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Estimation and prediction using belief functions: Application to stochastic frontier analysis

We outline an approach to statistical inference based on belief functions. For estimation, a consonant belief functions is constructed from the likelihood function. For prediction, the method is based on an equation linking the unobserved random quantity to be predicted, to the parameter and some underlying auxiliary variable with known distribution. The approach allows us to compute a predictive belief function that reflects both estimation and random uncertainties. The method is invariant to one-to-one transformations of the parameter and compatible with Bayesian inference, in the sense that it yields the same results when provided with the same information. It does not, however, require the user to provide prior probability distributions. The method is applied to stochastic frontier analysis with crosssectional data. We demonstrate how predictive belief functions on inefficiencies can be constructed for this problem and used to assess the plausibility of various assertions.

Introduction

Many problems in econometrics can be formalized using a parametric model

(Y, Z)|x ∼ f θ ,x (y, z), (1) 
where Y and Z are, respectively, observed and unobserved random vectors, x is an observed vector of covariates and f θ ,x is the conditional probability mass or density function of (Y, Z) given X = x, assumed to be known up to a parameter vector θ ∈ Θ . For instance, in the standard linear regression model, Y = (Y 1 , . . . ,Y n ) is a vector of n independent observations of the response variable, with Y i ∼ N (x i β , σ 2 ), Z = Y n+1 is an independent random value of the response variable distributed as N (x n+1 β , σ 2 ), x = (x 1 , . . . , x n+1 ) and θ = (β , σ 2 ). Having observed a realization y of Y (and the covariates x), we often wish to determine the unknown quantities in the model, i.e., the parameter θ (assumed to be fixed) and the (yet) unobserved realization z of Z. The former problem is referred to as estimation and the latter as prediction (or forecasting). These two problems have been addressed in different ways within several theoretical frameworks. The three main theories are frequentist, Bayesian and likelihoodbased inference. In the following, we briefly review these three approaches to introduce the motivation for the new method advocated in this paper.

Frequentist methods provide pre-experimental measures of the accuracy of statistical evidence. A procedure (for computing, e.g., a confidence or prediction interval) is decided before observing the data and its long-run behavior is determined by averaging over the whole sample space, assuming it is repeatedly applied to an infinite number of samples drawn from the same population. It has long been recognized that such an approach, although widely used, does not provide a reliable measure of the strength of evidence provided by specific data. The following simple example, taken from [START_REF] Berger | The likelihood principle: a review, generalizations, and statistical implications[END_REF], illustrates this fact. Suppose X 1 and X 2 are iid with probability mass function

P θ (X i = θ -1) = P θ (X i = θ + 1) = 1 2 , i = 1, 2, (2) 
where θ ∈ R is an unknown parameter. Consider the following confidence set for θ ,

C(X 1 , X 2 ) = 1 2 (X 1 + X 2 ) if X 1 = X 2 X 1 -1 otherwise. ( 3 
)
It is a minimum length confidence interval at level 75%. Now, let (x 1 , x 2 ) be a given realization of the random sample (X 1 , X 2 ). If x 1 = x 2 , we know for sure that θ = (x 1 + x 2 )/2 and it would be absurd to take 75% as a measure of the strength of the statistical evidence. If x 1 = x 2 , we know for sure that θ is either x 1 -1 or x 1 + 1, but we have no reason to favor any of these two hypotheses in particular. Again, it would make no sense to claim that the evidence support the hypothesis θ = x 1 -1 with 75% confidence. Although frequentist procedures do provide usable results in many cases, the above example shows that they are based on a questionable logic if they are used to assess the reliable of given statistical evidence, as they usually are. Moreover, on a more practical side, confidence and prediction intervals are often based on asymptotic assumptions and their true coverage probability, assuming it is of interest, may be quite different from the nominal one for small sample sizes. The other main approach to statistical inference is the Bayesian approach, which, in contrast to the previous approach, implements some form of post-experimental reasoning. Here, all quantities, including parameters, are treated as random variables, and the inference aims at determining the probability distribution of unknown quantities, given observed ones. With the notations introduced above, the estimation and prediction problems are to determine the posterior distributions of, respectively, θ and Z, given x and y. Of course, this is only possible if one provides a prior probability distribution π(θ ) on θ , which is the main issue with this approach. There has been a long-standing debate among statisticians about the possibility to determine such a prior when the experimenter does not know anything about the parameter before observing the data. For lack of space, we cannot reproduce all the arguments of this debate here. Our personal view is that no probability distribution is truly non-informative, which weakens the conclusions of Bayesian inference in situations where no well-justified prior can be provided.

The last classical approach to inference is grounded in the likelihood principle (LP), which states that all the information provided by the observations about the parameter is contained in the likelihood function. A complete exposition of the likelihood-based approach to statistical inference can be found in the monographs [START_REF] Edwards | Likelihood[END_REF] and [START_REF] Berger | The likelihood principle: a review, generalizations, and statistical implications[END_REF] (see also the seminal paper of Barnard et al. [START_REF] Barnard | Likelihood inference and time series[END_REF]). Birnbaum [START_REF] Birnbaum | On the foundations of statistical inference[END_REF] showed that the LP can be derived from the two generally accepted principles of sufficiency and conditionality. Frequentist inference does not comply with the LP, as confidence intervals and significance tests depend not only on the likelihood function, but also on the sample space. Bayesian statisticians accept the LP, but claim that the likelihood function does not make sense in itself and needs to be multiplied by a prior probability distribution to form the posterior distribution of the parameter given the data. The reader is referred to Refs. [START_REF] Edwards | Likelihood[END_REF] and [START_REF] Berger | The likelihood principle: a review, generalizations, and statistical implications[END_REF] for thorough discussions on this topic. Most of the literature on likelihood-based inference deals with estimation. Several authors have attempted to address the prediction problem using the notion of "predictive likelihood" [START_REF] Mathiasen | Prediction functions[END_REF], [START_REF] Bjornstad | Predictive likelihood: A review[END_REF], [START_REF] Bayarri | Difficulties and ambiguities in the definition of a likelihood function[END_REF]. For instance, the predictive profile likelihood is defined by L x (z) = sup θ f θ ,x (y, z). However, this notion is quite different conceptually from the standard notion of likelihood and, to some extent, arbitrary. While it does have interesting theoretical properties [START_REF] Mathiasen | Prediction functions[END_REF], its use poses some practical difficulties [6, page 39].

The method described in this paper builds upon the likelihood-based approach by seeing the likelihood function as describing the plausibility of each possible value of the parameter, in the sense of the Dempster-Shafer theory of belief functions [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF][10] [START_REF] Shafer | A mathematical theory of evidence[END_REF]. This approach of statistical inference was first proposed by Shafer [START_REF] Shafer | A mathematical theory of evidence[END_REF] and was later investigated by several authors (see, e.g., [START_REF] Wasserman | Belief functions and statistical evidence[END_REF] [START_REF] Aickin | Connecting Dempster-Shafer belief functions with likelihood-based inference[END_REF]). It was recently justified by Denoeux in [START_REF] Denoeux | Likelihood-based belief function: justification and some extensions to low-quality data[END_REF] and extended to prediction in [START_REF] Kanjanatarakul | Forecasting using belief functions: an application to marketing econometrics[END_REF][START_REF] Kanjanatarakul | Econometric forecasting using linear regression and belief functions[END_REF]. In this paper, we provide a general introduction to estimation and prediction using belief functions and demonstrate the application of this inference framework to the stochastic frontier model. In this model, the determination of the production frontier and disturbance parameters is an estimation problem, whereas the determination of the inefficiency terms is a prediction problem. We will show, in particular, how this method makes it possible to quantify both estimation uncertainty and random uncertainty, and to evaluate the plausibility of various hypothesis about both the production frontier and the efficiencies.

The rest of this paper is organized as follows. The general framework for inference and prediction will first be recalled in Section 2. This framework will be particularized to the stochastic frontier model in Section 3 and Section 4 will conclude the paper.

Inference and prediction using belief functions

Basic knowledge of the theory of belief functions will be assumed throughout this paper. A complete exposition in the finite case can be found in Shafer's book [START_REF] Shafer | A mathematical theory of evidence[END_REF]. The reader is referred to [START_REF] Ben Abdallah | Combining statistical and expert evidence using belief functions: Application to centennial sea level estimation taking into account climate change[END_REF] for a quick introduction on those aspects of this theory needed for statistical inference. In this section, the definition of a belief function from the likelihood function and the general prediction method introduced in [START_REF] Kanjanatarakul | Forecasting using belief functions: an application to marketing econometrics[END_REF] will be recalled in Sections 2.1 and 2.2, respectively.

Inference

Let f θ ,x (y) be the marginal probability mass or density function of the observed data Y given x. In the following, the covariates (if any) will be assumed to be fixed, so that the notation f θ ,x (y) can be simplified to f θ (y). Statistical inference has been addressed in the belief function framework by many authors, starting from Dempster's seminal work [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF]. In [START_REF] Shafer | A mathematical theory of evidence[END_REF], Shafer proposed, on intuitive grounds, a more direct approach in which a belief function Bel Θ y on Θ is built from the likelihood function. This approach was further elaborated by Wasserman [START_REF] Wasserman | Belief functions and statistical evidence[END_REF] and discussed by Aickin [START_REF] Aickin | Connecting Dempster-Shafer belief functions with likelihood-based inference[END_REF], among others. It was recently justified by Denoeux in [START_REF] Denoeux | Likelihood-based belief function: justification and some extensions to low-quality data[END_REF], from three basic principles: the likelihood principle, compatibility with Bayesian inference and the least commitment principle [START_REF] Ph | Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem[END_REF]. The least committed belief function verifying the first two principles, according to the commonality ordering [START_REF] Dubois | A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets[END_REF] is the consonant belief function Bel Θ y defined by the contour function

pl y (θ ) = L y (θ ) sup θ ∈Θ L y (θ ) , (4) 
where L y (θ ) = f θ (y) is the likelihood function. The quantity pl y (θ ) is interpreted as the plaussibility that the true value of the parameter is θ . The corresponding plausibility and belief functions can be computed from pl y as:

Pl Θ y (A) = sup θ ∈A pl y (θ ), (5a) 
Bel Θ y (A) = 1 -sup θ ∈A pl y (θ ), (5b) 
for all A ⊆ Θ . The focal sets of Bel Θ y are the levels sets of pl y (θ ) defined as follows:

Γ y (ω) = {θ ∈ Θ |pl y (θ ) ≥ ω}, (6) 
for ω ∈ [0, 1]. These sets may be called plausibility regions and can be interpreted as sets of parameter values whose plausibility is greater than some threshold ω. When ω is a random variable with a continuous distribution U ([0, 1]), Γ y (ω) becomes a random set equivalent to the belief function Bel Θ y , in the sense that

Bel Θ y (A) = P ω (Γ y (ω) ⊆ A) (7a) Pl Θ y (A) = P ω (Γ y (ω) ∩ A = / 0), (7b) 
for all A ⊆ Θ such that the above expressions are well-defined. 

(θ ) = (2π) -n/2 exp -1 2 ∑ n i=1 (y i -θ ) 2 (2π) -n/2 exp -1 2 ∑ n i=1 (y i -y) 2 (8a) = exp - n 2 (θ -y) 2 , ( 8b 
)
where y is the sample mean. The plausibility and belief that θ does not exceed some value t are given by the upper and lower cumulative distribution functions (cdfs) defined, respectively, as

Pl y (θ ≤ t) = sup θ ≤t pl x (θ ) (9a) = exp -n 2 (t -y) 2 if t ≤ y 1 otherwise (9b) and Bel y (θ ≤ t) = 1 -sup θ >t pl x (θ ) (10a) = 0 if t ≤ y 1 -exp -n 2 (t -y) 2 otherwise. (10b) 
The focals sets (6) are closed intervals

Γ y (ω) = y - -2 ln ω n , y + -2 ln ω n . ( 11 
)
When ω has a uniform distribution on [0, 1], Γ y (ω) is a closed random interval. The cdfs of its lower and upper bounds are equal, respectively, to the lower and upper cdfs [START_REF] Dempster | A generalization of Bayesian inference (with discussion)[END_REF] and (9).

Prediction

The prediction problem can be defined as follows: having observed the realization y of Y with distribution f θ (y), we wish to make statements about some yet unobserved data Z ∈ Z whose conditional distribution f y,θ (z) given Y = y also depends on θ . The uncertainty on Z has two sources: (1) the randomness of the generation mechanism of Z given θ and y and (2) the estimation uncertainty on θ . In the approach outlined here, the latter uncertainty is represented by the belief function Bel Θ y on θ obtained by the approach described in the previous section. The random generation mechanism for Z can be represented by a sampling model such as the one used by Dempster [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF] for inference. In this model, the new data Z is expressed as a function of the parameter θ and an unobserved auxiliary random variable ξ with known probability distribution independent of θ :

Z = ϕ(θ , ξ ), ( 12 
)
where ϕ is defined in such a way that the distribution of Z for fixed θ is f y,θ (z).

When Z is a real random variable, a canonical model of the form ( 12) can be obtained as Z = F -1 y,θ (ξ ), where F y,θ is the conditional cumulative distribution function (cdf) of Z given Y = y, F -1 y,θ is its generalized inverse and ξ has a continuous uniform distribution in [0, 1]. This canonical model can be extended to the case where Z is a random vector. For instance, assume that Z is a two-dimensional random vector (Z 1 , Z 2 ). We can write

Z 1 = F -1 y,θ (ξ 1 ) (13a) 
Z 2 = F -1 y,θ ,Z 1 (ξ 2 ), (13b) 
where F y,θ is the conditional cdf of Z 1 given Y = y, F y,θ ,Z 1 is the conditional cdf of Z 2 given Y = y and Z 1 and ξ = (ξ 1 , ξ 2 ) has a uniform distribution in [0, 1] 2 . Equation [START_REF] Dubois | A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets[END_REF] gives us the distribution of Z when θ is known. If we only know that θ ∈ Γ y (ω) and the value of ξ , we can assert that Z is in the set ϕ(Γ y (ω), ξ ).

As ω and ξ are not observed but have a joint uniform distribution on [0, 1] 2 , the set ϕ(Γ y (ω), ξ ) is a random set. It induces belief and plausibility functions defined as

Bel y (Z ∈ A) = P ω,ξ (ϕ(Γ y (ω), ξ ) ⊆ A) , (14a) 
Pl y (Z ∈ A) = P ω,ξ (ϕ(Γ y (ω), ξ ) ∩ A = / 0) , (14b) 
for any A ⊆ Z.

Example 2 Continuing Example 1, let us assume that Z ∼ N (θ , 1) is a yet unoberved normal random variable independent of Y . It can be written as

Z = θ + Φ -1 (ξ ), ( 15 
)
where Φ is the cdf of the standard normal distribution. The random set ϕ(Γ y (ω), ξ ) is then the random closed interval

ϕ(Γ y (ω), ξ ) = y - -2 ln ω n + Φ -1 (ξ ), y + -2 ln ω n + Φ -1 (ξ ) . (16) 
Expressions ( 14) for the belief and plausibility of any assertion about Z can be approximated by Monte Carlo simulation [START_REF] Kanjanatarakul | Forecasting using belief functions: an application to marketing econometrics[END_REF].

As remarked by Bjornstad [START_REF] Bjornstad | Predictive likelihood: A review[END_REF], a prediction method should have at least two fundamental properties: it should be invariant to any one-to-one reparametrization of the model and it should be asymptotically consistent, in a precise sense to be defined. An additional property that seems desirable is compatibility with Bayesian inference, in the sense that it should yield the same result as the Bayesian approach when a prior distribution on the parameter is provided. Our method possesses these three properties. Parameter invariance follows from the fact that it is based on the likelihood function; compatibility with Bayes is discussed at length in [START_REF] Kanjanatarakul | Forecasting using belief functions: an application to marketing econometrics[END_REF] and consistency will be studied in greater detail in a forthcoming paper.

Application to stochastic frontier analysis

In this section, we apply the above estimation and prediction framework to the stochastic frontier model (SFM). To keep the emphasis on fundamental principles of inference, only the simplest case of cross-sectional data will be considered. The model as well as the inference method will be in introduced in Section 3.1 and an illustration with simulated data will be presented in Section 3.2.

Model and inference

The SFM [START_REF] Aigner | Formulation and estimation of stochastic frontier production function models[END_REF] defines a production relationship between a p-dimensional input vector x i and output Y i of each production unit i of the form

lnY i = β ln x i +V i -U i , ( 17 
)
where β is a vector of coefficients, V i is an error term generally assumed to have a normal distribution N (0, σ 2 v ) and U i is a positive inefficiency term. Usual models for U i are the half-normal distribution |N (0, σ 2 u )| (i.e., the distribution of the absolute value of a normal variable) and the exponential distribution. The SFM is thus a linear regression model with asymmetric disturbances ε i = V i -U i . The inefficiency terms U i are not observed but are of particular interest in this setting.

Assuming U i to have a half-normal distribution, let λ = σ u /σ v and σ 2 = σ 2 u + σ 2 v be new parameters to be used in place of σ 2 u and σ 2 v . Although the variance of U i is not σ 2 u but (1 -2/π)σ 2 u , λ has an intuitive interpretation as the relative variability of the two sources of error that distinguish firms from one another [START_REF] Aigner | Formulation and estimation of stochastic frontier production function models[END_REF]. Using the notations defined in Section 1, we have Y = (Y 1 , . . . ,Y n ), Z = (U 1 , . . . ,U n ) and θ = (β , σ , λ ). The determination of the inefficiency terms is thus a prediction problem.

Parameter estimation

Assuming the two error components U i and V i to be independent, the log-likelihood function is [14, page 540] 

ln L y (θ ) = -n ln σ + n 2 log 2 π - 1 2 n ∑ i=1 ε i σ 2 + n ∑ i=1 ln Φ - ε i λ σ . ( 18 
)
The maximum likelihood estimate (MLE) θ can be found using an iterative nonlinear optimization procedure. Parameter β may be initialized by the least squares estimate, which is unbiased and consistent (except for the constant term) [START_REF] Greene | Econometric analysis[END_REF]. However, it may be wise to restart the procedure from several randomly chosen initial states, as the log-likelihood function may have several maxima for this problem.

Once θ has been found, the contour function ( 4) can be computed. The marginal contour function for any subset of parameters is the relative profile likelihood function. For instance, the marginal contour function of λ is

pl y (λ ) = sup β ,σ pl y (θ ). (19) 

Prediction

The main purpose of stochastic frontier analysis is the determination of the inefficiency terms u i , which are not observed. The usual approach is to approximate u i by E(U i |ε i ), which is itself estimated by plugging in the MLEs and by replacing ε i by the residuals ε i . The main result is due to Jondrow et al. [START_REF] Jondrow | On the estimation of technical efficiency in the stochastic production function model[END_REF], who showed that the conditional distribution of U given ε i , in the half-normal case, is that of a normal N (µ * , σ 2 * ) variable truncated at zero, with

µ * = - σ 2 u ε i σ 2 = - ε i λ 2 1 + λ 2 (20a) σ * = σ u σ v σ = λ σ 1 + λ 2 . ( 20b 
)
The conditional expectation of U i given ε i is

E(U i |ε i ) = λ σ 1 + λ 2 φ (λ ε i /σ ) 1 -Φ(λ ε i /σ ) - λ ε i σ , (21) 
where φ and Φ are, respectively, the pdf and cdf of the standard normal distribution. As noted by Jondrow et al. [START_REF] Jondrow | On the estimation of technical efficiency in the stochastic production function model[END_REF], when replacing the unknown parameter values by their MLEs, we do not take into account uncertainty due to sampling variability. While this uncertainty becomes negligible when the sample size tends to infinity, it certainly is not when the sample is of small or moderate size.

To implement the approach outlined in Section 2.2 for this problem, we may write the cdf of U i as

F(u) = Φ[(u -µ * )/σ * ] -Φ(-µ * /σ * ) 1 -Φ(-µ * /σ * ) 1 [0,+∞) (u). (22) 
Let ξ i = F(U i ), which has a uniform distribution U ([0, 1]). Solving the equation ξ i = F(U i ) for U i , we get

U i = µ * + σ * Φ -1 ξ i 1 -Φ - µ * σ * + Φ - µ * σ * . (23) 
Replacing µ * and σ * by their expressions as functions of the parameters, we have

U i = ϕ(θ , ξ i ) = λ 1 + λ 2 -ε i λ + σ Φ -1 ξ i + Φ ε i λ σ (1 -ξ i ) (24) 
with ε i = ln y i -β ln x i , which gives us an equation of the same form as [START_REF] Dubois | A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets[END_REF], relating the unobserved random variable U i to the parameters and the auxiliary variable ξ i .

To approximate the belief function on Z = (U 1 , . . . ,U n ), we may use the Monte Carlo method described in [START_REF] Kanjanatarakul | Forecasting using belief functions: an application to marketing econometrics[END_REF]. More specifically, we randomly generate N n + 1tuples (ω ( j) , ξ 

i ] be the resulting interval. The belief and plausibility of any statement Z ∈ A for A ⊂ R n as defined by ( 14) can be approximated by

Bel y (Z ∈ A) ≈ 1 N # j ∈ {1, . . . , N}|[u ( j) 1 , u ( j) 1 ] × . . . × [u ( j) n , u ( j) n ] ⊆ A , (26a) 
Pl y (Z ∈ A) ≈ 1 N # j ∈ {1, . . . , N}|[u ( j) 1 , u ( j) 1 ] × . . . × [u ( j) n , u ( j) n ] ∩ A = / 0 , (26b) 
where # denotes cardinality. We can also approximate the belief function on any linear combination ∑ n i=1 α i u i by applying the same transformation to the intervals [u ( j) i , u ( j) i ], using interval arithmetics. For example, the belief and plausibility of statements of the form u iu k ≤ c can be approximated as follows:

Bel y (u i -u k ≤ c) ≈ 1 N # j ∈ {1, . . . , N}|u ( j) i -u ( j) k ≤ c , (27a) Pl y (u i -u k ≤ c) ≈ 1 N # j ∈ {1, . . . , N}|u ( j) i -u ( j) k ≤ c . (27b)

Simulation experiments

To illustrate the behavior of our method, we simulated data from model with p = 1, β = (1, 0.5) , σ v = 0.175 and σ u = 0.3. We thus have, for this model, λ = 1.7143 and σ = 0.3473. Figure 1 displays the marginal contour functions of β 0 , β 1 , σ and λ for a simulated sample of size n = 100. These plots show graphically the plausibility of any assertion of the form θ j = θ j0 . For instance, we can see from Figure 1(d) that the plausibility of the assertion λ = 0 is around 0.6: consequently, the hypothesis that inefficiencies are all equal to zero is quite plausible, given the data. Figures 2 and3 show the true and estimated inefficiencies for 20 individuals in the above simulated sample of size n = 100 and in a simulated sample of size n = 1000, respectively. For the belief function estimation, we give the quantile intervals for α = 5% and α = 25%. The lower bound of the quantile interval [START_REF] Kanjanatarakul | Forecasting using belief functions: an application to marketing econometrics[END_REF] is the α quantile of the lower bounds u ( j) i of the prediction intervals, while the upper bound is the 1-α quantile of the upper bounds u ( j) i . The larger intervals in the case n = 100 reflect the higher estimation uncertainty. 

Conclusions

We have shown how the estimation and prediction problems may be solved in the belief function framework, and illustrated these solutions in the case of the stochastic frontier model with cross-sectional observation. In the case of this model, the estimation problem concerns the determination of the model parameters describing the production frontier and the distributions of the noise and inefficiency terms, while the prediction problem consists in the determination of the unobserved inefficiency terms, which are of primary interest in this analysis. In our approach, uncertainties about the parameters and the inefficiencies are both modeled by belief functions induced by random sets. In particular, the random set formulation allows us to approximate the belief or plausibility of any assertion about the inefficiencies, using Monte Carlo simulation.

We can remark that parameters and realizations of random variables (here, inefficiencies) are treated differently in our approach, whereas there are not in Bayesian inference. In particular, the likelihood-based belief functions in the parameter space are consonant, whereas predictive belief functions are not. This difference is not due to conceptual differences between parameters and observations, which are just considered here as unknown quantities. It is due to different natures of the evidence from which the belief functions are constructed. In the former case, the evidence consists of observations that provide information on parameters governing a random process. In the latter case, evidence about the data generating process provides information about unobserved observations generated from that process.

The evidential approach to estimation and prediction outlined in this paper is invariant to one-to-one transformations of the parameters and compatible with Bayesian inference, in the sense that it yields the same result when provided with the same initial information. It is, however, more general, as it does not require the user to supply prior probability distributions. It is also easily implemented and does not require asymptotic assumptions, which makes it readily applicable to a wide range of econometric models.

The preliminary results reported in this paper need to be completed in several ways. First, a detailed comparison, based on underlying principles, with alternative approaches such as, e.g., the empirical Bayes method [START_REF] Robbins | An empirical Bayes approach to statistics[END_REF] or imprecise probabilities [START_REF] Walley | Statistical Reasoning with Imprecise Probabilities[END_REF] remains to be performed. Secondly, it would be interesting to study experimentally how users interpret the results of the belief function analysis to make decisions in real-world situations. Finally, theoretical properties of our method, such as asymptotic consistency, are currently being studied.
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 3 Fig. 3 True and predicted inefficiencies for 20 individuals in a simulated sample of size n = 1000.

  Example 1 Let us consider the case where Y = (Y 1 , . . . ,Y n ) is an i.i.d. sample from a normal distribution N (θ , 1). The contour function on θ given a realization y of Y is pl y