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Estimation and prediction using belief functions:
Application to stochastic frontier analysis

Orakanya Kanjanatarakul, Nachatchapong Kaewsompong, Songsak Sriboonchitta
and Thierry Denœux

Abstract We outline an approach to statistical inference based on belief functions.
For estimation, a consonant belief functions is constructed from the likelihood func-
tion. For prediction, the method is based on an equation linking the unobserved
random quantity to be predicted, to the parameter and some underlying auxiliary
variable with known distribution. The approach allows us to compute a predictive
belief function that reflects both estimation and random uncertainties. The method
is invariant to one-to-one transformations of the parameter and compatible with
Bayesian inference, in the sense that it yields the same results when provided with
the same information. It does not, however, require the user to provide prior proba-
bility distributions. The method is applied to stochastic frontier analysis with cross-
sectional data. We demonstrate how predictive belief functions on inefficiencies can
be constructed for this problem and used to assess the plausibility of various asser-
tions.

1 Introduction

Many problems in econometrics can be formalized using a parametric model

(Y,Z)|x∼ fθ ,x(y,z), (1)

Orakanya Kanjanatarakul
Department of Economics, Faculty of Management Sciences, Chiang Mai Rajabhat University,
Thailand

Nachatchapong Kaewsompong and Songsak Sriboonchitta
Faculty of Economics, Chiang Mai University, Thailand

Thierry Denœux
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where Y and Z are, respectively, observed and unobserved random vectors, x is an
observed vector of covariates and fθ ,x is the conditional probability mass or density
function of (Y,Z) given X = x, assumed to be known up to a parameter vector θ ∈Θ .
For instance, in the standard linear regression model, Y = (Y1, . . . ,Yn) is a vec-
tor of n independent observations of the response variable, with Yi ∼N (x′iβ ,σ

2),
Z = Yn+1 is an independent random value of the response variable distributed as
N (x′n+1β ,σ2), x = (x1, . . . ,xn+1) and θ = (β ,σ2). Having observed a realization
y of Y (and the covariates x), we often wish to determine the unknown quantities
in the model, i.e., the parameter θ (assumed to be fixed) and the (yet) unobserved
realization z of Z. The former problem is referred to as estimation and the latter as
prediction (or forecasting).

These two problems have been addressed in different ways within several theoret-
ical frameworks. The three main theories are frequentist, Bayesian and likelihood-
based inference. In the following, we briefly review these three approaches to intro-
duce the motivation for the new method advocated in this paper.

Frequentist methods provide pre-experimental measures of the accuracy of statis-
tical evidence. A procedure (for computing, e.g., a confidence or prediction interval)
is decided before observing the data and its long-run behavior is determined by av-
eraging over the whole sample space, assuming it is repeatedly applied to an infinite
number of samples drawn from the same population. It has long been recognized
that such an approach, although widely used, does not provide a reliable measure of
the strength of evidence provided by specific data. The following simple example,
taken from [6], illustrates this fact. Suppose X1 and X2 are iid with probability mass
function

Pθ (Xi = θ −1) = Pθ (Xi = θ +1) =
1
2
, i = 1,2, (2)

where θ ∈R is an unknown parameter. Consider the following confidence set for θ ,

C(X1,X2) =

{
1
2 (X1 +X2) if X1 6= X2

X1−1 otherwise.
(3)

It is a minimum length confidence interval at level 75%. Now, let (x1,x2) be a given
realization of the random sample (X1,X2). If x1 6= x2, we know for sure that θ =
(x1 + x2)/2 and it would be absurd to take 75% as a measure of the strength of the
statistical evidence. If x1 = x2, we know for sure that θ is either x1− 1 or x1 + 1,
but we have no reason to favor any of these two hypotheses in particular. Again, it
would make no sense to claim that the evidence support the hypothesis θ = x1− 1
with 75% confidence. Although frequentist procedures do provide usable results in
many cases, the above example shows that they are based on a questionable logic if
they are used to assess the reliable of given statistical evidence, as they usually are.
Moreover, on a more practical side, confidence and prediction intervals are often
based on asymptotic assumptions and their true coverage probability, assuming it is
of interest, may be quite different from the nominal one for small sample sizes.

The other main approach to statistical inference is the Bayesian approach, which,
in contrast to the previous approach, implements some form of post-experimental
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reasoning. Here, all quantities, including parameters, are treated as random vari-
ables, and the inference aims at determining the probability distribution of unknown
quantities, given observed ones. With the notations introduced above, the estimation
and prediction problems are to determine the posterior distributions of, respectively,
θ and Z, given x and y. Of course, this is only possible if one provides a prior proba-
bility distribution π(θ) on θ , which is the main issue with this approach. There has
been a long-standing debate among statisticians about the possibility to determine
such a prior when the experimenter does not know anything about the parameter
before observing the data. For lack of space, we cannot reproduce all the arguments
of this debate here. Our personal view is that no probability distribution is truly
non-informative, which weakens the conclusions of Bayesian inference in situations
where no well-justified prior can be provided.

The last classical approach to inference is grounded in the likelihood princi-
ple (LP), which states that all the information provided by the observations about
the parameter is contained in the likelihood function. A complete exposition of the
likelihood-based approach to statistical inference can be found in the monographs
[13] and [6] (see also the seminal paper of Barnard et al. [3]). Birnbaum [7] showed
that the LP can be derived from the two generally accepted principles of sufficiency
and conditionality. Frequentist inference does not comply with the LP, as confidence
intervals and significance tests depend not only on the likelihood function, but also
on the sample space. Bayesian statisticians accept the LP, but claim that the likeli-
hood function does not make sense in itself and needs to be multiplied by a prior
probability distribution to form the posterior distribution of the parameter given the
data. The reader is referred to Refs. [13] and [6] for thorough discussions on this
topic. Most of the literature on likelihood-based inference deals with estimation.
Several authors have attempted to address the prediction problem using the notion
of “predictive likelihood” [18], [8], [4]. For instance, the predictive profile likeli-
hood is defined by Lx(z) = supθ fθ ,x(y,z). However, this notion is quite different
conceptually from the standard notion of likelihood and, to some extent, arbitrary.
While it does have interesting theoretical properties [18], its use poses some practi-
cal difficulties [6, page 39].

The method described in this paper builds upon the likelihood-based approach by
seeing the likelihood function as describing the plausibility of each possible value
of the parameter, in the sense of the Dempster-Shafer theory of belief functions
[9][10][20]. This approach of statistical inference was first proposed by Shafer [20]
and was later investigated by several authors (see, e.g., [23][1]). It was recently justi-
fied by Denœux in [11] and extended to prediction in [17, 16]. In this paper, we pro-
vide a general introduction to estimation and prediction using belief functions and
demonstrate the application of this inference framework to the stochastic frontier
model. In this model, the determination of the production frontier and disturbance
parameters is an estimation problem, whereas the determination of the inefficiency
terms is a prediction problem. We will show, in particular, how this method makes
it possible to quantify both estimation uncertainty and random uncertainty, and to
evaluate the plausibility of various hypothesis about both the production frontier and
the efficiencies.
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The rest of this paper is organized as follows. The general framework for in-
ference and prediction will first be recalled in Section 2. This framework will be
particularized to the stochastic frontier model in Section 3 and Section 4 will con-
clude the paper.

2 Inference and prediction using belief functions

Basic knowledge of the theory of belief functions will be assumed throughout this
paper. A complete exposition in the finite case can be found in Shafer’s book [20].
The reader is referred to [5] for a quick introduction on those aspects of this theory
needed for statistical inference. In this section, the definition of a belief function
from the likelihood function and the general prediction method introduced in [17]
will be recalled in Sections 2.1 and 2.2, respectively.

2.1 Inference

Let fθ ,x(y) be the marginal probability mass or density function of the observed data
Y given x. In the following, the covariates (if any) will be assumed to be fixed, so
that the notation fθ ,x(y) can be simplified to fθ (y). Statistical inference has been
addressed in the belief function framework by many authors, starting from Demp-
ster’s seminal work [9]. In [20], Shafer proposed, on intuitive grounds, a more direct
approach in which a belief function BelΘy on Θ is built from the likelihood function.
This approach was further elaborated by Wasserman [23] and discussed by Aickin
[1], among others. It was recently justified by Denœux in [11], from three basic
principles: the likelihood principle, compatibility with Bayesian inference and the
least commitment principle [21]. The least committed belief function verifying the
first two principles, according to the commonality ordering [12] is the consonant
belief function BelΘy defined by the contour function

ply(θ) =
Ly(θ)

supθ ′∈Θ Ly(θ ′)
, (4)

where Ly(θ) = fθ (y) is the likelihood function. The quantity ply(θ) is interpreted
as the plaussibility that the true value of the parameter is θ . The corresponding
plausibility and belief functions can be computed from ply as:

PlΘy (A) = sup
θ∈A

ply(θ), (5a)

BelΘy (A) = 1− sup
θ 6∈A

ply(θ), (5b)

for all A⊆Θ . The focal sets of BelΘy are the levels sets of ply(θ) defined as follows:
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Γy(ω) = {θ ∈Θ |ply(θ)≥ ω}, (6)

for ω ∈ [0,1]. These sets may be called plausibility regions and can be interpreted as
sets of parameter values whose plausibility is greater than some threshold ω . When
ω is a random variable with a continuous distribution U ([0,1]), Γy(ω) becomes a
random set equivalent to the belief function BelΘy , in the sense that

BelΘy (A) = Pω(Γy(ω)⊆ A) (7a)

PlΘy (A) = Pω(Γy(ω)∩A 6= /0), (7b)

for all A⊆Θ such that the above expressions are well-defined.

Example 1 Let us consider the case where Y = (Y1, . . . ,Yn) is an i.i.d. sample from
a normal distribution N (θ ,1). The contour function on θ given a realization y of
Y is

ply(θ) =
(2π)−n/2 exp

(
− 1

2 ∑
n
i=1(yi−θ)2

)
(2π)−n/2 exp

(
− 1

2 ∑
n
i=1(yi− y)2

) (8a)

= exp
(
−n

2
(θ − y)2

)
, (8b)

where y is the sample mean. The plausibility and belief that θ does not exceed some
value t are given by the upper and lower cumulative distribution functions (cdfs)
defined, respectively, as

Ply(θ ≤ t) = sup
θ≤t

plx(θ) (9a)

=

{
exp
(
− n

2 (t− y)2
)

if t ≤ y
1 otherwise

(9b)

and

Bely(θ ≤ t) = 1− sup
θ>t

plx(θ) (10a)

=

{
0 if t ≤ y
1− exp

(
− n

2 (t− y)2
)

otherwise.
(10b)

The focals sets (6) are closed intervals

Γy(ω) =

[
y−
√
−2lnω

n
,y+

√
−2lnω

n

]
. (11)

When ω has a uniform distribution on [0,1], Γy(ω) is a closed random interval. The
cdfs of its lower and upper bounds are equal, respectively, to the lower and upper
cdfs (10) and (9). �
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2.2 Prediction

The prediction problem can be defined as follows: having observed the realization y
of Y with distribution fθ (y), we wish to make statements about some yet unobserved
data Z ∈ Z whose conditional distribution fy,θ (z) given Y = y also depends on θ .
The uncertainty on Z has two sources: (1) the randomness of the generation mech-
anism of Z given θ and y and (2) the estimation uncertainty on θ . In the approach
outlined here, the latter uncertainty is represented by the belief function BelΘy on θ

obtained by the approach described in the previous section. The random generation
mechanism for Z can be represented by a sampling model such as the one used by
Dempster [9] for inference. In this model, the new data Z is expressed as a func-
tion of the parameter θ and an unobserved auxiliary random variable ξ with known
probability distribution independent of θ :

Z = ϕ(θ ,ξ ), (12)

where ϕ is defined in such a way that the distribution of Z for fixed θ is fy,θ (z).
When Z is a real random variable, a canonical model of the form (12) can be ob-

tained as Z = F−1
y,θ (ξ ), where Fy,θ is the conditional cumulative distribution function

(cdf) of Z given Y = y, F−1
y,θ is its generalized inverse and ξ has a continuous uniform

distribution in [0,1]. This canonical model can be extended to the case where Z is
a random vector. For instance, assume that Z is a two-dimensional random vector
(Z1,Z2). We can write

Z1 = F−1
y,θ (ξ1) (13a)

Z2 = F−1
y,θ ,Z1

(ξ2), (13b)

where Fy,θ is the conditional cdf of Z1 given Y = y, Fy,θ ,Z1 is the conditional cdf of
Z2 given Y = y and Z1 and ξ = (ξ1,ξ2) has a uniform distribution in [0,1]2.

Equation (12) gives us the distribution of Z when θ is known. If we only know
that θ ∈ Γy(ω) and the value of ξ , we can assert that Z is in the set ϕ(Γy(ω),ξ ).
As ω and ξ are not observed but have a joint uniform distribution on [0,1]2, the set
ϕ(Γy(ω),ξ ) is a random set. It induces belief and plausibility functions defined as

Bely(Z ∈ A) = Pω,ξ (ϕ(Γy(ω),ξ )⊆ A) , (14a)

Ply(Z ∈ A) = Pω,ξ (ϕ(Γy(ω),ξ )∩A 6= /0) , (14b)

for any A⊆ Z.

Example 2 Continuing Example 1, let us assume that Z ∼ N (θ ,1) is a yet un-
oberved normal random variable independent of Y . It can be written as

Z = θ +Φ
−1(ξ ), (15)
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where Φ is the cdf of the standard normal distribution. The random set ϕ(Γy(ω),ξ )
is then the random closed interval

ϕ(Γy(ω),ξ ) =

[
y−
√
−2lnω

n
+Φ

−1(ξ ),y+

√
−2lnω

n
+Φ

−1(ξ )

]
. (16)

Expressions (14) for the belief and plausibility of any assertion about Z can be
approximated by Monte Carlo simulation [17]. �

As remarked by Bjornstad [8], a prediction method should have at least two fun-
damental properties: it should be invariant to any one-to-one reparametrization of
the model and it should be asymptotically consistent, in a precise sense to be de-
fined. An additional property that seems desirable is compatibility with Bayesian
inference, in the sense that it should yield the same result as the Bayesian approach
when a prior distribution on the parameter is provided. Our method possesses these
three properties. Parameter invariance follows from the fact that it is based on the
likelihood function; compatibility with Bayes is discussed at length in [17] and con-
sistency will be studied in greater detail in a forthcoming paper.

3 Application to stochastic frontier analysis

In this section, we apply the above estimation and prediction framework to the
stochastic frontier model (SFM). To keep the emphasis on fundamental principles
of inference, only the simplest case of cross-sectional data will be considered. The
model as well as the inference method will be in introduced in Section 3.1 and an
illustration with simulated data will be presented in Section 3.2.

3.1 Model and inference

The SFM [2] defines a production relationship between a p-dimensional input vector
xi and output Yi of each production unit i of the form

lnYi = β
′ lnxi +Vi−Ui, (17)

where β is a vector of coefficients, Vi is an error term generally assumed to have a
normal distribution N (0,σ2

v ) and Ui is a positive inefficiency term. Usual models
for Ui are the half-normal distribution |N (0,σ2

u )| (i.e., the distribution of the abso-
lute value of a normal variable) and the exponential distribution. The SFM is thus a
linear regression model with asymmetric disturbances εi =Vi−Ui. The inefficiency
terms Ui are not observed but are of particular interest in this setting.

Assuming Ui to have a half-normal distribution, let λ = σu/σv and σ2 = σ2
u +σ2

v
be new parameters to be used in place of σ2

u and σ2
v . Although the variance of Ui is
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not σ2
u but (1− 2/π)σ2

u , λ has an intuitive interpretation as the relative variability
of the two sources of error that distinguish firms from one another [2]. Using the
notations defined in Section 1, we have Y = (Y1, . . . ,Yn), Z = (U1, . . . ,Un) and θ =
(β ,σ ,λ ). The determination of the inefficiency terms is thus a prediction problem.

Parameter estimation

Assuming the two error components Ui and Vi to be independent, the log-likelihood
function is [14, page 540]

lnLy(θ) =−n lnσ +
n
2

log
2
π
− 1

2

n

∑
i=1

(
εi

σ

)2
+

n

∑
i=1

lnΦ

(
−εiλ

σ

)
. (18)

The maximum likelihood estimate (MLE) θ̂ can be found using an iterative non-
linear optimization procedure. Parameter β may be initialized by the least squares
estimate, which is unbiased and consistent (except for the constant term) [14]. How-
ever, it may be wise to restart the procedure from several randomly chosen initial
states, as the log-likelihood function may have several maxima for this problem.
Once θ̂ has been found, the contour function (4) can be computed. The marginal
contour function for any subset of parameters is the relative profile likelihood func-
tion. For instance, the marginal contour function of λ is

ply(λ ) = sup
β ,σ

ply(θ). (19)

Prediction

The main purpose of stochastic frontier analysis is the determination of the ineffi-
ciency terms ui, which are not observed. The usual approach is to approximate ui by
E(Ui|εi), which is itself estimated by plugging in the MLEs and by replacing εi by
the residuals ε̂i. The main result is due to Jondrow et al. [15], who showed that the
conditional distribution of U given εi, in the half-normal case, is that of a normal
N (µ∗,σ

2
∗ ) variable truncated at zero, with

µ∗ =−
σ2

u εi

σ2 =− εiλ
2

1+λ 2 (20a)

σ∗ =
σuσv

σ
=

λσ

1+λ 2 . (20b)

The conditional expectation of Ui given εi is

E(Ui|εi) =
λσ

1+λ 2

[
φ(λεi/σ)

1−Φ(λεi/σ)
− λεi

σ

]
, (21)
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where φ and Φ are, respectively, the pdf and cdf of the standard normal distribution.
As noted by Jondrow et al. [15], when replacing the unknown parameter values by
their MLEs, we do not take into account uncertainty due to sampling variability.
While this uncertainty becomes negligible when the sample size tends to infinity, it
certainly is not when the sample is of small or moderate size.

To implement the approach outlined in Section 2.2 for this problem, we may
write the cdf of Ui as

F(u) =
Φ [(u−µ∗)/σ∗]−Φ(−µ∗/σ∗)

1−Φ(−µ∗/σ∗)
1[0,+∞)(u). (22)

Let ξi = F(Ui), which has a uniform distribution U ([0,1]). Solving the equation
ξi = F(Ui) for Ui, we get

Ui = µ∗+σ∗Φ
−1
[

ξi

(
1−Φ

(
−µ∗

σ∗

))
+Φ

(
−µ∗

σ∗

)]
. (23)

Replacing µ∗ and σ∗ by their expressions as functions of the parameters, we have

Ui = ϕ(θ ,ξi) =
λ

1+λ 2

{
−εiλ +σΦ

−1
[

ξi +Φ

(
εiλ

σ

)
(1−ξi)

]}
(24)

with εi = lnyi−β
′ lnxi, which gives us an equation of the same form as (12), relating

the unobserved random variable Ui to the parameters and the auxiliary variable ξi.
To approximate the belief function on Z = (U1, . . . ,Un), we may use the Monte

Carlo method described in [17]. More specifically, we randomly generate N n+ 1-
tuples (ω( j),ξ

( j)
1 , . . . ,ξ

(n)
1 ) for j = 1, . . . ,N uniformly in [0,1]n+1. For i = 1 to n and

j = 1 to N, we compute the minimum and the maximum of ϕ(θ ,ξ
( j)
i ) w.r.t. θ under

the constraint
ply(θ)≥ ω

( j). (25)

Let [u( j)
i ,u( j)

i ] be the resulting interval. The belief and plausibility of any statement
Z ∈ A for A⊂ Rn as defined by (14) can be approximated by

Bely(Z ∈ A)≈ 1
N

#
{

j ∈ {1, . . . ,N}|[u( j)
1 ,u( j)

1 ]× . . .× [u( j)
n ,u( j)

n ]⊆ A
}
, (26a)

Ply(Z ∈ A)≈ 1
N

#
{

j ∈ {1, . . . ,N}|[u( j)
1 ,u( j)

1 ]× . . .× [u( j)
n ,u( j)

n ]∩A 6= /0
}
, (26b)

where # denotes cardinality. We can also approximate the belief function on any
linear combination ∑

n
i=1 αiui by applying the same transformation to the intervals

[u( j)
i ,u( j)

i ], using interval arithmetics. For example, the belief and plausibility of
statements of the form ui−uk ≤ c can be approximated as follows:
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Bely(ui−uk ≤ c)≈ 1
N

#
{

j ∈ {1, . . . ,N}|u( j)
i −u( j)

k ≤ c
}
, (27a)

Ply(ui−uk ≤ c)≈ 1
N

#
{

j ∈ {1, . . . ,N}|u( j)
i −u( j)

k ≤ c
}
. (27b)

3.2 Simulation experiments

To illustrate the behavior of our method, we simulated data from model with p = 1,
β = (1,0.5)′, σv = 0.175 and σu = 0.3. We thus have, for this model, λ = 1.7143
and σ = 0.3473. Figure 1 displays the marginal contour functions of β0, β1, σ and λ

for a simulated sample of size n= 100. These plots show graphically the plausibility
of any assertion of the form θ j = θ j0. For instance, we can see from Figure 1(d) that
the plausibility of the assertion λ = 0 is around 0.6: consequently, the hypothesis
that inefficiencies are all equal to zero is quite plausible, given the data.
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Fig. 1 Marginal contour functions for a simulated sample of size n = 100.

Figures 2 and 3 show the true and estimated inefficiencies for 20 individuals in
the above simulated sample of size n = 100 and in a simulated sample of size n =
1000, respectively. For the belief function estimation, we give the quantile intervals
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for α = 5% and α = 25%. The lower bound of the quantile interval [17] is the α

quantile of the lower bounds u( j)
i of the prediction intervals, while the upper bound

is the 1−α quantile of the upper bounds u( j)
i . The larger intervals in the case n= 100

reflect the higher estimation uncertainty.
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Upper 75\% quantile
Upper 95\% quantile

Fig. 2 True and predicted inefficiencies for 20 individuals in a simulated sample of size n = 100.

4 Conclusions

We have shown how the estimation and prediction problems may be solved in the
belief function framework, and illustrated these solutions in the case of the stochas-
tic frontier model with cross-sectional observation. In the case of this model, the
estimation problem concerns the determination of the model parameters describ-
ing the production frontier and the distributions of the noise and inefficiency terms,
while the prediction problem consists in the determination of the unobserved in-
efficiency terms, which are of primary interest in this analysis. In our approach,
uncertainties about the parameters and the inefficiencies are both modeled by belief
functions induced by random sets. In particular, the random set formulation allows
us to approximate the belief or plausibility of any assertion about the inefficiencies,
using Monte Carlo simulation.

We can remark that parameters and realizations of random variables (here, inef-
ficiencies) are treated differently in our approach, whereas there are not in Bayesian
inference. In particular, the likelihood-based belief functions in the parameter space
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Fig. 3 True and predicted inefficiencies for 20 individuals in a simulated sample of size n = 1000.

are consonant, whereas predictive belief functions are not. This difference is not
due to conceptual differences between parameters and observations, which are just
considered here as unknown quantities. It is due to different natures of the evidence
from which the belief functions are constructed. In the former case, the evidence
consists of observations that provide information on parameters governing a ran-
dom process. In the latter case, evidence about the data generating process provides
information about unobserved observations generated from that process.

The evidential approach to estimation and prediction outlined in this paper
is invariant to one-to-one transformations of the parameters and compatible with
Bayesian inference, in the sense that it yields the same result when provided with
the same initial information. It is, however, more general, as it does not require the
user to supply prior probability distributions. It is also easily implemented and does
not require asymptotic assumptions, which makes it readily applicable to a wide
range of econometric models.

The preliminary results reported in this paper need to be completed in several
ways. First, a detailed comparison, based on underlying principles, with alternative
approaches such as, e.g., the empirical Bayes method [19] or imprecise probabil-
ities [22] remains to be performed. Secondly, it would be interesting to study ex-
perimentally how users interpret the results of the belief function analysis to make
decisions in real-world situations. Finally, theoretical properties of our method, such
as asymptotic consistency, are currently being studied.
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