LS) = 2σ2
1(XTX)−1 + 2σ2

2(|X|T |X|)−1.

Proof By Theorem 2.5, we obtain

Cov(β̂
(i)
LS , β̂

(j)
LS)

= Cov
((

[(XTX)−1XT ]T(i)cy; [(|X|T |X|)−1|X|T ]T(i)ry

)
,
(

[(XTX)−1XT ]T(j)cy; [(|X|T |X|)−1|X|T ]T(j)ry

))
= 2Cov

(
[(XTX)−1XT ]T(i)cy, [(X

TX)−1XT ]T(j)cy

)
+2Cov

(
[(|X|T |X|)−1|X|T ]T(i)ry, [(|X|

T |X|)−1|X|T ]T(j)ry

)
= 2[(XTX)−1XT ]T(i)Cov(cy)[(X

TX)−1XT ](j) + 2[(|X|T |X|)−1|X|T ]T(i)Cov(ry)[(|X|T |X|)−1|X|T ](j),

where β̂(i)
LS represents the i-th element of vector β̂LS and A(i) stands for the i-th line of

matrix A. Therefore,

Cov(β̂LS)

= 2(XTX)−1XTCov(cy)X(XTX)−1 + 2(|X|T |X|)−1|X|TCov(ry)|X|(|X|T |X|)−1

= 2σ2
1(XTX)−1 + 2σ2

2(|X|T |X|)−1. �

4 Best Linear Unbiased and Binary Linear Unbiased Estima-
tion

4.1 Best Linear Unbiased Estimation

Given n interval-valued data from the interval-valued linear model (3.1), yi = [ayi , byi ] =

(cyi ; ryi) for i = 1, 2, · · · , n, the best linear unbiased estimator is a linear combination of

y1, y2, · · · , yn,

β̂j = λj1y1 + λj2y2 + · · ·+ λjnyn
.
= λTj y, j = 1, 2, · · · , p, (4.1)
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and the estimation is unbiased, that is,

E(β̂j) = βj .

Let βj = [aβj , bβj ] = (cβj ; rβj ). By (3.1) and (4.1), we have

E(β̂j) = λTj E(y) = λTj (Xcβ; |X|rβ) = (λTj Xcβ; |λj |T |X|rβ),

where |λj | = (|λj1|, |λj2|, · · · , |λjn|)T . Therefore we obtain

E(β̂) = (ΛXcβ; |Λ||X|rβ), (4.2)

where

Λ =


λT1
λT2
...
λTp

 =


λ11 λ12 · · · λ1n

λ21 λ22 · · · λ2n

· · · · · · · · · · · ·
λp1 λp2 · · · λpn


and

|Λ| =


|λ1|T
|λ2|T
...
|λp|T

 =


|λ11| |λ12| · · · |λ1n|
|λ21| |λ22| · · · |λ2n|
· · · · · · · · · · · ·
|λp1| |λp2| · · · |λpn|

 .

On the other hand, since β̂ is unbiased,

E(β̂) = (cβ; rβ). (4.3)

Therefore, by (4.2) and (4.3), we have

ΛX = Ip, |Λ||X| = Ip. (4.4)

Unfortunately, the solution of (4.4) does not exist in general. For the case p > 1,

consider the interval-valued linear regression model as an example:

E(y) = β1 + β2X2,

where X2 = (x12, x22, · · · , xn2)T . In this case,

Λ =

(
λ11 λ12 · · · λ1n

λ21 λ22 · · · λ2n

)
, |Λ| =

(
|λ11| |λ12| · · · |λ1n|
|λ21| |λ22| · · · |λ2n|

)
and

X =

(
1 1 · · · 1
x21 x22 · · · x2n

)T
,

then the second equation of (4.4) is
n∑
i=1

|λ1i| = 1,
n∑
i=1

|λ1i||x2i| = 0,
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n∑
i=1

|λ2i| = 0,
n∑
i=1

|λ2i||x2i| = 1.

It is obvious that these equations are contradictory. For the case p = 1,

E(y) =


x11

x21
...
xn1

β1,

then (4.4) becomes
n∑
i=1

λ1ixi1 = 1,

n∑
i=1

|λ1i||xi1| = 1.

Therefore, a linear unbiased estimator exists only if xi1 ≥ 0, i = 1, 2, · · · , n.

4.2 Best Binary Linear Unbiased Estimation

From the above discussions, we know that, for the interval-valued linear model (3.1),

the best linear unbiased estimator does not exist in general, which is a major difference

with the traditional linear model. However, for the interval-valued linear model, we can

introduce a new type of estimation: the binary best linear unbiased estimation, which has

some interesting statistical properties.

Definition 4.1. The binary linear combination of interval-valued data yi = [ayi , byi ] =

(cyi ; ryi), i = 1, 2, · · · , n with coefficient ki, li (li ≥ 0) is defined as

n∑
i=1

(kicyi ; liryi) =

(
n∑
i=1

kicyi ;
n∑
i=1

liryi

)
.

Definition 4.2. An estimator of an interval-valued parameter is called a binary linear

estimator, if it is a binary linear combination of interval-valued observations. Assume that

θ̂ is a binary linear estimator of interval-valued parameter θ. If θ̂ is unbiased and, for any

binary linear unbiased estimator θ∗ of θ,

Var(θ∗) ≥ Var(θ̂),

θ̂ is called best binary linear unbiased estimator (BBLUE) of θ.

If θ is a p-dimensional vector of interval-valued parameter, Var(θ∗) ≥ Var(θ̂) in this

definition means that Cov(θ∗)− Cov(θ̂) is a nonnegative definite matrix.

Theorem 4.1. If E(y) = Xβ, rank(X) = rank(|X|) = p and Cov(cy) = σ2
1In, Cov(ry) =

σ2
2In, then the LSE β̂LS is the unique BBLUE.
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Proof By Theorem 3.2, β̂LS = ((XTX)−1XT cy; (|X|T |X|)−1|X|T ry) is an unbiased es-

timator of β, and binary linearity of β̂LS is obvious. Therefore, we just need to prove

that the covariance matrix of β̂LS is the minimum one among all binary linear unbiased

estimators.

Assume that

ϕj(y) =
n∑
i=1

(k∗jicyi ; l
∗
jiryi), l∗ji ≥ 0

is a binary linear unbiased estimate of βj , then

ϕ(y) = (k∗cy; l
∗ry)

is a binary linear unbiased estimator of β, where

k∗ =


k∗11 k∗12 · · · k∗1n
k∗21 k∗22 · · · k∗2n
· · · · · · · · · · · ·
k∗p1 k∗p2 · · · k∗pn


and

l∗ =


l∗11 l∗12 · · · l∗1n
l∗21 l∗22 · · · l∗2n
· · · · · · · · · · · ·
l∗p1 l∗p2 · · · l∗pn

 ,

and l∗ ≥ 0. By the unbiasedness of ϕ(y),

E(ϕ(y)) = (k∗E(cy); l
∗E(ry)) = (k∗Xcβ; l∗|X|rβ) = (cβ; rβ), ∀ cβ, rβ ∈ Rp.

Hence we have

k∗X = Ip, l
∗|X| = Ip. (4.5)

By Theorem 2.5,

Cov(ϕi(y), ϕj(y))

= Cov

((
n∑

m=1

k∗imcym ;

n∑
m=1

l∗imrym

)
,

(
n∑

m=1

k∗jmcym ;

n∑
m=1

l∗jmrym

))
= E

{
[(k∗)T(i)cy + (l∗)T(i)ry − (cβi + rβi)][(k

∗)T(j)cy + (l∗)T(j)ry − (cβj + rβj )]
}

+E
{

[(k∗)T(i)cy − (l∗)T(i)ry − (cβi − rβi)][(k
∗)T(j)cy − (l∗)T(j)ry − (cβj − rβj )]

}
.

12



Then, we obtain

Cov(ϕ(y))

= E
{

[k∗cy + l∗ry − (cβ + rβ)][k∗cy + l∗ry − (cβ + rβ)]T
}

+E
{

[k∗cy − l∗ry − (cβ − rβ)][k∗cy − l∗ry − (cβ − rβ)]T
}

= E{[k∗cy + l∗ry − ((XTX)−1XT cy + (|X|T |X|)−1|X|T ry)]

[k∗cy + l∗ry − ((XTX)−1XT cy + (|X|T |X|)−1|X|T ry)]T }

+Cov((XTX)−1XT cy + (|X|T |X|)−1|X|T ry))

+E{[k∗cy + l∗ry − ((XTX)−1XT cy + (|X|T |X|)−1|X|T ry)]

[(XTX)−1XT cy + (|X|T |X|)−1|X|T ry)− (cβ + rβ)]T }

+E{[(XTX)−1XT cy + (|X|T |X|)−1|X|T ry)− (cβ + rβ)]

[k∗cy + l∗ry − ((XTX)−1XT cy + (|X|T |X|)−1|X|T ry)]T }

+E{[k∗cy − l∗ry − ((XTX)−1XT cy − (|X|T |X|)−1|X|T ry)]

[k∗cy − l∗ry − ((XTX)−1XT cy − (|X|T |X|)−1|X|T ry)]T }

+Cov((XTX)−1XT cy − (|X|T |X|)−1|X|T ry))

+E{[k∗cy − l∗ry − ((XTX)−1XT cy − (|X|T |X|)−1|X|T ry)]

[(XTX)−1XT cy − (|X|T |X|)−1|X|T ry)− (cβ − rβ)]T }

+E{[(XTX)−1XT cy − (|X|T |X|)−1|X|T ry)− (cβ − rβ)]

[k∗cy − l∗ry − ((XTX)−1XT cy − (|X|T |X|)−1|X|T ry)]T }.

Since

E[k∗cy + l∗ry − ((XTX)−1XT cy + (|X|T |X|)−1|X|T ry)] = 0

and

E[k∗cy − l∗ry − ((XTX)−1XT cy − (|X|T |X|)−1|X|T ry)] = 0,

13



we have the following equalities

E{[k∗cy + l∗ry − ((XTX)−1XT cy + (|X|T |X|)−1|X|T ry)]

[(XTX)−1XT cy + (|X|T |X|)−1|X|T ry)− (cβ + rβ)]T }

+E{[k∗cy − l∗ry − ((XTX)−1XT cy − (|X|T |X|)−1|X|T ry)]

[(XTX)−1XT cy − (|X|T |X|)−1|X|T ry)− (cβ − rβ)]T }

= Cov
(
k∗cy + l∗ry − ((XTX)−1XT cy + (|X|T |X|)−1|X|T ry), (XTX)−1XT cy + (|X|T |X|)−1|X|T ry

)
+Cov

(
k∗cy − l∗ry − ((XTX)−1XT cy − (|X|T |X|)−1|X|T ry), (XTX)−1XT cy − (|X|T |X|)−1|X|T ry

)
= Cov((k∗ − (XTX)−1XT )cy + (l∗ − (|X|T |X|)−1|X|T )ry, (X

TX)−1XT cy + (|X|T |X|)−1|X|T ry)

+Cov((k∗ − (XTX)−1XT )cy − (l∗ − (|X|T |X|)−1|X|T )ry, (X
TX)−1XT cy − (|X|T |X|)−1|X|T ry)

= 2(k∗ − (XTX)−1XT )Cov(cy)((X
TX)−1XT )T

+2(l∗ − (|X|T |X|)−1|X|T )Cov(ry)((|X|T |X|)−1|X|T )T

= 2σ2
1(k∗X − (XTX)−1XTX)(XTX)−1 + 2σ2

2(l∗|X| − (|X|T |X|)−1|X|T |X|)(|X|T |X|)−1

= 0,

where the last equality holds due to (4.5). Hence, we have

Cov(ϕ(y))

= E{[k∗cy + l∗ry − ((XTX)−1XT cy + (|X|T |X|)−1|X|T ry)]

[k∗cy + l∗ry − ((XTX)−1XT cy + (|X|T |X|)−1|X|T ry)]T }

+E{[k∗cy − l∗ry − ((XTX)−1XT cy − (|X|T |X|)−1|X|T ry)]

[k∗cy − l∗ry − ((XTX)−1XT cy − (|X|T |X|)−1|X|T ry)]T }

+Cov((XTX)−1XT cy + (|X|T |X|)−1|X|T ry)) + Cov((XTX)−1XT cy − (|X|T |X|)−1|X|T ry))

≥ Cov((XTX)−1XT cy + (|X|T |X|)−1|X|T ry)) + Cov((XTX)−1XT cy − (|X|T |X|)−1|X|T ry))

= Cov(β̂LS).

Thus, LSE β̂LS is BBLUE. Furthermore, Cov(ϕ(y)) = Cov(β̂LS) if and only if

k∗cy + l∗ry − ((XTX)−1XT cy + (|X|T |X|)−1|X|T ry) = 0, a.s.

and

k∗cy − l∗ry − ((XTX)−1XT cy − (|X|T |X|)−1|X|T ry) = 0, a.s.,

i.e., ϕ(y) = β̂LS , a.s.. Therefore, β̂LS is the unique BBLUE. �

Theorem 4.2. If E(y) = Xβ, rank(X) = rank(|X|) = p and Cov(cy) = σ2
1In, Cov(ry) =

σ2
2In, then for for all α ∈ Rp, αT β̂LS is the unique BBLUE of αTβ.
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Proof By Theorem 3.2, we have

E
(
αT β̂LS

)
= E

(
αT (XTX)−1XT cy; |α|T (|X|T |X|)−1|X|T ry

)
=

(
αT (XTX)−1XTXcβ; |α|T (|X|T |X|)−1|X|T |X|rβ

)
= αTβ,

which means that αT β̂LS = (αT (XTX)−1XT cy; |α|T (|X|T |X|)−1|X|T ry) is a binary linear

unbiased estimator of αTβ.

Assume that ψ(y) is a binary linear unbiased estimator of αTβ, denoted as ψ(y) =

(kT cy; l
T ry), where k, l are n-dimensional vectors and l ≥ 0. Then

E(ψ(y)) = E(kT cy; l
T ry) = (kTXcβ; lT |X|rβ) = αTβ = (αT cβ; |α|T rβ), ∀cβ, rβ ∈ Rp

Therefore,

kTX = αT , lT |X| = |α|T . (4.6)

From Remark 2.3,

Var(ψ(y)) = Var
(
(kT cy; l

T ry)
)

= 2Var(kT cy) + 2Var(lT ry)

= 2E(kT cy − αT cβ)2 + 2E(lT ry − |α|T cβ)2

= 2E(kT cy − αT (XTX)−1XT cy + αT (XTX)−1XT cy − αT cβ)2

+2E(lT ry − |α|T (|X|T |X|)−1|X|T ry + |α|T (|X|T |X|)−1|X|T ry − |α|T cβ)2

= 2E[(kT − αT (XTX)−1XT )cy]
2 + 2E[(lT − |α|T (|X|T |X|)−1|X|T )ry]

2

+2Var(αT (XTX)−1XT cy) + 2Var(|α|T (|X|T |X|)−1|X|T ry)

+4E
[
(kT cy − αT (XTX)−1XT cy)(α

T (XTX)−1XT cy − αT cβ)
]

+4E
[
(lT ry − |α|T (|X|T |X|)−1|X|T ry)(|α|T (|X|T |X|)−1|X|T ry − |α|T rβ)

]
.

As E(kT cy − αT (XTX)−1XT cy) = 0 and E(lT ry − |α|T (|X|T |X|)−1|X|T ry) = 0, we have

E
[
(kT cy − αT (XTX)−1XT cy)(α

T (XTX)−1XT cy − αT cβ)
]

= Cov(kT cy − αT (XTX)−1XT cy, α
T (XTX)−1XT cy)

= (kT − αT (XTX)−1XT )Cov(cy)X(XTX)−1α

= σ2
1k

TX(XTX)−1α− σ2
1α

T (XTX)−1α

= 0,
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where the last equality follows from (4.6).

Similarly, we can obtain

E
[
(lT ry − |α|T (|X|T |X|)−1|X|T ry)(|α|T (|X|T |X|)−1|X|T ry − |α|T rβ)

]
= 0.

So we get,

Var(ψ(y))

= 2E[(kT − αT (XTX)−1XT )cy]
2 + 2E[(lT − |α|T (|X|T |X|)−1|X|T )ry]

2 + Var(αTβ̂LS)

≥ Var(αTβ̂LS).

Furthermore, “=” is tenable if and only if (kT − αT (XTX)−1XT )cy = 0 and (lT −
|α|T (|X|T |X|)−1|X|T )ry = 0, a.s., i.e., ψ(y) = αT β̂LS . Therefore, αT β̂LS is the unique

BBLUE of αTβ. �

5 Simulation Results

5.1 Test of Estimation Efficiency

In this section, we illustrate the interval-valued linear regression model by simulation

experiments. Let β1 = [1, 2] = (1.5; 0.5), β2 = [1.7, 2.3] = (2; 0.3) and

yi = β1 + xiβ2 + εi

= (1.5 + 2xi + cεi ; 0.5 + 0.3xi + rεi),

for i = 1, 2, · · · , n, where cεi , rεi are N(0, 0.32) normal independent random variables, so

that E(yi) = β1 + E(xi)β2. Therefore, we have

Ey = E


y1

y2
...
yn

 =


1 x1

1 x2
...

...
1 xn


(
β1

β2

)
= X

(
β1

β2

)
.

Firstly, we let the quantity of observations n be 100, xi = 0.5+0.01i, i = 1, 2, · · · , 100.

For each repetition of the experiment, we get a LSE β̂LS of β1, β2. Figure 1 shows the

simulation experiment, in which β̂LS = ([1.06, 2.02], [1.66, 2.32])T . In Figure 1, the points

show the simulated data yi(xi) = [1, 2]+ [1.7, 2.3]xi+εi , xi = 0.5+0.01i, i = 1, 2, · · · , 100

and the two lines represent the interval-valued linear regression function computed by the

LSE (3.3): y = [1.06, 2.02] + [1.66, 2.32]x.

We repeated this experiment (from data generation to parameter estimation) 1000

times. The average value of β̂(1)
LS was [0.9959131, 1.996367] = (1.49614; 0.5002269), with a
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Figure 1: Simulated data (100 observations) and interval-valued linear regression function:
y = [1.06, 2.02] + [1.66, 2.32]x.

Table 1: Average value and sample MSE of β̂(1)
LS .

mean value of β̂(1)
LS sample MSE of β̂(1)

LS

n=100 [0.9959131,1.996367] 0.0442
n=200 [1.002874,1.995194] 0.0236
n=300 [1.002542,2.006844] 0.0154

sample mean square error (sample MSE) equal to 0.0442. The average value of 1000 β̂(2)
LS

was [1.706118, 2.300196] = (2.003157; 0.297039) with a sample MSE is 0.0446. Here the

sample MSE of β is defined by 1
1000

1000∑
i=1

d2
2(β, β̂LS).

Then, we increased the quantity of observations n to 200 and 300. X was obtained via

xi = 0.5 + 0.01i, i = 1, 2, · · · , 100,

xi = xi−100, i = 101, 102, · · · , 200,

xi = xi−200, i = 201, 202, · · · , 300.

Similarly, we obtained estimators of β̂(1)
LS , β̂

(2)
LS by the same method. The results are reported

in Tables 1 and 2, which show the average value and the sample MSE of 1000 estimators

of β̂(1)
LS (the real value is [1, 2]) and β̂(2)

LS (the real value is [1.7, 2.3]), respectively. We may

observe that the sample MSE decreases as the number of observations increases.
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Table 2: Average value and sample MSE of β̂(2)
LS .

mean value of β̂(2)
LS sample MSE of β̂(2)

LS

n=100 [1.706118,2.300196] 0.0446
n=200 [1.705211,2.299007] 0.0220
n=300 [1.699598,2.295972] 0.0142

5.2 Comparison with Other Models

When handling point-valued input and interval-valued output data, an easy and in-

tuitive solution is to fit the left- and right-endpoints, or the centers and the radii, of the

interval-valued data by two point-valued linear models (see, e.g., [5],[14] and [20]). As a

matter of fact, it is easy to see these two methods are equivalent. As already mentioned

in the introduction, a drawback of using two separate point-valued linear models is that

it is possible to obtain an interval-valued estimation or forecast result such that the left-

endpoint is larger than the right-endpoint (or the radius is negative). In this section, we

present the advantage of our model from another point of view via a simulation experiment:

comparing the efficiency of the forecast.

We generated the data in the same way as in Section 5.1, with β1 = [1, 2] = (1.5; 0.5),

β2 = [1.7, 2.1] = (1.9; 0.2) and

yi = β1 + xiβ2 + εi, (5.1)

in which xi = (−3 : 0.05 : 6) and cεi , rεi are N(0, 0.12) independent random variables.

We then obtained the following estimates using the LSE for interval-valued linear model

(3.3): β̂LS = ([0.9979, 2.0062], [1.7017, 2.1000])T , and the estimated regression function

y = [0.9979, 2.0062] + [1.7017, 2.1000]x. (5.2)

In a second step, we fitted (ayi , xi) and (byi , xi), where ayi and byi are the left- and right-

endpoints of yi via two traditional point-valued linear models. Using the LSE for the

traditional linear model, we obtained two fitted lines:{
ay = 0.6398 + 1.8061x
by = 2.3642 + 1.9956x.

(5.3)

Finally, we generated some new data from (5.1) and used (5.2) and (5.3) to forecast the

output respectively. Letting xi = (−3 : 0.2 : 6) in (5.1), we obtained the interval-valued

output yi, i = 1, 2, · · · , 46. Next, we substituted xi = (−3 : 0.2 : 6) back to (5.2) and (5.3)

and obtained the forecasts of yi, i = 1, 2, · · · , 46 using the interval-valued LSE (denoted by
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Figure 2: Box plots of forecasts results using interval-valued linear model (left) and left-
and right-endpoints point-valued linear models (right).

ỹi) and two endpoints point-valued LSE (denoted by ŷi), respectively. The MSE of ỹi was
1
46

46∑
n=1

dw2 (ỹi, yi) = 0.0352 while the MSE of ŷi was 1
46

46∑
n=1

dw2 (ŷi, yi) = 0.1290. The box plots

in Figure 2 show the median, 25th and 75th percentiles and the extreme data points of the

46 forecasts using interval-valued linear model and using two separate linear models. Since

the data were randomly generated, the above procedure (from data generation to forecast)

was repeated 30 times. The mean values of the MSEs of the forecasts were 0.0388 for the

interval-valued LS estimation and 0.1321 using two endpoints point-valued LS estimation.

Obviously, we can see that the interval-valued linear model is better in the sense that it

yields smaller forecasting error.

6 Application to Real Data

In this section, we use the interval-valued linear model to investigate the relationship

between temperature and latitude. The data are the highest and the lowest temperatures

of 15 European cities on 14 August, 2012, as shown in Table 3 and Figure 3.

Suppose that the temperature y (interval-valued) and the latitude x (real-valued) can

be represented by the interval-valued linear model (3.1), that is

E(yi) = β1 + xiβ2, i = 1, 2, · · · , 15.

The LSE of β1, β2 may be obtained via (3.3). The linear relationship (shown in Figure 4)

between temperature y and latitude x is

y = [39.03− 0.45x, 56.01− 0.60x].
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Table 3: Temperatures and latitudes of 15 European cities on 14 of August, 2012.

City Latitude (◦)
Highest
Temp.
(◦C)

Lowest
Temp.
(◦C)

Athens 38 24 34
Madrid 40.4 19 31
Istanbul 41 23 30
Roma 41.9 23 33

Marsaille 43.3 19 31
Geneve 46.25 13 28
Paris 48.8 19 26
Brussel 50.8 14 25
London 51.5 14 21
Berlin 52.5 13 23
Moscow 55.75 14 24

Stockholm 59.3 12 20
St. Petersburg 59.9 13 22

Bergen 60.4 14 20
Reykjavik 64 11 17

Figure 3: Temperatures (in the form of interval) and latitudes of 15 European cities. Each
line segment represents the temperature interval of a city.
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Figure 4: Data and linear relationship of temperature and latitude of 15 cities in Europe
on 14 August, 2012. The two lines mean interval-valued linear regression function y =
[39.03196− 0.451684x, 56.00954− 0.6037982x].

Figure 4 indicates that as the latitude increases the temperature decreases, and the daily

difference in temperature also tends to decrease.

7 Conclusions

The linear regression model, which assumes a linear relationship between a random

input variables and a few input variables, plays an important role in statistics. However,

many phenomena are better described by an interval-valued random variable determined

by a few real-valued random variables, e.g., temperature, stock price, service life of a kind

of products. The relation between the interval-valued data and a few real-valued data can

sometimes be expressed by a linear model. Therefore, we need a new type of statistical

model to describe this kind of problems. In this paper, we introduced such a statisti-

cal model: the interval-valued linear model, which considers interval-valued observations

determined by real-valued variables in a linear way.

Interval-valued random variables are a special kind of set-valued random variables

taking values in the set of compact convex subsets of R1. In this paper, we investigated

the theory in the general set-valued framework first, before focusing on the interval-valued

random variables, in order to obtain some more general theoretical results. In particular,

we recalled the definition of variance and covariance of set-valued random variables based

on the dp metric for sets and the Dp metric for set-valued random variables. We then

introduced the interval-valued linear model and its LSE, proved the unbiasedness of the

LSE and computed the covariance matrix of this estimator. We also showed that the best
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linear unbiased estimation does not exist in general, but the LSE is the unique best binary

linear unbiased estimation (BBLUE). The performances of the estimation method were

illustrated using simulation experiments, and compared to those of the simple approach

that consists in fitting two separate linear models using the endpoints of output intervals.

The obtained results suggest that our approach yields better forecasting performance.

Finally, we gave an example of the interval-valued linear model explaining how temperature

is related by latitude. This short example shows how our model can be used and what

type of practical problem can be solved using the interval-valued linear model.
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